
Learning Languages from Positive Data and a

Finite Number of Queries

Sanjay Jain a,1 Efim Kinber b

a School of Computing, National University of Singapore, Singapore 117543.
Email: sanjay@comp.nus.edu.sg

b Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A. Email: kinbere@sacredheart.edu

Abstract

A computational model for learning languages in the limit from full positive data
and a bounded number of queries to the teacher (oracle) is introduced and ex-
plored. Equivalence, superset, and subset queries are considered (for the latter one
we consider also a variant when the learner tests every conjecture, but the number
of negative answers is uniformly bounded). If the answer is negative, the teacher
may provide a counterexample. We consider several types of counterexamples: arbi-
trary, least counterexamples, the ones whose size is bounded by the size of positive
data seen so far, and no counterexamples. A number of hierarchies based on the
number of queries (answers) and types of answers/counterexamples is established.
Capabilities of learning with different types of queries are compared. In most cases,
one or two queries of one type can sometimes do more than any bounded number
of queries of another type. Still, surprisingly, a finite number of subset queries is
sufficient to simulate the same number of equivalence queries when behaviourally
correct learners do not receive counterexamples and may have unbounded number
of errors in almost all conjectures.

1 Introduction

Finding an adequate computational model for learning languages has been
an important objective for last four decades. In 1967, M. Gold [Gol67] intro-
duced a classical model of learning languages in the limit from full positive
data (that is, all correct statements in the target language). Under Gold’s
paradigm, the learner stabilizes to a correct grammar of the target language

1 Supported in part by NUS grant number R252-000-127-112.

Preprint submitted to Elsevier Science 11 March 2007

(Ex-style learning). Based on the same idea of learning in the limit, J. Case
and C. Lynes [CL82] and D. Osherson and S. Weinstein [OW82] (see also
[Bār74] and [CS83]) introduced a more powerful behaviorally correct type of
learning languages, when a learner almost always outputs correct (but not
necessarily the same) grammars for the target language (Bc-style learning).
In both cases, the authors also considered a much stronger (and less realistic)
model of learning languages in the presence of full positive and negative data.
In [BCJ95] the authors considered an intermediate model, where a learner gets
full positive data and a finite number of negative examples. However, negative
data in the latter paper is preselected, and, thus, dramatically affects learning
capabilities.

In the paper [Ang88], D. Angluin introduced another important learning
paradigm, i.e. learning from queries to a teacher (oracle). Among others,
D. Angluin introduced three types of queries: equivalence queries - when a
learner asks if the current conjecture generates the target language; subset
and superset queries - when a learner asks if the current conjecture generates
a subset or a superset of the target language, respectively. If the answer is
negative, the teacher may provide a counterexample showing where the cur-
rent conjecture errs. This learning paradigm of testing conjectures against the
target concept (and some other related types of queries) has been explored,
primarily in the context of learning finite concepts and regular languages, in
several papers, for example, [Ang01,NL00,Ang87,AHK93,Kin92,SHA03,IJ88].
In [LNZ02], the authors applied this paradigm to explore learning (potentially
infinite) languages without knowing any data in advance (neither positive,
nor negative) (see also [LZ04b,LZ04a]). A somewhat different types of queries
(where one may ask queries to an oracle such as halting problem) was consid-
ered in [GS91,GP89,FGJ+94].

In this paper, we combine learning languages from positive data and learning
languages from queries into one model. On one hand, this model reflects the
fact that a child, during a process of acquisition of a new language, potentially
gets access to all correct statements. On the other hand, this model provides
an important tool available to a child: a possibility to communicate with a
teacher testing conjectures about the grammar describing the target language.
The first attempt of combining the abovementioned paradigms of learning was
made in [JK04], where learning from positive data and negative counterexam-
ples to conjectures was considered. In this model, a learner essentially asks a
subset query about every conjecture. Thus, a learner, being provided with full
positive data, is concerned with “overgeneralizing”, that is, including into con-
jectures data not belonging to the target language. If the current conjecture
is not a subset, the teacher may provide a negative counterexample. In the
sequel, we will refer to the model defined in [JK04], as learning using negative
counterexamples to conjectures. In the current paper, we concentrate on the
case when a learner can query the teacher only a bounded (finite) number

2

of times - thus, limiting the amount of help from the teacher. As avoiding
overgeneralization is probably the main challenge a language learner can face
(see, for example, [OSW86,ZL95]), exploring help from subset queries is our
primary objective in this paper. In addition to subset queries, we also consider
learning with equivalence and superset queries. Using the latter type of queries
in the presence of full positive data may seem problematic, as “counterexam-
ples” in this case are positive, and the learner gets them eventually anyway.
However, sometimes, a teacher may have difficulty providing negative coun-
terexamples. Moreover, as we have shown, positive counterexamples can help
learning language that cannot be learned otherwise - even when full positive
data is eventually available!

We also consider the model of learning using negative counterexamples to
conjectures as defined in [JK04] - when the number of (negative) counterex-
amples is uniformly bounded. On the surface, this type of learning seems to
be at least as capable as learning with a bounded number of subset queries
(recall that in the former model, the learner asks a subset query about its
conjectures). However, as we have shown, surprisingly, there exist classes of
languages learnable with just one subset query, but not learnable receiving
any bounded number of negative counterexamples to conjectures!

As the number of queries in our learning model is always uniformly bounded,
it can naturally be considered as a measure of complexity of learning languages
(number of queries as a measure of complexity of solving hard computational
problems has been extensively explored, see, for example [GM98]).

Following [JK04], in addition to the case when counterexamples provided by
the teacher are arbitrary (our basic learning model), we consider three variants
of this basic model:

• the learner always gets the least counterexample (Ibarra et al. [IJ88] ex-
plored this type of learning using equivalence queries for finite deterministic
automata);

• the counterexample is bounded by the largest positive data seen so far;
• the learner gets only answers “yes” or “no”, but no counterexamples (queries

of this type are known as restricted).

The latter two variants address complexity issues: a teacher might not be able
to compute a long counterexample in a reasonable time, or might not be able
to provide it at all 2 .

2 The teacher must be able to solve the subset, equivalence, and superset problems
for recursively enumerable sets. These problems are algorithmically unsolvable in
the general case. However, in many of the examples considered in this paper, these
problems are solvable. Moreover, exploring computability and learnability using
oracles proved to be very helpful for better understanding of nature and capabilities

3

In this paper we explore effects of different types of queries on learning capa-
bilities. In particular, we explore:

• how the number of queries can affect learning capabilities (hierarchies based
on the number of queries);

• relationships between learning capabilities based on different types of queries;
• how three different variants of the basic model (described above) using dif-

ferent types of counterexamples given affect learning capabilities;
• the relationship between learning using subset queries and learning using

negative counterexamples to conjectures; even though, for Ex-type learn-
ing, these models coincide when unbounded finite number of subset queries
is allowed, some subtle differences arise when one bounds the number of
queries or counterexamples provided.

The paper is organized as follows. Section 2 is devoted to notation and some
basic definitions (in particular, definitions of Ex and Bc types of learning). In
Section 3 we define learning from positive data via subset, equivalence, and
superset queries, as well as three abovementioned variants of the basic learning
model. We also show here that learning with counterexamples bounded by the
largest positive data seen so far does not help for all three types of queries
- even if the finite number of queries is not uniformly bounded. In Section 4
we define learning with a bounded number of negative counterexamples to
conjectures.

In Section 5 general hierarchies based on the number of queries are exhibited.
Our results here (Theorem 19 and Theorem 22) show that, for all three types of
queries, learning with (n+1) queries is stronger than with n queries. Moreover,
classes of languages witnessing hierarchies in question can be Ex-learned using
(n + 1) restricted queries (providing only answers “yes” or “no”), but cannot
be learned by Bc-type learners getting the least counterexamples.

In Section 6 we establish hierarchies based on the differences between differ-
ent variants of the basic learning model: using least counterexamples versus
arbitrary counterexamples, and arbitrary counterexamples versus no coun-
terexamples. First, we show that, for all three types of queries, when only
one query is permitted, getting the least counterexample helps no better than
getting no counterexample (Theorem 25). On the other hand, (again for all
three types of queries) Ex-learners making just two queries and receiving the
least counterexamples can do better than Bc-learners making n queries, mak-
ing a finite number of errors in almost all conjectures, and receiving arbitrary
counterexamples to queries (Theorem 26 and Theorem 29). Interestingly, one
and the same class witnesses this hierarchy for both subset and equivalence
types of queries. A somewhat surprising hierarchy has been found for the case

of both in various contexts even when algorithmic solvability would be problematic
[Rog67,GP89,FGJ+94,LNZ02].

4

of learning with bounded number of negative counterexamples to conjectures:
learners getting (2n − 1) arbitrary negative counterexamples to conjectures
can learn at least as much as the ones getting n least negative counterexam-
ples, and the bound (2n − 1) is tight – (2n − 2) arbitrary examples are not
enough to simulate n least negative counterexamples (Theorem 32 and The-
orem 33). In the rest of the section we demonstrate that Ex-learners making
just two queries and getting arbitrary counterexamples can learn classes not
Bc-learnable via any n queries with no counterexamples, even when a finite
number of errors is allowed in almost all conjectures (Theorems 36 and 37).
Again, the hierarchies for subset and equivalence queries are witnessed by the
same class of languages.

In Section 7 we exhibit subtle differences between learning via bounded num-
ber of subset queries and learning with bounded number of counterexamples
to conjectures. Our main, quite surprising result in this section (Theorem 43)
shows that Ex-learners making just one subset query with no counterexample
can learn some class of languages that is not learnable by Bc-learners which
are provided with at most n (least) counterexamples to their conjectures, even
if allowed any finite number of errors in almost all conjectures! (The class of
languages witnessing this result can also be learned via one restricted equiv-
alence query). On the other hand, Ex-learners which are provided with one
negative counterexample to their conjectures (if the counterexample exists),
can learn some class which is not learnable by Bc-learners making (at most)
n subset queries and allowing any bounded number of errors in almost all
conjectures (Theorem 47; Theorem 50 also exhibits a slightly different version
of the above phenomenon).

In Section 8 we explore how finite number of subset queries (including learning
with a bounded number of negative counterexamples) helps to learn compared
with finite number of other types of queries. We show that there are classes
of languages Ex-learnable with one restricted subset query (or with at most
one negative counterexample to their conjectures) but not Bc-learnable with
any finite number of equivalence queries, even when always getting least coun-
terexamples and allowing any finite number of errors in almost all conjectures
(Theorem 56). In Section 9 we explore how finite number of equivalence or
superset queries fairs against a finite number of subset queries (or a bounded
number of negative counterexamples to conjectures). First, we show that Ex-
learners using just one restricted superset or equivalence query can learn a
class not learnable by Bc-learners which are given negative counterexamples
(if applicable) to all its conjectures (Theorem 59). Then we use this result to
demonstrate that Ex-learners making just one restricted equivalence or super-
set query can sometimes do better than Bc-learners making n subset queries
or getting (at most) n least negative counterexamples to its conjectures, when
a bounded finite number of errors is allowed in almost all conjectures (Corol-
lary 61). We also discovered a subtle difference with the above result in the

5

case when Bc-learners can make any unbounded finite number of errors in
almost all conjectures: in this case, Bc-learners using n restricted equiva-
lence queries cannot learn more than Bc-learners using the same number of
restricted subset queries (Theorem 62). Still, if the teacher provides coun-
terexamples, Ex-learners making just two equivalence queries can do better
than Bc-learners making any finite (unbounded) number of subset queries,
getting least counterexamples and making any finite (unbounded) number of
errors in almost all conjectures (Theorem 63). In Section 10 we prove just
one result (Theorem 66) showing that Ex-learners making just one restricted
superset query can do better than Bc-learners making n equivalence queries,
getting least counterexamples, and making finite (bounded) number of errors
in almost all conjectures. In Section 11 we consider anomaly hierarchy.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol
N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇,
and ⊃ denote empty set, subset, proper subset, superset, and proper superset,
respectively. D0, D1, . . . , denotes a canonical recursive indexing of all the finite
sets [Rog67, Page 70]. We assume that if Di ⊆ Dj then i ≤ j (the canonical
indexing defined in [Rog67] satisfies this property). Cardinality of a set S
is denoted by card(S). The maximum and minimum of a set are denoted
by max(·), min(·), respectively, where max(∅) = 0 and min(∅) = ∞. L1∆L2

denotes the symmetric difference of L1 and L2, that is L1∆L2 = (L1 − L2) ∪
(L2−L1). For a natural number a, we say that L1 =a L2, iff card(L1∆L2) ≤ a.
We say that L1 =∗ L2, iff card(L1∆L2) < ∞. Thus, we take n < ∗ < ∞, for
all n ∈ N . If L1 =a L2, then we say that L1 is an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N ×N
onto N [Rog67]. We assume without loss of generality that 〈·, ·〉 is mono-
tonically increasing in both of its arguments. We define π1(〈x, y〉) = x and
π2(〈x, y〉) = y. We can extend pairing function to multiple arguments by us-
ing 〈i1, i2, . . . , ik〉 = 〈i1, 〈i2, 〈. . . , 〈ik−1, ik〉〉〉〉.

We let {Wi}i∈N denote an acceptable numbering of all r.e. sets. Symbol E will
denote the set of all r.e. languages. Symbol L, with or without decorations,
ranges over E . By L, we denote the complement of L, that is N−L. Symbol L,
with or without decorations, ranges over subsets of E . By Wi,s we denote the
set Wi enumerated within s steps, in some standard method of enumerating
Wi.

We let K = {i | i ∈ Wi}. Note that K is a recursively enumerable but not
recursive set [Rog67].

6

We now present concepts from language learning theory. The next definition
introduces the concept of a sequence of data.

Definition 1 (a) A sequence σ is a mapping from an initial segment of N
into (N ∪ {#}). The empty sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural
numbers in the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So,
σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and
γ, with or without decorations, range over finite sequences. We denote the
sequence formed by the concatenation of τ at the end of σ by στ . Sometimes
we abuse the notation and use σx to denote the concatenation of sequence σ
and the sequence of length 1 which contains the element x. SEQ denotes the
set of all finite sequences.

Definition 2 [Gol67] (a) A text T for a language L is a mapping from N
into (N ∪ {#}) such that L is the set of natural numbers in the range of T .
T (i) represents the (i + 1)-th element in the text.

(b) The content of a text T , denoted by content(T), is the set of natural
numbers in the range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

Definition 3 [Gol67] A language learning machine from texts is an algorith-
mic device which computes a mapping from SEQ into N .

We let M, with or without decorations, range over learning machines. M(T [n])
is interpreted as the grammar (index for an accepting program) conjectured by
the learning machine M on the initial sequence T [n]. We say that M converges
on T to i, (written: M(T)↓ = i) iff (∀∞n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language.
Below we define some of them. All of the criteria defined below are variants
of the Ex-style and Bc-style learning described in the Introduction; in addi-
tion, they allow a finite number of errors in almost all conjectures (uniformly
bounded, or arbitrary).

Definition 4 [Gol67,CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T))

7

(∀∞n)[M(T [n]) = i].

(b) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) just
in case M TxtExa-identifies each text for L.

(c) M TxtExa-identifies a class L of r.e. languages (written: L ⊆
TxtExa(M)) just in case M TxtExa-identifies each language from L.

(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Definition 5 [CL82] Suppose a ∈ N ∪ {∗}.

(a) M TxtBca-identifies a text T just in case (∀∞n)[WM(T [n]) =a L].

(b) M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) just
in case M TxtBca-identifies each text for L.

(c) M TxtBca-identifies a class L of r.e. languages (written: L ⊆
TxtBca(M)) just in case M TxtBca-identifies each language from L.

(d) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

For a = 0, we often write TxtEx and TxtBc, instead of TxtEx0 and TxtBc0,
respectively.

Definition 6 [Ful90] σ is said to be an TxtEx-stabilizing sequence for M on
L, iff (i) content(σ) ⊆ L, and (ii) for all σ′ such that σ ⊆ σ′ and content(σ′) ⊆
L, M(σ) = M(σ′).

Definition 7 [BB75,OSW86] For a ∈ N ∪ {∗}, σ is said to be an TxtExa-
locking sequence for M on L, iff (i) content(σ) ⊆ L, (ii) for all σ ′ such that
σ ⊆ σ′ and content(σ′) ⊆ L, M(σ) = M(σ′), and (iii) WM(σ) =a L.

Theorem 8 [BB75,OSW86] Suppose M TxtExa-identifies L. Then, there
exists an TxtExa-locking sequence for M on L.

Definition 9 (Based on [BB75,OSW86]) For a ∈ N ∪ {∗}, σ is said to be an
TxtBca-locking sequence for M on L, iff (i) content(σ) ⊆ L, and (ii) for all
σ′ such that σ ⊆ σ′ and content(σ′) ⊆ L, WM(σ′) =a L.

Theorem 10 (Based on [BB75,OSW86]) Suppose M TxtBca-identifies L.
Then, there exists a TxtBca-locking sequence for M on L.

Similar stabilizing sequence/locking sequence results can be obtained for cri-
teria of inference discussed below.

We let INIT = {L | (∃i)[L = {x | x ≤ i}]}.

8

For any L, let cyl(L) = {〈i, x〉 | i ∈ L, x ∈ N}. Let cyl(L) = {cyl(L) | L ∈ L}.

Let CYLi denote the language {〈i, x〉 | x ∈ N}.

Let FINITE denote the class of all finite languages.

The following propositions are useful in proving many of our results.

Proposition 11 [Gol67] Suppose L is an infinite language, S ⊆ L, and L−S
is infinite. Let C0 ⊆ C1 ⊆ · · · be an infinite sequence of finite sets such that
⋃

i Ci = L. Then {L} ∪ {S ∪ Ci | i ∈ N} is not in TxtBc∗.

Proposition 12 Suppose L is infinite and R1, R2, . . . are infinitely many pair-
wise disjoint subsets of L, where each Ri is infinite. Then, L = {X | X = L
or (∃i)[X = L − Ri]} 6∈ TxtBc∗.

Proof. Suppose by way of contradiction that M witnesses that {X | X = L
or (∃i)[X = L − Ri]} ∈ TxtBc∗. Then, let σ be a TxtBc∗-locking sequence
for M on L. Now for all σ′ ⊇ σ, such that content(σ′) ⊆ L, we must have that
WM(σ′) =∗ L. But then M cannot TxtBc∗-identify any language X such that
content(σ) ⊆ X ⊆ L, and L − X is infinite. Let i be such that Ri does not
intersect with content(σ). Choosing X = L − Ri, now shows that M cannot
TxtBc∗-identify L.

3 Learning With Queries

In this section we define learning with queries. The kind of queries considered
are

(i) subset queries, i.e., for a queried language Q, “is Q ⊆ L?”, where L is the
language being learned;

(ii) equivalence queries, i.e., for a queried language Q, “is Q = L?”, where L
is the language being learned;

(iii) superset queries, i.e., for a queried language Q, “is Q ⊇ L?”, where L is
the language being learned.

In the model of learning, the learner is allowed to ask queries such as above
during its computation. If the answer to query is “no”, we additionally can
have the following possibilities:

(a) Learner is given an arbitrary counterexample (for subset query, counterex-
ample is a member of Q − L; for equivalence query the counterexample is

9

a member of L∆Q; for superset query the counterexample is a member of
L − Q);

(b) Learner is given the least counterexample;

(c) Learner is just given the answer ‘no’, without any counterexample.

We would often also consider bounds on the number of queries. We first for-
malize the definition of a learner which uses queries.

Definition 13 A learner using queries, can ask a query of form “Wj ⊆ L?′′

(“Wj = L?′′, “Wj ⊇ L?′′) on any input σ. Answer to the query is “yes” or “no”
(along with a possible counterexample). Then, based on input σ and answers
received for queries made on prefixes of σ, M outputs a conjecture (from N).

We assume without loss of generality that on any particular input σ, M asks
at most one query. Also note that the queries we allow are for recursively enu-
merable languages, which are posed to the teacher using a grammar (index)
for the language. Many of our diagonalization results (though not all) would
still stand even if one uses arbitrary type of query language. However simu-
lation results crucially use the queries being made only via grammars for the
queried languages.

