
Synthesizing Learners Tolerating Computable Noisy Data

John Case

Department of CIS

University of Delaware

Newark, DE 19716, USA

Email: case@cis.udel.edu

Sanjay Jain

School of Computing

National University of Singapore

Singapore 119260

Email: sanjay@comp.nus.edu.sg

Abstract

An index for an r.e. class of languages (by definition) generates a sequence of grammars
defining the class. An index for an indexed family of recursive languages (by definition) generates
a sequence of decision procedures defining the family.

F. Stephan’s model of noisy data is employed, in which, roughly, correct data crops up
infinitely often, and incorrect data only finitely often.

In a computable universe, all data sequences, even noisy ones, are computable. New to the
present paper is the restriction that noisy data sequences be, nonetheless, computable. This
restriction is interesting since we may live in a computable universe.

Studied, then, is the synthesis from indices for r.e. classes and for indexed families of recur-
sive languages of various kinds of noise-tolerant language-learners for the corresponding classes
or families indexed, where the noisy input data sequences are restricted to being computable.

Many positive results, as well as some negative results, are presented regarding the existence
of such synthesizers.

The main positive result is: grammars for each indexed family can be learned behaviorally
correctly from computable, noisy, positive data. The proof of another positive synthesis result
yields, as a pleasant corollary, a strict subset-principle or tell-tale style characterization, for
the computable noise-tolerant behaviorally correct learnability of grammars from positive and
negative data, of the corresponding families indexed.

1 Introduction

Consider the scenario in which a subject is attempting to learn its environment. At any given time,
the subject receives a finite piece of data about its environment, and based on this finite information,
conjectures an explanation about the environment. The subject is said to learn its environment
just in case the explanations conjectured by the subject become fixed over time, and this fixed
explanation is a correct representation of the subject’s environment. Inductive Inference, a subfield
of computational learning theory, provides a framework for the study of the above scenario when
the subject is an algorithmic device. The above model of learning is based on the work initiated by
Gold [Gol67] and has been used in inductive inference of both functions and languages. This model
is often refered to as Ex-learning.1 We refer the reader to [AS83, BB75, CS83, JORS99, KW80]
for background material in this field.

For function learning, there is a learner-synthesizer algorithm lsyn so that, if lsyn is fed any
procedure that lists programs for some (possibly infinite) class S of (total) functions, then lsyn

1Ex is short for explanatory.
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outputs an Ex-learner successful on S [Gol67]. The learners so synthesized are called enumer-
ation techniques [BB75, Ful90]. These enumeration techniques yield many positive learnability
results, for example, that the class of all functions computable in time polynomial in the length of
input is Ex-learnable.2

For this paper, as is the practice in inductive inference literature, we consider a Turing Ma-
chine index for accepting/generating a language and grammar for the language as synonyms. For
language learning from positive data and with learners outputting grammars, [OSW88] provided an
amazingly negative result: there is no learner-synthesizer algorithm lsyn so that, if lsyn is fed
any pair of grammars g1, g2 for any language class L = {L1, L2}, then lsyn outputs an Ex-learner
successful, from positive data, on L.3 [BCJ99] showed how to circumvent some of the sting of
this [OSW88] result by resorting to more general learners than Ex. In particular, they used Bc-
learners, which, when successful on an object input, (by definition) find a final (possibly infinite)
sequence of correct programs for that object after at most finitely many trial and error attempts
[Bār74, CS83].4 Of course, if suitable learner-synthesizer algorithm lsyn is fed procedures for listing
decision procedures (instead of mere grammars), one also has more success at synthesizing learn-
ers. In fact the inductive inference community has shown considerable interest (spanning at least
from [Gol67] to [ZL95]) in language classes defined by r.e. listings of decision procedures. These
classes are called uniformly decidable or indexed families of recursive languages (or just indexed
families). As is essentially pointed out in [Ang80], all of the formal language style example classes
are indexed families. Note that Gold’s result on learning enumerable class of functions does not
apply to learning of indexed family of recursive languages, since for learning indexed families of
recursive languages, the learner gets only positive data as input. A sample result from [BCJ99]
is: there is a learner-synthesizer algorithm lsyn so that, if lsyn is fed any procedure that lists
decision procedures defining some indexed family L of recursive languages which can be Bc-learned
from positive data with the learner outputting grammars, then lsyn outputs a Bc-learner successful,
from positive data, on L. The proof of this positive result yielded the surprising characterization
[BCJ99]: for indexed families L of recursive languages, L can be Bc-learned from positive data
with the learner outputting grammars iff

(∀L ∈ L)(∃S ⊆ L | S is finite)(∀L′ ∈ L | S ⊆ L′)[L′ 6⊂ L]. (1)

(1) is Angluin’s important Condition 2 from [Ang80], and it is referred to as the subset principle,
in general a necessary condition for preventing overgeneralization in learning from positive data
[Ang80, Ber85, ZLK95, KB92, Cas99].

In this paper we consider the effect of inaccuracies on the ability to synthesize learning ma-
chines. In the real world one always finds inaccuracies in the input data, and learning is often
achieved despite the presence of inaccuracies in the data. For example, in the context of lin-
guistic development, children likely receive ungrammatical sentences and may not receive some
sentences. However, these inaccuracies do not seem to influence the outcome of linguistic devel-
opment. Similarly, in the context of scientific discovery, the business of science progresses despite

2The reader is referred to Jantke [Jan79a, Jan79b] for a discussion of synthesizing learners for classes of computable
functions that are not necessarily recursively enumerable.

3Also for language learning from positive data and with learners outputting grammars, a somewhat related negative
result is provided by Kapur [Kap91]. He shows that one cannot algorithmically find an Ex-learning machine for Ex-

learnable indexed families of recursive languages from an index of the class. This is a bit weaker than a closely related
negative result from [BCJ99].

4Bc is short for behaviorally correct.
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experimental errors and unfeasibility of performing certain experiments. We refer the reader to
[FJ96, Jai96, SR85, Ste95] for some background on learning from inaccurate information.

[CJS99] considered language learning from both noisy texts (only positive data) and from noisy
informants (both positive and negative data), and adopted, as does the present paper, Stephan’s
[Ste95, CJS00] noise model. Roughly, in this model correct information about an object occurs
infinitely often while incorrect information occurs only finitely often. Hence, this model has the
advantage that noisy data about an object nonetheless uniquely specifies that object.5

In the context of [CJS99], where the noisy data sequences can be uncomputable, the presence
of noise plays havoc with the learnability of many concrete classes that can be learned without
noise. For example, the well-known class of pattern languages [Ang80]6 can be Ex-learned from
texts but cannot be Bc-learned from unrestricted noisy texts even if we allow the final grammars
each to make finitely many mistakes. While it is possible to Ex-learn the pattern languages from
informants in the presence of noise, a mind-change complexity price must be paid: any Ex-learner
succeeding on the pattern languages from an unrestricted noisy informant must change its mind
an unbounded finite number of times about the final grammar. However, some learner can succeed
on the pattern languages from noise-free informants and on its first guess as to a correct grammar
(see [LZK96]). The class of languages formed by taking the union of two pattern languages can be
Ex-learned from texts [Shi83]; however, this class cannot be Bc-learned from unrestricted noisy
informants even if we allow the final grammars each to make finitely many mistakes.

In [CJS99], the proofs of most of the positive results providing existence of learner-synthesizers
which synthesize noise-tolerant learners also yielded pleasant characterizations which look like
strict versions of the subset principle (1).7 Here is an example. If L is an indexed family of
recursive languages, then: L can be noise-tolerantly Ex-learned from positive data with the learner
outputting grammars (iff L can be noise-tolerantly Bc-learned from positive data with the learner
outputting grammars) iff

(∀L,L′ ∈ L)[L ⊆ L′ ⇒ L = L′]. (2)

(2) is easily checkable (as is (1) above, but, (2) is more restrictive, as we saw in the just previous
paragraph).

In a computable universe, all data sequences, even noisy ones, are computable.8 In the present

5Less roughly: in the case of noisy informant each false item may occur a finite number of times; in the case of
text, it is mathematically more interesting to require, as we do, that the total amount of false information has to be
finite. The alternative of allowing each false item in a text to occur finitely often is too restrictive; it would, then, be
impossible to learn even the class of all singleton sets [Ste95] (see also Theorem 36).

6[Nix83] as well as [SA95] outline interesting applications of pattern inference algorithms. For example, pattern
language learning algorithms have been successfully applied for solving problems in molecular biology (see [SSS+94,
SA95]). Pattern languages and finite unions of pattern languages [Shi83, Wri89, KMU95, CJLZ99] turn out to be
subclasses of Smullyan’s [Smu61] Elementary Formal Systems (EFSs). [ASY92] show that the EFSs can also be
treated as a logic programming language over strings. The techniques for learning finite unions of pattern languages
have been extended to show the learnability of various subclasses of EFSs [Shi91]. Investigations of the learnability
of subclasses of EFSs are important because they yield corresponding results about the learnability of subclasses of
logic programs. [AS94] use the insight gained from the learnability of EFSs subclasses to show that a class of linearly
covering logic programs with local variables is TxtEx-learnable. These results have consequences which should be
of interest for Inductive Logic Programming [MR94, LD94].

7For L either an indexed family or defined by some r.e. listing of grammars, the prior literature has many interesting
characterizations of L being Ex-learnable from noise-free positive data, with and without extra restrictions. See, for
example, [Ang80, Muk92, LZK96, dJK96].

8In a computable universe (which ours might be), only computable data sequences are available to be presented
to learning machines. That the universe may be discrete and computable is taken seriously, for example, in [Zus69,
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paper, we are concerned with learner-synthesizer algorithms which operate on procedures that list
either grammars or decision procedures but, significantly, we restrict the noisy data sequences to
being computable.

