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Abstract

This paper studies the Turing degrees of various properties defined for universal
numberings, that is, for numberings which list all partial-recursive functions.
In particular properties relating to the domain of the corresponding functions
are investigated like the set DEQ of all pairs of indices of functions with the
same domain, the set DMIN of all minimal indices of sets and DMIN∗ of all
indices which are minimal with respect to equality of the domain modulo finitely
many differences. A partial solution to a question of Schaefer is obtained by
showing that for every universal numbering with the Kolmogorov property, the
set DMIN∗ is Turing equivalent to the double jump of the halting problem.
Furthermore, it is shown that the join of DEQ and the halting problem is Turing
equivalent to the jump of the halting problem and that there are numberings
for which DEQ itself has 1-generic Turing degree.

Keywords: 1-generic, index sets, Kolmogorov property, minimal indices,
MIN*, universal numberings, Turing degrees.

1. Introduction

It is known that for acceptable numberings many problems are very hard: Rice
[18] showed that all semantic properties like {e : ϕe is total} or {e : ϕe is
somewhere defined} are non-recursive and that the halting problem K is Turing
reducible to them. Similarly, Meyer [14] showed that the set MINϕ = {e : ∀d <
e [ϕd 6= ϕe]} of minimal indices is even harder: MINϕ ≡T K ′. In contrast to
this, Friedberg [6] showed that there is a numbering ψ of all partial-recursive
functions such that ψd 6= ψe whenever d 6= e. Hence, every index in this
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numbering is a minimal index: MINψ = N. One could also look at the cor-
responding questions for minimal indices for domains. Then, as long as one
does not postulate that every function occurs in the numbering but only that
every domain occurs, there are numberings for which the set of minimal in-
dices of domains is recursive and other numberings for which this set is Turing
equivalent to K ′. But there is a different result if one requires that the num-
bering is universal in the sense that it contains every partial-recursive function.
Then the set DMINψ = {e : ∀d < e [Wψ

d 6= Wψ
e ]} is not recursive but satisfies

DMINψ ⊕ K ≡T K ′, see Proposition 4 below. On the other hand, DMINψ is
for some universal numberings ψ not above K. Indeed, DMINψ is 1-generic for
a certain numbering. In the present work, various properties linked to the do-
mains of functions for universal and domain-universal numberings are studied.
In particular the complexities of these sets are compared with K,K ′,K ′′ and so
on.

Schaefer [19] tried to lift Meyer’s result one level up in the arithmetic hier-
archy and asked whether MIN∗

ψ ≡T K ′′; Teutsch [21] asked the corresponding
question for domains: is DMIN∗

ψ ≡T K ′′? These questions were originally
formulated for Gödel numberings. In the present work, partial answers are
obtained: on one hand, if the numbering ψ is a Kolmogorov numbering then
DMIN∗

ψ and MIN∗
ψ are both Turing equivalent to K ′′; on the other hand, there

is a universal numbering (which is not a Gödel numbering) such that DMIN∗
ψ

and MIN∗
ψ are 1-generic and hence not above K.

Besides this, a further main result of this paper is to show that for a certain
universal numbering ψ the domain equality problem DEQψ has an 1-generic
Turing degree; hence the domain-equivalence problem of ψ is not Turing hard
for K ′.

After this short overview of the history of minimal indices and the main
results of this paper, the formal definitions are given, beginning with the fun-
damental notion of numberings and universal numberings. For an introduction
to the basic notions of Recursion Theory and Kolmogorov Complexity, see the
textbooks of Li and Vitányi [13], Odifreddi [15, 16] and Soare [20].

Definition 1. Let ψ0, ψ1, ψ2, . . . be a family of functions from N to N and let
Wψ
e be the domain of ψe for all e. ψ is called a numbering iff the set {〈e, x, y〉 :

ψe(x)↓= y} is recursively enumerable; ψ is called a universal numbering iff every
partial-recursive function equals to some function ψe; ψ is called a domain-
universal numbering iff for every r.e. set A there is an index e such that the
domain Wψ

e of ψe equals A.
A numbering ψ is acceptable or a Gödel numbering iff for every further num-

bering ϑ there is a recursive function f such that ψf(e) = ϑe for all e; a num-
bering ψ has the Kolmogorov property iff

∀ numberings ϑ ∃c ∀e ∃d < ce+ c [ψd = ϑe]

and a numbering ψ is a Kolmogorov numbering iff it has the Kolmogorov prop-
erty effectively, that is,

∀ numberings ϑ ∃c ∃ recursive f ∀e [f(e) < ce+ c ∧ ψf(e) = ϑe].
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A numbering ψ is a K-Gödel numbering [4] iff for every further numbering ϑ
there is a K-recursive function f such that ψf(e) = ϑe for all e. Similarly one
can define K-Kolmogorov numberings.

