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Abstract

An index for an r.e. class of languages (by definition) generates a sequence
of grammars defining the class. An index for an indexed family of languages (by
definition) generates a sequence of decision procedures defining the family.

F. Stephan’s model of noisy data is employed, in which, roughly, correct data
crops up infinitely often, and incorrect data only finitely often.

Studied, then, is the synthesis from indices for r.e. classes and for indexed

families of languages of various kinds of noise-tolerant language-learners for the
corresponding classes or families indexed.

Many positive results, as well as some negative results, are presented regarding
the existence of such synthesizers. The proofs of most of the positive results yield,
as pleasant corollaries, strict subset-principle or tell-tale style characterizations for
the noise-tolerant learnability of the corresponding classes or families indexed.

1 Introduction

Ex-learners, when successful on an object input, (by definition) find a final correct program for
that object after at most finitely many trial and error attempts [Gol67, BB75, CS83, CL82].1

For function learning, there is a learner-synthesizer algorithm lsyn so that, if lsyn is fed any
procedure that lists programs for some (possibly infinite) class S of (total) functions, then lsyn

outputs an Ex-learner successful on S [Gol67]. The learners so synthesized are called enumer-
ation techniques [BB75, Ful90]. These enumeration techniques yield many positive learnability
results, for example, that the class of all functions computable in time polynomial in the length

∗This paper is dedicated to the memory of Mark Fulk.
†Research supported by Australian Research Council Grant A49530274.
1
Ex is short for explanatory.
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of input is Ex-learnable. The reader is referred to Jantke [Jan79] for a discussion of synthesizing
learners for classes of recursive functions that are not necessarily recursively enumerable.

For language learning from positive data and with learners outputting grammars, [OSW88] pro-
vided an amazingly negative result: there is no learner-synthesizer algorithm lsyn so that, if lsyn

is fed a pair of grammars g1, g2 for a language class L = {L1, L2}, then lsyn outputs an Ex-learner
successful, from positive data, on L.2 [BCJ96] showed how to circumvent some of the sting of this
[OSW88] result by resorting to more general learners than Ex. Example more general learners are:
Bc-learners, which, when successful on an object input, (by definition) find a final (possibly infinite)
sequence of correct programs for that object after at most finitely many trial and error attempts
[B7̄4, CS83].3 Of course, if suitable learner-synthesizer algorithm lsyn is fed procedures for listing
decision procedures (instead of mere grammars), one also has more success at synthesizing learners.
In fact the computational learning theory community has shown considerable interest (spanning
at least from [Gol67] to [ZL95]) in language classes defined by r.e. listings of decision procedures.
These classes are called uniformly decidable or indexed families. As is essentially pointed out in
[Ang80], all of the formal language style example classes are indexed families. A sample result
from [BCJ96] is: there is a learner-synthesizer algorithm lsyn so that, if lsyn is fed any procedure
that lists decision procedures defining some indexed family L of languages which can be Bc-learned
from positive data with the learner outputting grammars, then lsyn outputs a Bc-learner successful,
from positive data, on L. The proof of this positive result yielded the surprising characterization
[BCJ96]: if there is an r.e. listing of decision procedures defining L, i.e., if L is an indexed family,
then: L can be Bc-learned from positive data with the learner outputting grammars iff

(∀L ∈ L)(∃S ⊆ L | S is finite)(∀L′ ∈ L | S ⊆ L′)[L′ 6⊂ L]. (1)

(1) is Angluin’s important Condition 2 from [Ang80], and it is referred to as the subset princi-
ple, in general a necessary condition for preventing overgeneralization in learning from positive
data [Ang80, Ber85, ZLK95, KB92, Cas96]. As we will see, in the present paper, the proofs of
most of our positive results which provide the existence of learner-synthesizers which synthesize
noise-tolerant learners also yield pleasant characterizations which look like strict versions of the
subset principle (1).4

We consider language learning from both texts (only positive data) and from informants (both
positive and negative data), and we adopt Stephan’s [Ste95, CJS96] noise model for the present
study. Roughly, in this model correct information about an object occurs infinitely often while
incorrect information occurs only finitely often. Hence, this model has the advantage that noisy
data about an object nonetheless uniquely specifies that object. We note, though, that the presence
of noise plays havoc with the learnability of many concrete classes that can be learned without noise.
For example, the well-known class of pattern languages [Ang80] can be Ex-learned from texts but
cannot be Bc-learned from noisy texts even if we allow the final grammars each to make finitely

2Again for language learning from positive data and with learners outputting grammars, a somewhat related
negative result is provided by Kapur [Kap91]. He shows that one cannot algorithmically find an Ex-learning machine
for Ex-learnable indexed families of recursive languages from an index of the class. This is a bit weaker than a closely
related negative result from [BCJ96].

3
Bc is short for behaviorally correct.

4For L either an indexed family or defined by some r.e. listing of grammars, the prior literature has many interesting
characterizations of L being Ex-learnable from noise-free positive data, with and without extra restrictions. See, for
example, [Ang80, Muk92, LZK96, dJK96]. For examples of characterization of learning from texts for not necessarily
indexed families of languages see [JS94, JS97].
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many mistakes. Fortunately, it is possible to Ex-learn the pattern languages from informants in
the presence of noise, but a mind-change complexity price must be paid: any Ex-learner succeeding
on the pattern languages from noisy informant must change its mind an unbounded finite number
of times about the final grammar; however, some learner can succeed on the pattern languages
from noise-free informants and on its first guess as to a correct grammar (see [LZK96]). The class
of languages formed by taking the union of two pattern languages can be Ex-learned from texts
[Shi83]; however, this class cannot be Bc-learned from noisy informants even if we allow the final
grammars each to make finitely many mistakes.

In the present paper, we are concerned with learner-synthesizer algorithms which operate on
procedures which list either grammars or decision procedures defining language classes and which
output learners which succeed in spite of receiving noisy data.

We first consider, in Section 3, r.e. classes of r.e. languages, i.e., language classes defined by
an r.e. listing of grammars. For this case we show that the synthesis of noise-tolerant learners is
possible, only for Bc-learners, operating on texts or informants, whose final grammars each make
finitely many mistakes. In the process we also characterize, for r.e. classes of r.e. languages, the
power of these kinds of noise-tolerant Bc-learners by principles similar to the subset principle in (1)
above.

For indexed families of languages, the picture is a lot more encouraging. We show, in Section 4,
for indexed families of languages, the surprising facts that synthesis can be achieved for a variety
of noise-tolerant learners: 1. for Bc-learners, operating from either texts or informants, whose
final grammars are allowed to make either a bounded or an unbounded finite number of mistakes;5

2. for Ex-learners, operating from texts, whose final grammar is allowed to make an unbounded
finite number of mistakes; and 3. for Ex-learners, operating from informants, whose final grammar is
allowed to make an bounded finite number of mistakes. In each of these cases there is a corresponding
pleasant characterization for indexed families of languages, of the power of these kinds of noise-
tolerant learners by strict subset principles similar to (1) above. Here is an example. If L is an
indexed family, then: L can be noise-tolerantly Bc-learned from positive data with the learner
outputting grammars iff

(∀L,L′ ∈ L)[L ⊆ L′ ⇒ L = L′]. (2)

We also show that, for indexed families of languages, while synthesis of noise-tolerant learners is
not possible for Ex-learners, operating from informants, whose final grammar is allowed to make
an unbounded finite number of mistakes; it is possible for Ex-learners, operating from texts, whose
final grammar is allowed to make ≤ n mistakes, but where the noise-tolerant synthesized learner
may double the number of mistakes up to 2n. If n = 0, then we get a characterization of indexed
families L noise-tolerantly Ex-learnable, from texts, also by (2) above!