Herein, our main and surprising result (Theorem 28 in Section 4.1 below) is: there is a learner-
synthesizer algorithm lsyn so that, if lsyn is fed any procedure that lists decision procedures
defining any indexed family L of recursive languages, then lsyn outputs a learner which, from
computable, noisy, positive data on any L ∈ L, outputs a sequence of grammars eventually all
correct for L. This result has the following corollary (Corollary 33 in Section 4.1 below): for every
indexed family L of recursive languages, there is a machine for Bc-learning L, where the machine
outputs grammars and the input is computable noisy positive data. Essentially Theorem 28 is a
constructive version of this corollary: not only can each indexed family be Bc-learned (outputting
grammars on computable noisy positive data), but one can algorithmically find a corresponding Bc-
learner (of this kind) from an index for any indexed family. As a corollary to Theorem 28 we have
that the class of finite unions of pattern languages is Bc-learnable from computable noisy texts,
where the machine outputs grammars (this contrasts sharply with the negative result mentioned
above from [CJS99] that even the class of pattern languages is not learnable from unrestricted noisy
texts).

Another main positive result of the present paper is Corollary 43 in Section 4.1 below. It says
that an indexed family L can be Bc-learned from computable noisy informant data by outputting
grammars iff

(∀L ∈ L)(∃z)(∀L′ ∈ L | {x ≤ z | x ∈ L} = {x ≤ z | x ∈ L′})[L′ ⊆ L]. (3)

Corollary 42 in the same section is the constructive version of Corollary 43 and says one can
algorithmically find such a learner from an index for any indexed family so learnable. (3) is easy to
check too and intriguingly differs slightly from the characterization in [CJS99] of the same learning
criterion applied to indexed families but with the noisy data sequences unrestricted:

(∀L ∈ L)(∃z)(∀L′ ∈ L | {x ≤ z | x ∈ L} = {x ≤ z | x ∈ L′})[L′ = L]. (4)

Let N denote the set of natural numbers. Then {L | card(N − L) is finite } satisfies (3), but
not (4).9

As might be expected, for several learning criteria considered here and in previous papers on
synthesis, the restriction to computable noisy data sequences may, in some cases, reduce a criterion
to one previously studied, but, in other cases (e.g., the one mentioned at the end of the just previous
paragraph), not. Section 3 below, then, contains many of the comparisons of the criteria of this
paper to those of previous papers.

As we indicated above, Section 4.1 below contains the main results of the present paper, and, in
general, the results of this section are about synthesis from indices for indexed families and, when
appropriate, corresponding characterizations. Section 4.2 below contains our positive and negative
results on synthesis from r.e. indices for r.e. classes.

As we noted above, in a computable universe, all data sequences, even noisy ones, are com-
putable. One of the motivations for considering possibly non-computable data sequences is that,

Tof77, TM87, Fey82, Cas92, Cas86, CRS94, Cas99]. Note that in a discrete, random universe with only computable
probability distributions for its behavior (e.g., a discrete, quantum mechanical universe), the expected behavior will
still be computable [dMSS56] (and constructively so [Gil72, Gil77]).

9However, L = the class of all unions of two pattern languages satisfies neither (3) nor (4).
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in the case of child language learning, the utterances the child hears (as its data) may, in part,
be determined by uncomputable processes [OSW86] perhaps external to the utterance generators
(e.g., the parents). The limit recursive functions are in between the computable and the arbitrarily
uncomputable. Here is the idea. Informally, they are (by definition) the functions computed by
limit-programs, programs which do not give correct output until after some unspecified but finite
number of trial outputs [Sha71]. They “change their minds” finitely many times about each out-
put before getting it right.10 In Section 5 we consider briefly what would happen if the world
provided limit recursive data sequences (instead of computable or unrestricted ones). The main
result of this section, Corollary 52, is that, for Bc-learning of grammars from positive data, learn-
ing from limit recursive data sequences is (constructively) the same as learning from unrestricted
data sequences. Importantly, the same proof yields this equivalence also in the case of noisy data
sequences.

Finally Section 6 gives some directions for further research.

2 Preliminaries

2.1 Notation and Identification Criteria

The recursion theoretic notions are from the books of Odifreddi [Odi89] and Soare [Soa87]. N =
{0, 1, 2, . . .} is the set of all natural numbers, and this paper considers r.e. subsets L of N . N+ =
{1, 2, 3, . . .}, the set of all positive integers. All conventions regarding range of variables apply,
with or without decorations11, unless otherwise specified. We let c, e, i, j, k, l, m, n, q, s, t,
u, v, w, x, y, z, range over N . Empty set, member of, subset, superset, proper subset, and
proper superset are respectively denoted by ∅,∈,⊆,⊇,⊂,⊃. Maximum, minimum, and cardinality
of a set are respectively denoted by max(),min(), card(), where by convention max(∅) = 0 and
min(∅) = ∞. We use card(S) ≤ ∗ to mean that cardinality of set S is finite. We let a, b range
over N ∪ {∗}. We let 〈·, ·〉 stand for an arbitrary but fixed, one to one, computable encoding of
all pairs of natural numbers onto N . Similarly, 〈·, ·, ·〉 denotes a computable, 1–1 encoding of all
triples of natural numbers onto N . The complement of a set L is denoted by L. Characteristic
function of a set L is denoted by χL. L1∆L2 denotes the symmetric difference of L1 and L2, i.e.,
L1∆L2 = (L1 −L2)∪ (L2 −L1). L1 =a L2 means that card(L1∆L2) ≤ a. Quantifiers ∀∞,∃∞, and
∃! denote for all but finitely many, there exist infinitely many, and there exists a unique respectively.

The set of total computable functions from N to N is denoted by R. We let f, g, range over total
computable functions. The set of all recursively enumerable sets is denoted by E . We let L range
over E . We let L range over subsets of E . REC denotes the set of all recursive languages. The power
set of REC is denoted by 2REC. We fix a standard acceptable programming system (acceptable
numbering) ϕ. The function computed by the i-th program in the programming system ϕ is denoted
by ϕi. We also call i a program or index for ϕi. For a (partial) function η, domain(η) and range(η)
respectively denote the domain and range of partial function η. We often write η(x)↓ (η(x)↑) to
denote that η(x) is defined (undefined). Wi denotes the domain of ϕi. Thus, Wi is considered as
the language accepted (or enumerated) by the i-th program in ϕ system, and we say that i is a
grammar or index for Wi. We let Φ denote a standard Blum complexity measure [Blu67] for the

10Incidentally, all the results in this paper about the non-existence of computable synthesizers are can also be
shown to be non-existence results for limit recursive synthesizers.

11Decorations are subscripts, superscripts, primes and the like.
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programming system ϕ. Wi,s = {x < s | Φi(x) < s}. A program j such that ϕj = χL, is called a
decision procedure for L.

A text is a mapping from N to N ∪ {#}. We let T range over texts. content(T ) is defined to
be the set of natural numbers in the range of T (i.e. content(T ) = range(T ) − {#}). T is a text
for L iff content(T ) = L. That means a text for L is an infinite sequence whose range, except for
a possible #, is just L.

An information sequence or informant is a mapping from N to (N × {0, 1}) ∪ {#}. We let I

range over informants. content(I) is defined to be the set of pairs in the range of I (i.e. content(I) =
range(I)−{#}). An informant for L is an informant I such that content(I) = {(x, b) | χL(x) = b}.
It is useful to consider the canonical information sequence for L. I is a canonical information
sequence for L iff I(x) = (x, χL(x)). We sometimes abuse notation and refer to the canonical
information sequence for L by χL.

We let σ and τ range over finite initial segments of texts or information sequences, where the
context determines which is meant. We denote the set of finite initial segments of texts by SEG
and set of finite initial segments of information sequences by SEQ. We use σ � T (respectively,
σ � I, σ � τ) to denote that σ is an initial segment of T (respectively, I, τ). Length of σ is
denoted by |σ|. We use T [n] to denote the initial segment of T of length n. Similarly, I[n] denotes
the initial segment of I of length n. Let T [m : n] denote the segment T (m), T (m+1), . . . , T (n− 1)
(i.e. T [n] with the first m elements, T [m], removed). I[m : n] is defined similarly. We use σ � τ

(respectively, σ � T , σ � I) to denote the concatenation of σ and τ (respectively, concatenation of
σ and T , concatenation of σ and I). We sometimes abuse notation and say σ � w to denote the
concatenation of σ with the sequence of one element w.

A learning machine M is a mapping from initial segments of texts (information sequences) to
N . We say that M converges on T to i, (written: M(T )↓ = i) iff, for all but finitely many n,
M(T [n]) = i. If there is no i such that M(T )↓ = i, then we say that M diverges on T (written:
M(T )↑). Convergence on information sequences is defined similarly.

Let ProgSet(M, σ) = {M(τ) | τ ⊆ σ}.

Definition 1 Suppose a, b ∈ N ∪ {∗}.
(a) Below, for each of several learning criteria J, we define what it means for a machine M to
J-identify a language L from a text T or informant I.

• [Gol67, CL82] M TxtExa-identifies L from text T iff (∃i | Wi =a L)[M(T )↓ = i].
• [Gol67, CL82] M InfExa-identifies L from informant I iff (∃i | Wi =a L)[M(I)↓ = i].
• [Bār74, CL82]. M TxtBca-identifies L from text T iff (∀∞n)[WM(T [n]) =a L].
• [Bār74, CL82]. M InfBca-identifies L from informant I iff (∀∞n)[WM(I[n]) =a L].

