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Abstract. Nonconstructive computations by various types of machines
and automata have been considered by e.g., Karp and Lipton [18] and
Freivalds [9, 10]. They allow to regard more complicated algorithms from
the viewpoint of more primitive computational devices. The amount of
nonconstructivity is a quantitative characterization of the distance be-
tween types of computational devices with respect to solving a speci�c
problem.
This paper studies the amount of nonconstructivity needed to learn
classes of formal languages from positive data. Di�erent learning types
are compared with respect to the amount of nonconstructivity needed to
learn indexable classes and recursively enumerable classes, respectively,
of formal languages from positive data. Matching upper and lower bounds
for the amount of nonconstructivity needed are shown.

1 Introduction

The research subject studied in this paper derives its motivation from various
sources which we shortly present below. Nonconstructive methods of proof in
mathematics have a rather long and dramatic history. The debate was especially
passionate when mathematicians tried to overcome the crisis concerning the
foundations of mathematics.

The situation changed slightly in the forties of the last century, when non-
constructive methods found their way to discrete mathematics. In particular,
Paul Erd®s used nonconstructive proofs masterly, beginning with the paper [8].

Another in�uential paper was B	arzdi�n² [4], who introduced the notion of
advice in the setting of Kolmogorov complexity of recursively enumerable sets.
Karp and Lipton [18] introduced the notion of a Turing machine that takes
advice to understand under what circumstances nonuniform upper bounds can
be used to obtain uniform upper bounds. Damm and Holzer [7] adapted the
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notion of advice for �nite automata. Later Cook and Kraji£ek [6] initiated the
study of proof systems that use advice for the veri�cation of proofs. Even more
recently, Beyersdor� et al. [5] continued along this line of research.

Quite often, we experience that �nding a proof for a new deep theorem is
triggered by a certain amount of inspiration. Being inspired does not mean that
we do not have to work hard in order to complete the proof and to elaborate
all the technical details. However, this work is quite di�erent from enumerating
all possible proofs until we have found the one sought for. Also, as experience
shows, the more complicated the proof, the higher is the amount of inspiration
needed. These observations motivated Freivalds [9, 10] to introduce a qualitative
approach to measure the amount of nonconstructivity (or advice) in a proof.
Analyzing three examples of nonconstructive proofs led him to a notion of non-
constructive computation which can be used for many types of automata and
machines and which essentially coincides with Karp and Lipton's [18] notion
when applied to Turing machines.

As outlined by Freivalds [9, 10], there are several results in the theory of
inductive inference of recursive functions which suggest that the notion of non-
constructivity may be worth a deeper study in this setting, too. Subsequently,
Freivalds and Zeugmann [11] introduced a model to study the amount of non-
constructivity needed to learn recursive functions.

The present paper generalizes the model of Freivalds and Zeugmann [11] to
the inductive inference of formal languages. We aim to characterize the di�culty
to learn classes of formal languages from positive data by using the amount of

nonconstructivity needed to learn these classes. We shortly describe this model.
The learner receives growing initial segments of a text for the target language L,
where a text is any in�nite sequence of strings and a special pause symbol # such
that the range of the text minus the pause symbol contains all strings of L and
nothing else. In addition, the learner receives as a second input a bitstring of �-
nite length which we call help-word. If the help-word is correct, the learner learns
in the desired sense. Since there are in�nitely many languages to learn, a param-
eterization is necessary, i.e., we allow for every n a possibly di�erent help-word
and we require the learner to learn every language contained in {L0, . . . , Ln}
with respect to the hypothesis space (Li)i∈N chosen (cf. De�nition 6). The di�-
culty of the learning problem is then measured by the length of the help-words
needed, i.e., in terms of the growth rate of the function d bounding this length.
As in previous approaches, the help-word does not just provide an answer to the
learning problem. There is still much work to be done by the learner.