We now formalize learning via subset queries.

Definition 14 Suppose a ∈ N ∪ {∗}.

(a) M SubQaEx-identifies a language L (written: L ∈ SubQaEx(M)) iff for
any text T for L, it behaves as follows:

(i) The number of queries M asks on prefixes of T is bounded by a (if a = ∗,
then the number of such queries is finite). Furthermore, all the queries are
of the form “Wj ⊆ L?”

(ii) Suppose the answers to the queries are made as follows. For a query
“Wj ⊆ L?”, the answer is “yes” if Wj ⊆ L, and the answer is “no” if
Wj − L 6= ∅. For “no” answers, M is also provided with a counterexample,
x ∈ Wj − L. Then, for some k such that Wk = L, for all but finitely many
n, M(T [n]) outputs the grammar k.

(b) M SubQaEx-identifies a class L of languages (written: L ⊆ SubQaEx(M))
iff it SubQaEx-identifies each L ∈ L.

(c) SubQaEx = {L | (∃M)[L ⊆ SubQaEx(M)]}.

LSubQaEx-identification and ResSubQaEx-identification can be defined sim-
ilarly, where for LSubQaEx-identification the learner gets the least counterex-

10

ample for “no” answers, and for ResSubQaEx-identification, the learner does
not get any counterexample along with the “no” answers.

Now we define the variant of learning with subset queries where queries and,
respectively, answers are only based on the elements bounded by the largest
positive element seen so far. We call such queries bounded queries.

Definition 15 Suppose a ∈ N ∪ {∗}.

(a) M BSubQaEx-identifies a language L (written: L ∈ BSubQaEx(M)) iff
for any text T for L, it behaves as follows:

(i) The number of prefixes of T on which M asks a query is bounded by a
(if a = ∗, then the number of such prefixes of T is finite). Furthermore, all
the queries are of the form “Wj ⊆ L?”

(ii) Suppose the answers to the queries are made as follows. For a query
“Wj ⊆ L?” on input T [m], the answer is “yes” if Wj ∩ {x | x ≤
max(content(T [m]))} ⊆ L, and the answer is “no” if Wj ∩ {x | x ≤
max(content(T [m]))} − L 6= ∅. For “no” answers, M is also provided with
a counterexample, x ∈ Wj ∩ {x | x ≤ max(content(T [m]))} − L. Then, for
some k such that Wk = L, for all but finitely many n, M(T [n]) outputs the
grammar k.

(b) M BSubQaEx-identifies a class L of languages (written: L ⊆
BSubQaEx(M)) iff it BSubQaEx-identifies each L ∈ L.

(c) BSubQaEx = {L | (∃M)[L ⊆ BSubQaEx(M)]}.

For a, b ∈ N ∪ {∗}, for I ∈ {Exb,Bcb}, one can similarly define SubQaI,
SupQaI, EquQaI, LSubQaI, LSupQaI, LEquQaI, ResSubQaI, ResSupQaI,
ResEquQaI, BSubQaI, BSupQaI, and BEquQaI.

For identification with queries, where there is a bound n on the number of
queries asked, we will assume without loss of generality that the learner never
asks more than n queries, irrespective of whether the input language belongs
to the class being learned, or whether the answers given to earlier queries are
correct.

The following theorem shows that bounded queries are not useful. Thus, we
will not deal with bounded counterexamples to queries from now on. (Note
that bounded counterexamples for NC-type learning (defined formally in Sec-
tion 4 below) are useful. Thus we will continue to use them in the context of
NC-learning).

Theorem 16 Suppose a ∈ N ∪ {∗}, n ∈ N , I ∈ {Exa,Bca}.

11

(a) BSubQ∗I = TxtI.

(b) BEquQ∗I = TxtI.

(c) BSupQ∗I = TxtI.

Proof. (a) Since TxtI ⊆ BSubQ∗I, it suffices to show that BSubQ∗I ⊆
TxtI.

Suppose M BSubQ∗I-identifies L.

Define M′(T [m]) as follows. On input T [m], simulate M on input T [m]. For
each query about language Wi asked at input T [t], answer as follows:

If (Wi,m − content(T [m])) ∩ {x | x < max(content(T [t]))} 6= ∅, then answer
no, and give the least element from this set as a counterexample. Otherwise,
return yes as the answer.

M′ then outputs the output of M on T [m] from the above simulation. This sim-
ulation may not always be correct, however note that (Wi,m−content(T [m]))∩
{x | x < max(content(T [t]))}, converges to (Wi − content(T)) ∩ {x | x <
max(content(T [t]))}, as m goes to infinity. Thus, for any question asked by
M, for large enough m, the answer given by M′ in simulation of M is correct.
Here, note that after the first question of M is answered correctly, second
question in the simulation must be the “correct question” as asked by M on
input T , and so on. Hence, the conjectures of M′ on T are same as conjectures
of M on T (for BSubQ∗I-learnability), except for finitely many exceptions.
Part (a) follows.

(b) One can show this using proof similar to part (a). Here we use
(Wi,m∆content(T [m])) ∩ {x | x < max(content(T [t]))}, instead of (Wi,m −
content(T [m])) ∩ {x | x < max(content(T [t]))}, when giving the answer to
equivalence query for the language Wi. Rest of the proof remains essentially
the same.

(c) One can show this using proof similar to part (a). We use (content(T [m])−
Wi,m)∩{x | x < max(content(T [t]))}, instead of (Wi,m−content(T [m]))∩{x |
x < max(content(T [t]))}, when giving the answer to superset query for the
language Wi.

12

4 Learning with Negative Counterexamples to Conjectures

In this section we define models of learning languages from positive data and
negative counterexamples to conjectures. Intuitively, for learning with negative
counterexamples to conjectures, we may consider the learner being provided
a text, one element at a time, along with a negative counterexample to the
latest conjecture, if any. (One may view this counterexample as a response
of the teacher to the subset query when it is tested if the language generated
by the conjecture is a subset of the target language). One may model the
list of counterexamples as a second text for negative counterexamples being
provided to the learner. Thus the learning machines get as input two texts,
one for positive data, and other for negative counterexamples.

We say that M(T, T ′) converges to a grammar i, iff for all but finitely many
n, M(T [n], T ′[n]) = i.

First, we define the basic model of learning from positive data and negative
counterexamples to conjectures. In this model, if a conjecture contains ele-
ments not in the target language, then a counterexample is provided to the
learner. NC in the definition below stands for “negative counterexample”.

Definition 17 [JK04] Suppose a ∈ N ∪ {∗}.

(a) M NCExa-identifies a language L (written: L ∈ NCExa(M)) iff for all
texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and T ′(n) = #, if Sn = ∅,

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCExa-identifies a class L of languages (written: L ⊆ NCExa(M)),
iff M NCExa-identifies each language in the class.

(c) NCExa = {L | (∃M)[L ⊆ NCExa(M)]}.

For LNCExa criteria of inference, we consider providing the learner with least
counterexample rather than arbitrary one. The criteria LNCExa of learning
can thus be defined similarly to NCExa, by requiring T ′(n) = min(Sn), if
Sn 6= ∅ and T ′(n) = #, if Sn = ∅ in clause (a) above (instead of T ′(n) being
arbitrary member of Sn).

Similarly, one can define ResNCExa, where the learner is just told that the
latest conjecture is or is not a subset of the input language, but is not provided
any counterexamples in the case of “no” answer.

13

For BNCExa criteria of inference, we update the definition of Sn in clause (a)
of the definition of NCExa-identification as follows: Sn = L ∩ WM(T [n],T ′[n]) ∩
{x | x ≤ max(content(T [n]))}.

We can similarly define NCBca, LNCBca, ResBca and BNCBca criteria
of inference. We refer the reader to [JK04] for more details, discussion and
results about the various variations of NCI-criteria.

For n ∈ N , one may also consider the model, NCnI, where, for learning a
language L, the NCI learner is provided counterexamples only for its first n
conjectures which are not subsets of L. For remaining conjectures, the answer
provided is always #. Following is the formal definition.

Definition 18 Suppose a ∈ N ∪ {∗}, and m ∈ N .

(a) M NCmExa-identifies a language L (written: L ∈ NCmExa(M)) iff for
all texts T for L, and for all T ′ satisfying the condition:

T ′(n) ∈ Sn, if Sn 6= ∅ and card(content(T ′[n])) < m; T ′(n) = #, if Sn = ∅
or card(content(T ′[n])) ≥ m,

where Sn = L ∩ WM(T [n],T ′[n])

M(T, T ′) converges to a grammar i such that Wi =a L.

(b) M NCmExa-identifies a class L of languages (written: L ⊆ NCmExa(M)),
iff M NCmExa-identifies each language in the class.

(c) NCmExa = {L | (∃M)[L ⊆ NCmExa(M)]}.

For a ∈ N ∪ {∗} and I ∈ {Exa,Bca}, one can similarly define BNCmI and
LNCmI and NCmBca.

5 Hierarchies Based on the Number of Queries

Our first two results establish general hierarchies of learning capabilities with
respect to the number of queries for all three types of queries. The hierarchy for
superset queries is slightly weaker and needs a different proof than hierarchy
for other two types of queries. Thus we separate superset query hierarchy proof
from the others.

Theorem 19 Suppose n ∈ N . Then, there exists a class L such that

(a) L ∈ ResNCn+1Ex ∩ ResSubQn+1Ex ∩ ResEquQn+1Ex.

(b) L 6∈ LSubQnBc∗ ∪ LEquQnBc∗.

14

(c) L 6∈ LNCnBc∗.

Proof. Let Aj,k = [(N − CYL1) ∪ Dk ∪ {〈1, 〈j, k〉〉}] − Dj.

Consider the languages satisfying the following properties:

(I) 1 ≤ card(L ∩ CYL1) ≤ n + 1.

(II) CYL0 ⊆ L.

(III) Either L = CYL0∪C, for some finite set C, or L = Aj,k, where 〈1, 〈j, k〉〉 =
max(L ∩ CYL1).

Let L denote the collection of languages satisfying the above three properties.
Intuitively, the languages in the class L are either (i) CYL0 plus finitely many
elements, or (ii) a finite variant of N −CYL1 (where the differences are given
by using a code in CYL1). This allows for easy learning, as long as one can
check for each possible code 〈j, k〉, whether the input language is Aj,k or not.
Usage of CYL0 ⊆ L, is mainly to ensure that the language is infinite (which
is needed to obtain counterexamples for BNCn+1Ex-learnability).

(a) Consider the following learner M. On input σ, first compute X =
content(σ) ∩ CYL1. If X is empty, then output a grammar for CYL0 ∪
content(σ). Otherwise, let 〈i, 〈j, k〉〉 = max(X). Query about the language
Aj,k (if not already done). If the answer is yes, then output a grammar for
Aj,k. Otherwise, output a grammar for CYL0 ∪ content(σ).

We claim that above M ResSubQn+1Ex and ResEquQn+1Ex-identifies L.
To see this, for any L ∈ L, note that the algorithm asks at most n + 1 queries
(one for each element in L∩CYL1, if and when it is the maximum element in
the input data). Furthermore, after the final query (i.e., after max(L∩CYL1) =
〈1, 〈j, k〉〉 has been received), based on whether L = Aj,k or not (which would
have the same answer as whether Aj,k ⊆ L or not), the algorithm correctly
identifies the input language.

For ResNCn+1Ex-identification we can use the same method as above, except
that this time we conjecture the language Aj,k instead of asking a query about
this language. If the input language is not Aj,k, then one would eventually
receive a counterexample (note that each language in L is infinite). Rest of
the argument is same as in ResSubQ1Ex-identification above.

(b) Suppose by way of contradiction that M witnesses that L ∈ LSubQnBc∗

(L ∈ LEquQnBc∗). We show a stronger result: We allow the machine to ask
either subset or equivalence queries during its computation, as long as total
number of queries is not more than n. Intuitively, in the construction below,
we start with one possible code in CYL1 for the diagonalizing language. With

15

each query, we update the code, freezing some of the elements to be in/out
of the diagonalizing language. After all queries (which are ≤ n) have been
made, we would still have the flexibility that the diagonalizing language could
be CYL0 ∪ C, for any finite C (except for the frozen elements) or N − CYL1

(except for the frozen elements). This would allow for diagonalization using
Proposition 11.

Intuitively, ji, ki denote the current intended values of j, k as defined in the
property (III) for L ∈ L. Without loss of generality, assume that D0 = ∅.
Initially let j0 = k0 = 0, and σ0 contain 〈1, 〈j0, k0〉〉 as its only element.
In the construction we will always have the case that Dji

∩ (CYL0 ∪ Dki
∪

{〈1, 〈ji, ki〉〉}) = ∅. Intuitively, Dji
denotes the committed negative data, and

Dki
, 〈1, 〈ji, ki〉〉, CYL0 denote the committed positive data.

Inductively define σi+1 (along with ji+1, ki+1), for i < n as follows.
(* The construction is non-effective. *)

(* The following invariants will be satisfied:
(a) content(σi) ⊆ (CYL0 ∪ Dki

∪ {〈1, 〈ji, ki〉〉}).
(b) Dji

∩ (CYL0 ∪ Dki
∪ {〈1, 〈ji, ki〉〉}) = ∅.

(c) M has already asked i questions on proper prefixes of σi.
(d) Answers given to queries of M are consistent with any input

language L satisfying: (CYL0∪Dki
∪{〈1, 〈ji, ki〉〉}) ⊆ L ⊆ N−Dji

.
*)

1. Check if there exists an extension σ ⊇ σi, such that content(σ) ⊆ Aji,ki
,

and M asks a question on σ.
If there is no such σ, then σi′ , i′ > i do not get defined.
If there exists such a σ, then choose a shortest such σ, and proceed as

follows.
2. Note that Aji,ki

(and thus σ) does not contain any element of Dji
and

CYL1, except for elements in Dki
∪ {〈1, 〈ji, ki〉〉}.

Let Q be the queried language.
Let σi+1 = σ#.
Define ji+1, ki+1 and answer the query (with counterexample) based on

following cases.
(* We will make sure that 〈1, 〈ji+1, ki+1〉〉 > 〈1, 〈ji, ki〉〉. *)

3.1. Query is a subset query, and Q ⊆ CYL0∪content(σ)∪Dki
∪{〈1, 〈ji, ki〉〉}.

In this case give yes answer to the query.
Let ji+1 = ji.
Let ki+1 be such that 〈1, 〈ji+1, ki+1〉〉 > 〈1, 〈ji, ki〉〉, and
Dki

∪content(σ)∪{〈1, 〈ji, ki〉〉} ⊆ Dki+1
⊆ CYL0∪Dki

∪content(σ)∪
{〈1, 〈ji, ki〉〉}.

(* Note that Dki+1
only uses committed positive data. *)

3.2. Query is a subset query, and the queried language contains an element
not in CYL0 ∪ content(σ) ∪ Dki

∪ {〈1, 〈ji, ki〉〉}.

16

Let w = min(Q − (CYL0 ∪ content(σ) ∪ Dki
∪ {〈1, 〈ji, ki〉〉})).

Answer the query as no, and give w as negative data.
Let ji+1 be such that Dji+1

= Dji
∪ {w}.

(* For defining ki+1, we need to make sure that w would not interfere
with the coding (present or future) in CYL1. *)

Let ki+1 be such that 〈1, 〈ji+1, ki+1〉〉 > max({w, 〈1, 〈ji, ki〉〉}), and
Dki

∪content(σ)∪{〈1, 〈ji, ki〉〉} ⊆ Dki+1
⊆ CYL0∪Dki

∪content(σ)∪
{〈1, 〈ji, ki〉〉}.

3.3. Query is an equivalence query.
Let w be the least number such that one of the following properties

is satisfied.
(A) w ∈ N − (CYL0 ∪ CYL1 ∪ Dji

∪ Dki
∪ content(σ)).

(* That is w is outside the committed or coding area. *)
(B) w ∈ (CYL0 ∪ content(σ) ∪ Dki

∪ {〈1, 〈ji, ki〉〉}) − Q.
(C) w ∈ Q ∩ [(CYL1 ∪ Dji

) − (Dki
∪ {〈1, 〈ji, ki〉〉})].

Answer the query as no, and give w as the counterexample.
If w ∈ Q, then

Let ji+1 be such that Dji+1
= Dji

∪ {w} ∪ {〈1, x〉 < w |
〈1, x〉 6∈ Dki

∪ {〈1, 〈ji, ki〉〉}}.
(* We need to add {〈1, x〉 < w | 〈1, x〉 6∈ Dki

∪{〈1, 〈ji, ki〉〉}}
so that the counterexample w above is indeed the least
counterexample, for any possible L as in invariant (d)
above. *)

Let ki+1 be such that 〈1, 〈ji+1, ki+1〉〉 > max({w, 〈1, 〈ji, ki〉〉}),
and

Dki
∪ content(σ) ∪ {〈1, 〈ji, ki〉〉} ⊆ Dki+1

⊆ CYL0 ∪ Dki
∪

content(σ) ∪ {〈1, 〈ji, ki〉〉}.
Else (i.e., w 6∈ Q),

Let ji+1 be such that Dji+1
= Dji

∪ {〈1, x〉 < w | 〈1, x〉 6∈
Dki

∪ {〈1, 〈ji, ki〉〉}}.
Let ki+1 be such that 〈1, 〈ji+1, ki+1〉〉 > max({w, 〈1, 〈ji, ki〉〉}),

and
Dki

∪ {w} ∪ content(σ) ∪ {〈1, 〈ji, ki〉〉} ⊆ Dki+1
⊆ CYL0 ∪

Dki
∪ {w} ∪ content(σ) ∪ {〈1, 〈ji, ki〉〉}.

End

It is easy to verify that the above construction maintains the invariants.

Now let m be the largest number such that σm is defined. Note that M does
not make any further queries on any σ ⊇ σm, such that content(σ) ⊆ Ajm,km

(if m = n, due to bound on number of queries, M cannot make any more
queries; if m < n, the failure of search for σ ⊇ σm, on which M asks a query,
implies that M does not make any more queries). Thus, M needs to Bc∗-
identify Ajm,km

and L = CYL0∪Dkm
∪{〈1, 〈jm, km〉〉}∪C, for all finite C such

17

that C ⊆ Ajm,km
. This is impossible by Proposition 11.

(c) This can be done in a way similar to part (b), except that we do not
consider queries, but consider conjectures by the learner. We search for σ such
that the conjectured language contains an element not in content(σ) ∪ Dki

∪
{〈1, 〈ji, ki〉〉}∪CYL0, and when such σ is found, we define σi+1, ji+1, ki+1, and
the counterexample as in step 3.2 above. We omit the details.

Theorem follows from the above analysis.

L used in Theorem 19 can also be shown to be in BNCn+1Ex − BNCnEx.

We now turn our attention to the hierarchy based on the number of superset
queries. As LSupQ∗Bc∗ ⊆ TxtBc∗ (see Theorem 57), the hierarchy for su-
perset queries takes a slightly weaker form than hierarchies for other types of
queries.

The following lemma is useful in proving Theorem 22, as well as some other
theorems involving superset queries below.

Lemma 20 There exists a recursive F (which takes as input a number e, a
finite set S, a machine M) such that one of the following is satisfied:

(a) WF (e,S,M) is infinite and S ∪ {〈e, x〉 | x ∈ WF (e,S,M)} 6∈
⋃

t∈N TxtBct(M),
or

(b) WF (e,S,M) is finite, and for some w ∈ N , for some S ′ ⊆ {〈e, x〉 | x < 2w}
such that (∀x < w)[S ′∩{〈e, 2x〉, 〈e, 2x+1〉} 6= ∅], S∩{〈e, 2w〉, 〈e, 2w+1〉} = ∅,
and

S ∪ S ′ ∪ {〈e, 2y〉 | y > w} 6∈
⋃

t∈N

TxtBct(M)

Proof. WF (e,S,M) is defined as follows. Initially, let σ0 be such that
content(σ0) = S. Let B0 = ∅. Intuitively, Bs denotes the set of elements which
we have decided to keep out of WF (e,S,M). Let W s

F (e,S,M) denote WF (e,S,M) enu-
merated before stage s.