(b) Suppose J ∈ {TxtExa,TxtBca}. M J-identifies L iff, for all texts T for L, M J-identifies L

from T . In this case we also write L ∈ J(M).
We say that M J-identifies L iff M J-identifies each L ∈ L.
J = {L | (∃M)[L ⊆ J(M)]}.

(c) Suppose J ∈ {InfExa, InfBca}. M J-identifies L iff, for all information sequences I for L, M

J-identifies L from I. In this case we also write L ∈ J(M).
We say that M J-identifies L iff M J-identifies each L ∈ L.
J = {L | (∃M)[L ⊆ J(M)]}.

We often write TxtEx0 as TxtEx. A similar convention applies to the other learning criteria of
this paper.
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Next we prepare to introduce our noisy inference criteria, and, in that interest, we define some
ways to calculate the number of occurrences of words in (initial segments of) a text or informant.
For σ ∈ SEG, and text T , let

occur(σ,w)
def
= card({j | j < |σ| ∧ σ(j) = w}) and

occur(T,w)
def
= card({j | j ∈ N ∧ T (j) = w}).

For σ ∈ SEQ and information sequence I, occur(·, ·) is defined similarly except that w is replaced
by (v, b).

For any language L, occur(T,L)
def
= Σx∈L occur(T, x).

Definition 2 [Ste95] An information sequence I is a noisy information sequence (or noisy
informant) for L iff (∀x) [occur(I, (x, χL(x))) = ∞ ∧ occur(I, (x, χ

L
(x))) < ∞]. A text T is

a noisy text for L iff (∀x ∈ L)[occur(T, x) = ∞] and occur(T,L) < ∞.

On the one hand, both concepts are similar since L = {x | occur(I, (x, 1)) = ∞} = {x |
occur(T, x) = ∞}. On the other hand, the concepts differ in the way they treat errors. In the case
of informant every false item (x, χ

L
(x)) may occur a finite number of times. In the case of text, it

is mathematically more interesting to require, as we do, that the total amount of false information
has to be finite.12

Definition 3 [Ste95, CJS00] Suppose a ∈ N ∪ {∗}. Suppose J ∈ {TxtExa,TxtBca}. Then M

NoisyJ-identifies L iff, for all noisy texts T for L, M J-identifies L from T . In this case we write
L ∈ NoisyJ(M).

M NoisyJ-identifies a class L iff M NoisyJ-identifies each L ∈ L.
NoisyJ = {L | (∃M)[L ⊆ NoisyJ(M)]}.

Inference criteria for learning from noisy informants are defined similarly.
It is useful to introduce the set of positive and negative occurrences in (initial segment of) an

informant. Suppose σ ∈ SEQ

PosInfo(σ)
def
= {v | occur(σ, (v, 1)) ≥ occur(σ, (v, 0)) ∧ occur(σ, (v, 1)) ≥ 1}

NegInfo(σ)
def
= {v | occur(σ, (v, 1)) < occur(σ, (v, 0)) ∧ occur(σ, (v, 0)) ≥ 1}

That means, that PosInfo(σ) ∪ NegInfo(σ) is just the set of all v such that either (v, 0) or (v, 1)
occurs in σ. Then v ∈ PosInfo(σ) if (v, 1) occurs at least as often as (v, 0) and v ∈ NegInfo(σ)
otherwise. Similarly,

PosInfo(I) = {v | occur(I, (v, 1)) ≥ occur(I, (v, 0)) ∧ occur(I, (v, 1)) ≥ 1}

NegInfo(I) = {v | occur(I, (v, 1)) < occur(I, (v, 0)) ∧ occur(I, (v, 0)) ≥ 1}

where, if occur(I, (v, 0)) = occur(I, (v, 1)) = ∞, then we place v in PosInfo(I) (this is just to make
the definition precise; we will not need this for criteria of inference discussed in this paper).

Several proofs in this paper depend on the concept of locking sequence.

12As we noted in Section 1 above, the alternative of allowing each false item in a text to occur finitely often is too
restrictive; it would, then, be impossible to learn even the class of all singleton sets [Ste95].
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Definition 4 (Based on [BB75]) Suppose a ∈ N ∪ {∗}.
(a) σ is said to be a TxtExa-locking sequence for M on L iff, content(σ) ⊆ L, WM(σ) =a L,

and (∀τ | content(τ) ⊆ L)[M(σ � τ) = M(σ)].
(b) σ is said to be a TxtBca-locking sequence for M on L iff, content(σ) ⊆ L, and (∀τ |

content(τ) ⊆ L)[WM(σ�τ) =a L].

Lemma 5 (Based on [BB75]) Suppose a, b ∈ N ∪ {∗}. Suppose J ∈ {TxtExa,TxtBca}. If M

J-identifies L then there exists a J-locking sequence for M on L.

Definition of locking sequences for learning from noisy texts is similar to that of learning from
noise free texts (we just drop the requirement that content(σ) ⊆ L). However, the definition of
locking sequence for learning from a noisy informant is more involved.

Definition 6 [CJS00] Suppose a, b ∈ N ∪ {∗}.
(a) σ is said to be a NoisyTxtExa-locking sequence for M on L iff, WM(σ) =a L, and (∀τ |

content(τ) ⊆ L)[M(σ � τ) = M(σ)].
(b) σ is said to be a NoisyTxtBca-locking sequence for M on L iff (∀τ | content(τ) ⊆

L)[WM(σ�τ) =a L].

For defining locking sequences for learning from noisy informant, we need the following.

Definition 7 Let S ⊆ N and L ⊆ N . Inf[S,L]
def
= {τ | (∀x ∈ S) [occur(τ, (x, χ

L
(x))) = 0]}.

Definition 8 Suppose a, b ∈ N ∪ {∗}.
(a) σ is said to be a NoisyInfExa-locking sequence for M on L iff, PosInfo(σ) ⊆ L,

NegInfo(σ) ⊆ L, WM(σ) =a L, and (∀τ ∈ Inf[PosInfo(σ) ∪ NegInfo(σ), L])[M(σ � τ) = M(σ)].
(b) σ is said to be a NoisyInfBca-locking sequence for M on L iff, PosInfo(σ) ⊆ L,

NegInfo(σ) ⊆ L, and (∀τ ∈ Inf[PosInfo(σ) ∪ NegInfo(σ), L])[WM(σ�τ) =a L].

For the criteria of noisy inference discussed in this paper, as mentioned in [CJS00], one can
prove the existence of a locking sequence using the technique of [Ste95, Theorem 2, proof for
NoisyEx ⊆ Ex0[K] ].

Proposition 9 Suppose a, b ∈ N ∪ {∗}. If M learns L from noisy text or informant according
to one of the criteria NoisyTxtExa, NoisyTxtBca, NoisyInfExa, or NoisyInfBca, then there
exists a corresponding locking sequence for M on L.

Note that in all the learning criteria formally defined thus far in this section, the (possibly noisy)
texts or informants may be of arbitrary complexity. In a computable universe all texts and infor-
mants (even noisy ones) must be recursive (synonym: computable). As noted in Section 1 above,
this motivates our concentrating in this paper on recursive texts and informants.

When a learning criterion is restricted to requiring learning from recursive texts/informants
only, then we name the resultant criteria by adding, in an appropriate spot, ‘Rec’ to the name
of the unrestricted criterion. For example, RecTxtEx-identification is this restricted variant of
TxtEx-identification. Formally, RecTxtEx-identification may be defined as follows.

Definition 10 M RecTxtExa-identifies L iff, for all recursive texts T for L, M TxtExa-identifies
L from T .

8



One can similarly define RecInfExa, RecTxtBca,RecInfBca, NoisyRecTxtExa,
NoisyRecTxtBca, NoisyRecInfExa, NoisyRecInfBca.

RecTxtBca 6= TxtBca [CL82, Fre85]; however, TxtExa = RecTxtExa [BB75, Wie77,
Cas99]. In Section 3 below, we indicate the remaining comparisons.

2.2 Recursively Enumerable Classes and Indexed Families

This paper is about the synthesis of algorithmic learners for r.e. classes of r.e. languages and of

indexed families of recursive languages. To this end we define, for all i, Ci
def
= {Wj | j ∈ Wi}. Hence,

Ci is the r.e. class with index i. For a decision procedure j, we let Uj
def
= {x | ϕj(x) = 1}. For a

decision procedure j, we let Uj [n] denote {x ∈ Uj | x < n}. For all i,

Ui
def
=

{

{Uj | j ∈ Wi}, if (∀j ∈ Wi)[j is a decision procedure];
∅, otherwise.

Hence, Ui is the indexed family with index i.

2.3 Some Previous Results on Noise Tolerant Learning

In this section, we state some results from [CJS00] and some consequences of these results (or

related results) which we will apply later in the present paper. We let 2∗
def
= ∗.

Using Proposition 9 we have the following two theorems,

Theorem 11 Suppose a ∈ N ∪ {∗}. Suppose L ∈ NoisyInfBca. Then for all L ∈ L, there exists
an n such that, (∀L′ ∈ L | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =2a L′].

Theorem 12 Suppose a ∈ N ∪ {∗}. Suppose L ∈ NoisyInfExa. Then, for all L ∈ L, there exist
n, S such that, (∀L′ ∈ L | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[(L∆S) =a L′].

As a corollary to Theorem 12 we have

Theorem 13 Suppose a ∈ N ∪ {∗}. Suppose L ∈ NoisyInfExa. Then, for all L ∈ L, there exists
an n such that, (∀L′ ∈ L | {x ∈ L | x ≤ n} = {x ∈ L′ | x ≤ n})[L =a L′].

The following two theorems were proved in [CJS00].

Theorem 14 [CJS00] Suppose a ∈ N ∪ {∗}. L ∈ NoisyTxtBca ⇒ [(∀L ∈ L)(∀L′ ∈ L | L′ ⊆
L)[L =2a L′]].