Note that a universal numbering is a weakening of an acceptable numbering
while in the field of Kolmogorov complexity, the term goes in the other direction;
indeed, there a machine is universal iff it satisfies the Kolmogorov property.
Furthermore, often only numberings of strings are considered, not numberings
of functions. Note that many acceptable numbering (of strings as well as of
functions) fail to satisfy the Kolmogorov property.

Definition 2. Given a numbering ψ, define that DMINψ = {e : ∀d < e [Wψ
d 6=

Wψ
e ]}, DMIN∗

ψ = {e : ∀d < e [Wψ
d 6=∗ Wψ

e ]} and DMINm
ψ = {e : ∀d < e [Wψ

d 6≡m
Wψ
e ]}. Here A =∗ B means that the sets A,B are finite variants and A 6=∗ B

means that the sets A,B are not finite variants. This notion can also be traced
back to the notion A ⊆∗ B which means that A−B is finite; hence A =∗ B iff
A ⊆∗ B and B ⊆∗ A. Furthermore, A ≡m B iff there are recursive functions
f, g such that A(x) = B(f(x)) and B(x) = A(g(x)) for all x; A 6≡m B otherwise.
The superscript “m” in DMINm

ψ is just referring to many-one reduction.

2. Minimal Indices and Turing Degrees

The next result is well-known and can, for example, be derived from [5, Theorem
5.7]. The proof below is given for the reader’s convenience and not claimed to
be novel.

Proposition 3. Let ϕ be any acceptable numbering. Now K ′ ≤T A ⊕ K iff
one can enumerate relative to the oracle A a set E of indices of total recursive
functions such that for every total recursive f there is an e ∈ E with ϕe = f .

Proof. The two directions of the theorem are proven, one after the other.
On one hand, assume that K ′ ≤T A ⊕K and define a recursive function f

such that for all indices e and finite sets D it holds that

ϕf(e,D)(x) =


ϕe(x) if there is a stage t such that

ϕe,t(x) is defined and Kt ∩D = ∅;
0 if there is a stage t such that

ϕe,t(x) is undefined and Kt+1 ∩D 6= ∅;
↑ otherwise.

Here Kt is the set of all elements enumerated into K within t computation steps.
ϕe,t(x) is defined to be ϕe(x) if the computation of ϕe(x) halts within t steps;
otherwise, ϕe,t(x) is undefined.

Now, let an enumeration of all indices of total recursive functions relative to
A⊕K be given. Now, the new enumeration relative to A is made by enumerating
all indices of the form f(e,D) where there is a stage s such that e is output by
the original enumeration algorithm using the oracle A ⊕Ks in place of A ⊕K
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and D is the set of places of Ks queried where the answer was 0.
For the verification of the algorithm, consider first the case that s is so large

that an index e is enumerated relative to A⊕Ks using the original algorithm by
the same queries and answers as relative to A⊕K. Then the D obtained satisfies
K ∩ D = ∅ and the index f(e,D) produced by the new enumeration relative
to A satisfies that ϕf(e,D) is total and equal to ϕe. Furthermore, all f(e,D)
supplied are indices of total functions as either the index e is produced by the
original enumeration and ϕe is total or D∩K 6= ∅. In both cases, this condition
implies that ϕf(e,D) is total as one of the first two cases in the definition of the
function applies. Hence all indices enumerated are for total functions and every
total recursive function is covered.