We will maintain the following invariants:

(i) For any x, Bs contains at most one of {2x, 2x + 1}.

(ii) content(σs) is S∪ {〈e, x〉 | x ∈ W s
F (e,S,M)}.

(iii) (S ∪ {〈e, x〉 | x ∈ WF (e,S,M)}) ∩ {〈e, x〉 | x ∈ Bs} = ∅.

18

Go to stage 0.

Stage s
1. Search for a σ ⊇ σs, such that content(σ) ⊆ S ∪ {〈e, x〉 | x 6∈ Bs} and

there exists a set A of cardinality s + 1 with the following properties:
(a) {〈e, x〉 | x ∈ A} ⊆ WM(σ).
(b) content(σ) ∩ {〈e, x〉 | x ∈ A} = ∅.
(c) For all x, A∪Bs contains at most one element from {2x, 2x+1}.

2. If and when such σ and A are found, let
Bs+1 = Bs ∪ A.
W s+1

F (e,S,M) = W s
F (e,S,M) ∪ {x | 〈e, x〉 ∈ content(σ)} ∪ {w}, where w is the

least element such that w 6∈ Bs ∪ A and w > s.
Let σs+1 be an extension of σ such that content(σs+1) = content(σ) ∪
{〈e, w〉}.

Go to stage s + 1.
End stage s

It is easy to verify that invariants are satisfied. Now consider the following
cases.

Case 1: There are infinitely many stages.

In this case let T =
⋃

s∈N σs. Let B =
⋃

s∈N Bs. It is easy to see that
WF (e,S,M) is infinite (due to addition of arbitrarily large w to WF (e,S,M) in
step 2 for each stage).

Furthermore, for every t, M on T outputs infinitely many conjectures
(at σ found at each stage s > t) which enumerate at least t + 1 elements
from {〈e, x〉 | x ∈ B}. Thus, M does not TxtBct-identify S ∪ {〈e, x〉 | x ∈
WF (e,S,M)}. (Note that {〈e, x〉 | x ∈ B} does not intersect with S ∪ {〈e, x〉 |
x ∈ WF (e,S,M)}, due to invariant (iii) mentioned above.) Thus, clause (a) in
the lemma holds.

Case 2: Stage s starts but does not end.

In this case let w be such that w > max({w′ | 〈e, w′〉 ∈ S or w′ ∈ W s
F (e,S,M)∪

Bs}). Now consider the language
L = S ∪ {〈e, x〉 | x < 2w, x 6∈ Bs} ∪ {〈e, 2x〉 | x > w}.
Now, M on any σ ⊇ σs, such that content(σ) ⊆ L, outputs at most finitely

many elements from L (otherwise search in step 1 would have succeeded).
Thus, for all t, M does not TxtBct-identify L. Thus, clause (b) in the
lemma holds.

From the above cases lemma follows.

19

Corollary 21 There exists a recursive F (which takes as input a number e,
a finite set S, a machine M) such that one of the following is satisfied:

(a) WF (e,S,M) is infinite and S ∪ {〈e, x〉 | x ∈ WF (e,S,M)} 6∈ TxtEx∗(M), or

(b) WF (e,S,M) is finite, and for some w ∈ N , for some S ′ ⊆ {〈e, x〉 | x < 2w}
such that (∀x < w)[S ′∩{〈e, 2x〉, 〈e, 2x+1〉} 6= ∅], S∩{〈e, 2w〉, 〈e, 2w+1〉} = ∅,
and

S ∪ S ′ ∪ {〈e, 2y〉 | y > w} 6∈ TxtEx∗(M)

Now we exhibit the hierarchy for superset queries.

Theorem 22 For all n ∈ N , there exists a L such that

(a) for all t ∈ N , L 6∈ LSupQnBct;

(b) L 6∈ LSupQnEx∗;

(c) L ∈ ResSupQn+1Ex.

Proof. Consider the following class of languages.

L = {L | (∃r ≤ n)[
Let S = {i | L ∩ CYLi 6= ∅}.
Let e = max(S).

1. card(S) = 2r + 1.
2. (L − CYLe) is finite.
3. Either

3.1 We is infinite and L ∩ CYLe = {〈e, x〉 | x ∈ We}.
or
3.2 We is finite, and (∃w)[

L ∩ {〈e, 2w〉, 〈e, 2w + 1〉} = ∅ and
(∀x < w)[L ∩ {〈e, 2x〉, 〈e, 2x + 1〉} 6= ∅], and
(∀y > w)[〈e, 2y〉 ∈ L ∧ 〈e, 2y + 1〉 6∈ L]].

]}

Claim 23 L ∈ ResSupQn+1Ex.

Proof. We first describe the queries made by the learner.

On input σ, the learner first calculates S = {j | content(σ) ∩ CYLj 6= ∅}.
Let e = max(S). If card(S) = 2r + 1, for some r ≤ n, then make the query

20

(if not already made) about whether:

(N − CYLe) ∪ {〈e, x〉 | x ∈ We}

is a superset of the input language.

Note that above process would make at most n + 1 queries on texts for lan-
guages from L, one for each possible r ≤ n. Now suppose T is a text for L ∈ L.
A learner can make the queries as above, and thus in the limit will

(i) compute S = {j | L ∩ CYLj 6= ∅},

(ii) compute e = max(S),

(iii) know whether

(N − CYLe) ∪ {〈e, x〉 | x ∈ We}

is a superset of L. Now consider the following cases:

Case 1: (N − CYLe) ∪ {〈e, x〉 | x ∈ We} is superset of L.

The learner outputs (in the limit on T) a grammar for [content(T) ∩ (N −
CYLe)] ∪ {〈e, x〉 | x ∈ We}.

Case 2: (N − CYLe) ∪ {〈e, x〉 | x ∈ We} is not a superset of L.

The learner computes, in the limit, the least w such that both 〈e, 2w〉 and
〈e, 2w + 1〉 do not belong to L (if L ∈ L, then there must exist such a w).

The learner outputs, in the limit on T , a grammar for [content(T)∩ (N −
CYLe)] ∪ {〈e, x〉 | x < 2w, 〈e, x〉 ∈ content(T)} ∪ {〈e, 2x〉 | x > w}.

It is easy to verify that the above learner would ResSupQn+1Ex-identify L.

Claim 24 (a) For all t ∈ N , L 6∈ LSupQnBct.

(b) L 6∈ LSupQnEx∗.

Proof. We only show part (a). Part (b) can be shown using Corollary 21
instead of using Lemma 20.

Suppose by way of contradiction that M LSupQnBct-identifies L. We first
define σi, and finite sets Si as follows. Initially, Si = ∅ and σ0 = Λ.

Inductively define σi+1, Si+1, for i < n as follows.
(* The construction is non-effective. *)

(* We will have the following invariants:

21

(a) card(Si) = 2i.
(b) Si = {j | content(σi) ∩ CYLj 6= ∅}.
(c) M has already asked at least i queries on proper prefixes of σi.
(d) Answers given to M on queries made on proper prefixes of σi are

consistent with any language L such that content(σi) ⊆ L.
*)

1. Check if there exists a σ ⊇ σi such that, for some e 6∈ Si, content(σ) ⊆
⋃

j∈Si∪{e} CYLe and M asks a query on σ.
If there is no such σ, then σi′ , Si′ for i′ > i do not get defined.
If there exists such a σ, then fix a shortest such σ and corresponding e

and proceed as follows.
2. Suppose the queried language is Q.
3. If Q = N , then answer the query as yes.

Let j be arbitrary element not in Si ∪ {e}.
Let Si+1 = Si ∪ {e, j}.
Let σi+1 be an extension of σ such that content(σi+1) = content(σ) ∪
{〈e, 0〉, 〈j, 0〉}.

(* We added 〈e, 0〉 just to make sure that σi+1 contains at least one element
from CYLe. 〈j, 0〉 is added to make σi+1 contain elements from 2(i + 1)
cylinders, for satisfying the invariant (b). *)

4. If Q 6= N , then answer the query as no, with 〈r, r′〉 = min(N − Q) as the
counterexample.

If r 6∈ Si ∪ {e}, then let j = r. Otherwise, let j be arbitrary element not
in Si ∪ {e}.

Let Si+1 = Si ∪ {e, j}.
Let σi+1 be an extension of σ such that content(σi+1) = content(σ) ∪
{〈e, 0〉, 〈j, 0〉, 〈r, r′〉}.

(* We added 〈e, 0〉 just to make sure that σi+1 contains at least one element
from CYLe. 〈j, 0〉 is added to make σi+1 contain elements from 2(i + 1)
cylinders, for satisfying the invariant (b). *)

(* We assume without loss of generality that if σ ⊂ σ′ ⊆ σi+1, then M does
not ask any questions. If not, then one can just delay these questions
beyond σi+1, without effecting this construction. *)

End

It is easy to verify that invariants are maintained by the construction. Let
m be maximal such that σm is defined. Now M on any extension σ of σm,
such that σ ⊆

⋃

j∈Sm∪{e} CYLj, for some e, does not ask any more questions.
Thus, one can design a machine M′ such that M′ TxtBct-identifies all L such
that M LSupQnBct identifies L and content(σm) ⊆ L ⊆

⋃

j∈Sm∪{e} CYLj, for
some e.

Now, let F be as in Lemma 20. By Kleene’s recursion theorem [Rog67], there
exists an e > max(Sm), such that We = WF (e,content(σm),M′). It now follows from

22

Lemma 20 that M′ does not TxtBct-identify some language L ∈ L, such that
content(σm) ⊆ L. Thus, M does not LSupQnBct-identify L and hence L.

6 Hierarchies Based on Type of Counterexamples

6.1 One Query: Least Counterexamples Do No Better Than No Counterex-
amples

Before turning our attention to hierarchies based on the type of counterexam-
ples, we first show that, when only a single query is used, different types of
counterexamples do not make a difference.

Theorem 25 Suppose a ∈ N ∪ {∗}, and I ∈ {Exa,Bca}.

(a) ResSubQ1I = SubQ1I = LSubQ1I.

(b) ResNC1I = NC1I = LNC1I.

(c) ResEquQ1I = EquQ1I = LEquQ1I.

(d) ResSupQ1I = SupQ1I = LSupQ1I.

Proof. (a) Since ResSubQ1I ⊆ SubQ1I ⊆ LSubQ1I, it suffices to show
that LSubQ1I ⊆ ResSubQ1I.

Suppose M LSubQ1I-identifies L. We assume without loss of generality that
M never asks more than 1 query whatever the input or answers (even if the
answer is wrong, or language is outside the class being learned).

Define M′ as follows. On input T [n], simulate M(T [n]). For the only query, if
any, about a language Wi answer as follows. If the answer received by M′ for
the same query is yes, then return yes as the answer. If the answer received
by M′ is no, then answer no, along with min(Wi,n − content(T [n])) as the
counterexample.

M′ then outputs the output of M on T [n], using the above simulation. This
simulation may not always be correct, however note that if Wi−content(T) 6=
∅, then min(Wi,n − content(T [n])) converges to min(Wi − content(T)), as n
goes to infinity. Thus, for large enough n, the answer given by M′ in simulation
of M is correct. Hence, the sequence of conjectures of M′ on T are same as
the sequence of conjectures of M on T (for LSubQ1I-learnability), except for
finitely many exceptions. Part (a) follows.

23

Part (b) can be proved in a way similar to (a).

(c) One can show this using proof similar to part (a). We use
min(Wi,n∆content(T [n])) instead of min(Wi,n − content(T [n])) when giving
the answer to equivalence query for the language Wi. Rest of the proof re-
mains essentially the same.

(d) One can show this using proof similar to part (a). We use min(content(T [n])−
Wi,n) instead of min(Wi,n−content(T [n])) when giving the answer to superset
query for the language Wi. Rest of the proof remains essentially the same.

The above theorem thus restricts us to consider at least two queries when
showing differences between various types of counterexamples. The next two
subsections will address these differences.

6.2 Advantages of Having Least Counterexamples

We first consider equivalence and subset queries. Our result shows that Ex-
learners using just two subset or equivalence queries and receiving the least
counterexamples can sometimes do better than any Bc∗-learner making any
n queries of either type and receiving arbitrary counterexamples.

Theorem 26 For all n ∈ N , LSubQ2Ex ∩ LEquQ2Ex − (SubQnBc∗ ∪
EquQnBc∗) 6= ∅.

Proof. Define L as follows.

L = {L | (∃m > 0)[
1. {〈0, x〉 | x < m} = L ∩ CYL0, and
2. L ∩ {y | y ≤ 〈0,m〉} = {〈0, x〉 | x < m}, and
3. card(L ∩ CYL1) = m, and
4. Suppose A = {j | (∃k)[〈1, 〈j, k〉〉 ∈ L]}. Then min(A) > 1. Furthermore,

4.1 For j ∈ A, j 6= max(A), CYLj ⊆ L.
4.2 Either CYLmax(A) ⊆ L or L contains only finitely many elements

from CYLmax(A).
4.3. If j 6∈ A∪ {0, 1}, then L does not contain any elements from CYLj.

]}

Intuitively, for L ∈ L, CYL0 portion of the language (i.e, the part CYL0 ∩ L)
codes a value m. Then there are exactly m different elements in CYL1, indicat-
ing which cylinders are present in L. All except possibly one of these cylinders
is present fully in L. The remaining one is used to achieve the diagonalization.

24

Claim 27 L ∈ LSubQ2Ex ∩ LEquQ2Ex.

Proof. A learner initially asks a query about whether the input language
contains (is equivalent to) CYL0. Since CYL0 is not a subset of any language
in the class, learner will receive a least counterexample (for both learning via
subset queries or learning via equivalence queries). Note that due to clause 2 in
the definition of L, this least counterexample must be from CYL0. Suppose the
counterexample received is 〈0,m〉. Then, the learner waits until it has received
exactly m distinct elements of CYL1 in the input. Then, the learner computes,
X = L∩CYL1 and A = {j | (∃k)[〈1, 〈j, k〉〉 ∈ X]} (note that after m elements
have already been received, for language L in the class, A can be computed).
Then, M asks a query about the language {〈0, x〉 | x < m} ∪X ∪

⋃

j∈A CYLj.
If the answer is yes (either for subset or for equivalence query), then the input
language must be {〈0, x〉 | x < m} ∪ X ∪

⋃

j∈A CYLj. On the other hand,
if the answer is no, then the input language must be of form {〈0, x〉 | x <
m} ∪ X ∪ C ∪

⋃

j∈A,j 6=max(A) CYLj, for some finite set C ⊆ CYLmax(A). One
can determine this C from the input in the limit, without asking any more
questions. Thus, L ∈ LSubQ2Ex ∩ LEquQ2Ex.

Claim 28 L 6∈ EquQnBc∗ ∪ SubQnBc∗.

Proof. We will show a stronger claim. We let the machine M ask queries of
either subset or equivalence type. However the total number of queries must
be limited to n. So suppose by way of contradiction that M Bc∗-identifies L
using n queries.

We will maintain two variables, li and ui, which will indicate that any value of
m (as in the definition of L) satisfying li ≤ m ≤ ui would be consistent with
the data σi and the answers given to queries upto now. We will also maintain
sets Ai, Xi (intuitively, Xi ⊆ CYL1 would be committed to belong to L, and
Ai would represent the set we intend to use for A, as in the definition of L,
for the diagonalizing language L).

Initially, let σ0 = Λ. Let l0 = 1, u0 = 2n+2 − 1. Let A0 = {j0}, X0 =
{〈1, 〈j0, k0〉〉}, where j0, k0 are large enough so that j0 > 1, as well as 〈1, 〈j0, k0〉〉
and 〈j0, 0〉 are both > 〈0, u0〉.

Inductively define σi+1, li+1, ui+1, Ai+1, Xi+1, for i < n as follows.
(* The construction is non-effective. *)

(* Following invariants will be satisfied:
(a) ui − li = 2n+2−i − 2.
(b) Ai ∩ {0, 1} = ∅ and Xi ⊆ CYL1. Moreover, for any element
〈1, 〈j, k〉〉 ∈ Xi, we have 〈j, 0〉 and 〈1, 〈j, k〉〉 are both greater than
〈0, ui〉

(c) card(Xi) = li.

25

(d) Ai = {j | (∃k)[〈1, 〈j, k〉〉 ∈ Xi]}.
(e) content(σi) ⊆ {〈0, x〉 | x < li} ∪ Xi ∪

⋃

r∈Ai−{max(Ai)} CYLr.
(f) M has already asked i queries on proper prefixes of σi.
(g) Answers given to M are consistent with any input language L

which satisfies:

{〈0, x〉 | x < li} ∪ Xi ∪
⋃

r∈Ai−{max(Ai)}

CYLr

⊆ L ⊆

{〈0, x〉 | x < ui}∪Xi∪{〈1, 〈j, k〉〉 | 〈1, 〈j, k〉〉 > max(Xi), j > max(Ai)}∪

⋃

r∈Ai or r>max(Ai)

CYLr.

*)
1. Check if there exists a σ extending σi such that content(σ) ⊆ {〈0, x〉 | x <

li} ∪ Xi ∪
⋃

j∈Ai
CYLj and M asks a query on σ.

If there is no such σ, then σi′ , i′ > i do not get defined.
If there exists such a σ, then choose a shortest such σ, and proceed as

follows.
2. Let Q be the queried language. Let σi+1 = σ#.

Define li+1, ui+1, Ai+1, Xi+1 based on the following cases.
2.1 M(σ) asked an equivalence query on σ.

In this case, if Q contains 〈0, li+ui

2
〉,

Then let li+1 = li and ui+1 = li+ui

2
− 1.

Else let li+1 = li+ui

2
+ 1, ui+1 = ui.

Give answer no to the query, and give 〈0, li+ui

2
〉 as a counterexample.

(* Note that, in the If case the counterexample was negative, whereas
in the Else case, the counterexample was positive. *)

Let S ⊆ CYL1 be such that card(S) = li+1−li, and for all 〈1, 〈j, k〉〉 ∈
S, j > max(Ai) and 〈1, 〈j, k〉〉 > max(Xi).
(* Note that, if li+1 = li, then S is empty. *)

Let Xi+1 = Xi ∪ S.
Let Ai+1 = {j | (∃k)[〈1, 〈j, k〉〉 ∈ Xi+1]}.
(* Note that adding S as above to the diagonalizing language makes

sure that, card(Xi+1) = li+1 as required in the invariant (c). *)
2.2 M(σ) asks a subset query on input σ and Q− (content(σ)∪Xi ∪ {〈0, x〉 |

x < ui} ∪
⋃

j∈Ai
CYLj) 6= ∅.

Let 〈w, z〉 be an element of Q − (content(σ) ∪ Xi ∪ {〈0, x〉 | x <
ui} ∪

⋃

j∈Ai
CYLj).

Give the answer no and provide 〈w, z〉 as a counterexample.
(* Note that we update the variables to maintain the invariants

mentioned above. In particular for invariant (g), we need to en-

26

sure that the elements added to Xi+1 and Ai+1 are large enough,
compared to the counterexample given above. *)

Let li+1 = li+ui

2
+ 1, ui+1 = ui.

Let S ⊆ CYL1 be such that
card(S) = li+1 − li, and for all 〈1, 〈j, k〉〉 ∈ S, j > max(Ai ∪ {w})

and 〈1, 〈j, k〉〉 > max(Xi ∪ {〈w, z〉}).
Let Xi+1 = Xi ∪ S.
Let Ai+1 = {j | (∃k)[〈1, 〈j, k〉〉 ∈ Xi+1]}.

2.3 M(σ) asks a subset query for language Q, and Q ⊆ (content(σ) ∪ Xi ∪
{〈0, x〉 | x < ui} ∪

⋃

j∈Ai
CYLj).

If Q contains an element of form 〈0, x〉, x > li+ui

2
,

Then give answer no to the query and provide 〈0, x〉 as the
counterexample.

Let ui+1 = li+ui

2
− 1, li+1 = li.