Theorem 15 [CJS00] Suppose a ∈ N ∪ {∗}. Then NoisyInfBca∪NoisyTxtBca ⊆ TxtBca and
NoisyInfExa ∪NoisyTxtExa ⊆ TxtExa.

The proof of Theorem 15 also shows:

Theorem 16 Suppose a ∈ N ∪ {∗}. Then NoisyRecInfBca∪NoisyRecTxtBca ⊆ RecTxtBca

and NoisyRecInfExa ∪ NoisyRecTxtExa ⊆ RecTxtExa.

The following proposition is easy to prove:

Proposition 17 Suppose L ⊆ E is a finite class of languages such that for all L,L′ ∈ L, L ⊆ L′ ⇒
L = L′. Then, L ∈ NoisyTxtEx ∩ NoisyInfEx.

Suppose L ⊆ E is a finite class of languages. Then, L ∈ NoisyInfEx.

9



3 Comparisons

In this section we consider the comparisons between the inference criteria introduced in this paper
among themselves and with the related inference criteria from the literature.

The next theorem says that for Bc∗-learning, with computable noise, from either texts or
informants, some machine learns grammars for all the r.e. languages. It improves a similar result
from [CL82] for the noise-free case.

Theorem 18 (a) E ∈ NoisyRecTxtBc∗.
(b) E ∈ NoisyRecInfBc∗.

Proof. (a) Define M as follows: M(T [n]) = prog(T [n]), where Wprog(T [n]) is defined by the
following enumeration.

Wprog(T [n])

Go to stage 0

Stage s

Let m = min({n} ∪ {i | i ≤ n ∧ (∀x < n)[Φi(x) ≤ s ∧ ϕi(x) = T (x)]}).
Enumerate {ϕm(x) | x ≤ s ∧ Φm(x) ≤ s}.
Go to stage s + 1.

End Stage s

End

Now suppose T is a noisy recursive text for L ∈ E . Let m′ be the minimum program such that
ϕm′ = T . Let n0 > m′ be large enough so that, for all i < m′, there exists an x < n0 such that
ϕi(x) 6= T (x). Now, for all n > n0, for all but finitely many s, m as computed in the procedure for
Wprog(T [n]) in stage s is m′. It follows that Wprog(T [n]) is a finite variant of content(T ), and thus a
finite variant of L. Thus M NoisyRecTxtBc∗-identifies E .

(b) Define M as follows: M(I[n]) = prog(I[n]), where Wprog(I[n]) is defined by the following
enumeration.

Wprog(I[n])

Go to stage 0

Stage s

Let m = min({n} ∪ {i | i ≤ n ∧ (∀x < n)[Φi(x) ≤ s ∧ ϕi(x) = I(x)]}).
Let p = min({n} ∪ {i | i ≤ n ∧ (∀x < n)[x ∈ Wi,s ⇔ card({w | w < s ∧ Φm(w) <

s ∧ ϕm(w) = (x, 1)}) ≥ card({w | w < s ∧ Φm(w) < s ∧ ϕm(w) = (x, 0)})]}).
Enumerate Wp,s.
Go to stage s + 1.

End Stage s

End

10



Now suppose I is a noisy informant for L. Let m′ be the minimum program such that ϕm′ = I.
Let p′ be the minimum grammar for L. Let n0 > max({m′, p′}) be large enough so that, for all
i < m′, there exists an x < n0 such that ϕi(x) 6= I(x) and, for all j < p′, there exists an x < n0,
such that x ∈ L∆Wj . Thus, for all n > n0, for all but finitely many s, in stage s of the procedure
for Wprog(T [n]), we have m = m′ and p = p′. It follows that Wprog(I[n]) is a finite variant of Wp′ = L.
Thus M NoisyRecInfBc∗-identifies E .

The next result says that for Ex-style learning with noisy texts or informants, restricting the
data sequences to be computable does not help us.13

Theorem 19 Suppose a ∈ N ∪ {∗}.
(a) NoisyTxtExa = NoisyRecTxtExa.
(b) NoisyInfExa = NoisyRecInfExa.

Proof. Clearly, NoisyTxtExa ⊆ NoisyRecTxtExa, and NoisyInfExa ⊆ NoisyRecInfExa.
We show below that NoisyTxtExa ⊇ NoisyRecTxtExa, and NoisyInfExa ⊇
NoisyRecInfExa. Essentially the proof idea is to generalize the locking sequence arguments
used to show TxtExa = RecTxtExa to the noise setting.

(a) Suppose M NoisyRecTxtExa-identifies L.

Claim 20 For each L ∈ L, there exists a σ such that, for all τ satisfying content(τ) ⊆ L, M(σ) =
M(σ � τ).

Proof. Suppose by way of contradiction otherwise. Let L ∈ L be such that, for all σ there exists
a τ , such that content(τ) ⊆ L, but M(σ) 6= M(σ � τ). Suppose Wi = L. Define σ0 to be empty
sequence. For, s ≥ 0, search (in some algorithmic way) for τs, τ ′

s such that, content(τs) ⊆ L,
content(τ ′

s) ⊆ L, M(σs � τs) 6= M(σs), and content(τ ′

s) ⊇ Wi,s. Then, let σs+1 = σs � τs � τ ′

s. Note
that, for all s such τs, τ

′

s exist, and each σs+1 is well defined. Let T =
⋃

s∈N σs. Now T is a recursive
noisy text for L, but M(T )↑. This, contradicts the hypothesis that M NoisyRecTxtExa-identifies
L. 2

Claim 21 Suppose T is a noisy text for L ∈ L. Then,
(i) there exists a σ and n such that (∀τ | content(τ) ⊆ content(T [n : ∞]))[M(σ) = M(σ � τ)],

and
(ii) For all σ and n: If (∀τ | content(τ) ⊆ content(T [n : ∞]))[M(σ) = M(σ � τ)], then

WM(σ) =a L.

13Suppose a, b ∈ N ∪ {∗}.
From [Cas99, BP73] we also have the following criteria intermediate between Ex style and Bc style.
M TxtFexa

b -identifies L from text T iff (∃S | card(S) ≤ b ∧ (∀i ∈ S)[Wi =a L])(∀∞n)[M(T [n]) ∈ S].
M TxtFexa

b -identifies L iff, for all texts T for L, M TxtFexa

b -identifies L from T . In this case we also write
L ∈ TxtFexa

b (M).
We say that M TxtFexa

b -identifies L iff M TxtFexa

b -identifies each L ∈ L.
TxtFexa

b = {L | (∃M)[L ⊆ TxtFexa

b (M)]}.
InfFexa

b is defined similarly.
The definitions of the variants of these learning criteria involving noisy data or computable noisy data are handled

similarly to such variants above.
By generalizing locking sequence arguments from [Cas99] and the present paper, Theorem 19 can be improved to

say: NoisyTxtFexa

b = NoisyRecTxtFexa

b and NoisyInfFexa

b = NoisyRecInfFexa

b .
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Proof. Part (i) follows from Claim 20, and the fact that, for some n, T [n : ∞] is a text for
L. For part (ii) suppose (∀τ | content(τ) ⊆ content(T [n : ∞]))[M(σ) = M(σ � τ)]. Note that
L ⊆ content(T [n : ∞]). Now, consider any recursive text T ′ for L such that each x ∈ L appears
infinitely often in T ′. Then, M(σ � T ′)↓ = M(σ). Since M NoisyRecTxtExa-identifies L, it
follows that WM(σ) =a L. 2

Now construct M′ as follows: M′ on text T searches for a σ and n such that: (∀τ | content(τ) ⊆
content(T [n : ∞]))[M(σ) = M(σ � τ)]. M′ then outputs, in the limit on T , M(σ). It follows from
Claim 21 that M′ NoisyTxtExa-identifies L. This proves part (a) of the theorem.

(b) Suppose M NoisyRecInfExa-identifies L.

Claim 22 For each L ∈ L, there exist σ and n such that, for all τ ∈ Inf[{x | x ≤ n}, L], M(σ) =
M(σ � τ).

Proof. Suppose by way of contradiction, for some L ∈ L, for all σ, n, there exists a τ ∈ Inf[{x |
x ≤ n}, L], such that M(σ) 6= M(σ � τ). Then, we construct a recursive noisy information sequence
I for L such that M(I)↑. Suppose i is a grammar for L. We will define σ0, σ1, . . ., such that
I =

⋃

i∈N σi. Let σ0 = Λ. Suppose σs, has been defined. Then σs+1 is defined as follows.

Definition of σs+1

1. Search for a t > s, and τs such that (a) and (b) are satisfied:

(a) M(σs) 6= M(σs � τs).

(b) For all x ≤ min({s} ∪ (Wi,t − Wi,s))

If (x, 1) ∈ content(τs), then x ∈ Wi,t, and
If (x, 0) ∈ content(τs), then x 6∈ Wi,t].

2. If and when such τs and t are found, let σs+1 = σ � τs � τ ′

s, where content(τ ′

s) = {(x, 1) | x ≤
s ∧ x ∈ Wi,s} ∪ {(x, 0) | x ≤ s ∧ x 6∈ Wi,s}.