2 Preliminaries

2.1 Notation and identification criteria

The recursion theoretic notions are from the books of Odifreddi [Odi89] and Soare [Soa87]. N =
{0, 1, 2, . . .} is the set of all natural numbers, and this paper considers r.e. subsets L of N . N+ =
{1, 2, 3, . . .}, the set of all positive integers. All conventions regarding range of variables apply,

5This includes the bound of 0: no mistakes!
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with or without decorations6, unless otherwise specified. We let c, e, i, j, k, l, m, n, q, s, t, u, v,
w, x, y, z, range over N . ∅,∈,⊆,⊇,⊂,⊃ denote empty set, member of, subset, superset, proper
subset, and proper superset respectively. max(),min(), card() denote the maximum, minimum, and
cardinality of a set respectively, where by convention max(∅) = 0 and min(∅) = ∞. card(S) ≤ ∗
means cardinality of set S is finite. a, b range over N ∪ {∗}. 〈·, ·〉 stands for an arbitrary but fixed,
one to one, computable encoding of all pairs of natural numbers onto N . π1 and π2 denote the
corresponding projection functions; that is, π1(〈x, y〉) = x and π2(〈x, y〉) = y. 〈·, ·, ·〉, similarly
denotes a computable, 1–1 encoding of all triples of natural numbers onto N . L denotes the
complement of set L. χL denotes the characteristic function of set L. L1∆L2 denotes the symmetric
difference of L1 and L2, i.e., L1∆L2 = (L1−L2)∪(L2−L1). L1 =a L2 means that card(L1∆L2) ≤ a.
Quantifiers ∀∞,∃∞, and ∃! denote for all but finitely many, there exist infinitely many, and there
exists a unique respectively.

R denotes the set of total computable functions (recursive functions) from N to N . f, g, range
over total computable functions. E denotes the set of all recursively enumerable sets. L, ranges over
E . L, ranges over subsets of E . ϕ denotes a standard acceptable programming system (acceptable
numbering). ϕi denotes the function computed by the i-th program in the programming system
ϕ. We also call i a program or index for ϕi. For a (partial) function η, domain(η) and range(η)
respectively denote the domain and range of partial function η. We often write η(x)↓ (η(x)↑) to
denote that η(x) is defined (undefined). Wi denotes the domain of ϕi. Wi is considered as the
language enumerated by the i-th program in ϕ system, and we say that i is a grammar or index
for Wi. Φ denotes a standard Blum complexity measure [Blu67] for the programming system ϕ.
Wi,s = {x < s | Φi(x) < s}.

A text is a mapping from N to N ∪ {#}. We let T , range over texts. content(T ) is defined to
be the set of natural numbers in the range of T (i.e. content(T ) = range(T ) − {#}). T is a text
for L iff content(T ) = L. That means a text for L is an infinite sequence whose range, except for
a possible #, is just L.

An information sequence or informant is a mapping from N to (N × N) ∪ {#}. We
let I, range over informants. content(I) is defined to be the set of pairs in the range of I
(i.e., content(I) = range(I) − {#}). An informant for L is an infinite sequence I such that
content(I) = {(x, b) | χL(x) = b}. It is useful to consider canonical information sequence for L. I
is a canonical information sequence for L iff I(x) = (x, χL(x)). We sometimes abuse notation and
refer to the canonical information sequence for L by χL.

σ and τ , range over finite initial segments of texts or information sequences, where the context
determines which is meant. We denote the set of finite initial segments of texts by SEG and set
of finite initial segments of information sequences by SEQ. We use σ � T (respectively, σ � I,
σ � τ) to denote that σ is an initial segment of T (respectively, I, τ). |σ| denotes the length of σ.
T [n] denotes the initial segment of T of length n. Similarly, I[n] denotes the initial segment of I of
length n. Let T [m : n] denote the segment T (m), T (m + 1), . . . , T (n − 1) (i.e. T [n] with the first
m elements, T [m], removed). I[m : n] is defined similarly. σ � τ (respectively, σ � T , σ � I) denotes
the concatenation of σ and τ (respectively, concatenation of σ and T , concatenation of σ and I).
We sometimes abuse notation and say σ �w to denote the concatenation of σ with the sequence of
one element w.

A learning machine M is a mapping from initial segments of texts (information sequences) to
N . We say that M converges on T to i, (written: M(T )↓ = i) iff, for all but finitely many n,

6Decorations are subscripts, superscripts, primes and the like.
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M(T [n]) = i. Convergence on information sequences is defined similarly.
Let ProgSet(M, σ) = {M(τ) | τ ⊆ σ}.

Definition 1 Suppose a ∈ N ∪ {∗}.
(a) Below, for each of several learning criteria J, we define what it means for a machine M to
J-identify a language L from a text T or informant I.

• [Gol67, CL82, BB75] M TxtExa-identifies L from text T iff (∃i | Wi =a L)[M(T )↓ = i].

• [Gol67, CL82, BB75] M InfExa-identifies L from informant I iff (∃i | Wi =a L)[M(I)↓ = i].

• [B7̄4, CL82]. M TxtBca-identifies L from text T iff (∀∞n)[WM(T [n]) =a L].

InfBca-identification is defined similarly.

• [Cas96, BP73]. M TxtFexa-identifies L from text T iff (∃S | 0 < card(S) < ∞ ∧ (∀i ∈
S)[Wi =a L])(∀∞n)[M(T [n]) ∈ S].

InfFexa is defined similarly.

Based on the definition of TxtFexa and InfFexa-identification, we sometimes also say that
M on T converges to a finite set S of grammars iff (∀∞n) [M(T [n]) ∈ S]. If no such S exists,
then we say that M on T does not converge to a finite set of grammars. Similarly we define
convergence and divergence on information sequences.

Last∗(M, σ) denotes the set of grammars output by M on σ. That is, Last∗(M, σ) = {M(τ) |
τ � σ}.

If limn→∞ Last∗(M, T [n])↓, then we say that Last∗(M, T ) = limn→∞ Last∗(M, T [n]). Oth-
erwise Last∗(M, T ) is undefined. Last∗(M, I) is defined similarly.

(b) Suppose J ∈ {TxtExa,TxtFexa,TxtBca}.
M J-identifies L iff, for all texts T for L, M J-identifies L from T . In this case we also write

L ∈ J(M).
We say that M J-identifies L iff M J-identifies each L ∈ L.
J = {L | (∃M)[L ⊆ J(M)]}.

(c) Suppose J ∈ {InfExa, InfFexa, InfBca}.
M J-identifies L iff, for all information sequences I for L, M J-identifies L from I. In this case

we also write L ∈ J(M).
We say that M J-identifies L iff M J-identifies each L ∈ L.
J = {L | (∃M)[L ⊆ J(M)]}.

We often write TxtEx0 as TxtEx, TxtBc for TxtBc0 and TxtFex0 as TxtFex. Similar con-
vention applies to other criteria of inference considered in this paper.

Several proofs in this paper depend on the concept of locking sequence.

Definition 2 (Based on [BB75]) Suppose a ∈ N ∪ {∗}.
(a) σ is said to be a TxtExa-locking sequence for M on L iff, content(σ) ⊆ L, WM(σ) =a L,

and (∀τ | content(τ) ⊆ L)[M(σ � τ) = M(σ)].
(b) σ is said to be a TxtBca-locking sequence for M on L iff, content(σ) ⊆ L, and (∀τ |

content(τ) ⊆ L)[WM(σ�τ) =a L].
(c) σ is said to be a TxtFexa-locking sequence for M on L iff, content(σ) ⊆ L, and there exists

a set S such that
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(c.1) card(S) < ∞,
(c.2) S ⊆ Last∗(M, σ),
(c.3) (∀i ∈ S)[Wi =a L], and
(c.4) (∀τ | content(τ) ⊆ L)[M(σ � τ) ∈ S].

Lemma 1 (Based on [BB75]) Suppose a ∈ N ∪ {∗}. Suppose J ∈ {TxtExa,TxtFexa,TxtBca}.
If M J-identifies L then there exists a J-locking sequence for M on L.

Next we prepare to introduce our noisy inference criteria, and, in that interest, we define some
ways to calculate the number of occurrences of words in (initial segments of) a text or informant.
For σ ∈ SEG, and text T , let

occur(σ,w)
def
= card({j | j < |σ| ∧ σ(j) = w}) and

occur(T,w)
def
= card({j | j ∈ N ∧ T (j) = w}).

For σ ∈ SEQ and information sequence I, occur(·, ·) is defined similarly except that w is replaced
by (v, b).

For any language L, occur(T,L)
def
= Σx∈L occur(T, x). It is useful to introduce the set of positive

and negative occurrences in (initial segment of) an informant. Suppose σ ∈ SEQ

PosInfo(σ)
def
= {v | occur(σ, (v, 1)) ≥ occur(σ, (v, 0)) ∧ occur(σ, (v, 1)) ≥ 1}

NegInfo(σ)
def
= {v | occur(σ, (v, 1)) < occur(σ, (v, 0)) ∧ occur(σ, (v, 0)) ≥ 1}

That means, that PosInfo(σ) ∪ NegInfo(σ) is just the set of all v such that either (v, 0) or (v, 1)
occurs in σ. Then v ∈ PosInfo(σ) if (v, 1) occurs at least as often as (v, 0) and v ∈ NegInfo(σ)
otherwise.