On the other hand, assume now for the reverse direction that there is an
A-r.e. set E such that all indices in E are of total functions and every total
recursive function has an index in E. Recall that one can enumerate the set
{e : ϕe is not total} relative to K and thus also relative to A ⊕K as it is the
set of all e for which there is an x such that ϕe(x) is undefined. Furthermore,
one can enumerate the set {e : ϕe is total} relative to A ⊕ K as it is the set
of all e for which there is an e′ ∈ E such that ∀s∀x [if ϕe′,s(x) has halted and
output a number below s then ϕe,s(x) has also halted]. This statement can also
be checked with the oracle K. Furthermore, for each index e of a total function
there exists an index e′ ∈ E of another total function such that ϕe′ majorizes the
time which ϕe needs to converge. Hence, the enumeration procedure is correct
and the set of all indices of total functions is recursively enumerable relative to
A ⊕K. As the set of indices of total functions with respect to the acceptable
numbering ϕ is Π0

2-complete, K ′ ≤T A⊕K. �

Meyer [14] showed the next result for Gödel numberings. Here the result is
given for universal numberings; by a well-known result of Friedberg this is false
for some domain-universal numberings.

Proposition 4. For every universal numbering ψ, K ′ ≤T DMINψ ⊕K.

Proof. Let a be the least number such that ψa is total and let g(e) = min(N−
Wψ
e ) whenever the minimum exists. Note that g(d) is defined for all d ∈

DMINψ −{a}. Now one has that ψe is total iff g(d) ∈Wψ
e for all d ∈ DMINψ ∩

{0, 1, 2, . . . , e} − {a}. This condition can be checked relative to DMINψ ⊕ K
and hence one can enumerate all ψ-indices of total recursive functions. Now it
follows from Proposition 3 that K ′ ≤T DMINψ ⊕K. �

Schaefer [19] and Teutsch [21, 22] investigated the complexity of DMIN∗
ψ. The

next two results generalize their findings from Gödel numberings to domain-
universal numberings.

Proposition 5. For every domain-universal numbering ψ, K ′ ≤T DMIN∗
ψ⊕K.

Proof. Let ψ be the given numbering and ϕ be an acceptable numbering. Let
σx be the x-th string in a recursive bijection from N to N∗. Let σx(y) be the
member number y of that string and σx(y) ↑ if σx does not have a member
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number y.
Now define the following function ϕg(e,n)(x) according to which of the fol-

lowing two cases is found to apply first; the third case is taken if neither the
first nor the second case applies:

ϕg(e,n)(x) =


σa(x) if a ∈Wψ

e ∧ a > n ∧ σa(x)↓;
0 if there are b, c ∈Wψ

e and y with n < b, n < c and
σb(y)↓6= σc(y)↓;

↑ otherwise.

The second line in this case-distinction is included to ensure that ϕg(e,n) is total
whenever Wψ

e is infinite. Let d be the unique index in DMIN∗
ψ such that Wψ

d

is finite. Then ϕg(e,n) is total for every e ∈ DMIN∗
ψ − {d} and n. Furthermore,

for every recursive f there is an e ∈ DMIN∗
ψ − {d} such that

Wψ
e =∗ {a : ∃n [σa = f(0)f(1)f(2) . . . f(n)]}.

Note that by the redundant definition of the domain, each value f(m) is coded
in all a with σa = f(0)f(1)f(2) . . . f(n) and n > m; furthermore, there are only
finitely many element of different form in the set. It follows that ϕg(e,n) = f for
all sufficiently large n.

Now assume that Wψ
e is infinite for every e ∈ DMIN∗

ψ − {d}. So, when-
ever there is no function f such that, for infinitely many n, an a with σa =
f(0)f(1)f(2) . . . f(n) is in the set, then there are for each n some b, c > n in
Wψ
e such that σb, σc are incomparable, that is, satisfy σb(y)↓6= σc(y)↓ for some

y. It follows that the resulting function ϕg(e,n) is total by the second case.
Hence the set E = {g(e, n) : e ∈ DMIN∗

ψ − {d}, n ∈ N} is a set of ϕ-
indices which contains an index for every total recursive function and which
contains only indices of total recursive functions. Proposition 3 gives then that
K ′ ≤T DMIN∗

ψ ⊕K. �

Proposition 6. For every domain-universal numbering ψ, K ′′ ≡T DMIN∗
ψ ⊕

K ′.

Proof. Let ϕ be a Gödel numbering and note that

K ′′ ≡T {e : Wϕ
e is co-finite}.

Furthermore, let a be the unique element of DMIN∗
ψ such that Wψ

a is co-finite.
For any given e, find using K ′ the least d such that Wψ

d = Wϕ
e . Furthermore,

let D = DMIN∗
ψ ∩ {0, 1, 2, . . . , d} and search using K ′ until an x ∈ N and b ∈ D

are found with

Wψ
b ∪ {0, 1, . . . , x} = Wψ

d ∪ {0, 1, . . . , x}.