First, we consider the learnability of indexable classes in the limit from pos-
itive data and ask for the amount of nonconstructivity needed to learn them.
This is a natural choice, since even simple indexable subclasses of the class of
all regular languages are known not to be inferable in the limit from positive
data (cf. [13, 15, 23]). Second we investigate the amount of nonconstructivity
needed to infer recursively enumerable classes of recursively enumerable lan-
guages. Moreover, several variations of Gold's [13] model of learning in the limit
have been considered (cf., e.g., [15, 21, 23] and the references therein). Thus, it
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is only natural to consider some of these variations, too. In particular, we shall
study conservative learning and strong-monotonic inference.

We show upper and lower bounds for the amount of nonconstructivity in
learning classes of languages from positive data. The usefulness of this approach
is nicely re�ected by our results which show that the function d may considerably
vary. In particular, the function d may be arbitrarily slow growing for learning
indexable classes in the limit from positive data (cf. Theorem 1), while we have
an upper bound of log n and a lower bound of log n− 2 for conservative learning
of indexable classes from positive data (cf. Theorems 2 and 3). Furthermore, we
have a 2 log n upper bound and a 2 log n− 4 lower bound for strong-monotonic
inference of indexable classes from positive data (cf. Theorems 4 and 5).

Moreover, the situation changes considerably when looking at recursively
enumerable classes of recursively enumerable languages. For learning in the limit
from positive data we have an upper bound of log n and a lower bound of log n−2,
while for conservative learning even any limiting recursive bound on the growth
of the function d is not su�cient to learn all recursively enumerable classes of
recursively enumerable languages from positive data (cf. Theorems 7, 8 and 9).
Due to the lack of space several proofs and details are omitted. A full version of
this paper is available as technical report (cf. [16]).

2 Preliminaries

Any unspeci�ed notations follow Rogers [22]. In addition to or in contrast with
Rogers [22] we use the following. By N = {0, 1, 2, . . . } we denote the set of all
natural numbers, and we set N+ = N \ {0}.

The cardinality of a set S is denoted by |S|. We write ℘(S) for the power set
of set S. Let ∅, ∈, ⊂, and ⊆ denote the empty set, element of, proper subset,
and subset, respectively. Let S1, S2 be any sets; then we write S14S2 to denote
the symmetric di�erence of S1 and S2, i.e., S14S2 = (S1 \ S2) ∪ (S2 \ S1). By
maxS and minS we denote the maximum and minimum of a set S, respectively,
where, by convention, max ∅ = 0 and min ∅ = ∞.

We use T to denote the set of all total functions of one variable over N.
Let n ∈ N+; then the set of all partial recursive functions and of all recursive
functions of one and n variables over N is denoted by P, R, Pn, Rn, respectively.
Let f ∈ P, then we use dom(f) to denote the domain of the function f , i.e.,
dom(f) = {x | x ∈ N, f(x) is de�ned}. By range(f) we denote the range of f ,
i.e., range(f) = {f(x) | x ∈ dom(f)}.

It is technically most convenient to de�ne recursively enumerable families of
recursively enumerable languages as follows. Any ψ ∈ P2 is called a numbering.
Let ψ ∈ P2, then we write ψi instead of λx.ψ(i, x). We set Wψ

i = dom(ψi)
and refer to it as the ith enumerated language. Clearly, the sets Wψ

i ⊆ N are
recursively enumerable.

A function f ∈ P is said to be strictly monotonic provided for all x, y ∈ N
with x < y we have, if both f(x) and f(y) are de�ned then f(x) < f(y). ByRmon

we denote the set of all strictly monotonic recursive functions.
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Let Σ be any �xed �nite alphabet, and let Σ∗ be the free monoid over Σ.
Any L ⊆ Σ∗ is a language. Furthermore, we �x a symbol # such that # /∈ Σ. By
REG we denote the class of all regular languages (cf., e.g., [24]). Furthermore,
we use C or L to denote any (in�nite) class and family of languages, respectively.

De�nition 1 (Gold [13]). Let L be any language. Every total function t : N →
Σ∗ ∪ {#} with {t(j) | j ∈ N} \ {#} = L is called a text for L.