Similarly,

PosInfo(I) = {v | occur(I, (v, 1)) ≥ occur(I, (v, 0)) ∧ occur(I, (v, 1)) ≥ 1}

NegInfo(I) = {v | occur(I, (v, 1)) < occur(I, (v, 0)) ∧ occur(I, (v, 0)) ≥ 1}

where, if occur(I, (v, 0)) = occur(I, (v, 1)) = ∞, then we place v in PosInfo(I) (this is just to make
the definition precise; we will not need this for criteria of inference discussed in this paper).

Definition 3 [Ste95] An information sequence I is a noisy information sequence (or noisy
informant) for L iff (∀x) [occur(I, (x, χL(x))) = ∞ ∧ occur(I, (x, χ

L
(x))) < ∞]. A text T is

a noisy text for L iff (∀x ∈ L)[occur(T, x) = ∞] and occur(T,L) < ∞.

On one hand, both concepts are similar since L = {x | occur(I, (x, 1)) = ∞} = {x | occur(T, x) =
∞}. On the other hand, the concepts differ in the way they treat errors. In the case of informant
every false item (x, χ

L
(x)) may occur a finite number of times. In the case of text, it is mathemat-

ically more interesting to require, as we do, that the total amount of false information has to be
finite.7

7The alternative of allowing each false item in a text to occur finitely often is too restrictive; it would, then, be
impossible to learn even the class of all singleton sets [Ste95].
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Definition 4 [Ste95, CJS96] Suppose a ∈ N ∪ {∗}. Suppose J ∈ {TxtExa,TxtFexa,TxtBca}.
Then M NoisyJ-identifies L iff, for all noisy texts T for L, M J-identifies L from T . In this case
we write L ∈ NoisyJ(M).

M NoisyJ-identifies a class L iff M NoisyJ-identifies each L ∈ L.
NoisyJ = {L | (∃M)[L ⊆ NoisyJ(M)]}.

Inference criteria for learning from noisy informants are defined similarly.
Several proofs use the existence of locking sequences. Definition of locking sequences for learning

from noisy texts is similar to that of learning from noise free texts (we just drop the requirement
that content(σ) ⊆ L). However, definition of locking sequence for learning from noisy informant is
more involved.

Definition 5 [CJS96] Suppose a ∈ N ∪ {∗}.
(a) σ is said to be a NoisyTxtExa-locking sequence for M on L iff, WM(σ) =a L, and (∀τ |

content(τ) ⊆ L)[M(σ � τ) = M(σ)].
(b) σ is said to be a NoisyTxtBca-locking sequence for M on L iff (∀τ | content(τ) ⊆

L)[WM(σ�τ) =a L].
(c) σ is said to be a NoisyTxtFexa-locking sequence for M on L iff there exists a set S such

that

(c.1) card(S) < ∞,
(c.2) S ⊆ Last∗(M, σ),
(c.3) (∀i ∈ S)[Wi =a L], and
(c.4) (∀τ | content(τ) ⊆ L)[M(σ � τ) ∈ S].

For defining locking sequences for learning from noisy informant, we need the following.

Definition 6 Inf[S,L]
def
= {τ | (∀x ∈ S) [occur(τ, (x, χ

L
(x))) = 0]}.

Definition 7 Suppose a ∈ N ∪ {∗}.
(a) σ is said to be a NoisyInfExa-locking sequence for M on L iff, PosInfo(σ) ⊆ L,

NegInfo(σ) ⊆ L, WM(σ) =a L, and (∀τ ∈ Inf[PosInfo(σ) ∪ NegInfo(σ), L])[M(σ � τ) = M(σ)].
(b) σ is said to be a NoisyInfBca-locking sequence for M on L iff, PosInfo(σ) ⊆ L,

NegInfo(σ) ⊆ L, and (∀τ ∈ Inf[PosInfo(σ) ∪ NegInfo(σ), L])[WM(σ�τ) =a L].
(c) σ is said to be a NoisyInfFexa-locking sequence for M on L iff, PosInfo(σ) ⊆ L,

NegInfo(σ) ⊆ L, and there exists a set S such that

(c.1) card(S) < ∞,
(c.2) S ⊆ Last∗(M, σ),
(c.3) (∀i ∈ S)[Wi =a L], and
(c.4) (∀τ ∈ Inf[PosInfo(σ) ∪ NegInfo(σ), L])[M(σ � τ) ∈ S].

For the criteria of noisy inference discussed in this paper one can prove the existence of a locking
sequence as was done in [Ste95, Theorem 2, proof for NoisyEx ⊆ Ex0[K] ].

Proposition 1 [CJS96] Suppose a ∈ N ∪ {∗}.
If M learns L from noisy text or informant according to one of the criteria NoisyTxtExa,

NoisyTxtFexa, and NoisyTxtBca, NoisyInfExa, NoisyInfFexa, and NoisyInfBca, then
there exists a corresponding locking sequence for M on L.

7



2.2 Recursively enumerable classes and indexed families

The aim of this paper is to consider (effective) learnability of enumerable classes and indexed
families of recursive languages. To this end we define, for all i, Ci = {Wj | j ∈ Wi}. For a
decision procedure j, let Uj = {x | ϕj(x) = 1}. For a decision procedure j, we let Uj [n] denote
{x ∈ Uj | x < n}.

For all i,

Ui =

{

{Uj | j ∈ Wi}, if (∀j ∈ Wi)[j is a decision procedure];
∅, otherwise.

2.3 Some previous results on noisy text/informant identification

We first state some results from [CJS96] which are useful. We let 2∗
def
= ∗.

Theorem 1 [CJS96] Suppose a ∈ N ∪ {∗}. L ∈ NoisyTxtBca ⇒ [(∀L ∈ L)(∀L′ ∈ L | L′ ⊆
L)[L =2a L′]].

As an immediate corollary to Proposition 1 we have the following two theorems,

Theorem 2 Suppose a ∈ N ∪ {∗}. Suppose L ∈ NoisyInfBca. Then for all L ∈ L, there exists
an n such that (∀L′ ∈ L | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =2a L′].

Theorem 3 Suppose a ∈ N ∪ {∗}. Suppose L ∈ NoisyInfExa. Then for all L ∈ L, there exist n
and S such that (∀L′ ∈ L | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[(L∆S) =a L′].

As a corollary to Theorem 3 we have

Theorem 4 Suppose a ∈ N ∪ {∗}. Suppose L ∈ NoisyInfExa. Then for all L ∈ L, there exists
an n such that (∀L′ ∈ L | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =a L′].

Similarly, one can show,

Theorem 5 Suppose L ∈ NoisyInfFexa. Then for all L ∈ L, there exists an n such that (∀L′ ∈
L | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =a L′].

The following theorem was proved in [CJS96].

Theorem 6 Suppose a ∈ N ∪ {∗}. Then NoisyInfBca ∪ NoisyTxtBca ⊆ TxtBca and
NoisyInfExa ∪NoisyTxtExa ⊆ TxtExa.

The following proposition is easy to prove:

Proposition 2 Suppose L is a finite class of languages such that for all L,L′ ∈ L, L ⊆ L′ ⇒ L =
L′. Then, L ∈ NoisyTxtEx ∩ NoisyInfEx.

Suppose L is a finite class of languages. Then, L ∈ NoisyInfEx.

3 Identification from enumeration procedures

In this section we show that effective synthesis from enumeration procedures for noisy inference
criteria can be done only in the case of NoisyTxtBc∗ and NoisyInfBc∗-identification criteria.
We also characterize NoisyTxtBc∗ and NoisyInfBc∗ in the process. We first consider cases in
which effective synthesis is not possible.

8



3.1 When effective synthesis is not possible

As a corollary to Theorem 7 below we immediately have that effective synthesis of learning machines
is not possible for the following noisy inference criteria.

• NoisyTxtBcn, for n ∈ N ;

• NoisyTxtExa, for a ∈ N ∪ {∗};

• NoisyInfBcn, for n ∈ N ; and

• NoisyInfExa, for a ∈ N ∪ {∗}.

Theorem 7 NOT (∃f ∈ R)(∃n ∈ N)(∀x | Cx ∈ NoisyTxtEx ∩ NoisyInfEx)[Cx ⊆
TxtBcn(Mf(x)) ∪ TxtFex∗(Mf(x))].