Note that the so found b is the unique member of DMIN∗
ψ with Wψ

b =∗ Wϕ
e .

Now Wϕ
e is co-finite iff b = a; hence

{e : Wϕ
e is co-finite} ≤T DMIN∗

ψ ⊕K ′.

As DMIN∗
η ≤T K ′′ for all η, K ′′ ≡T DMIN∗

ψ ⊕K ′. �
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Remark 7. The following proofs make use of Owings’ Cardinality Theorem [17].
This says that whenever there is an m > 0 and a B-recursive {0, 1, 2, . . . ,m}-
valued function mapping every m-tuple (a1, a2, . . . , am) to a number in {0, 1, 2,
. . . ,m} which is different from A(a1) + A(a2) + . . . + A(am) then A ≤T B.
Kummer [7, 10] generalized this result and showed that whenever there are an
m > 0 and B-r.e. sets enumerating uniformly for every m-tuple (a1, a2, . . . , am)
up to m numbers including A(a1) +A(a2) + . . .+A(am) then A ≤T B.

Theorem 8. For every universal numbering ψ with the Kolmogorov property,
K ≤T DMIN∗

ψ; hence K ′′ ≡T DMIN∗
ψ.

Proof. Let σn be the n-th finite string in an enumeration of N∗. Due to the
Kolmogorov property, one can recursively partition the natural numbers into
intervals In such that for every n there is a number z ∈ DMIN∗

ψ with min(In) ·
(|σn| + 1) + |σn| < z < max(In). Such intervals In can be defined inductively
with min(I0) = 0 and min(In) = max(In−1)+1 for n > 0. Then one determines
the length of the interval In such that, using the Kolmogorov property and the
corresponding bound on the size of functions, for all x ≤ min(In) the function
with domain {〈x, 0〉, 〈x, 1〉, 〈x, 2〉 . . .} and range {0} has an index below max(In).
There are min(In) + 1 such indices, each representing functions with pairwise
infinite differences in domain. So for some x there is an e ∈ In ∩ DMIN∗

ψ such
that Wψ

e is a finite variant of the set {〈x, 0〉, 〈x, 1〉, 〈x, 2〉 . . .}. Note that one
can compute the length of In effectively from min(In) using some estimate on
the constant coming with the Kolmogorov property. Now, for every p ∈ In with
σn = a1a2 . . . am let

ϑp(x) = ψp·(m+1)+Kx(a1)+Kx(a2)+...+Kx(am)(x)

and note that
ϑp =∗ ψp·(m+1)+K(a1)+K(a2)+...+K(am)

as the approximations Kx(a1),Kx(a2), . . . ,Kx(am) coincide respectively with
K(a1),K(a2), . . . ,K(am) for almost all x. By the Kolmogorov property there
is a constant m such that for every p there is an e < max{pm,m} with ψe = ϑp;
fix this m from now on.

Now, for any a1, a2, . . . , am, choose n such that σn = a1a2 . . . am and let
g(a1, a2, . . . , am) ∈ N and h(a1, a2, . . . , am) ∈ {0, 1, 2, . . . ,m}, be such that

g(a1, a2, . . . , am) · (m+ 1) + h(a1, a2, . . . , am) = max(In ∩DMIN∗
ψ).

By choice of m, g(a1, a2, . . . , am) ∈ In and g(a1, a2, . . . , am) > 0. Hence

ϑg(a1,a2,...,am) =∗ ψg(a1,a2,...,am)·(m+1)+K(a1)+K(a2)+...+K(am)

and ψe = ϑg(a1,a2,...,am) for some e < g(a1, a2, . . . , am) ·m. So g(a1, a2, . . . , am) ·
(m+ 1) +K(a1) +K(a2) + . . .+K(am) is not in DMIN∗

ψ and

h(a1, a2, . . . , am) ∈ {0, 1, 2, . . . ,m} − {K(a1) +K(a2) + . . .+K(am)}.
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So h ≤T DMIN∗
ψ and h(a1, a2, . . . , am) ∈ {0, 1, 2, . . . ,m} − {K(a1) + K(a2) +

. . .+K(am)}. Owings’ Cardinality Theorem [7, 17] states that the existence of
such a function h implies K ≤T DMIN∗

ψ.
It is well-known that DMIN∗

ψ ≤T K ′′. On the other hand one can now
apply Proposition 5 to get that K ′ ≤T DMIN∗

ψ and Proposition 6 to get that
K ′′ ≤T DMIN∗

ψ. �

Theorem 9. For every universal numbering ψ with the Kolmogorov property,
K ′′ ≡T DMINm

ψ .