Note that the symbol # denotes pauses in the presentation of data. Further-
more, there is no requirement concerning the computability of a text. So, any
order and any number of repetitions is allowed. For any n ∈ N we use t[n] to
denote the initial segment (t(0), . . . , t(n)). Additionally we use content(t[n]) =df

{t(0), . . . , t(n)} \ {#} and content(t) =df {t(j) | j ∈ N} \ {#} to denote the
content of an initial segment and of a text, respectively.

An algorithmic learner M �nds a rule (grammar) from growing initial seg-
ments of a text. On each initial segment the learnerM has to output a hypothesis
which is a natural number, i.e., M(t[n]) ∈ N. Then the sequence (M(t[n]))n∈N
has to converge (to some representation of the input), i.e., there is a j ∈ N such
that M(t[n]) = j for all but �nitely many n ∈ N.

So, we still have to specify the semantics of the numbers output by M . In
order to do so, we need the following.

De�nition 2 (Angluin [2]). A family (Lj)j∈N of languages is said to be uni-
formly recursive if there exists a recursive function f : N×Σ∗ → {0, 1} such that

Lj = {w | w ∈ Σ∗, f(j, w) = 1} for all j ∈ N. We call f a decision function.

De�nition 3. A class C of non-empty recursive languages is said to be in-
dexable if there is a family (Lj)j∈N of uniformly recursive languages such that

C = {Lj | j ∈ N}. Such a family is said to be an indexing of C.
By ID we denote the collection of all indexable classes.

Note that REG, and also the class of all context-free languages and the class
of all context-sensitive languages form an indexable class. Further information
concerning indexable classes and their learnability can be found in [21, 23].

So, when dealing with the learnability of indexable classes, it is only natu-
ral to interpret the hypotheses output by M with respect to a chosen indexing
of a class containing the target class C (cf. De�nition 4 below). On the other
hand, when considering recursively enumerable classes C of recursively enumer-
able languages, then we always take as hypothesis space the family (Wψ

i )i∈N,
where ψ ∈ P2 is the numbering de�ning the class C.

De�nition 4. Let C be an indexable class. A family H = (Lj)j∈N is said to be

an indexed hypothesis space for C if (Lj)j∈N is uniformly recursive and C ⊆
{Lj | j ∈ N}.

Following [20], if C = {Lj | j ∈ N} then we call H class preserving and if
C ⊆ {Lj | j ∈ N} then the hypothesis space H is said to be class comprising.
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Now we are ready to provide the formal de�nition of learning in the limit
from text. Following Gold [13] we call our learners inductive inference machines

(abbr. IIM). To unify notations, in the de�nitions below we use H = (hj)j∈N to
denote our hypothesis spaces, where we assume the interpretation given above.

De�nition 5 (Gold [13]). Let C be any class of languages, let H = (hj)j∈N be

a hypothesis space for C, and let L ∈ C. An IIM M is said to learn L in the limit
from text with respect to H if

(1) for every text t for L there is a j ∈ N such that the sequence (M(t[n]))n∈N
converges to j, and

(2) L = hj.

An IIM M learns C in the limit from text with respect to H if M learns all

L ∈ C in the limit from text with respect to H.

The collection of all classes C for which there is an IIM M and a hypothesis

space H such that M learns C in the limit from text with respect to H is denoted

by LimTxt.

In the following modi�cations of De�nition 5 additional requirements are made.
An IIM M is said to be consistent if for all relevant texts t and all n ∈ N the
condition content(t[n]) ⊆ hM(t[n]) is satis�ed (cf. Angluin [1], Barzdin [3]).

An IIM M is said to be conservative if for all relevant texts t and all
n,m ∈ N the following condition is satis�ed. If j = M(t[n]) 6= M(t[n + m])
then content(t[n+m]) 6⊆ hj (cf. Angluin [2]).

We call an IIMM strong-monotonic if for all relevant texts t and all numbers
n,m ∈ N the following condition is satis�ed. If j = M(t[n]) 6= M(t[n+m]) = k
then hj ⊆ hk must hold (cf. Jantke [17], Lange and Zeugmann [19]).