The above theorem follows as a corollary to Proposition 3 and Theorem 8 below.
Remark : The reader should note that Theorem 7 and other negative results of this paper hold even
when “(∃f ∈ R)” is replaced by “(∃ a limiting computable f)”. Intuitively, f is limiting-computable
def
⇔ there exists a computable function g : N 2 → N such that for each x, f(x) = lims→∞ g(x, s). In
this case we say that f is limiting computable as witnessed by g. Theorem 7 and the other negative
results in this paper all hold in this stronger sense. In other words, not only, as they say, is there no
computable function f such that . . . , but, for these results, there is no limiting-computable function
f such that . . . . This follows from the fact that, a positive synthesis result (for learning criteria
Ex or Bc, with text or informant, with or without noise) using a limiting computable function to
generate the learner implies a corresponding positive synthesis result using a computable function
to generate the learner. To see this, for any limiting computable function f (as witnessed by g),
let f ′ be a computable function such that Mf ′(i)(σ) = Mg(i,|σ|)(σ). It is easy to note that Mf ′(i)

identifies the class Ci (Ui) under criteria TxtExa, TxtBca, InfExa, InfBca, with or without noise,
iff Mlimn→∞ g(i,n) = Mf(i) correspondingly identifies Ci (Ui).

Proposition 3 For a language L, let Cyl(L) = {〈x, y〉 | x ∈ L ∧ y ∈ N}. For a class L, let
Cyl(L) = {Cyl(L) | L ∈ L}.

(a) (∀L)[L ∈ NoisyTxtEx iff Cyl(L) ∈ NoisyTxtEx].
(b) (∀L)[L ∈ NoisyInfEx iff Cyl(L) ∈ NoisyInfEx].
(c) (∃f ∈ R)(∀L)[Cyl(L) ∈ TxtBcn(Mi) ⇒ Cyl(L) ∈ TxtBc(Mf(i))].
(d) (∃f ∈ R)(∀L)[Cyl(L) ∈ TxtFex∗(Mi) ⇒ Cyl(L) ∈ TxtBc(Mf(i))].
(e) (∃f ∈ R)(∀L)[L ∈ TxtBc(Mi) ⇒ Cyl(L) ∈ TxtBc(Mf(i))].
(f) (∃f ∈ R)(∀L)[Cyl(L) ∈ TxtBc(Mi) ⇒ L ∈ TxtBc(Mf(i))].

Proof. Let g be a recursive function such that for a grammar i, Wg(i) = {〈x, y〉 | x ∈ Wi ∧ y ∈ N}.
Let hm be a recursive function such that, for a grammar i, Whm(i) = {x | card({y | 〈x, y〉 ∈

Wi}) ≥ m}.
(a) (⇒) Suppose L ⊆ NoisyTxtEx(M). Let F be a recursive function from SEG to SEG such

that |F (σ)| = |σ| and for m < |σ|,

F (σ)(m) =

{

x, if σ(m) = 〈x, 0〉;
#, if for all x, σ(m) 6= 〈x, 0〉.
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It is easy to verify that if T is a noisy text for Cyl(L), then
⋃

m∈N F (T [m]) is a noisy text for L.
Let M′ be defined as follows: M′(σ) = g(M(F (σ))). It is easy to verify that if M NoisyTxtEx-

identifies L then M′ NoisyTxtEx-identifies Cyl(L). Thus, Cyl(L) ∈ NoisyTxtEx.
(⇐) Suppose Cyl(L) ⊆ NoisyTxtEx(M). Let F be a recursive function from SEG to SEG

such that (i) for all σ ⊆ τ , F (σ) ⊆ F (τ), and (ii) for all x, y,

occur(F (σ), 〈x, y〉) =

{

occur(σ, x), if occur(σ, x) ≥ y;
0, otherwise.

It is easy to verify that if T is a noisy text for L, then
⋃

m∈N F (T [m]) is a noisy text for Cyl(L).
Let M′ be defined as follows: M′(σ) = h1(M(F (σ))). It is easy to verify that if M

NoisyTxtEx-identifies Cyl(L) then M′ NoisyTxtEx-identifies L. Thus, L ∈ NoisyTxtEx.
(b) (⇒) Suppose L ⊆ NoisyInfEx(M). Let F be a recursive function from SEQ to SEQ such

that |F (σ)| = |σ| and for m < |σ|,

F (σ)(m) =

{

(x, b), if σ(m) = (〈x, 0〉, b);
#, if for all x and b, σ(m) 6= (〈x, 0〉, b).

It is easy to verify that if I is a noisy informant for Cyl(L), then
⋃

m∈N F (I[m]) is a noisy informant
for L.

Let M′ be defined as follows: M′(σ) = g(M(F (σ))). It is easy to verify that if M NoisyInfEx-
identifies L then M′ NoisyInfEx-identifies Cyl(L). Thus, Cyl(L) ∈ NoisyInfEx.

(⇐) Suppose Cyl(L) ⊆ NoisyInfEx(M). Let F be a recursive function from SEQ to SEQ such
that (i) for all σ ⊆ τ , F (σ) ⊆ F (τ), and (ii) for all x, y, b,

occur(F (σ), (〈x, y〉, b)) =

{

occur(σ, (x, b)), if occur(σ, (x, b)) ≥ y;
0, otherwise.

It is easy to verify that if I is a noisy informant for L, then
⋃

m∈N F (I[m]) is a noisy informant for
Cyl(L).

Let M′ be defined as follows: M′(σ) = h1(M(F (σ))). It is easy to verify that if M NoisyInfEx-
identifies Cyl(L) then M′ NoisyInfEx-identifies L. Thus, L ∈ NoisyInfEx.

(c) Suppose f is a recursive function such that, for all i and σ, Mf(i)(σ) = h2n+1(Mi(σ)). It is
easy to verify that, for any L, if Cyl(L) ∈ TxtBcn(Mi), then Cyl(L) ∈ TxtBc(Mf(i)). Part (c)
follows.

(d) Suppose f is a recursive function such that, for all i and σ, Mf(i)(σ) = h|σ|(Mi(σ)). It is
easy to verify that, for any L, if Cyl(L) ∈ TxtFex∗(Mi), then Cyl(L) ∈ TxtBc(Mf(i)). Part (d)
follows.

(e) Let F be a recursive function from SEG to SEG such that, (i) for all σ ⊆ τ , F (σ) ⊆ F (τ),
and (ii) for all σ, content(F (σ)) = {x | 〈x, 0〉 ∈ content(σ)}. Let f be a recursive function such
that, for all i and σ, Mf(i)(σ) = g(Mi(F (σ))). It is easy to verify that, if L ∈ TxtBc(Mi), then
Cyl(L) ∈ TxtBc(Mf(i)). Part (e) follows.

(f) Let F be a recursive function from SEG to SEG such that, (i) for all σ ⊆ τ , F (σ) ⊆ F (τ), and
(ii) for all σ, content(F (σ)) = {〈x, y〉 | x ∈ content(σ) ∧ y ≤ |σ|}. Let f be a recursive function such
that, for all i and σ, Mf(i)(σ) = h1(Mi(F (σ))). It is easy to verify that, if Cyl(L) ∈ TxtBc(Mi),
then L ∈ TxtBc(Mf(i)). Part (f) follows.
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Theorem 8 NOT (∃f ∈ R)(∀x | Cx ∈ NoisyTxtEx ∩ NoisyInfEx)[Cx ⊆ TxtBc(Mf(x))].

Proof. Fix f . By the operator recursion theorem [Cas74, Cas94], there exists a 1-1 increasing
recursive function p such that the languages Wp(i), i ≥ 0, are defined as follows. Our construction
will ensure that Cp(0) ∈ NoisyTxtEx ∩ NoisyInfEx. Also, it will be the case that Cp(0) 6⊆
TxtBc(Mf(x)).

We will use a staging construction to define Wp(·). We will start the construction at stage 2 for
ease of notation. Wp(1) will be a subset of ODD, and a member of Cp(0). The construction will
use a set O. Informally, O denotes the set of odd numbers we have decided to keep out of Wp(1).
Let Os denote O as at the beginning of stage s. Initially, let O2 = ∅ (we start at stage 2). Let σ2

be the empty sequence. Let rs denote the least odd number not in Os ∪ (Wp(1) enumerated before
stage s). Enumerate p(1) in Wp(0). Go to stage 2.

Stage s

1. Enumerate p(s) into Wp(0).

Enumerate rs into Wp(1).

Dovetail the execution of steps 2 and 3. If and when step 3 succeeds, go to step 4.

2. Enumerate one-by-one, the elements of ODD − Os − {rs} into Wp(s).

3. Search for τs ⊃ σs and an odd number qs such that content(τs) ⊆ ODD − (Os ∪ {rs}) and
qs ∈ WMf(p(0))(τs) − ({rs} ∪ Os ∪ content(τs)).