If Q does not contain an element of form 〈0, x〉, x > li+ui

2
,

Then give answer yes to the query.
Let ui+1 = ui, li+1 = li+ui

2
+ 1.

Let S ⊆ CYL1 be such that card(S) = li+1−li, and for all 〈1, 〈j, k〉〉 ∈
S, j > max(Ai) and 〈1, 〈j, k〉〉 > max(Xi).

Let Xi+1 = Xi ∪ S.
Let Ai+1 = {j | (∃k)[〈1, 〈j, k〉〉 ∈ Xi+1]}.

End

It is easy to verify that invariants are maintained by the above construction.
Thus ui > li, for i ≤ n. Now, let m be largest number such that σm is
defined. Clearly, M does not ask any further questions on σ ⊇ σm, such that
content(σ) ⊆ {〈0, x〉 | x < lm}∪Xm∪

⋃

j∈Am
CYLj (either m = n, in which case

M has already asked n questions, or the search for σ in the above construction
did not succeed for i = m). Thus, M needs to Bc∗-identify, without any further
questions, the language {〈0, x〉 | x < lm} ∪ Xm ∪

⋃

j∈Am
CYLj, and also the

languages content(σm) ∪ {〈0, x〉 | x < lm} ∪ Xm ∪ S ∪
⋃

j∈Am,j 6=max(Am) CYLj,
for every finite S ⊆ CYLmax(Am). This is not possible by Proposition 11.

The following theorem shows that Ex-learners using just two superset queries
and getting least counterexamples can sometimes do better than any Bct-
learner (t ∈ N) using n superset queries and getting arbitrary counterexam-
ples. Note, though, that this theorem cannot be generalized for diagonalization
against SupQnBc∗ (as LSupQ∗Bc∗ ⊆ TxtBc∗, see Theorem 57) or against
SupQ∗Ex (as LSupQ∗I = SupQ∗I = ResSupQ∗I, see Proposition 41).

Theorem 29 For all n ∈ N , there exists a L such that

(a) for all t ∈ N , L 6∈ SupQnBct;

27

(b) L 6∈ SupQnEx∗;

(c) L ∈ LSupQ2Ex.

Proof. Consider the following class of languages.

L = {L | (∃r | 1 ≤ r ≤ 3n+2 + 1)[
1. L ∩ CYL0 = {〈0, x〉 | 3n+2 + 2 − r ≤ x ≤ 3n+2 + 1}.

Let S = {i > 0 | L ∩ CYLi 6= ∅}.
Let e = max(S).

2. card(S) = r.
3. (L − CYLe) is finite.
4. Either

4.1 We is infinite and L ∩ CYLe = {〈e, x〉 | x ∈ We}.
or
4.2 We is finite, and (∃w)[

L ∩ {〈e, 2w〉, 〈e, 2w + 1〉} = ∅ and
(∀x < w)[L ∩ {〈e, 2x〉, 〈e, 2x + 1〉} 6= ∅], and
(∀y > w)[〈e, 2y〉 ∈ L ∧ 〈e, 2y + 1〉 6∈ L]].

]}

Intuitively, L ∈ L would contain elements from r of the cylinders CYLi, i > 0.
Only the maximal indexed cylinders of these has infinite intersection with
L, and has some special properties. This allows identification as long as one
knows r and is allowed one further superset query. This r can be obtained using
one superset query, where least counterexample is presented. However this r
cannot be obtained using (bounded number of) arbitrary counterexamples
to superset queries, thus making it difficult to identify L. We now proceed
formally.

Claim 30 L ∈ LSupQ2Ex.

Proof. Suppose T is a text for L ∈ L. We first describe the two queries that
the learner will make. First query is whether N − CYL0 is a superset of the
input language. As no language in L is contained in N −CYL0, one will get a
least counterexample. Suppose this counterexample is 〈0, 3n+2 + 2 − r〉 (note
that this r would correspond to r as in the definition of L). Then, on any input
T [s], compute S = {i > 0 | content(T [s]) ∩ CYLi 6= ∅}. If S contains at least
r elements, then let e = max(S) and query whether (N − CYLe) ∪ {〈e, x〉 |
x ∈ We}) is a superset of the input language. (Note that for languages in L,
the above set S would contain exactly r elements).

If the answer is yes, then learner outputs in the limit on T a grammar for:
[content(T) ∩ (N − CYLe)] ∪ {〈e, x〉 | x ∈ We}.

28

Otherwise the learner computes, in the limit, the least w such that both 〈e, 2w〉
and 〈e, 2w + 1〉 do not belong to L (if L ∈ L, then there must exist such a
w). Then, the learner outputs, in the limit, a grammar for [content(T)∩ (N −
CYLe)] ∪ {〈e, x〉 | x < 2w, 〈e, x〉 ∈ content(T)} ∪ {〈e, 2x〉 | x > w}.

It is easy to verify that the above learner would LSupQ2Ex-identify L.

Claim 31 (a) For all t ∈ N , L 6∈ SupQnBct.

(b) L 6∈ SupQnEx∗.

Proof. We only show part (a). Part (b) can be shown using Corollary 21
instead of using Lemma 20.

Suppose by way of contradiction that M SupQnBct-identifies L. We will
maintain two variables, li and ui. Intuitively, it will be the case that we have
flexibility to choose any r, with li ≤ 3n+2 + 2 − r ≤ ui, for r as in the
definition of L. Additionally, we will also define Ri and σi. Initially, R0 = ∅
and l0 = 1, u0 = 3n+2 + 1, and σ0 contain only 〈0, u0〉.

Inductively define σi+1, Ri+1, li+1, ui+1, for i < n as follows.
(* The construction is non-effective. *)

(* By induction, we will have the following invariants:
(a) (ui − li) = 3n+2−i.

(* Note in particular that (ui − li) ≥ 3. *)
(b) Ri = {j > 0 | content(σi) ∩ CYLj 6= ∅}.
(c) card(Ri) = 3n+2 + 1 − ui.
(d) M has already asked i queries on proper prefixes of σi.
(e) {〈0, x〉 | ui ≤ x ≤ 3n+2 + 1} = content(σi) ∩ CYL0.
(f) Answers given to M on queries made on proper prefixes of σi are

consistent with any language L such that content(σi) ⊆ L ⊆
N − {〈0, x〉 | x < li or x > 3n+2 + 1}.

*)
1. Check if there exists a σ ⊇ σi such that, for some e 6∈ Ri∪{0}, content(σ) ⊆

{〈0, x〉 | ui ≤ x ≤ 3n+2 +1}∪
⋃

j∈Ri∪{e} CYLe and M asks a query on σ.
If there is no such σ, then σj, Rj, lj , uj for j > i do not get defined.
If there exists such a σ, then fix one such σ and corresponding e and

proceed as follows.
(* Note that we will have ui+1 < ui, as we need to have Ri+1 ⊇ Ri ∪ {e}.

*)
2. Suppose the queried language is Q.
3. If Q ⊇ N − {〈0, x〉 | x > 3n+2 + 1}, then answer the query as yes.

Let ui+1 = li + ui−li
3

, and li+1 = li.
Let Ri+1 ⊇ Ri ∪ {e}, be such that

Ri+1 contains exactly 3n+2 + 1 − ui+1 elements and

29

Ri+1 does not contain 0.
Let σi+1 be an extension of σ such that

Ri+1 = {j > 0 | content(σi+1) ∩ CYLj 6= ∅}, and
content(σi+1) ∩ CYL0 = {〈0, x〉 | ui+1 ≤ x ≤ 3n+2 + 1}.

4. If Q 6⊇ N − {〈0, x〉 | x > 3n+2 + 1}, then we consider the following cases:
4.1 Q misses out an element in (N−CYL0)∪{〈0, x〉 | li+

ui−li
3

≤ x ≤ 3n+2+1}.
Then let 〈e′, y〉 be one such element.
Answer the query as no, with 〈e′, y〉 as the counterexample.
Let ui+1 = li + ui−li

3
, and li+1 = li.

Let Ri+1 ⊇ Ri ∪ {e} be such that
Ri+1 contains exactly 3n+2 + 1 − ui+1 elements,
Ri+1 does not contain 0, and
if e′ 6= 0, then e′ ∈ Ri+1.

Let σi+1 be an extension of σ such that
Ri+1 = {j > 0 | content(σi+1) ∩ CYLj) 6= ∅},
〈e′, y〉 ∈ content(σi+1) and
content(σi+1) ∩ CYL0 = {〈0, x〉 | ui+1 ≤ x ≤ 3n+2 + 1}.

4.2 Q ⊇ (N − CYL0) ∪ {〈0, x〉 | li + ui−li
3

≤ x ≤ 3n+2 + 1}.
Then, answer the query as yes.
Let li+1 = li + ui−li

3
, and ui+1 = li + 2(ui−li)

3
, and

Let Ri+1 ⊇ Ri ∪ {e} be such that
Ri+1 contains exactly 3n+2 + 1 − ui+1 elements and
Ri+1 does not contain 0.

Let σi+1 be an extension of σ such that
Ri+1 = {j > 0 | content(σi+1) ∩ CYLj) 6= ∅}, and
content(σi+1) ∩ CYL0 = {〈0, x〉 | ui+1 ≤ x ≤ 3n+2 − 1}.

(* We assume without loss of generality that if σ ⊂ σ′ ⊆ σi+1, then M does
not ask any questions. If not, then one can just delay these questions
beyond σi+1, without effecting this construction. *)

End

It is easy to verify that the invariants are satisfied. Let m be the largest number
such that σm gets defined. Note that M does not ask any more questions
on any text T such that σm ⊆ T , and content(T) ⊆ {〈0, x〉 | um ≤ x ≤
3n+2+1}∪

⋃

j∈Rm∪{e} CYLj, for any fixed e > 0. Thus, one can design a machine
M′ such that M′ TxtBct-identifies all L such that M SupQnBct identifies
L and content(σm) ⊆ L ⊆ {〈0, x〉 | um ≤ x ≤ 3n+2 + 1} ∪

⋃

j∈Rm∪{e} CYLj, for
some e.

Now, let F be as in Lemma 20. By Kleene’s recursion theorem [Rog67], there
exists an e > max(Rm), such that We = WF (e,content(σm),M′). It now follows
from Lemma 20 that M′ does not TxtBct-identify some language L ∈ L,
such that content(σm) ⊆ L. Thus, M does not SupQnBct-identify L and
hence L.

30

For learning with a bounded number of negative counterexamples to con-
jectures, advantage of having least counterexample is slightly complicated.
Roughly speaking, one can simulate the effect of using the least counterexam-
ples by doubling the number of negative answers in the restricted type of this
model when the learner gets only the answer “no” if the current conjecture is
not a subset of the target language.

Theorem 32 Suppose a ∈ N ∪ {∗}, n ∈ N , I ∈ {Exa,Bca}.

LNCnI ⊆ ResNC2n−1I.

Proof. We first show that LNCnI ⊆ ResNC2nI. We will then explain how
one counterexample can be saved.

Suppose M LNCnI-identifies L. Then M′ simulates M, outputting the con-
jectures of M. If a conjecture j of M gets a no answer (i.e., Wj 6⊆ input
language), then M′ also outputs grammars for Wj ∩ {y}, in increasing order
of y, until a no answer is received. Then M′ passes this y (i.e., the least y
such that Wj ∩ {y} generates a no answer) to M as a counterexample, and
proceeds with the simulation.

It is easy to verify that the number of counterexamples received by M′ is
exactly the double of the number of counterexamples given to M during the
simulation.

To save one “no” answer, do the simulation as above, except that after M′

receives the (2n − 1)-th no answer (that is we need to provide M with the
n-th counterexample), proceed as in the proof of LNC1I ⊆ ResNC1I from
Theorem 25 to get the counterexample for the latest conjecture of M.

Theorem follows.

Now we show that the bound (2n − 1) on the number of negative answers
in the restricted NC-model needed to simulate n least counterexamples to
conjectures is tight: (2n − 2) “no” answers (with counterexamples) are not
enough.

Theorem 33 Suppose n ≥ 1. LNCnEx − NC2n−2Bc∗ 6= ∅.

Proof. Recall that Dk is the k-th finite set.

Let
Li,k = {〈i, k, x〉 | x ∈ N}.
Xi = Li,0.
Y j

i = {〈i, 0, x〉 | x < 3j} ∪ Li,j+1.

31

Zj,k
i = {〈i, 0, x〉 | x < 3j + 1} ∪ {〈i, j + 1, x〉 | x ≤ k}.

U j
i = {〈i, 0, x〉 | x < 3j + 2}.

Li = {Xi} ∪ {Y j
i | j ∈ N} ∪ {U j

i | j ∈ N} ∪ {Zj,k
i | j, k ∈ N}.

Cn = {L | (∃A | card(A) ≤ n)[L is formed by picking one language from
each Li, i ∈ A, and then taking the union]}.

Intuitively, each L ∈ Li is either Xi or an initial segment of Xi, and the least
such element from Xi − L, indicates the form of L (i.e., whether it is Y j

i ,
Zj,k

i or U j
i , for some j, k). This allows for easy learnability when one gets n

least counterexamples. However, it will be shown below that (2n−2) negative
answers are not enough for learning the above class.

Claim 34 Cn ∈ LNCnEx.

Proof. A learner can LNCnEx-identify the class Cn as follows. On input
(σ, σ′), do as follows.

Let A = {i | (∃x, y)[〈i, x, y〉 ∈ content(σ)]}. Let A′ = {i | (∃j)[〈i, 0, 3j〉 ∈
content(σ′)]}. Let A′′ = {i | (∃j)[〈i, 0, 3j + 1〉 ∈ content(σ′) or 〈i, 0, 3j + 2〉 ∈
content(σ′)]}.

It would be the case that for input from Cn the sets A′, A′′ are disjoint subsets
of A (see below). For i ∈ A′, let ji be such that 〈i, 0, 3ji〉 ∈ content(σ′).

Output a (standard) grammar for the language:

⋃

i∈A−A′−A′′

Xi

∪
⋃

i∈A′

Y ji

i

∪
⋃

i∈A′′

content(σ)

Now consider any input language L ∈ Cn. By induction we claim that coun-
terexamples received would only be of the form 〈i, 0, z〉. Furthermore, for the
same i, these counterexamples may only appear on conjectures output by the
learner on inputs of form (σ = τ�〈i, x, y〉, σ′), where τ does not contain any el-
ement of form 〈i, x′, y′〉, and σ′ is the sequence of counterexamples/# obtained
based on earlier conjectures (thus in particular, there would be at most one
counterexample of form 〈i, 0, z〉, for any given i, that the learner will receive
— ensuring that A′, A′′ are disjoint as claimed earlier).

Now, consider any i such that the input language L contains a language from
Li as its subset. The first time an element of form 〈i, x, y〉, for the given i,

32

appears in the input, Xi would be included in the conjectured language. We
consider the following cases.

Case 1: There is no counterexample to this conjecture.

In this case the language from Li, which is a subset of L, must be Xi.
Furthermore, for any future input, we will never have a counterexample of
form 〈i, x, y〉, and thus i will never be placed in A′, A′′. Thus, Xi would be
contained in the conjectured language.

Case 2: There is a counterexample of form 〈i, 0, 3j〉.

In this case the language from Li which is a subset of L must be Y j
i . Also,

i will be placed in A′. Furthermore, we will never have a counterexample
of form 〈i, x, y〉, for any future input. Thus, Y j

i would be contained in the
conjectured language.

Case 3: There is a counterexample of form 〈i, 0, 3j + 1〉 or 〈i, 0, 3j + 2〉.

In this case the language from Li, which is a subset of L, must be finite. Also,
i will be placed in A′′. Furthermore, we will never have a counterexample
of form 〈i, x, y〉, for any future input, due to the form of conjectures made
by the learner.

From the above cases, it is easy to verify that induction hypothesis would be
satisfied, and eventually the learner would converge to a grammar for L. Thus,
Cn ∈ LNCnEx.

Claim 35 Cn 6∈ NC2n−2Bc∗.

Proof. Suppose by way of contradiction M NC2n−2Bc∗-identifies L.

Initially, let σ0 = Λ, σ′
0 = Λ. Intuitively, σ′

s would denote the sequence of
counterexamples/# provided to M on input σs. Let A0 = S0 = ∅. Intuitively,
A =

⋃

As plus (one more element) would mimic the A as in the definition
of Cn. Ss would denote the set of elements we have decided not to be in A
(elements of Ss represent the spoiled cylinders, due to some counterexamples
used). As we build up the set A, we would also freeze the languages Fr ∈ Lr,
for r ∈ As, such that Fr ⊆ L, the diagonalizing language being constructed.

For s ≤ n − 2, inductively define σs+1, σ′
s+1, As+1, Ss+1, and Fr for r ∈ As+1,

as follows.
(* The construction is non-effective. *)

(* Following invariants will be satisfied:
(a) As ∩ Ss = ∅.
(b) card(As) = s. Ss is finite.

33

(c) content(σs) ⊆
⋃

r∈As
Fr.

(d) For r ∈ As, Fr ∈ Lr.
(e) Counterexamples/Answers given to M via σ′ are consistent with

any language L such that
⋃

r∈As
Fr ⊆ L ⊆

⋃

r∈As
Fr ∪

⋃

r 6∈Ss∪As
{〈r, x, y〉 | x, y ∈ N}.

*)
1. Let i be a member of N − (Ss ∪ As).
2. If there exists a σ ⊇ σs such that content(σ) ⊆ Xi ∪

⋃

r∈As
Fr, and one of

the following is satisfied:
2.1. WM(σ,σ′

s#
|σ|−|σs|) − (Xi ∪

⋃

r∈As
Fr) 6= ∅.

2.2. Not 2.1, and WM(σ,σ′
s#

|σ|−|σs|) ∩ Xi is infinite.
3. Then, pick smallest such σ (we will argue below that there must exist such

a σ).
Pick j such that 〈i, 0, 3j〉 > max(Xi∩(content(σ)∪

⋃

γ:σs⊆γ⊂σ WM(γ,σ′
s#

|γ|−|σs|)))
and, in case step 2.1 above succeeds, j + 1 6= j ′, for 〈i′, j′, k′〉 as chosen
in step 4 below.

(* Note that, for any γ, σs ⊆ γ ⊂ σ, as 2.2 did not succeed, Xi ∩
WM(γ,σ′

s#
|γ|−|σs|) must be finite. Thus such a j exists. *)

4. If 2.1 holds:
Let 〈i′, j′, k′〉 be an element of WM(σ,σ′

s#
|σ|−|σs|) − (Xi ∪

⋃

r∈As
Fr).

If 2.2 holds:
Let 〈i′, j′, k′〉 = 〈i, 0, k′〉, where k′ ≥ 3j+3 and 〈i, 0, k′〉 ∈ WM(σ,σ′

s#
|σ|−|σs|)

∩Xi.
5. Let τ = σ# and τ ′ = σs#

|σ|−|σs|〈i′, j′, k′〉.
(* That is we give counterexample 〈i′, j′, k′〉 to W

M(σ,σ′
s#

|σ|−|σs|). *)

If there exists a σ ⊇ τ such that content(σ) ⊆ Y j
i ∪

⋃

r∈As
Fr, and

WM(σ,τ ′#|σ|−|τ |) contains an element of form 〈i′′, j′′, k′′〉 such that one
of the following conditions is satisfied:

5.1. 〈i′′, j′′, k′′〉 6∈ Y j
i ∪

⋃

r∈As
Fr,

5.2. Not 5.1 and i = i′′, j′′ = j + 1, and k′′ > max({x | 〈i, j + 1, x〉 ∈
content(σ)}).

6. Then, pick a shortest such σ (we will argue below that there must exists
such a σ).

If 5.1 holds,
Let Fi = Y j

i .
Let σs+1 = σ# and σ′

s+1 = τ ′#|σ|−|τ |〈i′′, j′′, k′′〉.
If 5.2 holds,

Let Fi = Zj,k
i , for k = max({x | 〈i, j + 1, x〉 ∈ content(σ)}).

Let σs+1 = σ# and σ′
s+1 = τ ′#|σ|−|τ |〈i′′, j′′, k′′〉.