We denote the resulting learning types by ConsTxt, ConsvTxt, and SmonTxt,
respectively.

After having de�ned several learning models, it is only natural to ask why
should we study learning with nonconstructivity. The answer is given by the fact
that many interesting language classes are not learnable from text. As shown
in [23], even quite simple classes cannot be learned from text, e.g., the class

C = {aj | j ∈ N+}
⋃
k∈N+

{a` | 1 ≤ ` ≤ k} . (1)

We aim to characterize quantitatively the di�culty of such learning problems
by measuring the amount of nonconstructivity needed to solve them.

The learners used for nonconstructive inductive inference take as input not
only growing initial segments t[n] of a text t but also a help-word w. The help-
words are assumed to be encoded in binary. So, for such learners we write
M(t[n], w) to denote the hypothesis output by M . Then, for all the learning
types de�ned above, we say that M nonconstructively identi�es L with the
help-word w provided that for every text t for L the sequence (M(t[n], w))n∈N
converges to a number j such that hj = L (for LimTxt) and M is consistent
(conservative, strong-monotonic) for ConsTxt (for ConsvTxt, and SmonTxt), re-
spectively. More formally we have the following de�nition.
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De�nition 6. Let C be any class of languages, let H = (hj)j∈N be a hypothesis

space for C, and let d ∈ R. An IIM M infers C with nonconstructivity d(n) in
the limit with respect to H, if for each n ∈ N there is a help-word w of length

at most d(n) such that for every L ∈ C ∩ {h0, h1, . . . , hn} and every text t for L
the sequence (M(t[m], w))m∈N converges to a hypothesis j satisfying hj = L.

Clearly, De�nition 6 can be directly modi�ed to obtain nonconstructive conser-

vative and strong-monotonic learning.
Looking at De�nition 6 it should be noted that the IIM may need to know

either an appropriate upper bound for n or even the precise value of n in order
to exploit the fact that the target language L is from C ∩ {h0, h1, . . . , hn}.

To simplify notation, we make the following convention. Whenever we talk
about nonconstructivity log n, we assume that the logarithmic function to the
base 2 is replaced by its integer valued counterpart blog nc+1, where log 0 =df 1.

Now we are ready to present our results. Note that some proofs have been
in�uenced by ideas developed in the quite a di�erent context, i.e., the paradigm
of learning by erasing (also called co-learning). We do not explain it here but
refer the reader to Jain et al. [14] as well as to Freivalds and Zeugmann [12].

3 Results

Already Gold [13] showed that REG /∈ LimTxt and as mentioned in (1), even
quite simple subclasses of REG are not in LimTxt. So, we start our investigations
by asking for the amount of nonconstructivity needed to identify any indexable
class in the limit from text with respect to any indexed hypothesis space H.

3.1 Nonconstructive Learning of Indexable Classes

As we shall see, the needed amount of nonconstructivity is surprisingly small.
To show this result, for every function d ∈ Rmon we de�ne its inverse dinv as
follows dinv (n) = µy[d(y) ≥ n] for all n ∈ N. Recall that range(d) is recursive
for all f ∈ Rmon . Thus, for all d ∈ Rmon we can conclude that dinv (n) ∈ R.

Theorem 1. Let C ∈ ID be arbitrarily �xed, let d ∈ Rmon be any function,

and let H = (Lj)j∈N be any indexed hypothesis space for C. Then there is a

computable IIM M such that the class C can be identi�ed with nonconstructivity

log dinv (n) in the limit from text with respect to H.

Proof. Assuming any help-word w of length precisely log dinv (n), the IIMM cre-
ates a bitstring containing only 1s that has the same length as w. This bitstring
is interpreted as a natural number k.