4. Enumerate content(τs) into Wp(1).

Let σs+1 be an extension of τs such that content(σs+1) = Wp(1) enumerated until now.

Enumerate 2 into Wp(s).

Enumerate the (even) number 2s into Wp(s).

Let Os+1 = Os ∪ {qs}, where qs is as found above in step 3.

Go to stage s + 1.

End stage s.

We consider two cases.
Case 1: Stage s starts but does not terminate.

In this case Wp(0) = {p(i) | 1 ≤ i ≤ s}. Note that:
(i) Wp(1) is a finite subset of ODD containing ri for 2 ≤ i ≤ s.
(ii) for all i, 2 ≤ i ≤ s − 1, Wp(i) is a finite set containing 2 and 2i as its only even members.
(iii) for all i, 2 ≤ i ≤ s − 1, Wp(i) does not contain ri.
(iv) Wp(s) is an infinite subset of ODD which does not contain rs.
Thus, Cp(0) is finite, and for each L,L′ ∈ Cp(0), L ⊆ L′ implies L = L′. Thus, Cp(0) ∈

NoisyTxtEx ∩ NoisyInfEx (by Proposition 2).
Let T ⊃ σs be a text for Wp(s). Now, (∀τ | σs ⊂ τ ⊂ T )[WMf(p(0))(τ)∩ODD is finite] (otherwise

step 3 would have succeeded in stage s). Thus, Mf(p(0)) does not TxtBc-identify Wp(s).
Case 2: All stages terminate.

In this case, clearly, for all i > 1, Wp(i) is finite and contains exactly two even numbers, 2 and
2i. Also, Wp(1) is infinite and contains only odd numbers. The following M NoisyTxtEx-identifies
Cp(0).
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M(T [n])

Let e = card({m < n | T (m) is even}).

If card(content(T [n])) > e, then output p(1).

Otherwise output p(j) such that j > 1 and card({m < n | T (m) = 2j}) is maximized.

End

It is easy to verify that M above NoisyTxtEx-identifies Ci. The following M NoisyInfEx-
identifies Cp(0).

M(I[n])

If 2 6∈ PosInfo(I[n]), then output p(1).

Otherwise output p(j) such that j > 1 and j = min({j ′ | j′ > 1 ∧ 2j′ ∈ PosInfo(I[n])}).

End

It is easy to verify that M above NoisyInfEx-identifies Ci.
We now show that Wp(1) not in TxtBc(Mf(p(0))).
Let T =

⋃

s≥2 σs. Clearly, T is a text with content exactly Wp(1). Consider any stage s ≥ 2.
It is clear by steps 3 and 4 that, for all s, there exists a τs, σs ⊆ τs ⊆ σs+1, such that qs ∈
WMf(p(0))(τs) − Wp(1). Thus, Mf(p(0)) does not TxtBc-identify Wp(1).

It follows from the above cases that Cp(0) ∈ NoisyTxtEx ∩ NoisyInfEx, but Cp(0) 6⊆
TxtBc(Mf(p(0))).

As a corollary to Theorem 7 we have the following result which implies the impossibility of effec-
tive synthesis from enumeration procedures for the noisy inference criteria noted at the beginning
of this section.

Corollary 1 Suppose n ∈ N and a ∈ N ∪ {∗}. Suppose J ∈ { NoisyTxtBcn, NoisyTxtExa,
NoisyTxtFexa, NoisyInfBcn, NoisyInfExa NoisyInfFexa }. Then,

NOT (∃f ∈ R)(∀x | Cx ∈ J)[Cx ⊆ J(Mf(x))].

3.2 When effective synthesis is possible

In this section we show that effective synthesis is possible for NoisyTxtBc∗ and NoisyInfBc∗

criteria.
The next theorem allows us to show as a corollary that synthesis of learning machines, from

enumeration procedures for r.e. classes of languages, is possible in the case of NoisyTxtBc∗-
identification criteria. We also obtain a characterization of NoisyTxtBc∗-identification for r.e.
classes in the process (Corollary 3).

Theorem 9 There exists a recursive function f such that following is satisfied. Suppose (∀L,L′ ∈
Ci | L ⊆ L′)[L =∗ L′]. Then Ci ⊆ NoisyTxtBc∗(Mf(i)).

Proof. Mf(i) is defined as follows. Mf(i)(T [n]) = Proc(T [n]), where WProc(T [n]) is defined as
follows.

12



WProc(T [n])

Go to stage 0.

Stage s

Let ws = 〈ks,ms〉 be the least number such that ks ∈ Wi,s and (∀r | ms ≤ r < n)[T (r) ∈
Wks,s].

Enumerate Wks,s in WProc(T [n]).

End Stage s

End

Now suppose T is a noisy text for L ∈ Ci. Let w = 〈k,m〉 be the least number such that k ∈ Wi

and (∀r ≥ m)[T (r) ∈ Wk]. Note that there exists such a w = 〈k,m〉. Also for such a w = 〈k,m〉,
L ⊆ Wk (since T is a noisy text for L). Let n0 be such that for all w′ = 〈k′,m′〉, where w′ < w and
k′ ∈ Wi, there exists an r such that m′ ≤ r < n0 and T (r) 6∈ Wk′ . It follows that for all n ≥ n0, for
all but finitely many s, the ws as computed in stage s of WProc(T [n]) is w. Thus, WProc(T [n]) =∗ Wk.
Since L ⊆ Wk, it follows from the hypothesis of the theorem that L =∗ Wk. Thus, WProc(T [n]) =∗ L.
Hence, Mf(i) TxtBc∗-identifies Ci.

Theorems 9 and 1 imply the following corollaries. The first provides a positive synthesis result,
the second a corresponding characterization which is a strict subset principle.

Corollary 2 (∃f ∈ R)[Ci ∈ NoisyTxtBc∗ ⇒ Ci ⊆ NoisyTxtBc∗(Mf(i))].

Corollary 3 Ci ∈ NoisyTxtBc∗ ⇔ (∀L,L′ ∈ Ci | L ⊆ L′)[L =∗ L′].

The next theorem allows us to show as a corollary that synthesis of learning machines, from
enumeration procedures for r.e. classes of languages, is possible in the case of NoisyInfBc∗-
identification. We also obtain a characterization of NoisyInfBc∗-identification for r.e. classes in
the process (Corollary 5).

Theorem 10 There exists a recursive function f such that the following is satisfied. Suppose for
all L ∈ Ci, there exists an n ∈ N such that (∀L′ ∈ Ci | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =∗ L′].
Then Ci ∈ NoisyInfBc∗(Mf(i)).

Proof. Mf(i) is defined as follows. Mf(i)(I[m]) = Proc(I[m]), where Proc(I[m]) is defined as
follows.

WProc(I[m])

Let Pos = PosInfo(I[m]).

Let Neg = NegInfo(I[m]).

Go to stage 0.

Begin stage s

For each j ∈ Wi,m, let match(j, s) = min(Wj,s∆Pos).
Let js denote j ∈ Wi,m which maximizes match(j, s).
Enumerate Wjs,s.

End stage s

End

13



Now suppose I is a noisy informant for Wj, where j ∈ Wi. Let n be such that (∀L′ ∈ Ci |
{x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =∗ L′]. Let m0 be so large that, for all m ≥ m0,
I(m) 6∈ {(x, 1 − χL(x)) | x ≤ n} and PosInfo(I[m0]) = {x ∈ Wj | x ≤ n}. Moreover, assume that
j ∈ Wi,m0 .

Now consider the computation of Proc(I[m]) for any m ≥ m0. Since match(j, s) ≥ n, for large
enough s, lims→∞ js converges to a j′ such that {x ∈ Wj′ | x ≤ n} = {x ∈ Wj | x ≤ n}. It thus
follows from the hypothesis that Wj =∗ Wj′ =∗ WProc(T [m]). Thus, Mf(i) NoisyInfBc∗-identifies
Wj . Since j was an arbitrary member of Wi, we have that Mf(i) NoisyInfBc∗-identifies Ci.

As corollaries to Theorem 2 and Theorem 10 we have the following two corollaries. The first
provides a positive synthesis result, and the second a corresponding characterization which is a
kind of informant analog of a subset principle.

Corollary 4 (∃f ∈ R)[Ci ∈ NoisyInfBc∗ ⇒ Ci ⊆ NoisyInfBc∗(Mf(i))].