(* Note that we give counterexample 〈i′′, j′′, k′′〉 to W
M(σ,τ ′#|σ|−|τ |). *)

7. Let As+1 = As ∪ {i}.
Let Ss+1 = Ss ∪ [{i′, i′′} − (As ∪ {i})].

End

34

It is easy to verify that the invariants are maintained by the construction.
Specially note that the invariant (e) is maintained as any conjecture of M

on positive input data γ, with σs ⊆ γ ⊂ σs+1, which did not get a nega-
tive counterexample, indeed enumerates a subset of Fi ∪

⋃

r∈As
Fr. (Note that

based on the definition of j, we included the elements in Xi ∩ (content(σ) ∪
⋃

γ:σs⊆γ⊂σ WM(γ,σ′
s#

|γ|−|σs|)) into Fi by choosing an appropriate j at step 3. Sim-
ilarly, k is chosen appropriately in step 6, if 5.2 holds).

We first claim that the above construction finishes for every s ≤ n − 2 (i.e.,
σn−1, σ

′
n−1 get defined). If not, then let s be least such that σs, σ

′
s get defined

but σs+1, σ
′
s+1 do not. Now consider the construction above while trying to

define σs+1, σ
′
s+1.

If the “If” statement at step 2 does not hold, then M does not NC2n−2Bc∗-
identify the language Xi ∪

⋃

r∈As
Fr, which is a member of Cn (as 2.1/2.2 do

not hold for any σ extending σs, and content(σ) ⊆ Xi ∪
⋃

r∈As
Fr).

If the “If” statement at step 5 does not hold, then M does not NC2n−2Bc∗-
identify the language Y j

i ∪
⋃

r∈As
Fr, which is a member of Cn (as 5.1/5.2 do

not hold for any 〈i′, j′, k′〉 enumerated by WM(σ,τ ′#|σ|−|τ |), for any σ extending

τ , and content(σ) ⊆ Y j
i ∪

⋃

r∈As
Fr).

Thus, σn−1, σ
′
n−1 must get defined. Now, on the input (σn−1, σ

′
n−1), M has

already received 2n − 2 negative counterexamples (2 counterexamples each
during the definition of σi+1, for i < n − 1). Let i ∈ N − (An−1 ∪ Sn−1).
Now, M needs to NC2n−2Bc∗-identify Fi ∪

⋃

r∈An−1
Fr, for every possible Fi ∈

Li, without receiving any more counterexamples. This is impossible, as no
machine can TxtBc∗-identify Xi ∪

⋃

r∈An−1
Fr, and U j

i ∪
⋃

r∈An−1
Fr, for all j,

by Proposition 11.

6.3 Queries with Arbitrary Counterexamples Versus Restricted Queries

We now consider the advantage of having arbitrary counterexamples versus
being just told that there exists a counterexample. Again we separate the result
for superset queries from the others. Also, due to Theorem 32, for learning
via negative counterexamples to conjectures, only a limited version of the
hierarchy can exist.

First, we show that there exists a class of languages that can be Ex-learned
using just two subset or equivalence queries returning arbitrary counterexam-
ples, but cannot be learned by any Bc∗-learner via any m restricted queries of
either type. For NC-learners, a class of the same style is used to demonstrate
that an Ex-learner getting n arbitrary counterexamples can do better than

35

any Bc∗-learner getting at most (2n − 2) counterexamples.

Theorem 36 Suppose n,m ∈ N .

Let Ln = {N −
⋃

i∈A CYLi | card(A) ≤ n}. Then,

(a) Ln ∈ EquQnEx ∩ SubQnEx ∩ NCnEx.

(b) For all n, L2 6∈ ResEquQnBc∗ ∪ ResSubQnBc∗.

(c) For n ≥ 1, Ln 6∈ ResNC2n−2Bc∗.

Proof. (a) Fix n. We first define a learner which EquQnEx-identifies
(SubQnEx-identifies) Ln. This learner works for both equivalence or subset
queries.

The learner asks n queries as follows. Let Xr denote the set of (negative)
counterexamples received before the r-th query is made (for j = 1, Xj = ∅).
Let Sr = {j | 〈j, x〉 ∈ Xr}. Then ask an (equivalence/subset) query for the
language N −

⋃

i∈Sr
CYLi. Note that all the counterexamples received by the

learner would always be negative as long as the input is a language from the
class Ln.

After asking the n-queries as above, let Xn+1 denote the set of negative coun-
terexamples received for the n queries. Let Sn+1 = {j | 〈j, x〉 ∈ Xn+1}. Then
output a grammar for N −

⋃

i∈Sn+1
CYLi.

Note that if all the queries receive a negative counterexample, then Sn+1 must
be of size n, and N −

⋃

i∈Sn+1
CYLi, must be the input language. On the other

hand, if some query (say r-th query) does not receive a counterexample, then
the input language must be N −

⋃

i∈Sr
CYLi, and no further counterexamples

are received by the learner. Thus again, N −
⋃

i∈Sn+1
CYLi must be the input

language.

Thus, the learner indeed EquQnEx-identifies (SubQnEx-identifies) Ln.

For NCnEx-identification, instead of querying about languages as above, we
just conjecture the corresponding language. If the input language is not the
conjectured language, then it will eventually get a counterexample. Then we
can proceed as above.

(b) Suppose by way of contradiction that M witnesses that L2 ∈ ResSubQnBc∗

(ResEquQnBc∗). We prove a stronger result, where we allow the machine to
ask both subset or equivalence queries, as long as there are at most n queries
in total (we assume without loss of generality that M does not ask more than
n queries on any text, even if the text is for a language not in L2 or if the
answers are wrong).

36

We will use the variable Si. Intuitively, Si denotes that members of A in the
definition of diagonalizing language in L2 can be chosen from Si. As long as A
is non-empty, we will have that this would be consistent with all the answers
provided so far. Initially let σ0 = Λ. Let S0 = N .

Inductively define σi+1, Si+1, for i < n as follows.
(* The construction is non-effective. *)

(* Following invariants will be satisfied.
(a) content(σi) ⊆ N −

⋃

j∈Si
CYLj.

(b) card(Si) = ∞.
(c) M has already asked i questions on proper prefixes of σi.
(d) Answers given to M on questions are consistent with any lan-

guage L such that
⋃

j 6∈Si
CYLj ⊆ L, as long as L 6= N and L ∈ L2.

*)
1. Check if there exists a σ ⊇ σi such that M on σ asks a query.

If there is no such σ, then σi′ , i′ > i do not get defined.
If there exists such a σ, then choose a shortest such σ, and proceed as

follows.
2. Let σi+1 = σ#. Let Q be the queried language.

Define Si+1 based on following cases.
2.1 M asks an equivalence query on σ.

Answer the query no.
If Q 6= N ,

Then pick an element 〈j, x〉 missing from Q.
Let Si+1 = Si − ({j} ∪ {r | content(σ) ∩ CYLr 6= ∅}).

Else let Si+1 = Si − {r | content(σ) ∩ CYLr 6= ∅}.
2.2 M asks a subset query on σ, and Si ∩ {r | CYLr ∩ WM(σ) 6= ∅} is finite.

Answer the query yes.
Let Si+1 = Si−({r | content(σ)∩CYLr 6= ∅}∪{r | CYLr∩WM(σ) 6=
∅}).

2.3 M asks a subset query on σ, and Si ∩ {r | CYLr ∩WM(σ) 6= ∅} is infinite.
Answer the query no.
Let Si+1 = [Si−{r | content(σ)∩CYLr 6= ∅}]∩{r | CYLr∩WM(σ) 6=
∅}.

(* Note that all the answers given above are consistent with choosing
elements of A, in the definition of L2, from Si+1 as long as A is non-
empty. *)

End

It is easy to verify that the invariants are maintained by the construction.

Let m be largest number such that σm is defined. Note that M does not
make any more queries on σ ⊇ σm. Let i ∈ Sm. Now, M must Bc∗-identify

37

N −CYLi, as well as N − (CYLi ∪CYLj), for all j ∈ Sm, without asking any
more queries beyond σm. This is not possible by Proposition 12.

(c) Fix n. Suppose by way of contradiction that M ResNC2n−2Bc∗-identifies
Ln.

For ease of writing the proof, we will not provide the second text to M,
but only mention which conjectures get no answer (to the question, whether
the conjecture is subset of the input language). All other conjectures in the
construction are supposed to get yes answer.

We will use variables Si and Ri. Intuitively, Si denotes that members of A in
the definition of diagonalizing language in Ln can be chosen from Si. Members
of Ri are committed to be in A. We will have that this would be consistent
with all the answers provided so far. Initially let σ0 = Λ. Let S0 = N,R0 = ∅.

Inductively define σi+1, Si+1, Ri+1, for i < n − 1 as follows.
(* The construction is non-effective. *)

(* We will maintain the following invariants:
(a) card(Si) = ∞.
(b) card(Ri) = i.
(c) M has already received 2i no answers to its conjectures.
(d) All the answers given to machine M on proper prefixes of σi are

consistent with the input language being any L which satisfies:
(N −

⋃

x∈Si∪Ri
CYLx) ⊆ L ⊆ (N −

⋃

x∈Ri
CYLx).

*)
1. Check if there exists a σ ⊇ σi such that

(i) content(σ) ⊆ N −
⋃

j∈Ri
CYLj, and

(ii) On proper prefixes of σ, one answers “no” only to conjectures
which include an element from

⋃

j∈Ri
CYLj, and

(iii) M on σ conjectures a language Wr which contains elements from
CYLw for infinitely many w ∈ Si.

If there is no such σ, then σi′ , i′ > i do not get defined.
If there exists such a σ, then choose a shortest such σ, and proceed as

follows.
2. Answer the latest conjecture as no.

Let Z = (Si − ({j | content(σ) ∩ CYLj 6= ∅} ∪
⋃

σi⊆σ′′⊂σ{j | CYLj ∩
WM(σ′′) 6= ∅})) ∩ {j | Wr ∩ CYLj 6= ∅}.

3. Check if there exists a σ′ ⊇ σ# such that
(iv) content(σ) ⊆ N −

⋃

j∈Ri
CYLj, and

(v) on proper prefixes of σ′, one answers “no” only to conjectures
which include an element from

⋃

j∈Ri
CYLj, and the conjecture at σ,

(vi) M on σ′ conjectures a language Wr′ such that Wr′ contains an
element from CYLw′ for some w′ ∈ Z − {j | content(σ′) ∩ CYLj 6= ∅}.

38

If there is no such σ′, then σi′ , i′ > i do not get defined.
If there exists such a σ′, then choose a shortest such σ′, and proceed as

follows.
4. Answer no to this conjecture.

Let Ri+1 = Ri ∪ {w′}.
Let Si+1 = Z − ({w′} ∪ {j | content(σ′) ∩ CYLj 6= ∅}).
Let σi+1 = σ′#.

End

It is easy to verify that the invariants are maintained by the construction.

Let m be largest such that σm is defined.

If m = n − 1, then we have already answered 2n − 2 questions negatively
(two for each construction of σi+1 from σi), and thus M needs to Bc∗-identify
N −

⋃

j∈Rm
CYLj, as well as (N −

⋃

j∈Rm
CYLj) − CYLj′ for all j ′ ∈ Sm. An

impossible task by Proposition 12.

Otherwise m < n − 1. We consider two cases.

Case 1: In trying to define σm+1, we are not able to find σ as above.

In this case M does not Bc∗-identify the language L = N −
⋃

j∈Rm
CYLj,

on any text for L which extends σi, as M does not output a grammar for
L on any part of the text extending σ.

Case 2: In trying to define σm+1, we are able to find σ but not σ′ as above.

Note that when defining σ, we had given no answer at the conjecture of
M on σ. Thus, we had committed that “there is at least one more missing
cylinder beyond Rm” (plus this missing cylinder to come from Z).

So, let p ∈ Z. Now we claim that M does not Bc∗-identify the language
L = N − (CYLp∪

⋃

j∈Rm
CYLj). Note that on any text T for L, with σ ⊆ T ,

M does not output a grammar for (finite variant) of L. Further note that the
“answers” given to M’s conjectures on T beyond σ are no iff the conjecture
contains an element of

⋃

x∈Rm
CYLx. These answers are consistent with the

defined L, as M does not output a grammar (beyond σ) containing any
element of CYLp, as the search for σ′ did not succeed. Thus, M does not
ResNCBc∗-identify L.

From the above cases we have that M does not NC2n−2Bc∗-identify Ln.

Our next theorem shows that Ex-learners using just two superset queries and
getting arbitrary counterexamples can sometimes do better than any Bct-
learner (t ∈ N) using any n number of restricted superset queries. Note that

39

this result cannot be generalized for diagonalization against ResSupQnBc∗

(as SupQ∗Bc∗ ⊆ TxtBc∗, see Theorem 57) or against ResSupQ∗Ex (as
LSupQ∗I = SupQ∗I = ResSupQ∗I, see Proposition 41).

Theorem 37 For all n ∈ N , there exists a L such that

(a) for all t ∈ N , L 6∈ ResSupQnBct;

(b) L 6∈ ResSupQnEx∗;

(c) L ∈ SupQ2Ex.

Proof. Let

C = {L |
Let S = {i | L ∩ CYLi 6= ∅}.
Let e = max(S).

1. card(S) = n + 1.
2. (L − CYLe) is finite.
3. Either

3.1 We is infinite and L ∩ CYLe = {〈e, x〉 | x ∈ We}.
or
3.2 We is finite, and (∃w)[

L ∩ {〈e, 2w〉, 〈e, 2w + 1〉} = ∅ and
(∀x < w)[L ∩ {〈e, 2x〉, 〈e, 2x + 1〉} 6= ∅], and
(∀y > w)[〈e, 2y〉 ∈ L ∧ 〈e, 2y + 1〉 6∈ L]].

]}

C can be shown to be in SupQ1Ex, using the same methods as in Theorem 22.
C 6∈

⋃

t∈N TxtBct∪TxtEx∗, can be proved along the same lines as Lemma 20
and Corollary 21. Further note that C has the property that, for all finite sets
B of size at most n, C ∩ {L | B ⊆ L} 6∈

⋃

t∈N TxtBct ∪ TxtEx∗.

It is easy to verify that, for any fixed r ∈ N , Cr = {L′ | (∃L ∈ C)[L′ =
{〈r, x〉 | x ∈ L}]} is also in SupQ1Ex, and such a learner can be found
effectively from r and a SupQ1Ex-learner for C. Similarly, it can be shown
that Cr 6∈

⋃

t∈N TxtBct ∪ TxtEx∗ (where we additionally have that for any
B ⊆ CYLr of size at most n, Cr ∩ {L | B ⊆ L} 6∈

⋃

t∈N TxtBct ∪ TxtEx∗).

Let A =
⋃

j∈K CYLj .

L = {L ∪ A | (∃r 6∈ K)[L ∈ Cr]}.

Claim 38 L ∈ SupQ2Ex.

40

Proof. A SupQ2Ex learner M′ for L can be constructed as follows. M′ first
asks a question whether A is superset of the input language. Suppose 〈r, x〉 is
the counterexample (there must be such a counterexample for input languages
from L). For a segment σ, let σ′ be obtained by converting any 〈r′, x〉, r 6= r′

into #. Let f be a recursive function such that Wf(j) = Wj ∪ A. Let M be
a SupQ1Ex-learner for Cr (note that such a learner can be effectively found
from r). Now on input σ, M′(σ) simulates M(σ′). If M asks a question for
Wj, then M′ asks a question for Wf(j), and passes the answer it receives to M.
If M conjectures j as a grammar, then M′ conjectures f(j). It is then easy to
verify that M′ SupQ2Ex-identifies L.

Claim 39 (a) For all t ∈ N , L 6∈ ResSupQnBct.

(b) L 6∈ ResSupQnEx∗.

Proof. We only show part (a). Part (b) can be shown similarly.

Suppose by way of contradiction M ResSupQnBct-identifies L. Without loss
of generality assume that M′ never asks more than n questions, irrespective
of whether the input is from L of not, or if the answers are wrong, or even if
the answers are inconsistent.

Subclaim: We first claim that there must be a τ , content(τ) ⊆ A, such that M

does not ask questions on any extension τ ′ of τ with content(τ ′) ⊆ A, whatever
answers one may have given to M on the earlier questions on prefixes of τ . To
see this, consider a tree Tσ formed as follows for any σ (we only care about
Tσ, for content(σ) ⊆ A). Nodes of the tree have labels of the form (σ ′, a finite
string over {Y es,No}), where σ′ ⊆ σ. The node (σ′, s = s1s2 · · · sk) signifies
the following: If s is empty, then σ′ must be the smallest prefix of σ on which
M asked a question (also (σ′, Λ) must be the root of Tσ). Children (if any)
of a node (σ′, s = s1s2 · · · sk) are of form (σ′′, s = s1s2 · · · sksk+1), where
σ′ ⊆ σ′′ ⊆ σ, and if the questions of M on prefixes of σ′ (which are from the
first component of the nodes on the path from root to (σ′, s = s1s2 · · · sk)) are
answered as s1s2 · · · sksk+1, (i.e., first question is answered s1, second question
is answered s2, · · · , the (k + 1)-th (which is at σ′) is answered sk+1), then M

asks a question at σ′′, but not at any σ′′′, with σ′ ⊂ σ′′′ ⊂ σ′′. Intuitively, Tσ

just shows the tree of questions asked on prefixes of σ, where answers may
be given in all possible ways. It is easy to verify that Tσ ⊆ Tγ, for σ ⊆ γ.
Moreover, there exists a maximal tree as none of Tσ can have more than 2n

nodes, due to the bound on the number of questions.

Now any τ such that — (i) content(τ) ⊆ A and (ii) for all τ ′ ⊇ τ with
content(τ ′) ⊆ A, Tτ = Tτ ′ — satisfies the requirements of the subclaim.

We now continue with the proof of the claim. Choose τ as guaranteed by the
subclaim above. Now let S = {r | (∃τ ′ ⊃ τ)[content(τ ′) ⊆ A ∪ CYLr,M(τ ′)

41

asks a question, for some way of answering questions on prefixes of τ]}. As
S ⊆ K, and S is r.e., we must have an r such that r ∈ K − S.

Thus, M does not ask any further question on any text T extending τ , for
languages L satisfying content(τ) ⊆ L ⊆ A ∪ CYLr.

Now consider answering the questions on prefixes of τ as follows: If the query
Q contains A∪CYLr, then answer yes. Otherwise answer no. Let X consist of
least elements in (A∪CYLr)−Q, for each query Q answered no above. Note
that X contains at most n elements.

Now M has to Bct-identify any member L of L satisfying A ∪ X ⊆ L ⊆
A ∪ CYLr, without asking any further queries. Thus, L ∩ {L | A ∪ X ⊆ L ⊆
A ∪ CYLr} ∈ TxtBct, and hence Cr ∩ {L | X ∩ CYLr ⊆ L} ∈ TxtBct.
However this is not possible, by definition of C and Cr.

This completes the proof of the claim and the theorem.

7 Learning via Subset Queries Versus Learning with Bounded Num-

ber of Negative Counterexamples to Conjectures

We first prove some useful propositions.

Proposition 40 For any a ∈ N ∪ {∗}, I ∈ {Exa,Bca},

(a) SubQ∗I ⊆ NCI.

(b) LSubQ∗I ⊆ LNCI.

(c) ResSubQ∗I ⊆ ResNCI.

Proof. We show part (a). Parts (b) and (c) can be shown similarly. An
NCI learner could just conjecture the query of the SubQ∗I learner to obtain
negative counterexamples, if any for the queries of SubQ∗I learner. Thus, the
proposition holds.

Proposition 41 Suppose a ∈ N ∪ {∗}, I ∈ {Exa,Bca}.

(a) ResSubQ∗I = SubQ∗I = LSubQ∗I.

(b) ResSupQ∗I = SupQ∗I = LSupQ∗I.

Proof. (a) Clearly, ResSubQ∗I ⊆ SubQ∗I ⊆ LSubQ∗I.