End

We claim that, (i) for all s, search in step 1 of the definition of σs+1 succeeds, and (ii) I =
⋃

s∈N σs is a noisy informant for L. This (using M(I)↑) would prove the claim. To see (i), let
t′ = min({t′′ | Wi ∩ {x | x ≤ s} ⊆ Wi,t′′}). Let τ ′ be such that τ ′ ∈ Inf[{x | x ≤ s}, L] and
M(σs) 6= M(σs � τ ′). Then, t = t′ and τs = τ ′ witness that search in step 1 succeeds. To see (ii),
for any x, let s = max({x} ∪min({t | Wi ∩ {y | y ≤ x} ⊆ Wi,t})). Then, for all s′ > s, τs′ � τ ′

s′ as in
the definition of σs′+1, will satisfy: (x, 1) ∈ content(τs′ � τ ′

s′) iff x ∈ L and (x, 0) ∈ content(τs′ � τ ′

s′)
iff x 6∈ L. Thus, I is a noisy informant for L. 2

Claim 23 Suppose I is a noisy informant for L ∈ L. Then,
(i) there exist σ, n and m such that, (∀τ ∈ Inf[{x | x ≤ n},PosInfo(I[m])])[M(σ) = M(σ � τ)],

and (∀x ≤ n)(∀m′ ≥ m)[I(m′) 6= (x, 1 − χPosInfo(I[m]))].

(ii) for all σ, n and m: If (∀τ ∈ Inf[{x | x ≤ n},PosInfo(I[m])])[M(σ) = M(σ � τ)], and
(∀x ≤ n)(∀m′ ≥ m)[I(m′) 6= (x, 1 − χPosInfo(I[m]))], then WM(σ) =a L.

Proof. Part (i) follows from Claim 22 by picking m such that, for x ≤ n, x ∈ PosInfo(I[m]) iff
x ∈ L and (∀x ≤ n)(∀m′ ≥ m)[I(m′) 6= (x, 1 − χPosInfo(I[m]))].

For part (ii), suppose σ, n and m are given satisfying the hypothesis. Let I ′ be a recursive noisy
informant for L, such that, for all x ≤ n, (x, 1) ∈ content(I ′) iff x ∈ L, and (x, 0) ∈ content(I ′) iff

12



x 6∈ L. Note that there exists such a recursive noisy informant. Now we have by hypothesis that
M(σ � I ′) = M(σ). Since M NoisyRecInfExa-identifies L, it follows that WM(σ) =a L. 2

Now construct M′ as follows: M′ on noisy informant I, searches for a σ, n and m such that:
(∀τ ∈ Inf[{x | x ≤ n},PosInfo(I[m])])[M(σ) = M(σ � τ)], and (∀x ≤ n)(∀m′ ≥ m)[I(m′) 6=
(x, 1−χPosInfo(I[m]))], Note that such σ, n and m can be found in the limit, if they exist. M′ then

outputs, in the limit on I, M(σ). It follows from Claim 23 that M′ NoisyInfExa-identifies every
L ∈ L. This proves part (b) of the theorem.

Theorem 24 Suppose n ∈ N .
(a) NoisyTxtEx − NoisyRecInfBcn 6= ∅.
(b) NoisyInfEx − NoisyRecTxtBcn 6= ∅.

Proof. (a) Let L0 = {〈x, 0〉 | x ∈ N}. For i > 0, let Li = {〈x, 0〉 | x ≤ i} ∪ {〈x, i〉 | x > i}. Let
L = {Li | i ∈ N}. It is easy to verify that L ∈ NoisyTxtEx. Suppose by way of contradiction
that M NoisyRecInfBcn-identifies L. Let σ0 be empty sequence. Go to stage 0.

Stage s

1. Search for a τs ∈ Inf[{y | y ≤ s}, L0] such that, WM(σs�τs) enumerates at least n + 1 elements
not in L0.

2. If and when such a τs is found, let σs+1 = σs � τs � τ ′

s, where content(τ ′

s) = {(y, χL0(y)) | y ≤ s}.

Go to stage s + 1.

End stage s

We now consider the following cases:
Case 1: There exist infinitely many stages.
In this case I =

⋃

s∈N σs is a recursive noisy informant for L0. However, M on I infinitely often
(at each σs � τs) outputs a grammar, which enumerates at least n + 1 elements not in L0.

Case 2: Stage s starts but does not finish.
Let i > 0 be such that Li ∩ {y | y ≤ s} = L0 ∩ {y | y ≤ s}. Let I be a recursive informant for

Li, in which each (x, χLi
(x)) appears infinitely often. M does not InfBcn-identify Li from σs � I

(since, for each τ ⊆ I, M(σ � τ) does not enumerate more than n elements of Li − L0). It follows
that M does not NoisyRecInfBcn-identify Li.

From the above cases it follows that L 6∈ NoisyRecInfBcn.
(b) Let L = {L | Wmin(L) = L}. Clearly, L ∈ NoisyInfEx. We show that L 6∈

NoisyRecTxtBcn. Suppose by way of contradiction, M NoisyRecTxtBcn-identifies L. Then,
by operator recursion theorem [Cas74], there exists a recursive, 1–1, increasing function p, such
that Wp(·) may be defined as follows. For all i > 0, Wp(i) = {p(j) | j ≥ i}. Note that Wp(i) ∈ L,
for all i ≥ 1. We will define Wp(0) below. It will be the case that Wp(0) ∈ L. Let σ0 be such that
content(σ0) = {p(0)}. Enumerate p(0) in Wp(0). Let q0 = 1. Go to stage 0.

Stage s

1. Search for a τs and set S such that content(τs) ⊆ Wp(qs), card(S) ≥ n+1, S∩content(σs�τs) = ∅,
and S ⊆ WM(σs�τs).

2. If and when such a τs is found, let
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X = content(σs � τs).

Enumerate X in Wp(0).

Let τ ′

s be such that content(τ ′

s) = X.

Let σs+1 = σs � τs � τ ′

s.

Let qs+1 = 1 + max({w | p(w) ∈ X ∪ S}).

Go to stage s + 1.

End stage s

We now consider two cases.
Case 1: All stages halt.
In this case, let T =

⋃

s∈N σs. Clearly, T is a noisy recursive text for Wp(0) ∈ L, and M does not
TxtBcn-identifies Wp(0) from T , since, for each s, M(σs � τs) enumerates at least n + 1 elements
not in Wp(0).

Case 2: Stage s starts but does not halt.
In this case let L = Wp(qs). Clearly, L ∈ L. Let T be a recursive text for L such that every

element for L appears infinitely often in T . Now, M does not TxtBcn-identify L from σs �T , since
M(σs � τ) is finite for all τ ⊆ T (otherwise step 1 in stage s would succeed).

It follows from the above cases that M does not NoisyRecTxtBcn-identify L.

Theorem 25 Suppose n ∈ N .
(a) NoisyTxtBcn+1 − RecInfBcn 6= ∅.
(b) NoisyInfBcn+1 − RecInfBcn 6= ∅.

Proof. The main idea is to modify the construction of Bcn+1 −Bcn in [CS83].
(a) Let L = {L ∈ REC | card(L) = ∞ ∧ (∀∞x ∈ L)[Wx =n+1 L]}. Clearly, L ∈

NoisyTxtBcn+1. An easy modification of the proof of Bcn+1 − Bcn 6= ∅ in [CS83] shows that
L 6∈ RecInfBcn. We omit the details.

(b) Let L = {L ∈ REC | (∀x ∈ Wmin(L))[Wx =n+1 L] ∨ [card(Wmin(L)) < ∞ ∧

Wmax(Wmin(L)) =n+1 L]}. It is easy to verify that L ∈ NoisyInfBcn+1. An easy modification

of the proof of Bcn+1 − Bcn 6= ∅ in [CS83] shows that L 6∈ RecInfBcn. We omit the details.

Theorem 26 (a) NoisyRecTxtBc − TxtBc∗ 6= ∅.
(b) NoisyRecInfBc −TxtBc∗ 6= ∅.

Proof. (a) Corollary 33 below shows that all indexed families are in NoisyRecTxtBc. However,
L = {L | card(L) < ∞} ∪ {N} is an indexed family which is not in TxtBc∗.

(b) Let L0 = N , and for i > 0, Li = {x | x ≤ i}. Let L = {Li | i ∈ N}. Note that L 6∈ TxtBc∗

(essentially due to [Gol67]). Now let zi = i + 1. It is easy to verify that, for all i, for all L′ ∈ N ,
if L′ ∩ {x | x ≤ zi} = L ∩ {x | x ≤ zi}, then L′ ⊆ L. It follows from Corollary 43 below that
L ∈ NoisyRecInfBc.

It is open at present whether, for m ≤ n, (i) NoisyRecTxtBcm − InfBcn 6= ∅? and whether
(ii) NoisyRecInfBcm − InfBcn 6= ∅? In this context note that

Theorem 27 RecTxtBca ∩ 2REC ⊆ InfBca.
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Proof. For a recursive language L, consider the text:

TL(x) =

{

#, if x 6∈ L;
x, otherwise.

Note that TL is a recursive text for L. Moreover, TL can be obtained algorithmically from an
informant for L. Thus, one can convert an informant for a recursive language algorithmically into
a recursive text for L. It follows that RecTxtBca ∩ 2REC ⊆ InfBca.

4 Principal Results on Synthesizers

Since E ∈ NoisyRecTxtBc∗ and E ∈ NoisyRecInfBc∗, the only cases of interest are regarding
when NoisyRecTxtBcn and NoisyRecInfBcn synthesizers can be obtained algorithmically.

4.1 Principal Results on Synthesizing From Uniform Decision Indices

The next result is the main theorem of the present paper.

Theorem 28 (∃f ∈ R)(∀i)[Ui ⊆ NoisyRecTxtBc(Mf(i))].

Proof. Let Mf(i) be such that, Mf(i)(T [n]) = prog(T [n]), where, Wprog(T [n]) is defined as follows.
Construction of prog will easily be seen to be algorithmic in i.