Corollary 5 Ci ∈ NoisyInfBc∗ iff (∀L ∈ Ci)(∃n ∈ N)(∀L′ ∈ Ci | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤
n})[L =∗ L′].

In (1) from Section 1, the finite sets S are called tell-tales [Ang80]. Essentially the n in Corollary 5
just above defines a finite initial segment of an informant which is the informant-analog of a tell-tale.

4 Identification from uniform decision procedures

In this section we show that effective synthesis of learning machines, from decision procedures for
indexed families of recursive languages, is possible for the following noisy inference criteria.

• NoisyTxtBca, for a ∈ N ∪ {∗};

• NoisyInfBca, for a ∈ N ∪ {∗};

• NoisyTxtEx;

• NoisyTxtEx∗;

• NoisyTxtFex;

• NoisyTxtFex∗;

• NoisyInfExn, for n ∈ N ; and

• NoisyInfFexn, for n ∈ N .

In the process we give a characterization of the above criteria for indexed families of recursive
languages in terms of variants of the subset principle. We are also able to show that effective
synthesis from decision procedures for indexed families is possible for NoisyTxtExn (for n ∈ N)
and NoisyTxtFexn (for n ∈ N) if we allow doubling of errors (see Corollary 7 below). However,
for NoisyInfEx∗ and NoisyInfFex∗, effective synthesis is not possible.

We first consider effective synthesis from decision procedures for indexed families in the context
of inference criteria involving noisy texts. This is followed by similar treatment of inference criteria
involving noisy informants.
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4.1 Effective synthesis for noisy text inference criteria

As noted above effective synthesis from decision procedures for indexed families is possible for all
noisy text inference criteria except NoisyTxtExn (for n ∈ N) and NoisyTxtFexn (for n ∈ N).
In Section 4.1.1 we first establish the positive results where effective synthesis is possible. These
results will also show that in the cases in which effective synthesis is not possible, we can get a
weaker form of effective synthesis if we are willing to tolerate up to twice the number of errors in
the final grammar. In Section 4.1.2, we establish that this is the best we can do.

4.1.1 When effective synthesis is possible

Theorem 11 There exists a recursive function f such that following is satisfied.
(∀i | Ui 6= ∅)(∀j ∈ Wi)(∀ noisy texts T for Uj)[Mf(i)(T )↓ = k ∈ Wi such that Uk ⊇ Uj ].

Proof. The idea of the proof of this theorem is similar to that of Theorem 9. Define Mf(i) as
follows. Mf(i) on a text T converges to a k ∈ Wi, if any, such that there exists an m, (∀n ≥
m)[ϕk(T (n))↑ ∨ ϕk(T (n)) = 1]. Note that Mf(i) behaving as above can be constructed effectively
from i. It is easy to verify that, if

(1) Ui is not empty (thus, in particular, for all j ∈ Wi, j is a decision procedure), and

(2) T is a noisy text for Uj , j ∈ Wi,

then Mf(i) on T converges to a k ∈ Wi such that Uj ⊆ Uk.

The above theorem implies the following corollary.

Corollary 6 There exists a recursive function f such that following is satisfied. Suppose (∀L,L′ ∈
Ui | L ⊆ L′)[L =a L′]. Then, Ui ⊆ NoisyTxtExa(Mf(i)).

As a corollary, using Theorem 1 we have the following.

Corollary 7 (∃f ∈ R)(∀a ∈ N ∪ {∗})(∀i)[Ui ∈ NoisyTxtBca ⇒ Ui ⊆ NoisyTxtEx2a(Mf(i))].

As a corollary, using Theorem 1 we have that effective synthesis, from decision procedures for
indexed families, is possible for NoisyTxtEx, NoisyTxtBc, NoisyTxtEx∗ and NoisyTxtBc∗

criteria. Further, we get a characterization of the above criteria as shown in the following two
corollaries. The first shows that, for indexed families, NoisyTxtBc collapses to NoisyTxtEx and
they are characterized by a strict subset principle. The second is similar, but for NoisyTxtBc∗

and NoisyTxtEx∗.

Corollary 8 (∀i)[Ui ∈ NoisyTxtBc ⇔ Ui ∈ NoisyTxtEx ⇔ (∀L,L′ ∈ Ui)[L ⊆ L′ ⇒ L = L′]].

Corollary 9 (∀i)[Ui ∈ NoisyTxtBc∗ ⇔ Ui ∈ NoisyTxtEx∗ ⇔ (∀L,L′ ∈ Ui)[L ⊆ L′ ⇒ L =∗

L′]].

The following theorem is used to show that effective synthesis from decision procedures is
possible for NoisyTxtBca-identification, for a ∈ N ∪ {∗}. We also get a characterization of
NoisyTxtBca in the process.
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Theorem 12 Suppose a ∈ N . There exists a recursive function g such that following is satisfied.
Suppose [(∀L ∈ Ui)(∀L′ ∈ Ui | L ⊆ L′)[L =2a L′]]. Then, Ui ⊆ NoisyTxtBca(Mg(i)).

Proof. The idea of the proof is to use Theorem 11 along with a modification of the trick used
by Case and Lynes [CL82] to show that TxtEx2a ⊆ TxtBca. Let f be as given by Theorem 11.
Suppose i is as given in the hypothesis. Note that for any noisy text T for Uj , j ∈ Wi, Mf(i)(T )
converges to k ∈ Wi such that Uk ⊇ Uj . Let g be a recursive function such that Mg(i)(T [n]) =
Proc(T [n]), where Proc(T [n]) is defined as follows. For ease of notation, in the following we assume
that, for all j ∈ Wi, j is a decision procedure. This is fine, since if some j ∈ Wi is not a decision
procedure, then it doesn’t matter what Proc(T [n]) does.

WProc(T [n])

Let k = Mf(i)(T [n]).

Let X = Uk[n].

For each x ∈ X, let on(x) = x + occur(T [n], x).

Let xn
0 , xn

1 , . . . , xn
card(X)−1 be the sorting of elements of X based on non-decreasing order of on(x),

where ties are broken based on values of xn
i (i.e., for i < card(X)− 1, on(xn

i ) ≤ on(xn
i+1), and

if on(xn
i ) = on(xn

i+1), then xn
i < xn

i+1).

Let Sn = {xn
i | i < a}.

Let WProc(T [n]) = Uk − Sn.

End

Now suppose every member of Wi is a decision procedure, let j ∈ Wi, and let T be a noisy
text for Uj . Suppose k = Mf(i)(T ). Note that Uj ⊆ Uk. Moreover, Uj =2a Uk. Let Y = Uk − Uj .
Note that for all x ∈ Uj , lims→∞ os(x) = ∞; however, for x 6∈ Uj , lims→∞ os(x)↓ < ∞. Thus,
xn

0 , xn
1 , . . . , xn

card(Y )−1 converge (as n → ∞) to the different elements of Y . (Note that we needed

to add x in the definition of on(x) to ensure that the non-occurrence of large numbers in initial
segments of T does not spoil this property).

We consider two cases,
Case 1: card(Y ) ≤ a.
In this case, for all but finitely many n, Y ⊆ Sn. Thus, for large enough n, WProc(T [n]) ⊆ Uj ,

and card(Uj − WProc(T [n])) = a − card(Y ). It follows that M NoisyTxtBca-identifies Uj .
Case 2: card(Y ) > a.
Note that WProc(T [n]) = Uk − {xn

0 , xn
1 , . . . , xn

a−1}. Also, card(Y ) > a, xn
0 , xn

1 , . . . , xn
a−1 converge

(as n → ∞) to a different elements of Y . Since Uj = Uk − Y and card(Y ) ≤ 2a, it follows that for
large enough n, WProc(T [n]) =a Uj . Thus, M NoisyTxtBca-identifies Uj .

As a corollary to Theorem 12, using Theorem 1 and Corollary 7, we have

Corollary 10 Suppose a ∈ N ∪ {∗}. (∃g ∈ R)[Ui ∈ NoisyTxtBca ⇒ Ui ⊆
NoisyTxtBca(Mg(i))].

Hence, effective synthesis from decision procedures is possible for NoisyTxtBca-identification.
As another corollary to Theorem 12, using Theorem 1 and Corollary 9, we have the following

strict subset principle characterization of NoisyTxtBca.

Corollary 11 Suppose a ∈ N ∪ {∗}. Ui ∈ NoisyTxtBca ⇔ [(∀L ∈ Ui)(∀L′ ∈ Ui | L′ ⊆ L)[L′ =2a

L]].
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4.1.2 When effective synthesis is not possible

We have already seen that effective synthesis is possible for NoisyTxtExn (n ∈ N) and for
NoisyTxtFexn (n ∈ N) if we are willing to tolerate up to 2n number of errors in the final
grammar(s). We next show that this is the best possible effective synthesis result in these two
cases.