42

To show that LSubQ∗I ⊆ ResSubQ∗I, note that for any Wi, if Wi 6⊆
content(T), then one can find in the limit, from a text T , the least element in
Wi − content(T). Thus, one can eventually answer correctly all the queries of
a LSubQ∗I-learner, using a ResSubQ∗I-learner. Part (a) follows.

(b) can be proved similarly.

Proposition 42 Suppose a ∈ N ∪ {∗}. NCExa = SubQ∗Exa = LNCExa =
LSubQ∗Exa = ResNCExa = ResSubQ∗Exa.

Proof. By Propositions 40 and 41, it is enough to show LNCExa ⊆
LSubQ∗Exa.

Suppose L ∈ LNCExa as witnessed by machine M. An LSubQ∗Exa-learner
can provide the counterexamples to M by just asking subset query for each
of the conjectures of M. Proposition follows.

Our main result in this section shows that, surprisingly, there is a class of lan-
guages that can be Ex-learned using just one subset (or equivalence) restricted
query, but cannot be Bc∗-learned using any bounded number of negative coun-
terexamples to conjectures! Intuitively, the teacher helping to learn this class
of languages, being asked subset query for every conjecture, is forced to out-
put n negative counterexamples, while just one “wise” subset query might be
enough.

Theorem 43 For all n ∈ N , (ResSubQ1Ex∩ResEquQ1Ex)−LNCnBc∗ 6=
∅.

Proof. For A,B, F ⊆ N :

let XA = {CYLi | i ∈ A},

Y F
A = XA − F , and

ZF,B
A = (XA − F) ∪ B.

L = {Y F
A | card(A) ≤ n + 1, F = Dmax(A)} ∪ {ZF,B

A | (∃i)[card(A) =
n, max(A) < i, F = Di, and B is a non-empty finite subset of CYLi]}.

Intuitively, for L ∈ L, either L consists of upto n + 1 cylinders, with some
elements missing, or it consists of n cylinders, with some elements missing,
plus a finite portion of another cylinder. The missing elements mentioned
above are coded using the maximum index cylinder present in L. This allows
for easy learnability, as long as one can determine whether the (n + 1)-th
cylinder, if any, is present fully in the input, or only finite portion of it is in

43

the input. This can be done using subset or equivalence query. On the other
hand, the missing elements can force a LNC-type learner to make enough (n)
non-subset conjectures, and thus not able to determine, whether the (n+1)-th
cylinder is present in full or only partially. This allows for diagonalization. We
now proceed formally.

Claim 44 L ∈ ResSubQ1Ex ∩ ResEquQ1Ex.

Proof. On input σ, the learner behaves as follows.

Let A = {i | CYLi ∩ content(σ) 6= ∅}. If card(A) ≤ n, then output a grammar

for Y
Dmax(A)

A .

If card(A) = n+1, then let i = max(A). The learner asks a (subset/equivalence)
query (assuming no previous query) about Y Di

A . If answer is yes, then the
learner continues outputting a grammar for Y Di

A . If no, then learner outputs a
grammar for Y Di

A−{i}∪ (content(σ)∩CYLi). It is easy to verify that the learner

SubQ1Ex-identifies (EquQ1Ex-identifies) L.

Claim 45 L 6∈ LNCnBc∗.

Proof. Suppose by way of contradiction that M witnesses that L ∈ LNCnBc∗.
Let σ0 = σ′

0 = Λ. Let F0 = {〈0, 0〉}. Let R0 = {i}, where Di = F0.

Inductively define σi+1, Ri+1, Fi+1, for i < n as follows.
(* The construction is non-effective. *)

(* The following invariants will be satisfied:
(a) content(σi) ⊆ Y Fi

Ri−{max(Ri)}
.

(b) Fi = Dmax(Ri).
(c) content(σ′

i) contains i elements.
(d) The counterexample sequence σ′

i is consistent with the input
language being any L such that content(σi) ⊆ L ⊆ N − Fi.

*)
1. Check whether there exists a σ ⊇ σi such that content(σ) ⊆ Y Fi

Ri
, and

W
M(σ,σ′

i
#|σ|−|σi|) 6⊆ content(σ).

If there is no such σ, then σi′ , i′ > i do not get defined.
If there exists such a σ, then choose a shortest such σ, and proceed as

follows.
2. Let 〈j, k〉 be the least element of W

M(σ,σ′
i
#|σ|−|σi|) − content(σ).

Let σi+1 = σ# and σ′
i+1 = σ′

i#
|σ|−|σi|〈j, k〉. (* That is, we give 〈j, k〉 as

counterexample *).
Pick z 6∈ content(σ) such that

for Dr = Fi ∪ {〈j, k〉} ∪ {z}, r > max(Ri ∪ Dr).
(* Note that there clearly exist such z, r. *)

44

Let Fi+1 = Dr and Ri+1 = Ri ∪ {r}.
End

It is easy to verify that the invariants are satisfied.

Now, if σn gets defined, then clearly M has already received n negative coun-
terexamples. Thus, M now needs to Bc∗-identify (without receiving any more
negative examples) the languages Y Fn

Rn
, and ZFn,B

Rn−{max(Rn)}, such that B is a
non-empty finite subset of CYLmax(Rn). This is not possible by Proposition 11.

On the other hand, if σn does not get defined, then let m be the largest number
such that σm gets defined. Now, due to non-success of the search for σ (for the
definition of σm+1), we have that M does not LNCnBc∗-identify Y Fm

Rm
.

Now we show that one negative answer to conjecture (or one restricted subset
or equivalence query) in the context of Ex-learning can sometimes do more
than any number of counterexamples (to conjectures) of bounded size, even
in the context of Bc∗-learning.

Theorem 46 (ResSubQ1Ex∩ResEquQ1Ex∩ResNC1Ex)−BNCBc∗ 6=
∅.

Proof. The class L = {N} ∪ FINITE is clearly in ResEquQ1Ex ∩
ResNC1Ex ∩ ResSubQ1Ex. L 6∈ BNCBc∗, was shown in [JK04].

In contrast to our Theorem 43, the following result shows that sometimes just
one counterexample to conjecture can do more than any number of subset
queries receiving the least counterexamples.

Theorem 47 For all n ∈ N , ResNC1Ex − LSubQnBc∗ 6= ∅.

Proof. For A ⊆ N , and any set B, let XA =
⋃

i∈A CYLi, and YA,B = XA∪B.

L = {XA | {0} ⊆ A ⊆ N, card(A) < ∞} ∪ {YA,B | A,B are finite, {0} ⊆ A,
and (∃i > max(A))[B ⊆ CYLi]}.

Intuitively, the languages L in L consist of elements from finitely many cylin-
ders, all of which (except maybe one) are fully in the language L. Furthermore,
if a cylinder is only partially in L, then it must be the one with largest index,
and only finitely many elements from it are in L. This allows for easy learning
using one counterexample in ResNCEx model. However, for suitably chosen
diagonalizing language L, a LSubQnBc∗ learner cannot obtain relevant infor-
mation to distinguish whether the highest indexed cylinder is fully or partially
in the input language. This allows us to show that L 6∈ LSubQnBc∗.

45

Claim 48 L ∈ ResNC1Ex.

Proof. We first show that L ∈ NC1Ex. On input (σ, σ′), compute A =
{i | 〈i, x〉 ∈ content(σ)}. If content(σ′) = ∅, then conjecture a grammar for
XA. If content(σ′) 6= ∅, then conjecture a grammar for YA−{max(A)},B, where
B = content(σ) ∩ CYLmax(A).

It is now easy to verify that M gets at most one counterexample, and iden-
tifies the class L (if input language is not of form XA, then it will eventually
get a counterexample, as all languages in L are infinite). As the above con-
struction does not use the exact value of the counterexample, it follows that
L ∈ ResNC1Ex also.

Claim 49 L 6∈ LSubQnBc∗.

Proof. Suppose by way of contradiction M learns L using at most n subset
queries.

We will use variables Ri, Si below. Intuitively, for the constructed diagonalizing
language, for A as in definition of L, we would have Ri−{max(Ri)} ⊆ A, and
Si ∩ A = ∅. Let σ0 = Λ. Let S0 = ∅ and R0 = {0, 1}.

Inductively define σi+1 (along with Ri+1, Si+1), for i < n, as follows.
(* The construction is non-effective. *)

(* Following invariants will be satisfied:
(a) Ri ∩ Si = ∅.
(b) content(σi) ⊆ XRi−{max(Ri)}.
(c) M has already made i queries on proper prefixes of σi.
(d) Answers given to M are consistent with input being any language

L such that XRi−{max(Ri)} ⊆ L ⊆ N − XSi
.

*)
1. Check if there exists a σ ⊇ σi such that content(σ) ⊆ XRi

, and M makes
a subset query on σ.

If there is no such σ, then σi′ , i′ > i do not get defined.
If there exists such a σ, then choose a shortest such σ, and proceed as

follows.
2. Let Q be the queried language.
3.1 If Q − XRi

6= ∅, Then
Answer the query no, with 〈j, x〉 = min(Q − XRi

) as a counterex-
ample.

Let σi+1 = σ#,
Let Si+1 = Si∪{j}, and Ri+1 = Ri∪{j

′}, where j ′ > max(Ri∪Si+1).
3.2 Else (i.e., Q ⊆ XRi

)
Answer the query yes.
Let σi+1 = σ#,

46

Let Si+1 = Si and Ri+1 = Ri ∪ {j′} such that j ′ > max(Ri ∪ Si),
End

It is easy to verify that invariants are satisfied. Let m be largest value such
that σm is defined. Note that M does not ask any queries on σ ⊇ σm, such
that content(σ) ⊆ XRm

(if m = n, due to bound on number of queries, M

cannot make any more queries; if m < n, the failure of search for σ ⊇ σm, in
which M asks a query, implies that M does not make any more queries).

Now M needs to Bc∗-identify, without any more queries, XRm
, as well as

YRm−{max(Rm)},B for all finite B ⊆ CYLmax(Rm). This is not possible by Propo-
sition 11.

Above proof also shows BNC1Ex − LSubQnBc∗ 6= ∅.

Note that the above theorem cannot be generalized to provide ResNC1Ex−
LSubQ∗Bc∗ 6= ∅, as LSubQ∗Exa = NCExaI, by Proposition 42. However,
we can do the diagonalization against ∗-number of subset queries, if we con-
sider NCBc model.

Theorem 50 NC1Bc − SubQ∗Bc∗ 6= ∅.

Proof. Consider the following class of languages.

L1 = {L | L ∩ CYL0 is infinite, and for all p such that 〈0, p〉 ∈ L, Wp = L}.

L2 = {L | L∩CYL0 is non-empty and finite, and for all p such that 〈0, p〉 ∈ L,
Wp ⊆ L and for p = max({x | 〈0, x〉 ∈ L}), Wp = L}.

L3 = {L | L = CYL1 ∪ C for some finite C, and {x | 〈0, x〉 ∈ L} 6= ∅ and for
p = max({x | 〈0, x〉 ∈ L}), Wp 6⊆ L]}.

Let L = L1 ∪ L2 ∪ L3.

Claim 51 L ∈ NC1Bc.

Proof. Consider a learner which outputs on input (σ, σ′) as follows. If
content(σ′) 6= ∅, then output a grammar for CYL1 ∪ content(σ). Otherwise,
if content(σ) ∩ CYL0 = ∅, then output a grammar for ∅; else output p, where
p = max({x | 〈0, x〉 ∈ content(σ)}).

Now consider any text T for a language L ∈ L. Clearly, if the input language is
in L1 or L2, then there will never be a counterexample, and the learner would
output a correct grammar for L, on input T [n], for all but finitely many n.

47

On the other hand, if L ∈ L3, then there will be a counterexample eventually
given to the above learner, and thus, for all but finitely many n, on input T [n],
the learner will output a grammar for CYL1 ∪ content(T [n]). It follows that
the learner NC1Bc-identifies L.

Claim 52 L 6∈ SubQ∗Bc∗.

Proof. Suppose by way of contradiction that M SubQ∗Bc∗-identifies L.
Then by Operator recursion theorem [Cas74], there exists a 1–1 increasing
function p such that Wp(i) may be defined as follows.

Initially, let σ0 and Wp(0) contain just 〈0, p(0)〉. Let W s
p(i) denote Wp(i) enu-

merated before stage s. Initially let B0 = ∅. Intuitively, Bs denotes the set of
elements we have decided to keep out of the diagonalizing language.

For all j, initially let F (j) = #. Intuitively, F (j) denotes the answer to subset
query Wj. Initially all the queries are answered as yes. During the construction,
some of these answers may be changed to no, and F (j) updated to a negative
counterexample for Wj . It will be the case that value of F (j), once changed
to a number from N , will never change again. Go to stage 0.

Stage s
(* Following invariants will be maintained by the construction:

(a) W s
p(0) = content(σs) and content(σs) ∩ Bs = ∅.

(b) For all j, F (j) is either # or a member of Bs. In case F (j) ∈ Bs,
then Wj contains F (j).

(c) For any element w ∈ Bs, we have 〈0, p(s′)〉 > w and 〈2, s′〉 > w,
for all s′ > s.

(d) If 〈0, x〉 ∈ content(σs), then x = p(0) or x = p(i), for some i ≤ s,
and Wp(i) was made equal to Wp(0) in stage i − 1, step 5.

*)
1. Let Wp(s+1) enumerate content(σs)∪〈0, p(s+1)〉. Dovetail steps 2, 3 and 4

until either step 3 or step 4 succeeds. If step 3 succeeds before step 4 (if
ever) then go to step 5. If step 4 succeeds before step 3 (if ever) then go
to step 6. Here we assume that if the search in step 4 can succeed within
s steps, then it succeeds before step 3 (thus some priority is given to
the search in step 4).

(* Below, for simulating M on any input τ , we assume that answers are
given according to F for the queries made by M on prefixes of τ . That
is, if F (j) = #, then answer is yes, and if F (j) ∈ N , then answer is no,
with F (j) being the counterexample. *)

2. For t = 0 to ∞ do
Enumerate 〈1, t〉, 〈2, t + 1 + s〉 in Wp(s+1).

Endfor

48

3. Search for a σ ⊇ σs, such that content(σ) ⊆ (content(σs)∪CYL1∪CYL2∪
{〈0, p(s + 1)〉}) − Bs such that, M(σ) asks a question on σ.

4. Search for a query Wj made on some prefix of σs, such that F (j) = #,
but Wj enumerates an element x 6∈ content(σs) ∪ CYL1.

(* Here we assume without loss of generality that, if there exists a query
Wj′ made by M on a prefix of σs such that F (j ′) = #, and Wj′,s −
(content(σs) ∪ CYL1) 6= ∅, then the above search will succeed with
j = j′ for earliest such query made (i.e., query Wj′ made on shortest
prefix of σs). *)

5. Enumerate elements of content(σ) and Wp(s+1) enumerated until now into
Wp(0). From now on Wp(s+1) enumerates whatever Wp(0) enumerates.

(* Thus, Wp(s+1) = Wp(0). *)
Let Bs+1 = Bs.
Let σs+1 be an extension of σ such that content(σs+1) = Wp(0) enumerated

upto now.
Go to stage s + 1.

6. Let Wj be as found in step 4.
Let w be such that w ∈ Wj − (content(σs) ∪ CYL1). Change F (j) to w.
(* Note that this changing of answer would change the behaviour of M

on later part σs. *)
(* Following is done to avoid enumerating w in Wp(0) in any future stages,

and maintain invariant (c). *)
Let s′ > s be such that 〈0, p(s′)〉 and 〈2, s′〉 are both > w.
Let Bs′ = Bs ∪ {w}.
Let σs′ = σs.
Go to stage s′ (i.e., we assume that the stages s < s′′ < s′, are just null

stages, with corresponding Bs′ , σs′ being just Bs, σs).
End stage s

It is easy to verify that invariants are maintained by the construction.

We now consider the following cases.

Case 1: Some stage s starts but does not finish.

In this case consider any language L which satisfies:

L = Wp(s+1) (which is in L2) or

L = content(σs)∪CYL1 ∪{〈0, p(s+1)〉}∪C, for some finite C ⊆ Wp(s+1)

(which are in L3).

Now, for each such L, on any text T for L which extends σs, M does not
ask any further queries on T beyond σs. Also the answer given to M on
the queries made on prefixes of σs are correct as step 4 did not succeed. It
follows that M needs to Bc∗ identify all such L without asking any further
queries. However this is not possible by Proposition 11.

49

Case 2: There exist infinitely many stages.

In this case let L = Wp(0). It is easy to verify that L ∈ L1, as for every
〈0, p(s + 1)〉, enumerated in Wp(0) we have Wp(s+1) = Wp(0), due to Wp(s+1)

eventually following Wp(0) by step 5 in stage s.
Let T =

⋃

s∈N σs.
Note that due to priority given to step 4 above, we can show by induction

that for all i, eventually, the first i questions Wj1 ,Wj2 , . . . ,Wji
asked by M

on T would be answered correctly using F . It follows that all questions
asked by M on T are eventually answered correctly using F .

Let F ′(j) denote the final value of F (j) as given by the above construction.
We now claim that M would ask infinitely many questions on T when
answers are given using F ′. To see this, suppose by way of contradiction
otherwise. Let s be large enough so that M will not ask any questions beyond
σs, if answers are given according to F ′. Let s′ > s be large enough so that all
the answers given according to F in stage s′ would be correct for questions
asked by M on σs. But then the steps 3 and 4 in the construction would not
succeed in stage s′, contradicting the hypothesis of having infinitely many
stages.

Claim follows from the above two cases.

Corollary 53 NC1Bc − LSubQ∗Bc∗ 6= ∅.

Proof. Follows using Theorem 50 and Proposition 41.

Proof of Theorem 50 also shows BNC1Bc − LSubQ∗Bc∗ 6= ∅.

8 Subset Queries and NC Versus Other Types of Queries

We first consider diagonalization against equivalence queries. As ResEquQ∗Ex

contains the class E , this diagonalization can only be done against bounded
number of equivalence queries.

Proposition 54 E ∈ ResEquQ∗Ex.

Proof. A learner can ResEquQ∗Ex-learn all the r.e. languages, by sequen-
tially asking equivalence queries for W0,W1,W2, . . ., until an i is found such
that Wi = input language. When such a i is found, the learner conjectures
grammar i from then onwards.

The following proposition is useful to prove Theorem 56.

50

Proposition 55 Suppose n ∈ N , A is an infinite-coinfinite language, B ⊆ A,
and A − B is infinite.

Then, L = {B∪C | card(C) < ∞}∪{A∪C | card(C) < ∞} 6∈ LEquQnBc∗.

Proof. Suppose by way of contradiction that M witnesses that L ∈
LEquQnBc∗.

We will use variables Ri and Si below. Intuitively, we have committed Ri to be
in the diagonalizing language and Si to be out of the diagonalizing language
being constructed. Initially let σ0 = Λ, and R0 = ∅, S0 = ∅.

Inductively define σi+1, for i < n, as follows.
(* The construction is non-effective. *)

(* We will maintain the following invariants:
(a) content(σi) ⊆ Ri.
(b) (A ∪ Ri) ∩ Si = ∅.
(c) M has already asked i queries on proper prefixes of σi.
(d) Answers given to queries of M are consistent with any input lan-

guage L satisfying: Ri ⊆ L ⊆ N − Si.
*)

1. Check if there exists a σ ⊇ σi, such that content(σ)∩ Si = ∅, and M asks
a query on input σ.

If there is no such σ, then σi′ , i′ > i do not get defined.
If there exists such a σ, then choose a shortest such σ and proceed as

follows.
2. Let Q be the queried language.
3. Answer the query as no.

Pick least w such that one of the following holds:
i) w ∈ content(σ) ∪ Ri ∪ A and w 6∈ Q.
ii) w ∈ Si and w ∈ Q,
iii) w 6∈ content(σ) ∪ Ri ∪ Si ∪ A.