If Ui is empty, then trivially Mf(i) NoisyRecTxtBc-identifies Ui. So suppose Ui is nonempty
(in particular, for all j ∈ Wi, j is a decision procedure). In the construction below, we will thus
assume without loss of generality that, for each j ∈ Wi, j is a decision procedure.

Let g be a computable function such that, range(g) = {〈j, k〉 | j ∈ Wi ∧ k ∈ N}. Intuitively, for
an input noisy recursive text T for a language L, think of m such that g(m) = 〈j, k〉 as representing
the hypothesis: (i) L = Uj , (ii) ϕk = T , and (iii) T [m : ∞] does not contain any element from L.
In the procedure below, we just try to collect “non-harmful” and “good” hypothesis in Pn and Qs

n

(more details on this in the analysis of prog(T [n]) below). Let P1 and P2 be recursive functions
such that g(m) = 〈P1(m),P2(m)〉.

Wprog(T [n])

1. Let Pn = {m | m ≤ n} − [{m | content(T [m : n]) 6⊆ UP1(m)} ∪ {m | (∃k < n)[ΦP2(m)(k) ≤
n ∧ ϕP2(m)(k) 6= T (k)]}].

(* Intuitively, Pn is obtained by deleting m ≤ n which represent a clearly wrong hypothesis. *)

(* Qs
n below is obtained by refining Pn so that some further properties are satisfied. *)

2 Let Q0
n = Pn.

Go to stage 0.

3. Stage s

3.1 Enumerate
⋂

m∈Qs
n

UP1(m).

3.2 Let Qs+1
n = Qs

n − {m′ | (∃m′′ ∈ Qs
n)(∃k ≤ s)[m′′ < m′ ≤ k ∧ [ΦP2(m′′)(k) ≤ s ∧

ϕP2(m′′)(k) 6∈ UP1(m′)]]}.
3.3 Go to stage s + 1.

End stage s.

End
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Let T be a noisy recursive text for L ∈ Ui. Let m be such that UP1(m) = L, T [m : ∞] is a text
for L, and ϕP2(m) = T . Note that there exists such an m (since ϕ is acceptable numbering, and T

is a noisy recursive text for L). Consider the definition of Wprog(T [n]) for n ∈ N as above.

Claim 29 For all m′ ≤ m, for all but finitely many n, if m′ ∈ Pn then
(a) L ⊆ UP1(m′), and
(b) (∀k)[ϕP2(m′)(k)↑ ∨ ϕP2(m′)(k) = T (k)].

Proof. Suppose m′ ≤ m.
(a) If UP1(m′) 6⊇ L, then there exists a k > m′ such that T (k) 6∈ UP1(m′). Thus, for n > k,

m′ 6∈ Pn.
(b) If there exists a k such that [ϕP2(m′)(k)↓ 6= T (k)], then for all n > max({k,ΦP2(m′)(k)}),

m′ 6∈ Pn.
The claim follows. 2

Claim 30 For all but finitely many n: m ∈ Pn.

Proof. For n ≥ m, clearly m ∈ Pn. 2

Let n0 be such that, for all n ≥ n0, (a) m ∈ Pn, and (b) for all m′ ≤ m, if m′ ∈ Pn, then
L ⊆ UP1(m′) and (∀k)[ϕP2(m′)(k)↑ ∨ ϕP2(m′)(k) = T (k)]. (There exists such a n0 by Claims 29
and 30.)

Claim 31 Consider any n ≥ n0. Then, for all s, we have m ∈ Qs
n. It follows that Wprog(T [n]) ⊆ L.

Proof. Fix n ≥ n0. The only way m can be missing from Qs
n is the existence of m′′ < m, and

t > m such that m′′ ∈ Pn, and ϕP2(m′′)(t)↓ 6∈ L. But then m′′ 6∈ Pn by the condition on n0. Thus
m ∈ Qs

n, for all s. 2

Claim 32 Consider any n ≥ n0. Suppose m ≤ m′ ≤ n. If (∃∞s)[m′ ∈ Qs
n], then L ⊆ UP1(m′).

Note that, using the condition on n0, this claim implies L ⊆ Wprog(T [n]).

Proof. Fix any n ≥ n0. Suppose (∃∞s)[m′ ∈ Qs
n]. Thus, (∀s)[m′ ∈ Qs

n]. Suppose L 6⊆ UP1(m′).
Let y ∈ L − UP1(m′). Let k ≥ m′ be such that T (k) = y. Note that there exists such a k, since y

appears infinitely often in T . But then ϕP2(m)(k)↓ 6∈ UP1(m′). This would imply that m′ 6∈ Qs
n, for

some s, by step 3.2 in the construction. Thus, L ⊆ UP1(m′), and claim follows. 2

From Claims 31 and 32 it follows that, for n ≥ n0, Wprog(T [n]) = L. Thus, Mf(i)

NoisyRecTxtBc-identifies Ui.

As a corollary we get the following result.

Corollary 33 Every indexed family belongs to NoisyRecTxtBc.

As noted in Section 1 above, then, the class of finite unions of pattern languages is
NoisyRecTxtBc-learnable.

Remark 34 In the above theorem, learnability is not obtained by learning the rule for generating
the noise. In fact, in general, it is impossible to learn (in the Bc-sense) the rule for noisy text
generation (even though the noisy text is computable).
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While the NoisyRecTxtBca-hierarchy collapses for indexed families, we see below that the
NoisyRecInfBca-hierarchy does not so collapse.

Lemma 35 Let n ∈ N .
(a) Suppose L is a recursive language, and M NoisyRecInfBcn-identifies L. Then there exists

a σ and z such that (∀τ ∈ Inf[{x | x ≤ z}, L])[card(WM(σ�τ) − L) ≤ n].
(b) Suppose L is an indexed family in NoisyRecInfBcn. Then, for all L ∈ L, there exists a z

such that, for all L′ ∈ L, [({x ≤ z | x ∈ L} = {x ≤ z | x ∈ L′}) ⇒ (card(L′ − L) ≤ 2n)].

Proof. (a) Suppose by way of contradiction otherwise. Thus

(∀σ)(∀z)(∃τ ∈ Inf[{x | x ≤ z}, L])[card(WM(σ�τ) − L) > n]

We will construct a recursive noisy informant I for L such that, for infinitely many m, WM(I[m]) 6=
n

L. This would contradict the hypothesis that M NoisyRecInfBcn-identifies L. Note that L is
recursive. So one can algorithmically determine whether τ ∈ Inf[{x | x ≤ z}, L]. Initially let σ0 be
empty sequence. Go to stage 0.

Stage s

1. Search for a τs ∈ Inf[{x | x ≤ s}, L] such that card(WM(σs�τs) − L) > n.

2. If and when such τs is found, let τ ′

s be such that content(τ ′

s) = {(x, χL(x)) | x ≤ s}.

(That is, τ ′

s is the first s + 1 elements of the canonical information sequence for L)

Let σs+1 = σs � τs � τ ′

s.

Go to stage s + 1.

End

First note that the search for τs succeeds in every stage (otherwise σs and s witness part
(a) of the lemma). Let I =

⋃

s∈N σs. Now I is recursive and is a noisy informant for L (since
(x, 1 − χL(x)) does not appear in I beyond σx, and (x, χL(x)) appears in τ ′

s, for every s ≥ x).
However, WM(σs�τs) 6=n L, for every s. Thus, M does not NoisyRecTxtBcn-identify L. This
proves part (a) of the lemma.

(b) Suppose M NoisyRecInfBcn-identifies L. Let σ and z be such that (∀τ ∈ Inf[{x | x ≤
z}, L])[card(WM(σ�τ) − L) ≤ n] (by part (a) there exist such σ and z). Consider, any L′ ∈ L such
that {x ≤ z | x ∈ L} = {x ≤ z | x ∈ L′}. Consider any recursive informant I for L′ such that, for
all x, (x, χL′(x)) appears infinitely often in I. Now, for all τ ⊆ I, card(WM(σ�τ) − L) ≤ n. Since,
for all but finitely many τ ⊆ I, WM(σ�τ) =n L′, it follows that card(L′ − L) ≤ 2n.

Theorem 36 Suppose n ∈ N . {L | card(L) ≤ 2(n + 1)} ∈ NoisyInfBcn+1 − NoisyRecInfBcn.

Proof. For a finite set S, let prog(S) denote a grammar for S, algorithmically obtained from S.
Let M(I[m]) = prog(S), where S is the least n + 1 elements in PosInfo(I[m]) (if PosInfo(I[m])
contains less than n + 1 elements, then S = PosInfo(I[m])). Now consider any L ∈ L. Let I be a
noisy informant for L.

We consider two cases:
Case 1: card(L) ≥ n + 1.
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Let S′ denote the least n+1 elements of L. Now, for all but finitely many m, S ′ is the set of least
n + 1 elements in PosInfo(I[m]). It follows that, for all but finitely many m, M(I[m]) = prog(S ′).
Thus M NoisyInfBcn+1-identifies L.

Case 2: card(L) ≤ n + 1.
In this case, for all but finitely many m, L is the set of least card(L) elements in PosInfo(I[m]).

It follows that, for all but finitely many m, L ⊆ WM(I[m]). Since WM(I[m]) contains at most n + 1

elements, it follows that M NoisyInfBcn+1-identifies L.
Thus L ∈ NoisyInfBcn+1.
We now show that L 6∈ NoisyRecInfBcn. Suppose by way of contradiction that L ∈

NoisyRecInfBcn. Note that ∅ ∈ L. Thus, by Lemma 35(b), there exists a z such that, for
all L′ ∈ L, [{x | x ≤ z} ∩ L′ = ∅] ⇒ [card(L′) ≤ 2n]. Now clearly there are languages L′ ∈ L of
cardinality 2n + 1 such that {x | x ≤ z} ∩ L′ = ∅. It follows that L 6∈ NoisyRecInfBcn.