So, k ≥ dinv (n), and thus

u∗ =df d(k) ≥ d(dinv (n)) ≥ n . (2)

We continue to de�ne the IIM M in a way such that it will learn every language
L ∈ C ∩ {L0, . . . , Lu∗} from every of its texts. So, �x any such L, let t be any
text for L, and let m ∈ N.
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Now, the idea to complete the proof is as follows. In the limit, the IIM M
can determine the number ` of di�erent languages enumerated in L0, . . . , Lu∗
as well as the least indices j1, . . . , j` of them and can then �nd the language
among them which is equal to L. We assume the lexicographical ordering ≤lo of
all strings from Σ∗, i.e., si ≤lo si+1 for all i ∈ N.

Using m, t[m], and the decision function f for H, the IIM M computes the
least number r such that m ≤ r and s ≤lo sr for all s ∈ content(t[m]). Next, M
computes

Lr0 = {w | w ≤lo sr, f(0, w) = 1}
Lr1 = {w | w ≤lo sr, f(1, w) = 1}
...

Lru∗ = {w | w ≤lo sr, f(u∗, w) = 1} ,

and chooses the least indices j1, . . . , j`m from 0, 1, . . . , u∗ of all the distinct lan-
guages in Lr0, . . . , L

r
u∗ . From these languages Lrjz all those are deleted for which

content(t[m]) 6⊆ Lrjz (the inconsistent ones). From the remaining indices, the
least index j is output such that |Lrj \ content(t[m])| is minimal.

Now, it easy to see that the sequence (`m)m∈N converges to `, the number of
the di�erent languages enumerated in L0, . . . , Lu∗ , and that the IIM M �nds in
the limit the least indices j1, . . . , j` for these pairwise di�erent languages. From
these languages Lj1 , . . . , Lj` the ones satisfying L \ Ljz 6= ∅ are deleted.

That leaves all those Ljz with L ⊆ Ljz . Now, by assumption there is a least
j ∈ {0, . . . , u∗} with Lj = L. If L ⊂ Ljz , then there is a string s ∈ Ljz \ L, and
as soon as this string appears in the competition, the index j wins. Thus, the
sequence (M(t[m], w))m∈N converges to j. ut

So there is no smallest amount of nonconstructivity needed to learnREG and
any subset thereof in the limit from text. But the amount of nonconstructivity
cannot be zero, since then we would have REG ∈ LimTxt. One can de�ne a total
function t ∈ T such that t(n) ≥ d(n) for all d ∈ Rmon and all but �nitely many n.
Hence, log tinv is then a lower bound for the amount of nonconstructivity needed
to learn REG in the limit from text for the technique used to show Theorem 1.

We continue by asking what amount of nonconstructivity is needed to obtain
conservative learning from text for any indexable class. Now, the situation is
intuitively more complex, since ConsvTxt ⊂ LimTxt (cf. [2, 20]). Also, it is
easy to see that the IIM M given in the proof of Theorem 1 is in general not
conservative. But the basic idea still works mutatis mutandis provided we know
the number ` of di�erent languages enumerated in L0, . . . , Ln.

Theorem 2. Let C ∈ ID be arbitrarily �xed, and let H = (Lj)j∈N be an indexed

hypothesis space for C. Then there is a computable IIM M such that the class

C can be conservatively identi�ed with nonconstructivity log n from text with

respect to H.

Proof. Let H = (Lj)j∈N be any indexed hypothesis space for C, and let n ∈ N.
The help-word w is de�ned as follows. Since the IIM also needs to know a bound
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on n, we always assume n to be a power of 2. Intuitively, we then add one bit
and write the binary representation of the exact number ` of pairwise di�erent
languages enumerated in L0, . . . , Ln behind the leading 1 including leading zeros.
But of course we do not need the leading 1 in the help-word, since it can be added
by the IIM M . So if the help-word w has length k, then the added leading 1
with k− 1 zeros gives n and the bitstring w without the added leading 1 gives `.

Given `, the desired IIM M can �nd the least indices of these ` pairwise
di�erent languages by using the decision function f from the proof of Theorem 1
above, where r is large enough to detect ` di�erent languages.