4. Give this w as counterexample to M for the query Q.
5. Let σi+1 = σ#.

(* Note that we need σi+1 to properly extend σ, for search at step 1 of
next iteration. *)

6. If w ∈ Q, then let
Si+1 = Si ∪ {w} and
Ri+1 = Ri ∪ content(σ) ∪ {w′ < w | w′ ∈ A}.
(* {w′ < w | w′ ∈ A} is added to diagonalizing language to make

sure that w is indeed the least counterexample to query Q by M.
*)

If w 6∈ Q, then let
Si+1 = Si and

51

Ri+1 = Ri ∪ {w} ∪ content(σ) ∪ {w′ < w | w′ ∈ A}.
End

It is easy to verify that the above construction maintains the invariants.

Let m be the largest number such that σm gets defined. Now M does not ask
any more questions on σ ⊇ σm such that content(σ) ⊆ N − Sm (if m = n,
then M has already asked n questions; if m < n, then due to non-success in
search for σ during the definition of σi+1, we have that M does not ask any
more questions).

Thus, M must Bc∗-identify (without any further queries) the class {A∪Rm}∪
{B∪Rm∪C | C ⊆ A, card(C) < ∞}, an impossible task by Proposition 11.

The following theorem demonstrates that sometimes Ex-learners using just
one restricted subset query or getting just one bounded negative counterex-
ample to conjectures can do better than any Bc∗-learner, asking at most n
equivalence queries and receiving least counterexamples.

Theorem 56 ResSubQ1Ex ∩ ResNC1Ex − LEquQnBc∗ 6= ∅.

Proof. Let A = CYL0 ∪ CYL1 and B = CYL0.

Let L = {A ∪ C | card(C) < ∞} ∪ {B ∪ C | card(C) < ∞}.

L 6∈ LEquQnEx follows from Proposition 55.

We now show that L ∈ ResSubQ1Ex. The learner asks once, the query
whether A is a subset of the input language. If yes, then the learner outputs,
on input σ, a (standard) grammar for A ∪ content(σ). If no, then the learner
outputs, on input σ, a (standard) grammar for B ∪ content(σ). It is easy to
verify that the above learner ResSubQ1Ex-identifies L.

One can similarly show that L ∈ ResNC1Ex. The learner, on positive data
σ, outputs a grammar for A∪ content(σ) or B∪ content(σ), based on whether
there was ever a no answer/counterexample given to the learner earlier.

Above proof also shows BNC1Ex − LEquQnBc∗ 6= ∅.

We now turn our attention to diagonalization against superset queries.

First we show that, if unbounded finite number of errors in almost all con-
jectures is allowed for Bc-learners, then no finite number of superset queries
(even unbounded) receiving least counterexamples helps to learn more than
what just regular Bc∗-learners can do. In particular, this result will limit our

52

search of separations of types of learning using bounded number of superset
queries from other types of learning only to the cases when the latter types
do not allow unbounded number of errors in the correct conjectures.

Theorem 57 LSupQ∗Bc∗ ⊆ TxtBc∗.

Proof. Suppose M LSupQ∗Bc∗-identifies a class L. Let M′ be defined as
follows. On input T [m], output a grammar for the language defined as follows:

Lm =
⋃

s∈N

Ss
m

In above, Ss
m = WM(T [m]),s, where answers to questions Wj by M are given as

follows:

If T [m] ⊆ Wj,s, then answer yes.

If T [m] 6⊆ Wj,s, then answer no, with min(T [m]−Wj,s) as the counterexample.

Let m′ be large enough so that if the answers to questions of M on prefixes of
T [m′] are correct (for input language being content(T)), then all the questions
have been asked by the time M sees T [m′], and for all queried languages Wj, if
content(T)−Wj 6= ∅, then min(content(T [m′])−Wj) = min(content(T)−Wj).
It is then easy to see that for all m ≥ m′, for all but finitely many s, the
simulation of M as in computation of Ss

m would be correct. Thus, for all
m ≥ m′, M′(T [m]) conjectures a language which is a finite variant of WM(T [m]).
This is so since Lm would contain WM(T [m]) (with counterexamples to M being
the least ones, if any) and Ss

m, for finitely many s, where some of the answers
given to M may be wrong due to T [m] being a subset of Wj but not Wj,s, for
some query Wj.

Theorem follows.

The above result is used to derive the following corollary, demonstrating that
Ex-learners making just one subset or equivalence query, or getting just one
bounded negative counterexample to conjectures can sometimes do better than
any Bc∗-learner using any finite (unbounded) number of superset queries and
receiving least counterexamples.

Corollary 58 SubQ1Ex∩EquQ1Ex∩NC1Ex∩BNC1Ex−LSupQ∗Bc∗ 6=
∅.

Proof. Let L = {L | L = N or (∃S | card(S) < ∞)[L = {2x | x ∈ N} ∪ S]}.
It is easy to verify that L ∈ SubQ1Ex ∩ EquQ1Ex ∩ NC1Ex ∩ BNC1Ex.
However L 6∈ TxtBc∗ (by Proposition 11), and hence L 6∈ LSupQ∗Bc∗ by

53

Theorem 57.

9 Other Types of Queries Versus Subset Queries and NC

We have already shown that ResEquQ1Ex − LNCnBc∗ 6= ∅ (see Theo-
rem 43).

The following theorem will be useful for the diagonalization ResEquQ1Ex−
LSubQ∗Bcm 6= ∅, as well as for ResSupQ1Ex − LSubQ∗Bcm 6= ∅ and
ResSupQ1Ex − LNCnBcm 6= ∅ (Corollary 61 below). Note that diagonal-
ization, with superset queries on the positive side, cannot be improved due
to LSupQ∗Bc∗ ⊆ TxtBc∗ (see Theorem 57). However diagonalization, with
equivalence queries on the positive side, can be somewhat improved, based on
type of counterexamples received for the queries.

Theorem 59 ResEquQ1Ex ∩ ResSupQ1Ex − NCBc 6= ∅.

Proof. Let

L1 = {L | (∃e)[L = {〈0, e〉} ∪ {〈1, x〉 | x ∈ We}]}.
L2 = {L | (∃e)[

{〈0, e〉} ⊆ L ⊆ {〈0, e〉} ∪ CYL1 and We is finite, and
(∃w)[L ∩ {〈1, 2w〉, 〈1, 2w + 1〉} = ∅ and

(∀x < w)[L ∩ {〈1, 2x〉, 〈1, 2x + 1〉} 6= ∅], and
(∀y > w)[〈1, 2y〉 ∈ L ∧ 〈1, 2y + 1〉 6∈ L]].

]}
Let L = L1 ∪ L2.

It is easy to verify that L2 ∈ TxtEx (on input language L, one just needs to
search for the least w such that both 〈1, 2w〉, 〈1, 2w + 1〉 do not belong to the
input language; this information along with the unique e such that 〈0, e〉 ∈ L
and {〈1, x〉 | x < w, 〈1, x〉 ∈ L}, is enough to determine L ∈ L).

It can be shown that L 6∈ NCBc, by using essentially the same diagonalization
proof as used for showing InfEx − NCBc 6= ∅ in [JK04]. (Here InfEx is a
notion of learning from informants [Gol67], where both positive and negative
data is given to the learner).

To show that L ∈ ResEquQ1Ex (or ResSupQ1Ex) one can first obtain e
from the input text, and then ask the query whether {〈0, e〉}∪{〈1, x〉 | x ∈ We}
is equivalent to (superset of) the input language. If yes, then we know the input

54

language. If not, then the input language belongs to L2, and thus one can use
TxtEx-identification strategy to identify it.

Corollary 60 Suppose n ∈ N . Then,

(a) (ResEquQ1Ex ∩ ResSupQ1Ex) − LSubQ∗Bc 6= ∅.

(b) (ResEquQ1Ex ∩ ResSupQ1Ex) − LSubQ∗Ex∗ 6= ∅.

Proof. Proposition follows from Theorem 59, Proposition 40 and the fact
that LNCEx∗ ⊆ LNCBc = NCBc (see [JK04]).

The following corollary demonstrates that just one restricted equivalence or
superset query made by an Ex-learner can sometimes do better than any finite
(unbounded) number of subset queries receiving least counterexamples or any
bounded number of least negative counterexamples to conjectures used by a
Bcm-learner.

Corollary 61 For all n,m ∈ N

(a) ResEquQ1Ex − LSubQ∗Bcm 6= ∅.

(b) ResSupQ1Ex − LSubQ∗Bcm 6= ∅.

(c) ResSupQ1Ex − LNCnBcm 6= ∅.

Proof. (a) We show that ResEquQ1Ex− SubQ∗Bcm 6= ∅. Part (a) would
then follow using Proposition 41.

Note that (i) Q ⊆ L iff cyl(Q) ⊆ cyl(L);

(ii) Q′ ⊆ cyl(L) iff {x | (∃y)[〈x, y〉 ∈ Q′]} ⊆ L.

Thus, queries/answers for SubQ∗Bcm learner for L can be converted to the
queries/answers for SubQ∗Bcm learner for cyl(L) and vice-versa.

Furthermore,

(iii) X = L iff cyl(X) = cyl(L);

(iv) X =m cyl(L) iff {x | card({y | 〈x, y〉 ∈ X} > 2m + 1)} = L.

Thus grammars for L can be converted to grammars for cyl(L) and grammars
for m-variant of cyl(L) can be converted to grammars for L.

Using above, it is easy to see that L ∈ SubQnBc iff cyl(L) ∈ SubQnBc iff

55

cyl(L) ∈ SubQnBcm.

Similarly, it can be shown that L ∈ ResEquQ1Ex iff cyl(L) ∈ ResEquQ1Ex.

Thus, it follows that from Corollary 60, that ResEquQ1Ex−SubQ∗Bcm 6= ∅.

Part (a) now follows using Proposition 41.

(b) Can be proven in a way similar to part (a).

(c) Can be proven by using a slight modification of expanded proof of part
(b) (i.e., including the proof for the portion from [JK04]), where instead of di-
agonalization against LSubQ-query, one diagonalizes against the conjectures,
forcing n of them to have counterexamples. We omit the details.

In contrast to a number of separations established above, as well as Theorem 63
below, our next theorem shows that n restricted equivalence queries made by
Bc∗-learners can be simulated by n subset queries. Here, lack of the power
of equivalence queries is compensated by possibility of unbounded number of
errors in the correct conjectures.

Theorem 62 For all n ∈ N , ResEquQnBc∗ ⊆ ResSubQnBc∗.

Proof. Suppose M ResEquQnBc∗-identifies a class L. Let M′ be defined
as follows.

If content(T [m]) = ∅, then M′(T [m]) outputs a standard grammar for ∅.
Otherwise, on input T [m], M′ simulates M, asking the same queries as M

does on prefixes of T [m]. In the simulation, the answers given to the queries
by M is always no. Suppose the queried languages are (in order of query being
made) Wj0 ,Wj1 , . . . ,Wjk

, where k < n. Let pm denote the final conjecture by
M based on above simulation.

Let,

xi
m =

−1, if answer to subset query for Wji
was

no;

min(content(T [m]) − Wji,m), if answer to subset query for Wji
was

yes and content(T [m]) − Wji,m 6= ∅;

min(content(T [m])), otherwise.

For the following, we take −1 6∈ Wji
(this is for ease of presentation). Then,

M′ on T [m], outputs a program for the following language:

56

Lm =
⋃

s∈N,(∀i≤k)[xi
m 6∈Wji,s]

[Wpm,s] ∪
⋃

s∈N,r=min({i|xi
m∈Wji,s})

[Wjr ,s]

Now suppose T is a text for L ∈ L. Consider the following cases.

Case 1: For all r ≤ k, Wjr
6= L.

Let

yi
m =

−1, if answer to subset query for Wji
was no;

min(content(T) − Wji
), if answer to subset query for Wji

was yes.

Note that, for all but finitely many m, xi
m = yi

m. Thus, for all but finitely
many m, the language Lm defined above is Wpm

. Hence, M′ ResSubQnBc∗-
identifies L on text T .

Case 2: Wjr
= L, for some r ≤ k.

Then choose the minimal such r. For i < r, define

yi
m =

−1, if answer to subset query for Wji
was no.

min(content(T) − Wji
), if answer to subset query for Wji

was yes.

Now, for i < r, for all but finitely many m, yi
m = xi

m. Moreover, xr
m 6= −1,

and xr
m ∈ content(T) = Wjr

for all m.
Thus, for all but finitely many m, for all but finitely many s, [¬(∀i ≤

k)[xi
m 6∈ Wji,s]]. Moreover, for all but finitely many m, for all but finitely

many s, min({i | xi
m ∈ Wji,s}) would be r.

Thus, for all but finitely many m, Lm =∗ Wjr
(as Lm would contain Wjr

and some finite sets due to “finitely many s” for which (∀i ≤ k)[xi
m 6∈ Wji,s],

holds, or min({i | xi
m ∈ Wji,s}) 6= r holds).

Hence, M′ ResSubQnBc∗-identifies L on text T .

Theorem follows from above analysis.

Now we show that Ex-learners making just two equivalence queries can some-
times do better than any Bc∗-learner making unbounded finite number of
subset queries receiving least counterexamples.

Theorem 63 EquQ2Ex − LSubQ∗Bc∗ 6= ∅.

Proof. Consider the following class:

57

A =
⋃

j∈K CYLj.

Bi = A ∪ CYLi.

Bk
i = A ∪ {〈i, x〉 | x ≤ k}.

L = {A} ∪ {Bi | i 6∈ K} ∪ {Bk
i | i 6∈ K, k ∈ N}.

Intuitively, an equivalence query with A allows one to know if the input set
is A or Bi/B

k
i , along with knowing i (using the counterexample). This, allows

EquQ2Ex-learnability of L. On the other hand, it can be shown that subset
queries are not able to get the crucial information about which i is used above.
See details below.

Claim 64 L ∈ EquQ2Ex.

Proof. A learner first asks equivalence query for language A. If the answer
is yes, then we are done. Otherwise suppose 〈i, j〉 is the counterexample. Then
the learner asks equivalence query for the language Bi. If the answer is yes,
then we are done. Otherwise, the language must be Bk

i , for some k. This
k can be easily determined in the limit, by checking for max({x | 〈i, x〉 ∈
content(T)}), where T is the input text. Claim follows.

Claim 65 L 6∈ LSubQ∗Bc∗.

Proof. Suppose by way of contradiction M LSubQ∗Bc∗-identifies L. Let
σ be a LSubQ∗Bc∗-locking sequence for M on A. That is, content(σ) ⊆
A, and M does not ask any more questions on any extension σ ′ of σ, with
content(σ′) ⊆ A, as long as questions Q of M on prefixes of σ are answered
as follows:

(i) If Q ⊆ A, then answer yes;

(ii) If Q 6⊆ A, then answer no, and give min(Q − A) as a counterexample;

(M also needs to output grammars for finite variant of A on extensions of σ,
but that is not important for following.)

Let S = {i | 〈i, x〉 is given as a counterexample to M in the above process on
some query on a prefix of σ}.

Now we claim that there exists a i 6∈ K ∪ S, such that for any σ′ ⊇ σ,
content(σ′) ⊆ Bi, M(σ′) does not ask a question. (If not, then clearly one
can show K − S to be r.e., by enumerating all i 6∈ S, such that M asks a
question on some σ′ ⊇ σ, with content(σ′) ⊆ Bi. A contradiction to K being
non-recursive.)

58

Thus, let i be such that M does not ask a question on any σ′ ⊇ σ such
that content(σ′) ⊆ Bi. Thus, M now needs to Bc∗-identify Bi as well as Bk

i ,
without asking any more questions. This is impossible by Proposition 11.

Theorem follows from the above claims.

10 Learning via Superset Queries Versus Learning via Equivalence

Queries

Note that by Corollary 58, ResEquQ1Ex − LSupQ∗Bc∗ 6= ∅. We now con-
sider the diagonalization from superset queries against equivalence queries.
Note that ResSupQ1Ex − LEquQnBct 6= ∅ cannot be improved to hav-
ing Bc∗ on the RHS (as LSupQ∗Bc∗ ⊆ TxtBc∗, Theorem 57) or to having
∗-number of equivalence queries (as E ∈ ResEquQ∗Ex, Proposition 54).

Theorem 66 For all n ∈ N , there exists a L such that

(a) for all t ∈ N , L 6∈ LEquQnBct;

(b) L 6∈ LEquQnEx∗;

(c) L ∈ ResSupQ1Ex.

Proof. Consider the following class of languages.

L = {L | (∃e > 0)[
1. 〈e, 0〉 > 〈0, n〉,
2. (L − CYLe) ⊆ {〈0, x〉 | x < n}.
3. Either

3.1 We is infinite and L ∩ CYLe = {〈e, x〉 | x ∈ We}.
or
3.2 We is finite, and (∃w)[

L ∩ {〈e, 2w〉, 〈e, 2w + 1〉} = ∅ and
(∀x < w)[L ∩ {〈e, 2x〉, 〈e, 2x + 1〉} 6= ∅], and
(∀y > w)[〈e, 2y〉 ∈ L ∧ 〈e, 2y + 1〉 6∈ L]].

]}

It is easy to verify that L ∈ SupQ1Ex. One first waits for an e > 0, such
that the input contains an element from CYLe. Then one queries whether
CYL0 ∪ {〈e, x〉 | x ∈ We} is a superset of the input language. If the answer is
yes, then the clause 3.1, in the definition of L must have applied. If the answer

59

is no, then the clause 3.2 in the definition of L must have applied. In both
cases, it is easy to determine the input language using the text.

We now consider the diagonalization against LEquQnBct and LEquQnEx∗.
Intuitively, elements < 〈0, n〉, would be used to answer equivalence queries by
a supposed LEquQnBct-learner (LEquQnEx∗-learner) for L. After the final
query is made, this would be used along with Lemma 20 (Corollary 21) to get
a diagonalization. We now proceed formally.

Claim 67 (a) For all t ∈ N , L 6∈ LEquQnBct.

(b) L 6∈ LEquQnEx∗.

Proof. We only show part (a). Part (b) can be shown using Corollary 21
instead of using Lemma 20.

Suppose by way of contradiction that M LEquQnBct-identifies L. For each
e ∈ N , such that 〈e, 0〉 > 〈0, n〉, we will define below σe

i and Ce
i . It will be the

case that Ce
i ⊆ {〈0, x〉 | x < i}. Initially, let Ce

0 = ∅ and σe
0 = Λ.

Inductively define σe
i+1, C

e
i+1, for i < n as follows.

(* The construction is non-effective. However, one can determine some things
limit-effectively in e, see below. *)

(* Following invariants will be satisfied:
(a) Ce

i ⊆ {〈0, x〉 | x < i}.
(b) Ce

i ⊆ content(σe
i) ⊆ Ce

i ∪ CYLe.
(c) M has asked at least i queries on σe

i .
(d) For 〈e, 0〉 > 〈0, n〉, answers given to queries by M are consistent with

any input language L such that content(σe
i) ⊆ L ⊆ Ce

i ∪ {〈0, x〉 | i ≤
x < n} ∪ CYLe.

*)
1. Check if there exists a σ ⊇ σe

i such that content(σ) ⊆ Ce
i ∪ CYLe and M

asks a query on σ.
If there is no such σ, then σe

j , C
e
j for j > i do not get defined.

If there exists such a σ, then fix one such σ and proceed as follows.
2. Suppose Q was the language queried.

Let Ce
i+1 = Ce

i , if 〈0, i〉 ∈ Q.
Let Ce

i+1 = Ce
i ∪ {〈0, i〉}, if 〈0, i〉 6∈ Q.

Answer the query as no, with the least counterexample being the least ele-
ment in Q∆Ce

i+1 (note that such an element ≤ 〈0, i〉 exists by definition
of Ce

i+1 above, as 〈0, i〉 ∈ Q∆Ce
i+1).

Let σe
i+1 be an extension of σ such that content(σe

i+1) = content(σ)∪Ce
i+1.

(* We assume without loss of generality that if σ ⊂ σ′ ⊆ σi+1, then M does
not ask any questions. If not, then one can just delay these questions
beyond σi+1, without effecting this construction. *)

60

End

It is easy to verify that the invariants are satisfied. Let m be largest such that
σe

m is defined. Further note that M does not ask any more queries on any T
which extends σe

m and content(T) ⊆ content(σe
m) ∪ CYLe.