Proof. The first part is to show that K ′ ≤T DMINm
ψ . This is done by applying

Owings’ Cardinality Theorem for the set {a : |Wϕ
a | = ∞} where ϕ is an accept-

able numbering. The proof is quite similar to the proof of Theorem 8. Again
let σn be the n-th finite string in an enumeration of N∗ and let a1, a2, . . . , am
be the numbers with σn = a1a2 . . . am and let k range over 1, 2, . . . ,m. Due
to the Kolmogorov property, one can recursively partition the natural numbers
into intervals In such that for every n there is a number x ∈ DMINm

ψ with
min(In) · (|σn|+ 1) + |σn| < x < max(In). Define a numbering ϑ such that, for
every n, for m = |σn| and for every p ∈ In, the condition

Wϑ
p = {(m+ 1)x+ b : b < |{k ∈ {0, 1, 2, . . . ,m} : |Wϕ

ak
| ≥ x}| ∨

(b = |{k ∈ {0, 1, 2, . . . ,m} : |Wϕ
ak
| ≥ x}| ∧ x ∈Wψ

(m+1)p+b)}

is satisfied. The goal here is that Wψ
(m+1)p+|{k∈{0,1,2,...,m}:|Wϕ

ak
|=∞}| is either

recursive or many-one equivalent to Wϑ
p . To see this, let

z = |{k ∈ {0, 1, 2, . . . ,m} : |Wϕ
ak
| = ∞}|

and
y = min{x : ∀k ∈ {0, 1, 2, . . . ,m} [|Wϕ

ak
| ≥ x⇒ |Wϕ

ak
| = ∞}].

Now one has for all x ≥ y and b ∈ {0, 1, 2, . . . ,m} that

(m+ 1)x+ b ∈Wϑ
p ⇔ b < z ∨ (b = z ∧ x ∈Wψ

(m+1)p+z).

It is easy to see that Wϑ
p ≡m Wψ

(m+1)p+z whenever both sets are neither ∅ nor

N; this is in particular satisfied if Wψ
(m+1)p+z is not recursive.

Now fix m as a number which is so large that three indices of recursive sets
in DMINm

ψ are in some intervals In′ , In′′ , In′′′ , respecively, with |σn′ | + |σn′′ | +
|σn′′′ | < m and that for every p > 0 there is an index e < pm with Wψ

e = Wϑ
p .

Given a1, a2, . . . , am, let n be the index with σn = a1a2 . . . am and define the
values g(a1, a2, . . . , am) ∈ N and h(a1, a2, . . . , am) ∈ {0, 1, 2, . . . ,m} such that

g(a1, a2, . . . , am) · (m+ 1) + h(a1, a2, . . . , am) = max(DMINm
ψ ∩ In).

From the choice of the intervals it follows that g(a1, a2, . . . , am) ∈ In and

h(a1, a2, . . . , am) 6= |{k ∈ {0, 1, 2, . . . ,m} : |Wϕ
ak
| = ∞}|
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as Wψ
(m+1)g(a1,a2,...,am)+|{k∈{0,1,2,...,m}:|Wϕ

ak
|=∞}| is either recursive or many-one

equivalent to a set with a smaller index. Using Owings’ Cardinality Theorem
[17], one obtains that

K ′ ≡T {a : |Wϕ
a | = ∞} ≤T DMINm

ψ .

The index set {e : Wϕ
e is recursive} has the same Turing degree as K ′′. One

can use the oracle K ′ in order to find for given e the corresponding d such that
Wψ
d = Wϕ

e and then one can determine D = DMINm
ψ ∩{0, 1, 2, . . . , d}. Using the

oracle K ′ one can find the unique member of D which is many-one equivalent
to Wψ

d and compare it to the minimal indices of the three recursive many-one
degrees. It follows that

{e : Wϕ
e is recursive } ≤T DMINm

ψ

and, using DMINm
ψ ≤T K ′′, one gets DMINm

ψ ≡T K ′′. �

3. Transfering the results to MIN

In this section it is shown that various results which hold for DMIN also hold for
MIN. In particular it is shown that for numberings ψ satisfying the Kolmogorov
property, the equivalences MINψ ≡T K ′, MIN∗

ψ ≡T K ′′ and MINm
ψ ≡T K ′′ hold,

where MIN∗
ψ and MINm

ψ will be defined below. The first equivalence is parallel
to a result by Meyer for Gödel numberings; note that there are numberings satis-
fying the Kolmogorov property which are not Gödel numberings. Furthermore,
for Friedberg numberings, an analogue of Theorem 11 does not hold, hence it
cannot be generalized to all universal numberings.