We will see in Corollary 42 below that it is possible to algorithmically synthesize learners for
NoisyRecInfBc-learnable indexed families.

Theorem 37 There exists f ∈ R such that the following is satisfied. Suppose (∀L ∈ Ui)(∃z)(∀L′ ∈
Ui)[({x ≤ z | x ∈ L} = {x ≤ z | x ∈ L′}) ⇒ L′ ⊆ L]. Then, [Ui ∈ NoisyRecInfBc(Mf(i))].

Proof. Let Mf(i) be such that, Mf(i)(I[n]) = prog(I[n]), where, Wprog(I[n]) is defined as follows.
Construction of prog will easily be seen to be algorithmic in i.

If Ui is empty, then trivially Mf(i) NoisyRecInfBc-identifies Ui. So suppose Ui is nonempty
(in particular, for all j ∈ Wi, j is a decision procedure). In the construction below, we will thus
assume without loss of generality that, for each j ∈ Wi, j is a decision procedure.

Let g be a computable function such that, range(g) = {〈j, k, `〉 | j ∈ Wi ∧ k, ` ∈ N}. Intuitively,
for an input noisy recursive informant I for a language L, think of m such that g(m) = 〈j, k, l〉 as
representing the hypothesis: (i) L = Uj , (ii) ϕk = I, (iii) ` = z as in Lemma 35(b) for L = Uj and
L = Ui, and (iv) (∀x ≤ `)(∀t ≥ m)[I(t) 6= (x, 1 − χL(x))] (see more details on this in the analysis
of prog(I[n]) below).

Let P1, P2 and P3 be recursive functions such that g(m) = 〈P1(m),P2(m),P3(m)〉.

Wprog(I[n])

1. Let Pn = {m | m ≤ n}− [{m | (∃x ≤ P3(m))(∃t | m ≤ t < n)[I(t) = (x, 1−χUP1(m)
(x))]}∪ {m |

(∃k < n)[ΦP2(m)(k) ≤ n ∧ ϕP2(m)(k) 6= I(k)]}].

(* Intuitively, Pn is obtained by deleting m ≤ n which represent a clearly wrong hypothesis. *)

(* Qs
n below is obtained by refining Pn so that some further properties are satisfied. *)

2 Let Q0
n = Pn.

Go to stage 0.

3. Stage s

3.1 Enumerate
⋂

m∈Qs
n

UP1(m).
3.2 Let

As = {m′ ∈ Qs
n | (∃m′′ ≤ s)[(∀x ≤ P3(m′))[x ∈ UP1(m′) ⇔ x ∈ UP1(m′′)] ∧ (∃y ≤ s)[y ∈

UP1(m′′) − UP1(m′)]]}.
Bs = {m′ ∈ Qs

n | (∃m′′ ∈ Qs
n)[m′′ < m′ ∧ (∃k, x | m′ ≤ k ≤ s ∧ x ≤ P3(m′))[ΦP2(m′′)(k) ≤

s ∧ ϕP2(m′′)(k) = (x, 1 − χU
P1(m′)

(x))]]}).
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Qs+1
n = Qs

n − (As ∪ Bs).
Go to stage s + 1.

End stage s.

End

Let I be a noisy recursive informant for L ∈ Ui. Let m be such that (a) UP1(m) = L, (b)
I = ϕP2(m), (c) for all L′ ∈ Ui, [{x ≤ P3(m) | x ∈ L} = {x ≤ P3(x) | x ∈ L′} ⇒ L′ ⊆ L], and
(d) (∀t ≥ m)(∀x ≤ P3(m))[I(t) 6= (x, 1 − χL(x))]. Note that there exists such an m (since ϕ is
acceptable numbering, I is a noisy recursive informant for L, and using Lemma 35(b)). Consider
the definition of Wprog(I[n]) for n ∈ N as above.

Claim 38 For all m′ ≤ m, for all but finitely many n, if m′ ∈ Pn then
(a) for all x ≤ P3(m′), x ∈ UP1(m′) ⇔ x ∈ L.
(b) (∀k, x | m ≤ k ∧ x ≤ P3(m))[ϕP2(m′)(k)↑ ∨ ϕP2(m′)(k) 6= (x, 1 − χL(x))].

Proof. Consider any m′ ≤ m. (a) If there exists a x ≤ P3(m′) such that x ∈ L∆UP1(m′), then
there exists a t > m′ such that I(t) = (x, χL(x)) = (x, 1 − χUP1(m′)

(x)). Thus, for large enough n,

m′ 6∈ Pn.
(b) Suppose k, x are such that m ≤ k, x ≤ P3(m) and ϕP2(m′)(k)↓ = (x, 1 − χL(x)). Then due

to the definition of m, I(k) = (x, χL(x)) 6= ϕP2(m′)(k). Thus, for large enough n, m′ 6∈ Pn. 2

Claim 39 For all but finitely many n: m ∈ Pn.

Proof. For n ≥ m, clearly m ∈ Pn. 2

Let n0 be such that for all n ≥ n0, m ∈ Pn, and for all m′ ≤ m, if m′ ∈ Pn then (a) for all
x ≤ P3(m′), x ∈ UP1(m′) ⇔ x ∈ L, and (b) (∀k, x | m ≤ k ∧ x ≤ P3(m))[ϕP2(m′)(k)↑ ∨ ϕP2(m′)(k) 6=
(x, 1 − χL(x))].

Claim 40 Consider any n ≥ n0. Then, for all s, we have m ∈ Qs
n. It follows that Wprog(T [n]) ⊆ L.

Proof. Fix n ≥ n0, and consider the computation of Wprog(I[n]). Note that, by the definition of m

and hypothesis of the theorem, m cannot belong to As in stage s in the computation of Wprog(I[n]).
We now show that m cannot belong to Bs either. Suppose m′′ < m, m′′ ∈ Pn, a t > m, and a
x ≤ P3(m), are such that ϕP2(m′′)(t)↓ = (x, 1− χL(x)). But then m′′ 6∈ Pn by the requirements on
n0. Thus m ∈ Qs

n, for all s. 2

Claim 41 Consider any n ≥ n0. Suppose m′ ≤ n. If (∃∞s)[m′ ∈ Qs
n], then L ⊆ UP1(m′). Note

that this implies L ⊆ Wprog(T [n]).

Proof. Fix any n ≥ n0, and consider the computation of Wprog(I[n]). Suppose (∃∞s)[m′ ∈ Qs
n].

Thus, (∀s)[m′ ∈ Qs
n]. Suppose L 6⊆ UP1(m′). Let w ∈ L − UP1(m′). We consider two cases:

Case 1: m′ < m.
In this case, by the condition on n0, we have that, (∀x ≤ P3(m′))[x ∈ UP1(m′) ⇔ x ∈ L =

UP1(m)]. Thus, for large enough s, m′ 6∈ Qs
n (since for m′′ = m and y = w, (∀x ≤ P3(m′))[x ∈

UP1(m′) ⇔ x ∈ UP1(m′′)] ∧ [y ∈ UP1(m′′) − UP1(m′)], and thus m′ ∈ As for large enough s).
Case 2: m′ > m.
Case 2.1: For all x ≤ P3(m′), [x ∈ UP1(m′) ⇔ x ∈ UP1(m)].
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In this case, as in Case 1, for large enough s, m′ 6∈ P3(m′).
Case 2.2: For some x ≤ P3(m′), [x ∈ UP1(m′)∆UP1(m)].
In this case, there exists a k > m′, such that ϕP2(m)(k)↓ = (x, χL(x)) = (x, 1−χUP1(m′)

). Thus,

for large enough s, m′ ∈ Bs and thus m′ 6∈ Qs
n.

Claim follows from the above cases. 2

From Claims 40 and 41 it follows that, for n ≥ n0, Wprog(T [n]) = L. Thus, Mf(i)

NoisyRecInfBc-identifies Ui.

As a corollary to Lemma 35(b) and Theorem 37 we have the second main, positive result of the
present paper:

Corollary 42 (∃f ∈ R)(∀i | Ui ∈ NoisyRecInfBc)[Ui ⊆ NoisyRecInfBc(Mf(i))].

The following corollary to Lemma 35(b) and Theorem 37 provides the very nice characterization
of indexed families in NoisyRecInfBc.14

Corollary 43 Ui ∈ NoisyRecInfBc ⇔ for all L ∈ Ui, there exists a z such that, for all L′ ∈ Ui,
[({x ≤ z | x ∈ L} = {x ≤ z | x ∈ L′}) ⇒ L′ ⊆ L].

For n > 0, we do not know about synthesizing learners for Ui ∈ NoisyRecInfBcn.

4.2 Principal Results on Synthesizing From R.E. Indices

Theorem 44 ¬(∃f ∈ R)(∀i | Ci ∈ NoisyTxtEx ∩NoisyInfEx)[Ci ⊆ RecTxtBcn(Mf(x))].

Proof. Theorem 17 in [CJS99] showed ¬(∃f ∈ R)(∀i | Ci ∈ NoisyTxtEx ∩ NoisyInfEx)[Ci ⊆
TxtBcn(Mf(x))]. The proof of this given in [CJS99] also shows that ¬(∃f ∈ R)(∀i | Ci ∈
NoisyTxtEx ∩ NoisyInfEx)[Ci ⊆ RecTxtBcn(Mf(x))].

Corollary 45

¬(∃f ∈ R)(∀i | Ci ∈ NoisyTxtEx ∩ NoisyInfEx)[Ci ⊆ NoisyRecTxtBcn(Mf(x))].

Corollary 46

¬(∃f ∈ R)(∀i | Ci ∈ NoisyTxtEx ∩ NoisyInfEx)[Ci ⊆ NoisyRecInfBcn(Mf(x))].