The rest is done inductively. The IIM M checks whether or not t(0) ∈ Lrjz ,
z = 1, . . . , `, and deletes all languages which fail. Then M orders the remaining
sets Lrjz with respect to set inclusion, and outputs the index of the minimal one
with the smallest index. For m > 0, the IIM M then checks whether or not
content(t[m]) ⊆ LM(t[m−1]). If it is, it outputs M(t[m− 1]).

Otherwise, it checks whether or not content(t[m]) ⊆ Lrjz , z = 1, . . . , `, and
deletes all languages which fail. Then M orders the remaining sets Lrjz with
respect to set inclusion, and outputs the index of the minimal one with the
smallest index. ut

We also have the following lower bound.

Theorem 3. There is a class C ∈ ID and an indexed hypothesis space H for it

such that for every IIM that learns C conservatively with respect to H less than

log n− 2 many bits of nonconstructivity are not enough.

Next, we look at strong-monotonic learning. Again the situation is more com-
plex, since SmonTxt ⊂ ConsvTxt (cf. [20]). We add L0 = ∅ to every hypothesis
space allowed, i.e., we always consider class comprising hypothesis spaces.

Theorem 4. Let C ∈ ID be arbitrarily �xed, and let H = (Lj)j∈N be an indexed

hypothesis space for C. Then there is a computable IIM M such that the class

C can be strong-monotonically identi�ed with nonconstructivity 2 log n from text

with respect to H.

Proof. The key observation is that it su�ces to know the following number p =
|{(i, j) | Li 6⊆ Lj , i, j = 0, . . . , n}| . So, the help-word is just the binary encoding
of p and n which is done mutatis mutandis as in the proof of Theorem 2. The
rest is not too di�cult, and thus omitted.

Again, the bound given in Theorem 4 cannot be improved substantially, since
we have the following lower bound.

Theorem 5. There is a class C ∈ ID and an indexed hypothesis space H for

it such that for every IIM that learns C strong-monotonically with respect to H
less than 2 log n− 4 many bits of nonconstructivity are not enough.

Having these general results, we can also ask what happens if we allow a
suitably chosen hypothesis space for REG such as all DFAs. Then for all i, j ∈ N
equality Li = Lj and subset Li ⊆ Lj are decidable, and thus we are in the setting
described in the proof of Theorem 1. That is we have the following theorem.



On the Amount of Nonconstructivity in Learning Formal Languages 9

Theorem 6. Let C ⊆ REG be arbitrarily �xed, let d ∈ Rmon be any function,

and let H = (Lj)j∈N be any indexed hypothesis space for C. Then there is a

computable IIM M such that the class C can be strong-monotonically identi�ed

with nonconstructivity log dinv (n) from text with respect to H.

3.2 Nonconstructive Learning of Recursively Enumerable Classes

Next, we turn our attention to the amount of nonconstructivity needed to learn
recursively enumerable classes of recursively enumerable languages.

Theorem 7. Let ψ ∈ P2 be any numbering. Then there is always an IIM M
learning the family (Wψ

i )i∈N+ in the limit from text with nonconstructivity log n
with respect to (Wψ

i )i∈N+ .

Proof. The help-word w is essentially the same as in the proof of Theorem 2,
i.e., it is a bitstring of b of length log n which is the binary representation of `,
the number of pairwise di�erent languages enumerated in W1, . . . ,Wn plus n.

Let L ∈ C ∩ {Wψ
1 , . . . ,W

ψ
n } and let t be any text for L. On input any t[m]

and the help-word w the desired IIM M executes the following.

(1) For all 0 < i ≤ n enumerate Wψ
i for m steps, that is, M tries to compute

ψi(0), . . . , ψi(m) for at most m steps and enumerate those arguments x for

which ψi(x) turns out to be de�ned. LetW
ψ
i,m be the resulting sets, 0 < i ≤ n.

(2) For all pairs (i, j) with 0 < i, j ≤ n check whether or not Wψ
i,m \Wψ

j,m 6= ∅.
If it is, let d(i, j) be the least element in Wψ

i,m \Wψ
j,m. If there is no such

element, we set d(i, j) = ∞.
(3) Using the numbers d(i, j) thenM checks whether or not there are ` pairwise

di�erent languages among Wψ
1,m, . . . ,W

ψ
n,m. If not, then M(t[m]) = 0.