Remark 10. A universal machine U is a partial-recursive function such that
for every further partial recursive function V there is a constant c such that for
each p ∈ dom(V ) there is a q ∈ dom(U) with U(q) = V (p) ∧ q ≤ (p+ 1)c. Such
a universal machine can be used to define the plain Kolmogorov complexity C
by C(y) = min{d : ∃p ≤ 2d[U(p) = y]}. Note that the value of C depends only
up to a constant on the underlying universal machine U [13].

The next proof will use the following fact [3]: For every oracle A and every
A-recursive function f , if there is a constant c with

∀y[C(y)− c < f(y) < C(y) + c]

then K ≤T A.

Theorem 11. Let ψ be a universal numbering satisfying the Kolmogorov prop-
erty. Then K ′ ≡T MINψ.

Proof. Assume that a numbering ψ with the Kolmogorov property is given and
that a is the index of the everywhere undefined function. Now one can define
a partial-recursive function g which, on input x, searches for the first argument
y found in the domain of ψx and then returns the value ψx(y). Note that g(x)
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is defined for every x ∈ MINψ − {a}. Due to the Kolmogorov property of ψ,
there is a constant c such that for every number y there is an index x with
log(x) ≤ C(y) + c and ψx being the function which takes y on one input and is
undefined everywhere else; note that the least of these x is also in MINψ. As g is
partial-recursive, there is also a further constant c′ such that log(z) ≥ C(y)− c′
for all z in the domain of g with g(z) = y. For every y, let

f(y) = log(min{x ∈ MINψ − {a} : g(x) = y})

and note that C(y)− c′ − c ≤ f(y) ≤ C(y) + c′ + c for all y. As f ≤T MINψ, it
follows from Remark 10 that K ≤T MINψ.

Let e be the index of a partial-recursive function with respect to a given
acceptable numbering ϕ0, ϕ1, . . .; due to the Kolmogorov property of ψ, there
is a constant b such that some index d < (e + 1)b satisfies ψd = ϕe. Let
D = {d ∈ MINψ : d < (e+ 1)b}. One can now find relative to MINψ and using
that K ≤T MINψ the unique index d ∈ D with ψd = ϕe; this is done by finding
for each d′ ∈ D− {d} a place x where either ψd′(x) and ϕe(x) are both defined
but different or exactly one of them is defined.

This algorithm can now be used to decide for any two e, e′ whether ϕe = ϕe′ .
This is done by finding the unique indices d, d′ ∈ MINψ with ψd = ϕe and
ψd′ = ϕe′ . It then holds that ϕe = ϕe′ iff d = d′. Hence K ′ ≤T MINψ.

For the converse direction it is well-known that the problem to determine
the minimal indices in MINψ has at most the Turing degree K ′. �

Remark 12. The same result as in Theorem 11 can be shown for DMINψ in
place of MINψ. So let ψ be a universal numbering satisfying the Kolmogorov
property. Now, compared to the proof of Theorem 11, one has to adjust the
function g(x) to be the first y which is enumerated into Wψ

x ; if Wψ
x = ∅ then

g(x) is undefined. Furthermore, one searches in the second part for the unique
index d ∈ DMINψ with We = Wd by excluding all d′ ∈ DMINψ below b(e + 1)
for which there is an x which is in exactly one of the sets Wψ

d′ and Wψ
e . The

remaining parts of the proof are the same.

Recall that f =∗ g iff for almost all x either f(x) and g(x) are both undefined
or f(x) and g(x) are both defined and equal. One might also ask what the min-
imum Turing degree of MIN∗

ψ is. While Friedberg showed that MINψ can be
recursive, this is not true for MIN∗

ψ, as MIN∗
ψ contains only one index of a func-

tion with finite domain while for every function with infinite domain there is a
finite variant with an index in MIN∗

ψ. However, by a standard dovetailing argu-
ment, there is a MIN∗

ψ-recursive function different from all total recursive ones.
Remark 24 below shows that MIN∗

ψ is 1-generic for some K-Gödel numbering ψ.