It is easy to verify that one can obtain σe
m from e limit-recursively. That

is, there exists a recursive function g mapping N × N to SEQ such that
lims→∞ g(e, s) converges to σe

m.

Furthermore, there exists a recursive function h such that lims→∞ h(e, s)↓ and
Mlims→∞ h(e,s) TxtBct-identifies all L such that M LEquQnBct identifies L
and content(σe

m) ⊆ L ⊆ content(σe
m) ∪ CYLe (Here M0,M1, . . . , denote a

listing of all TxtBct-learning machines).

Now, let F be as in Lemma 20.

Intuitively, we would like to use Lemma 20, for the finite S (as in the lemma)
being content(σe

m) and the machine (as in the lemma) being Mlims→∞ h(e,s).
However, as these values can only be obtained in the limit, we need to appro-
priately modify the finite set S, to handle the elements that We (defined below)
may have enumerated before knowing the final value of σe

m and Mlims→∞ h(e,s).

For s ∈ N , let ae
s = max({s′ < s | g(e, s′) 6= g(e, s′ + 1) or h(e, s′) 6= h(e, s′ +

1)}). Intuitively, ae
s denotes the last time s′ < s, such that a change in g(e, ·)

or h(e, ·) was observed.

By Kleene’s recursion theorem [Rog67] there exists an e such that 〈e, 0〉 >
〈0, n〉 and We =

⋃

s∈N Xs, where

Xs = WF (e,As,Mh(e,s)),s, and As = content(g(e, s)) ∪
⋃

s′≤ae
s
Xs′ .

Intuitively, we want We to simulate WF (e,content(σe
m)∪S,Mlim s→∞h(e,s)), where S is

the finite stuff which We had enumerated due to earlier inaccurate value of σe
m

and Mlim s→∞h(e,s), it may have tried before using the correct values. Here, note
that lims→∞ As would contain content(σe

m) and whatever Xs’s We may have
enumerated before knowing the final value of content(σe

m) and Mlims→∞ h(e,s).

It now follows from Lemma 20 that Mlims→∞ h(e,s) does not TxtBct-identify
some language L ∈ L such that content(σe

m) ⊆ L. Thus, M does not
LEquQnBct-identify L and hence L.

61

11 Anomaly Hierarchy

In this section we give the anomaly hierarchy for the various query learning
criteria.

Proposition 68 (Based on [CL82]) Suppose X is an infinite language, S ⊆
X and X − S is infinite. Let, Ln = {L | S ⊆ L ⊆ X and card(X − L) ≤ n}.
Then,

(a) Ln+1 6∈ TxtExn.

(b) L2n+1 6∈ TxtBcn.

We first consider superset queries.

Theorem 69 Let Ln = {L | L =n N}. Then,

(a) Ln ∈ TxtExn.

(b) Ln+1 6∈ LSupQ∗Exn.

(c) L2n+1 6∈ LSupQ∗Bcn.

Proof. (a) is straightforward, as a learner just needs to output a grammar
for N .

(b) Suppose by way of contradiction that M LSupQ∗Exn-identifies Ln+1.
Consider the learnability of N by M. A query about language Q is answered
as follows: if Q = N , then answer yes. Otherwise answer no and return the
least element in N − Q. Let σ be such that M does not ask any new queries
on any extension of σ, as long as answers are given as above on queries made
on initial segments of σ. (Note that such a σ exists, since otherwise M on
some text for N makes infinitely many queries). Let S be the collection of all
elements which are given as counterexamples to queries answered as no above.

Now, one can easily modify M to TxtExn-identify the class L = {L | L =n+1

N and (S ∪ content(σ)) ⊆ L}. However this is not possible by Proposi-
tion 68(a). This proves part (b).

Part (c) can be similarly proved by using Proposition 68(b).

We next consider equivalence queries. Note that as E ∈ ResEquQ∗Ex (Propo-
sition 54), we can only consider the hierarchy for bounded number of queries.

Theorem 70 Fix m ∈ N . Let X = {x | x ≥ m}. Let Ln = {L | card(X −

62

L) ≤ n}. Then,

(a) Ln ∈ TxtExn.

(b) Ln+1 6∈ LEquQmExn.

(c) L2n+1 6∈ LEquQmBcn.

Proof. Part (a) can be easily shown by outputing on input text T , a grammar
(in the limit) for (content(T) ∩ {x | x < m}) ∪ X.

(b) Suppose by way of contradiction that M LEquQmExn-identifies Ln+1.

Let τ0 = Λ. For i < m, τi+1 is defined as follows.

If there does not exist a σ ⊇ τi such that content(σ) ⊆ content(τi)∪X, and M

asks a query on input σ, then let τi+1 = τi (note that in this case, by iterating
the above process, we would also have τm = τi).

On the other hand, if there exists σ ⊇ τi such that content(σ) ⊆ content(τi)∪
X, and M asks a query on input σ, then fix smallest such σ. Suppose the
query is about language Qi. Let τi+1 = σ if i ∈ Qi; otherwise let τi+1 = σ � i.
Note that i ∈ (Qi∆content(τi+1)). Answer the query (at σ) as no, and give
counterexample as the least element in Qi∆(content(τi+1) ∪ X). Note that
there exists such an element ≤ i. We will make sure that only elements >
i or elements already in content(σ) would be used for extending τi+1, thus
maintaining the correctness of the answers given.

Now note that M does not ask any further queries on any text extending τm

for the language content(τm)∪X (either it has already asked m questions or we
had explicitly checked above that M does not ask any further questions due to
non-existence of σ in the definition of τm above). Thus, we can easily modify M

to TxtExn-identify all languages in {L | content(τn) ⊆ L ⊆ content(τn) ∪ X
and card(X −L) ≤ n + 1}. However this is not possible by Proposition 68(a).
This proves part (b).

Part (c) can be similarly proved by using Proposition 68(b).

We now consider subset queries. The following theorem shows that we cannot
get diagonalizations of form Ex2n+1 vs Bcn, in case of subset queries.

Theorem 71 LSubQ∗Ex∗ ⊆ ResSubQ∗Bc.

Proof. We only give a sketch of the proof. As ResSubQ∗Bc = SubQ∗Bc =
LSubQ∗Bc and ResSubQ∗Ex∗ = SubQ∗Ex∗ = LSubQ∗Ex∗, it suffices to
show SubQ∗Ex∗ ⊆ SubQ∗Bc.

63

Suppose M SubQ∗Ex∗-identifies a class L. Then, M′ is defined as follows.
On any text T for L ∈ L, M′ would simulate M. Queries of M can be easily
answered by making the same queries. Moreover, errors of commission of the
last conjecture of M on T can be removed by detecting them using subset
queries. As there are only finitely many errors in the last conjecture, this
requires only finitely many subset queries. Errors of ommission can be patched
by including content(T [n]) in the conjecture made at T [n]. Thus, eventually
M′ can patch all errors of the last conjecture of M.

Theorem 72 (a) TxtExn+1 − LSubQ∗Exn 6= ∅.

(b) TxtBcn+1 − LSubQ∗Bcn 6= ∅.

Proof. (a) As LSubQ∗Exn = ResSubQ∗Exn, it suffices to show TxtExn+1−
ResSubQ∗Exn 6= ∅.

Let L = {L | Wmin(L) =n+1 L}. It is easy to verify that L ∈ TxtExn+1.

Suppose by way of contradiction M ResSubQ∗Exn-identifies L. Then, by
implicit use of Kleene Recursion Theorem [Rog67], there exists an e such that
We may be defined as follows.

Let σ0 be a finite sequence containing just one element e. Let S0 = {x | x < e}.
Enumerate e in We. Let W s

e denote We enumerated before stage s. We will
have the invariant that content(σs) = W s

e , and Ss ∩ W s
e = ∅. Go to stage 0.

Stage s
1. Dovetail steps 2 and 3, until one of them succeeds. If step 2 succeeds before

step 3, if ever, then go to step 4. If step 3 succeeds before step 2, if ever,
then go to step 5. Here we assume that if there exists a query j made
on a prefix of σs which satisfies: Wj,s 6⊆ W s

e and Wj,s∩Ss = ∅, then step
3 succeeds first (i.e., some priority is given to step 3).

2. Search for an extension σ of σs such that content(σ) ∩ Ss = ∅, and
card(content(σ) − W s

e) ≤ n + 1, and either M makes a query at σ
or M(σ) 6= M(σs). Here answers to queries j made by M on prefixes of
σ are answered yes, iff Wj,s ∩ Ss = ∅.

3. Search for a query j made on prefixes of σs such that for some t ≥ s,
Wj,t 6⊆ W s

e and Wj,t ∩ Ss = ∅ (here answers to queries k made by M on
prefixes of σ are answered yes, iff Wk,s ∩ Ss = ∅).

4. If and when such a σ is found, let σs+1 = σ#.
Enumerate content(σs+1) in We.
Let Ss+1 = Ss.
Go to stage s + 1.

5. Let t be as found in step 3 above.

64

Let QS be the set of all the possible queries made on initial segments of
σs, based on all possible ways of answering the queries.

Let Ss+1 = (Ss ∪
⋃

j∈QS Wj,t) − W s
e .

Let σs+1 = σs.
Go to stage s + 1.

End Stage s

We now consider the following cases.

Case 1: There are only finitely many stages.

Let s be the last stage which is entered. Note that as step 3 does not succeed, all
answers given to M are correct for any input language satisfying content(σs) ⊆
L, L∩Ss = ∅, and card(L− content(σs)) ≤ n+1. Also, all such languages are
in L. Furthermore, for any text T (for such L) which extends σs, M(T) does
not ask any questions beyond σs, and also M(T) = M(σs).

Let Z = WM(σs)−content(σs). If card(Z) > n, then M does not ResSubQ∗Exn-
identify L = W s

e . On the other hand if card(Z) ≤ n, then M does not
ResSubQ∗Exn-identify any L = W s

e ∪ Y , with card(Y) = n + 1 and Y ∩
WM(σs) = ∅. It follows that M does not ResSubQ∗Exn-identify L.

Case 2: There exist infinitely many stages.

We first claim that step 2 must succeed in infinitely many stages. Suppose
otherwise. Let s be a stage such that in every stage t ≥ s, step 3 succeeds. Let
s′ be so large that for any query j asked on initial segments of σs, Wj,s′−W s

e 6= ∅
or Wj ⊆ W s

e . Now, beyond stage s′, each time step 5 is executed a new query
j would have been chosen. However, as there are only finitely many queries
made by M on prefixes of σs, this would imply that there are only finitely
many stages.

Thus, step 2 succeeds in infinitely many stages and thus step 4 is executed in
infinitely many stages. Let T =

⋃

s∈N σs, and L = content(T). Let r be such
that M does not ask any more queries on T beyond T [r], if all answers on
queries on prefixes of T [r] are answered correctly. Let s > r be large enough
such that, for each query j made on prefixes of T [r], either Wj ⊆ L or Wj,s 6⊆ L.
It follows that step 3 cannot succeed beyond stage s+1, and all answers given
beyond stage s + 1 are always correct (in stage s some answers given may be
wrong, but these are fixed by updating Ss+1 appropriately). Thus, as step 2
succeeds in almost all stages beyond stage s + 1, M makes infinitely many
mind changes on text T when the answers are given correctly to the queries.
Thus, M does not SubQ∗Exn-identify L.

65

Part (b) can be proved similarly by using the class L = {L | card(L) = ∞ and
(∀∞x ∈ L)[Wx =n+1 L]}, and modifying the diagonalization of Bcn+1 − Bcn

in [CS83].

As corollary to theorems shown in this section we have:

Corollary 73 Suppose a ∈ N ∪ {∗}, and m,n ∈ N .

(a) SubQaExn ⊂ SubQaExn+1.

LSubQaExn ⊂ LSubQaExn+1.

ResSubQaExn ⊂ ResSubQaExn+1.

(b) SupQaExn ⊂ SupQaExn+1.

LSupQaExn ⊂ LSupQaExn+1.

ResSupQaExn ⊂ ResSupQaExn+1.

(c) EquQmExn ⊂ EquQmExn+1.

LEquQmExn ⊂ LEquQmExn+1.

ResEquQmExn ⊂ ResEquQmExn+1.

Similar corollary exists for Bc-criteria of learning with Ex being replaced by
Bc in the above.

The proof of TxtEx2n ⊆ TxtBcn (Result from [CL82]; For proof see Propo-
sition 6.24 of [JORS99]) can also be used to show the following theorem.

Theorem 74 Suppose QS ∈ {SubQ,ResSubQ,LSubQ,SupQ,ResSupQ,
LSupQ,EquQ,ResEquQ,LEquQ}.

Then, QSEx2n ⊆ QSBcn.

The above theorem (along with earlier proved diagonalizations in this section)
resolves the relationship between Ex and Bc error hierarchies.

12 Conclusion

In this paper we explored learning classes of recursively enumerable languages
from full positive data and bounded number of subset, superset and equiv-
alence queries. We compared capabilities of learning models using different

66

types of queries and counterexamples and obtained hierarchies based on the
number and types of counterexamples. Learning languages from full positive
data with potentially unbounded number of negative counterexamples to con-
jectures was explored in [JK04], where it was shown that all recursively enu-
merable languages can be learned by Bc1-learners, but not by any Exa-learners
or Bc-learners.

In case one is allowed to ask unbounded finitely many proper superset queries,
then one can learn the class E as follows. The learner first asks the query ‘is
N a proper superset of the input language’. If not, then the input language
is N . Otherwise, one determines the least x 6∈ L, and searches for an e such
that [We ∪ {x} ⊃ L] is true, but [We ⊃ L] is false (note that such an e
and x can be obtained in the limit using the input text). Then, the input
language must be We. Similarly, one can show that if a learner is allowed
to ask unbounded finitely many proper subset queries, then one can learn
the class E . We have not discussed yet another popular and natural type of
queries considered in literature - membership queries, as a bounded number
of such queries trivially does not help in the presence of full positive data. On
the other hand, learning languages from full positive data and infinitely many
membership queries is equivalent to learning from full positive and negative
data (so-called informants) thoroughly explored in literature ([JORS99]). One
can also show that infinite number of (superset, subset or equivalence) queries
makes it possible to learn any recursively enumerable language (positive data
becomes unnecessary in these cases).

The reader may note the following connection to team learning [Smi82]. A
query-learner which is allowed to ask n queries can be simulated by a team of
2n learners: the learners in the team operate based on the 2n possible answers
to the (first) n queries of the query-learner (counterexamples, if needed, can be
obtained in the limit using the input text – assuming that answers to queries
are correct).

In our research, we concentrated on learning classes of recursively enumerable
languages. One might also consider learning from positive data and bounded
number of queries for indexed classes of recursive languages (they include such
important classes as regular languages and pattern languages [Ang80]). Some
of our results are applicable to indexed classes of recursive languages. Still,
further research in this direction might be promising.

13 Acknowledgements

We thank the anonymous referees for several helpful comments.

67

References

[AHK93] D. Angluin, L. Hellerstein, and M. Karpinski. Learning read-once formulas
with queries. Journal of the ACM, 40(1):185–210, 1993.

[Ang80] D. Angluin. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, 21:46–62, 1980.

[Ang87] D. Angluin. Learning regular sets from queries and counter-examples.
Information and Computation, 75:87–106, 1987.

[Ang88] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342,
1988.

[Ang01] D. Angluin. Queries revisited. In Algorithmic Learning Theory: Twelfth
International Conference (ALT’ 2001), volume 2225 of Lecture Notes in
Artificial Intelligence, pages 12–31. Springer-Verlag, 2001.

[Bār74] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In
Theory of Algorithms and Programs, vol. 1, pages 82–88. Latvian State
University, 1974. In Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[BCJ95] G. Baliga, J. Case, and S. Jain. Language learning with some negative
information. Journal of Computer and System Sciences, 51(5):273–285,
1995.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems
Theory, 8:15–32, 1974.

[CL82] J. Case and C. Lynes. Machine inductive inference and language
identification. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the
9th International Colloquium on Automata, Languages and Programming,
volume 140 of Lecture Notes in Computer Science, pages 107–115.
Springer-Verlag, 1982.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[FGJ+94] L. Fortnow, W. Gasarch, S. Jain, E. Kinber, M. Kummer, S. Kurtz,
M. Pleszkoch, T. Slaman, R. Solovay, and F. Stephan. Extremes in the
degrees of inferability. Annals of Pure and Applied Logic, 66:231–276,
1994.

[Ful90] M. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

[GM98] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory.
Birkhauser, 1998.

68

[Gol67] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[GP89] W. Gasarch and M. Pleszkoch. Learning via queries to an oracle. In
R. Rivest, D. Haussler, and M. Warmuth, editors, Proceedings of the
Second Annual Workshop on Computational Learning Theory, pages 214–
229. Morgan Kaufmann, 1989.

[GS91] W. Gasarch and C. Smith. Learning via queries. Journal of the ACM,
pages 649–674, 1991.

[IJ88] O. Ibarra and T. Jiang. Learning regular languages from counterexamples.
In Proceedings of the Workshop on Computational Learning Theory, pages
337–351. Morgan Kaufmann, 1988.

[JK04] S. Jain and E. Kinber. Learning languages from positive data and negative
counterexamples. In Shai Ben-David, John Case, and Akira Maruoka,
editors, Algorithmic Learning Theory: Fifteenth International Conference
(ALT’ 2004), volume 3244 of Lecture Notes in Artificial Intelligence, pages
54–68. Springer-Verlag, 2004.

[JORS99] S. Jain, D. Osherson, J. Royer, and A. Sharma. Systems that Learn: An
Introduction to Learning Theory. MIT Press, Cambridge, Mass., second
edition, 1999.

[Kin92] E. Kinber. Learning a class of regular expressions via restricted subset
queries. In K. Jantke, editor, Analogical and Inductive Inference,
Proceedings of the Third International Workshop, volume 642 of Lecture
Notes in Artificial Intelligence, pages 232–243. Springer-Verlag, 1992.

[LNZ02] S. Lange, J. Nessel, and S. Zilles. Learning languages with queries. In
Proceedings of Treffen der GI-Fachgruppe Maschinelles Lernen (FGML),
Learning Lab Lower Saxony, Hannover, Germany, pages 92–99, 2002.

[LZ04a] S. Lange and S. Zilles. Comparison of query learning and Gold-style
learning in dependence of the hypothesis space. In Shai Ben-David,
John Case, and Akira Maruoka, editors, Algorithmic Learning Theory:
Fifteenth International Conference (ALT’ 2004), volume 3244 of Lecture
Notes in Artificial Intelligence, pages 99–113. Springer-Verlag, 2004.

[LZ04b] S. Lange and S. Zilles. Replacing limit learners with equally powerful one-
shot query learners. In John Shawe-Taylor and Yoram Singer, editors,
Proceedings of the Seventeenth Annual Conference on Computational
Learning Theory, volume 3120 of Lecture Notes in Artificial Intelligence,
pages 155–169. Springer-Verlag, 2004.

[NL00] J. Nessel and S. Lange. Learning erasing pattern languages with queries.
In Algorithmic Learning Theory: Eleventh International Conference
(ALT’ 2000), volume 1968 of Lecture Notes in Artificial Intelligence, pages
86–100. Springer-Verlag, 2000.

69

[OSW86] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An
Introduction to Learning Theory for Cognitive and Computer Scientists.
MIT Press, 1986.

[OW82] D. Osherson and S. Weinstein. Criteria of language learning. Information
and Control, 52:123–138, 1982.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[SHA03] H. Sakamoto, K. Hirata, and H. Arimura. Learning elementary formal
systems with queries. Theoretical Computer Science A, 298:21–50, 2003.

[Smi82] C. Smith. The power of pluralism for automatic program synthesis.
Journal of the ACM, 29:1144–1165, 1982.

[ZL95] T. Zeugmann and S. Lange. A guided tour across the boundaries
of learning recursive languages. In K. Jantke and S. Lange, editors,
Algorithmic Learning for Knowledge-Based Systems, volume 961 of
Lecture Notes in Artificial Intelligence, pages 190–258. Springer-Verlag,
1995.

70