Theorem 13 Suppose n ∈ N , and n > 0. NOT (∃f ∈ R)(∀i | Ui ∈ NoisyTxtExn)[Ui ⊆
TxtEx2n−1(Mf(i))].

Proof. Fix n ∈ N and f ∈ R. Then by the operator recursion theorem, there exists a recursive,
one-to-one, increasing function p such that ϕp(i) may be defined as follows. Intuitively, Wp(0) will
enumerate a subset of {p(1), p(2), . . .}. It will be the case that Wp(0) is non-empty, and for all
p(j) ∈ Wp(0), p(j) is a decision procedure. Let ϕp(1) be a characteristic function for ODD. Let
σ2 be an empty sequence (we start from stage 2 for ease of notation). Let x2 = 0. Intuitively xs

bounds the even numbers used in the diagonalization in stages numbered < s. Enumerate p(1) in
Wp(0). Go to stage 2.

Stage s

1. Search for an extension τ of σs and a set S ⊆ ODD of cardinality 2n such that content(τ) ⊆
ODD and WMf(p(0))(σs) − content(τ) ⊇ S.

2. Let τ , S be as found in step 1. Dovetail steps 3 and 4, until step 3 succeeds. If and when step
3 succeeds, go to step 5.

3. Search for an extension τ ′ of τ such that content(τ ′) ⊆ ODD and Mf(p(0))(τ) 6= Mf(p(0))(τ
′).

4. Enumerate p(s) in Wp(0).

For x = 0 to ∞ do

If x is even or x ∈ S, then let ϕp(s)(x) = 0;
Else let ϕp(s)(x) = 1.

EndFor

5. Let x be the least number such that ϕp(s)(x) has not been defined until now. Let y be the least
even number > max({x, xs}).

Let ϕp(s)(y) = 1.

For all z ≥ x such that z 6= y, let ϕp(s)(z) = 0.

Let xs+1 = y.

Let σs+1 be an extension of τ ′ such that content(σs+1) ⊇ {2x + 1 | x ≤ s}.

Go to stage s + 1.

End stage s

It is easy to verify that for all p(j) ∈ Wp(0), p(j) is a decision procedure. We now consider two
cases.

Case 1: All stages terminate.
In this case, Wp(0) = {p(j) | j ≥ 1}. Note that (a) Up(1) = ODD, (b) for each s > 1, Up(s)

is finite and contains exactly one even number xs+1, and (c) xs’s are pairwise distinct. It follows
that Up(0) ∈ NoisyTxtEx. However, T =

⋃

s∈N σs is a text for ODD on which Mf(p(0)) makes
infinitely many mind changes.
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Case 2: Stage s starts but does not terminate.
Case 2.1: In stage s, step 1 does not succeed.
In this case Wp(0) = {p(j) | 1 ≤ j < s}. Note that (a) Up(1) = ODD, (b) for 1 < j < s, Up(j) is

finite and contains exactly one even number xj+1, and (c) xj ’s are pairwise distinct. It follows that
Up(0) ∈ NoisyTxtEx. However, for all τ such that σs ⊆ τ and content(τ) ⊆ ODD, WMf(p(0))(τ)

contains at most finitely many odd numbers. Thus, Mf(p(0)) does not TxtEx2n−1-identify Up(0).
Case 2.2: In stage s, step 1 succeeds, but step 3 does not succeed.
In this case Wp(0) = {p(j) | 1 ≤ j ≤ s}. Note that (a) Up(1) = ODD, (b) for 1 < j < s, Up(j)

is finite and contains exactly one even number xj+1, (c) xj are pairwise distinct, and (d) Up(s) is
ODD−S, where S is as in step 2 of stage s and card(S) = 2n. It follows that Up(0) ∈ NoisyTxtExn.
Let τ be as in step 2 of stage s. Now, content(τ) ⊆ Up(s), S ⊆ WMf(p(0))(τ), and for all τ ′ ⊇ τ such

that content(τ ′) ⊆ ODD, Mf(p(0))(τ) = Mf(p(0))(τ
′). Thus, Mf(p(0)) does not TxtEx2n−1-identify

Wp(s) ∈ Up(0).

From the above cases we have that Mf(p(0)) does not TxtEx2n−1-identify Up(0) ∈
NoisyTxtExn. This proves the theorem.

The above proof can be generalized to show the following result.

Theorem 14 Suppose n ∈ N , and n > 0. NOT (∃f ∈ R)(∀i | Ui ∈ NoisyTxtExn)[Ui ⊆
TxtFex2n−1(Mf(i))].

Proof. Fix n ∈ N and f ∈ R. Then by the operator recursion theorem, there exists a recursive 1–
1 increasing function p such that ϕp(i) may be defined as follows. Intuitively, Wp(0) will enumerate a
subset of {p(1), p(2), . . .}. It will be the case that Wp(0) is non-empty, and for all p(j) ∈ Wp(0), p(j) is
a decision procedure. Let ϕp(1) be a characteristic function for ODD. Enumerate p(1) in Wp(0). Let
σ0 be such that content(σ0) = {1}. Let l0 = 0. We will always have content(σs) = {2i + 1 | i ≤ ls}.
Let curx = 0. Intuitively curx bounds the even numbers used earlier in the diagonalization.
Let curprog = 1. Intuitively, curprog denotes the maximum i such that p(i) has been used in
diagonalization. Go to stage 0.

Stage s

1. Let P = ProgSet(Mf(p(0)), σs).

Let X = {2i + 1 | ls < i ≤ ls + 4n ∗ (card(P ) + 1)}.

Go to substage 0.

2. Substage s′

3. Let Q = {q ∈ P | card(X − Wq,s′) ≤ 4n}.
Let Y be a subset of X, of cardinality 2n, such that, for all q ∈ Q, Wq,s′ ⊇ Y .
Let curprog = curprog + 1.
Enumerate p(curprog) in Wp(0).
Dovetail steps 4, 5 and 6 until step 4 or 5 succeeds. If step 4 succeeds (before step 5

succeeds, if ever), then go to step 8. If step 5 succeeds (before step 4 succeeds, if ever),
then go to step 7.

4. Search for an extension σ′ of σs such that content(σ′) ⊆ ODD and ProgSet(Mf(p(0)), σ
′) 6=

ProgSet(Mf(p(0)), σs).
5. Search for a q ∈ P − Q such that card(X − Wq) ≤ 4n.
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6. For x = 0 to ∞
If x is even or x ∈ Y , then let ϕp(curprog)(x) = 0;
Otherwise let ϕp(curprog)(x) = 1.

Endfor
7. Let x be the least number such that ϕp(curprog)(x) has not been defined until now. Let y

be the least even number > max({x, curx}).
Let ϕp(curprog)(y) = 1.
For all z ≥ x such that z 6= y, let ϕp(curprog)(z) = 0.
Let curx = y.
Go to substage s′ + 1.

End substage s′

8. Let x be the least number such that ϕp(curprog)(x) has not been defined until now. Let y be the
least even number > max({x, curx}).

Let ϕp(curprog)(y) = 1.

For all z ≥ x such that z 6= y, let ϕp(curprog)(z) = 0.

Let curx = y.

Let ls+1 = 2 + (max(content(σ′)) − 1)/2.

Let σs+1 be an extension of σ′ such that content(σs+1) = {2x + 1 | x ≤ ls+1}.

Go to stage s + 1.

End stage s

It is easy to verify that for all p(j) ∈ Wp(0), p(j) is a decision procedure. We now consider the
following cases.

Case 1: All stages terminate.
In this case, Wp(0) = {p(j) | j ≥ 1}. Note that (a) Up(1) = ODD, (b) for each i > 1, Up(i) is

finite and contains exactly one even number, and (c) the even number in Up(i), i > 1, are pairwise
different. It follows that Up(0) ∈ NoisyTxtEx. However, T =

⋃

s∈N σs is a text for ODD ∈ Up(0),
but ProgSet(Mf(p(0)), T ) is infinite.

Case 2: Stage s starts but does not terminate.
First note that there cannot be infinitely many substages in stage s (since Q takes a limiting

value). Let substage s′ be last substage which is executed. Let curprog, P , Q, Y below denote the
values of these variables at the end of step 3 of substage s′ in stage s.