4.3 Synthesizing Learners Employing Noise-Free Data

We first note that for recursive languages, identification from recursive informant is same as iden-
tification from general informants (since the canonical informants are recursive). For non-recursive
languages, there are no recursive informants. Thus, we only consider RecTxtBca below. In this
context, for learning from uniform decisions procedures, we have the following corollary to Theo-
rem 28 above in Section 4.1.

Corollary 47 (∃f ∈ R)(∀x)[Ux ⊆ RecTxtBc(Mf(x))].

For learning from indices for r.e. classes, Theorem 44 shows ¬(∃f ∈ R)(∀i | Ci ∈ NoisyTxtEx∩
NoisyInfEx)[Ci ⊆ RecTxtBcn(Mf(x))]. Also, as a corollary to Theorem 18 we have E ∈
RecTxtBc∗.

14Hence, as was noted in Section 1 above, we have: {L | card(N−L) is finite } ∈ (NoisyRecInfBc−NoisyInfBc).
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5 A World of Limiting-Recursive Texts

As indicated in Section 1 above, in this section, we consider briefly what would happen if the world
provided limit recursive data sequences (instead of computable or unrestricted ones).

One can extend the definition of learning from texts to limit recursive texts too. Since, for every
r.e. language, the canonical informant is limit recursive, the notion of learning from limit recursive
informant collapses to the notion of learning from arbitrary informants (for Bca and Exa style
learning criteria).

Definition 48 [KR88] A text T is normalized, iff for all n, T (n) = #, or T (n) < n. A sequence σ

is normalized iff for all n < |σ|, σ(n) = #, or σ(n) < n.

Note that one can algorithmically convert any (noisy) text for a language L to a normalized (noisy)
text for L. Thus, any class of languages, which can be (Noisy)TxtBca-identified from normalized
texts, can also be (Noisy)TxtBca-identified from arbitrary texts. We say that σ is a normalized-
TxtBca-locking sequence for M on L, iff σ is normalized, content(σ) ⊆ L, and for all normalized
extensions τ of σ such that content(τ) ⊆ L, WM(τ) =a L. Similarly, we say that σ is a normalized-
NoisyTxtBca-locking sequence for M on L, iff σ is normalized, and for all τ such that content(τ) ⊆
L, and σ � τ is normalized, WM(σ�τ) =a L.

Proposition 49 Suppose M and a r.e. language L are given. Suppose normalized sequence σ is
such that, there exists a τ , content(τ) ⊆ L, and σ � τ is normalized, and WM(σ�τ) 6= L. Then one
can find one such τ , limit effectively in σ, M, and a grammar for L.

Note that one can canonically index all the finite sequences. Below we identify finite sequences
with their canonical indices. Thus, comparisons such as 〈σ,m〉 < 〈τ, k〉, mean the comparisons so
formed by replacing the sequences with their canonical indices.

Theorem 50 (a) Suppose M LimRecTxtBc-identifies L. Then, for all normalized σ such that
content(σ) ⊆ L, there exists a τ , such that content(τ) ⊆ L, σ � τ is normalized, and σ � τ is a
normalized-TxtBc-locking sequence for M on L.

(b) Suppose M LimRecNoisyTxtBc-identifies L. Then, for all normalized σ, there exists a
τ , such that content(τ) ⊆ L, σ � τ is normalized, and σ � τ is a normalized-NoisyTxtBc-locking
sequence for M on L.

Proof. We show part (a). Part (b) is similar. Suppose M, L and σ are given as in hypothesis.
Suppose by way of contradiction that there is no τ such that σ � τ is normalized and σ � τ is a
normalized-TxtBc-locking sequence for M on L. Then for all τ such that content(τ) ⊆ L and σ �τ

is normalized, there exists a τ ′ such that content(τ ′) ⊆ L, σ�τ�τ ′ is normalized and WM(σ�τ�τ ′) 6= L.
Now suppose T is a recursive text for L. Now define σi as follows: σ0 = σ. σ2i+1 = σ2i �

(T (i)). σ2i+2 = σ2i+1 � τ2i+1, where τ2i+1 is such that content(τ2i+1) ⊆ L, σ2i+2 is normalized,
WM(σ2i+2) 6= L, and τ2i+1 can be obtained in the limit from σ2i+1 (see Proposition 49). It follows
that T ′ =

⋃

i∈N σi is a limit recursive text which is not TxtBc-identified by M.

The proof of Theorem 4.9 in [KR88] also showed that
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Theorem 51 From a given M one can algorithmically generate an M′ such that, for all L:
If every normalized σ, such that content(σ) ⊆ L, has a normalized extension σ′, which is a

normalized TxtBc-locking sequence for M on L, then M′ TxtBc-identifies L from normalized
texts.

As a corollary we have

Corollary 52 TxtBc = LimRecTxtBc. Moreover, for any M, one can algorithmically find M′

such that LimRecTxtBc(M) ⊆ TxtBc(M′).

The proof of Theorem 51 can be generalized to show

Theorem 53 From a given M one can algorithmically generate an M′ such that, for all L:
If for every normalized σ, there exists a τ , such that content(τ) ⊆ L, σ � τ is normalized and

σ�τ is a NoisyTxtBc-locking sequence for L, then M′ NoisyTxtBc-identifies L from normalized
texts.

Proof. Define WM′(T [n]) as follows:
WM′(T [n]) = {x | (∃ normalized σ)(∃m)[(∀τ | content(τ) ⊆ T [m : n] and σ � τ is normalized)

[x ∈ WM(σ�τ)] ∧ (∀ normalized σ′)(∀m′ | 〈σ′,m′〉 ≤ 〈σ,m〉)(∃τ | content(τ) ⊆ T [m′ : n] and σ′ � τ

is normalized)[x ∈ WM(σ′�τ)]]}.
Now suppose T is a noisy text for L ∈ LimRecNoisyTxtBc(M). Let α, k be such that α is

normalized NoisyTxtBc-locking sequence for M on L, and T [k : ∞] is a text for L. Note that there
exist such α and k. For all 〈α′, k′〉 ≤ 〈α, k〉, let S(α′, k′) be sequence such that content(S(α′, k′)) ⊆
L, and α′ � S(α′, k′) is a NoisyTxtBc locking sequence for M on L. Let n0 be so large that, for
all 〈α′, k′〉 ≤ 〈α, k〉, content(S(α′, k′)) ⊆ content(T [k′ : n0]).

We then claim that, for n ≥ n0, WM′(T [n]) = L.

Claim 54 For n ≥ n0, L ⊆ WM′(T [n]).

Proof. For n ≥ n0, by choosing σ = α and m = k, and for 〈σ′,m′〉 ≤ 〈α,m〉, choosing τ =
S(σ′,m′), in the definition of WM′(T [n]), it is easy to verify that L ⊆ WM′(T [n]). 2

Claim 55 For n ≥ n0, WM′(T [n]) ⊆ L.

Proof. Suppose x ∈ WM′(T [n]). Let σ,m be as chosen in the definition of WM′(T [n]) due to which
x is included in WM′(T [n]). We consider two cases:

Case 1: 〈σ,m〉 ≥ 〈α, k〉
In this case, due to existance of τ such that α � τ is normalized and content(τ) ⊆ T [k : ∞],

and x ∈ WM(α�τ), we immediately have that x ∈ L (since α is normalized-NoisyTxtBc-locking
sequence for M on L, and T [k : ∞] is a text for L).

Case 2: 〈σ,m〉 < 〈α, k〉
In this case, since for τ = S(σ,m), x ∈ WM(σ�S(σ,m)), we have that x ∈ L (since σ � S(σ,m) is

normalized-NoisyTxtBc-locking sequence for M on L).
From the above cases, claim follows. 2

The theorem follows from the above claims.
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Corollary 56 NoisyTxtBc = LimRecNoisyTxtBc. Moreover, for any M, one can algorith-
mically find M′ such that LimRecNoisyTxtBc(M) ⊆ NoisyTxtBc(M′).

It is presently open whether, for n > 0, NoisyTxtBcn = LimRecNoisyTxtBcn. It is also
open whether NoisyInfBcn = LimRecNoisyInfBcn, for n ≥ 0.

6 Conclusions and Future Directions

In a computable universe, all data sequences, even noisy ones, are computable. Based on this, we
studied in this paper the effects of having computable noisy data as input. In addition to comparing
the criteria so formed within themselves and with related criteria from the literature, we studied
the problem of synthesizing learners for r.e. classes and indexed families of recursive languages. The
main result of the paper (Theorem 28) showed that all indexed families of recursive languages can
be learned (in Bc-sense) from computable noisy texts. Moreover, one can algorithmically find a
learner doing so, from an index for any indexed family. Another main positive result of the paper,
Corollary 43, gives a characterization of indexed families which can be learned (in Bc-sense) from
computable noisy informant.

It is interesting to extend the study to the case where the texts have some other restriction
than the computability restriction we considered in this paper. In this regard we briefly considered
limiting recursive texts. One of the surprising results we have here is that TxtBc = LimRecTxtBc

and NoisyTxtBc = LimRecNoisyTxtBc. One can also similarly consider texts from natural
subrecursive classes [RC94], linear-time computable and above. From [Gol67, Cas86], in that setting,
some machine learns E . However, it remains to determine the possible tradeoffs between the
complexity of the texts and useful complexity features of the resultant learners. [Cas86] mentions
that, in some cases, subrecursiveness of texts forces infinite repetition of data. Can this be connected
to complexity tradeoffs? [Cas86] further notes that, if the texts we present to children, contain many
repetitions, that would be consistent with a restriction in the world to subrecursive texts.
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