Otherwise, let S = {i | 0 < i ≤ n, Wψ
j,m 6= ∅} and consider all sets S̃ ⊆ S

satisfying |S̃| = `. For each such set S̃ = {j1, . . . , j`} compute the numbers

xj,k =df min(Wψ
j,m4Wψ

k,m) for all j, k ∈ S̃, where j < k and let s(S̃) be

the maximum of all those xj,k. Furthermore, for each set S̃ we consider the
`-tuple (j1, . . . , j`), where ji < ji+1, i = 1, . . . , ` − 1. Using these tuples,
we can order them lexicographically and then choose the �rst set S̃ in this
order for which s(S̃) is minimized, i.e., s(S̃) ≤ s(Ŝ) for all Ŝ with Ŝ ⊆ S and
|Ŝ| = `. Let i1, . . . , i` be the elements of this set S̃ in their natural order.
ThenM takes the languagesWψ

i1,m
, . . . ,Wψ

i`,m
into consideration. From these

candidate hypotheses i1, . . . , i` the least i is output for which t[m] contains
all �nite d(i, j), j = i1, . . . , i`, and t[m] does not contain any of the �nite
d(j, i), j = i1, . . . , i`. If there is no such i, then M(t[m]) = 0.

We have to show that M learns L in the limit from t. Note that the ` pairwise
di�erent languages are found in the limit, since the minimal element in the
symmetric di�erence of the two languages tends to in�nity if the two languages
are equal (if any element is found at all). So, the set of candidate hypotheses
stabilizes in the limit, and by construction M then outputs the correct i as soon
as the initial segment is large enough. We omit details. ut
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The IIM de�ned in the proof of Theorem 7 even witnesses a much stronger
result, i.e., it always converges to the minimum index i of the target language.

The following lower bound shows that Theorem 7 cannot be improved sub-
stantially.

Theorem 8. There is a numbering ψ ∈ P2 such that no IIM M can learn the

family (Wψ
i )i∈N+ in the limit from text with nonconstructivity log n − 2 with

respect to (Wψ
i )i∈N+ .

The situation considerably changes if we require conservative learning. In
order to present this result, we need the following. A function h : N → N is said
to be limiting recursive if there is a function h̃ ∈ R2 such that h(i) = lim

n→∞
h̃(i, n).

Theorem 9. For every limiting recursive function h there is a recursively enu-

merable family (Wψ
i )i∈N of recursive languages such that no IIM with noncon-

structivity at most h can learn (Wψ
i )i∈N conservatively with respect to (Wψ

i )i∈N.

4 Conclusions

We have presented a model for the inductive inference of formal languages from
text that incorporates a certain amount of nonconstructivity. In our model, the
amount of nonconstructivity needed to solve the learning problems considered
has been used as a quantitative characterization of their di�culty.

We studied the problem of learning indexable classes under three postulates,
i.e., learning in the limit, conservative identi�cation, and strong-monotonic infer-

ence. As far as learning in the limit is concerned, the amount of nonconstructivity
needed to learn any indexable class can be very small and there is no smallest
amount that can be described in a computable way (cf. Theorem 1).

Moreover, we showed upper and lower bounds for conservative learning of
indexable classes and for strong-monotonic inference roughly showing that the
amount of nonconstructivity needed is log n for conservative learning and 2 log n
for strong-monotonic inference.

However, if we allow canonical indexed hypothesis spaces for REG such that
equality of languages is decidable, then the amount of nonconstructivity needed
to learn REG even strong-monotonically can be made very small.

Finally, we studied the problem to learn recursively enumerable classes of re-
cursively enumerable languages. In this setting, the amount of nonconstructivity
needed to learn in the limit is log n, while there is not even a limiting recursive
bound for the amount of nonconstructivity to learn all recursively enumerable
classes of recursively enumerable languages conservatively.
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