Note that in this case Wp(0) = {p(j) | 1 ≤ j ≤ curprog}. Also, (a) Up(1) = ODD, (b) for
1 < j < curprog, Up(j) is finite and contains exactly one even number, (c) the even number in Up(j),
1 < j < curprog are pairwise distinct, and (d) Up(curprog) is ODD − Y , where Y is as defined in
substage s′ of stage s. Note that card(Y ) = 2n. It follows that Up(0) ∈ NoisyTxtExn.

Also, due to non success of steps 4, 5 in substage s′ of stage s, it follows that for all σ ⊇ σs

such that content(σ) ⊆ ODD, (a) ProgSet(Mf(p(0)), σ) = P , (b) ∀q ∈ Q, Wq − Wp(curprog) ⊇ Y ,

(c) ∀q ∈ P − Q, card(ODD − Wq) ≥ 4n. It follows that Mf(p(0)) does not TxtFex2n−1-identify
Wp(curprog).

From the above cases, it follows that Mf(p(0)) does not TxtFex2n−1-identify Up(0) ∈
NoisyTxtFexn. This proves the theorem.
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4.2 Effective synthesis for noisy informant inference criteria

We now turn our attention to effective synthesis from uniform decision procedures for indexed
families in the context of noisy informant inference criteria. We first consider cases where effective
synthesis is possible, followed by those cases where effective synthesis is not possible.

4.2.1 When effective synthesis is possible

We first consider NoisyInfExa-identification for a ∈ N .

Theorem 15 Suppose a ∈ N . There exists a recursive function f such that the following is
satisfied. Suppose for all L ∈ Ui, there exists an n such that (∀L′ ∈ Ui | {x ∈ L | x ≤ n} = {x ∈
L′ | x ≤ n})[L =a L′]. Then Ui ⊆ NoisyInfExa(Mf(i))

Proof. Suppose the hypothesis. Suppose I is a noisy informant for L ∈ Ui. Let Gram(j) denote
a grammar, effectively obtained from j, for {x | ϕj(x) = 1}. Mf(i) on I searches for 〈j, n,m〉 such
that

(a) j ∈ Wi,
(b) (∀j′ ∈ Wi | Uj [n] = Uj′ [n])[Uj =a Uj′ ], and
(c) (∀m′ ≥ m)[I(m) 6∈ {(x, 1 − Uj(x)) | x < n}].
Note that such a 〈j, n,m〉, if any, can be found in the limit. Mf(i) then outputs, on input I,

Gram(j) in the limit. It is easy to verify using the hypothesis that, for all noisy informants I for
L ∈ Ui, there exists a 〈j, n,m〉 satisfying (a), (b), and (c) above. Clearly, any 〈j, n,m〉 satisfying (a),
(b), and (c) above also has the property that WGram(j) =a L. Thus Mf(i) NoisyInfExa-identifies
Ui.

As a corollary, using Theorem 4 and Theorem 5, we have the following informant-style tell-tale
characterization.

Corollary 12 (∀a ∈ N)(∀i | Ui 6= ∅)[Ui ∈ NoisyInfExa ⇔ Ui ∈ NoisyInfFexa ⇔ (∀L ∈
Ui)(∃n)(∀L′ ∈ Ui | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =a L′]].

As corollaries to Theorems 15 and 5 we get the following positive results about effective synthesis
for NoisyInfExa and NoisyInfFexa-identification, for a ∈ N .

Corollary 13 (∀a ∈ N)(∃f ∈ R)(∀i | Ui ∈ NoisyInfExa)[Ui ⊆ NoisyInfExa(Mf(i))].

Corollary 14 (∀a ∈ N)(∃f ∈ R)(∀i | Ui ∈ NoisyInfFexa)[Ui ⊆ NoisyInfFexa(Mf(i))].

As a corollary to Theorems 15 and 2 we have

Corollary 15 Suppose a ∈ N . (∃f ∈ R)(∀i | Ui ∈ NoisyInfBca)[Ui ⊆ NoisyInfEx2a(Mf(i))].

Since, from a machine M, one can effectively construct a machine M′ which NoisyInfBca-identifies
NoisyInfEx2a(M) (see [CJS96]), we immediately have (using Corollary 4 for the ∗-case) the fol-
lowing result about effective synthesis for NoisyInfBca-identification.

Corollary 16 Suppose a ∈ N ∪ {∗}. (∃f ∈ R)(∀i | Ui ∈ NoisyInfBca)[Ui ⊆
NoisyInfBca(Mf(i))].
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The following corollary provides an informant-style tell-tale characterization of NoisyInfBca

for indexed families of recursive languages.

Corollary 17 Suppose a ∈ N ∪ {∗}. (∀i | Ui 6= ∅)[Ui ∈ NoisyInfBca ⇔ (∀L ∈ Ui)(∃n)(∀L′ ∈ Ui |
{x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =2a L′]].

4.2.2 When effective synthesis is not possible

Since NoisyInfEx∗ 6⊆ TxtBcn, we have

Theorem 16 NOT (∃f ∈ R)(∃n ∈ N)(∀x | Ux ∈ NoisyInfEx∗)[Ux ⊆ TxtBcn(Mf(x))].

The following theorem shows that effective synthesis, from decision procedures, cannot be done
in the case of NoisyInfEx∗-identification.

Theorem 17 NOT (∃f ∈ R)(∀x | Ux ∈ NoisyInfEx∗)[Ux ⊆ TxtFex∗(Mf(x))].

Proof. Fix f . By the operator recursion theorem, there exists a 1-1 increasing recursive function
p such that Wp(0), and ϕp(i), i ≥ 1, are defined as follows.

For all x ∈ N , ϕp(1)(x) = 1. Enumerate p(1) in Wp(0).
We will use a staging construction to define Wp(j), for j > 1. Let σ0 be the empty sequence,

and x0 = 0 (intuitively, xs is such that content(σs) = {x | x < xs}). Let j0 = 2. Intuitively, js

denotes the least j such that p(j) has not been used for diagonalization before stage s. Go to stage
0.

Stage s

1. Let S = ProgSet(Mf(p(0))), σs).

Let t = card(S).

For js ≤ j ≤ js + t, enumerate j in Wp(0).

For js ≤ j ≤ js + t and for x < xs, let ϕp(j)(x) = 1.

Dovetail steps 2 and 3, until step 2 succeeds. If and when step 2 succeeds, go to step 4.

2. Search for an extension τ of σs such that ProgSet(Mf(p(0)), τ) 6= ProgSet(Mf(p(0)), σs).

3. For x = xs to ∞ do

Let k = x mod (t + 1).
Let ϕp(js+k)(x) = 1.
For k′ < t + 1 such that k′ 6= k, let ϕp(js+k′)(x) = 0.

EndFor

4. Let τ be as in step 2. Let xs+1 = 2 + max(content(τ)). Let σs+1 be an extension of τ such that
content(σs+1) = {x | x < xs+1}.

For js ≤ j ≤ js + t and for y such that ϕp(j)(y) has not been defined until now, let ϕp(j)(y) = 1.

(Note that Up(j) is thus a finite variant of N).

Let js+1 = js + t + 1.

Go to stage s + 1.

End stage s.
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We now consider two cases.
Case 1: All stages terminate.

In this case, clearly, Wp(0) = {p(j) | j ≥ 1} and all Up(j), j ≥ 1, are finite variants of N . Thus,
Up(0) ∈ NoisyInfEx∗. Let T =

⋃

s∈N σs, a text for Wp(1) = N ∈ Up(0). Now, ProgSet(Mf(p(0)), T )
is infinite. Thus, Mf(p(0)) does not TxtFex∗-identify Up(0).
Case 2: Stage s starts but does not terminate.

In this case, clearly, Up(0) is finite, and thus in NoisyInfEx∗. However, Mf(p(0)) on
any extension of σs, outputs a grammar in ProgSet(Mf(p(0)), σs). Since there are at least
card(ProgSet(Mf(p(0)), σs)) + 1 many pairwise infinitely different languages in Up(0) which contain
content(σs), it follows that Mf(p(0)) does not TxtFex∗-identify Up(0).

From the above cases we have that Mf(p(0)) does not TxtFex∗-identify Up(0) ∈
NoisyInfEx∗.

Corollary 18 (a) NOT (∃f ∈ R)(∀x | Ux ∈ NoisyInfEx∗)[Ux ⊆ NoisyInfEx∗(Mf(x))].
(b) NOT (∃f ∈ R) (∀x | Ux ∈ NoisyInfFex∗)[Ux ⊆ NoisyInfFex∗(Mf(x))].
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