Theorem 13. For every universal numbering ψ with the Kolmogorov property,
K ′′ ≡T MIN∗

ψ.

Proof. As MIN∗
ψ contains only one index of a function with a finite domain and

as DMIN∗
ψ ⊆ MIN∗

ψ, the proof of Proposition 5 directly generalizes to MIN∗
ψ
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giving that K ′ ≤T MIN∗
ψ ⊕K.

The proof of Proposition 6 needs some more adjustments. The adjusted proof
to show that K ′′ ≤T MIN∗

ψ ⊕K ′ looks like this: Let ϕ be a Gödel numbering
and note that

K ′′ ≡T {e : Wϕ
e is co-finite}.

Furthermore, let a be the unique element of MIN∗
ψ such that ψa(x) ↓= 0 for

almost all x. For any given e, find using K ′ the least d such that Wψ
d = Wϕ

e

and range(ψd) ⊆ {0}. Furthermore, let D = MIN∗
ψ ∩ {0, 1, 2, . . . , d} and using

K ′ to search for an x ∈ N and b ∈ D such that

∀y ≥ x [ψb(y)↓= ψd(y)↓ ∨ (ψb(y)↑ ∧ψd(y)↑)].

This search terminates with some b, x and the b it finds is unique (due to the
choice of D). Now note that b is the unique member of MIN∗

ψ with ψb =∗ ψd;
that is, b is the unique member of MIN∗

ψ such that first Wψ
b =∗ Wϕ

e and second
ψb(y)↓> 0 only for finitely many y. Hence Wϕ

e is co-finite iff b = a. It follows
that

{e : Wϕ
e is co-finite} ≤T MIN∗

ψ ⊕K ′.

To see that K ≤T MIN∗
ψ, one has again to use =∗ for functions in place of =∗

for sets. Then the proof of Theorem 8 transfers directly to MIN∗
ψ in place of

DMIN∗
ψ giving that K ≤T MIN∗

ψ and, using the earlier results of this proof,
K ′′ ≤T MIN∗

ψ. The reverse relation MIN∗
ψ ≤T K ′′ is well-known. �

In the following, let f ≤m g iff there is a total recursive function h such that for
all x, either f(x) and g(h(x)) are both undefined or f(x) and g(h(x)) are both
defined and equal; f ≡m g means then f ≤m g ∧ g ≤m f .

Theorem 14. For every universal numbering ψ with the Kolmogorov property,
K ′′ ≡T MINm

ψ .

Proof. Assume that ψ satisfies the Kolmogorov property. As in Theorem 11,
one can show that K ≤T MINm

ψ .
The next part is to show that K ′ ≤T MINm

ψ . Note that for functions ψi, ψj
with range {0} it holds that ψi ≡m ψj iff Wψ

i ≡m Wψ
j . Furthermore, note that

one can decide relative to MINm
ψ whether the range of ψi is {0}.

Now one follows the proof of Theorem 9 and chooses the strings σn and the
partition of the sets In as it is done there. The only difference to Theorem 9 is
that the conditions on the In is a bit more restrictive: each In contains an index
d of a function ψd such that the range of ψd is {0} and Wψ

d is many-one inequiv-
alent to all Wψ

e with e < min(In). After this one chooses m as in Theorem 9 and
for each a1, a2, . . . , am, one chooses n such that σn = a1a2 . . . am and then one
can define relative to MINm

ψ the values g(a1, a2, . . . , am) and h(a1, a2, . . . , am)
such that

g(a1, a2, . . . , am) · (m+ 1) + h(a1, a2, . . . , am)
= max{d : d ∈ MINm

ψ ∧ d ∈ In ∧ range(ψd) = {0}}.
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Now, using Owing’s Cardinality Theorem [17], one can show as in Theorem 9
that K ′ ≤T MINm

ψ .
The last part which shows that K ′′ ≡T MINm

ψ using that K ′ ≤T MINm
ψ is

again similar to that of Theorem 9: The index set {e : Wϕ
e is recursive} has

the same Turing degree as K ′′. One can use the oracle K ′ in order to find
for given index e of a nonempty set the corresponding d such that Wψ

d = Wϕ
e

and range(ψd) = {0}. Then one can determine D = MINm
ψ ∩ {0, 1, 2, . . . , d}.

Using the oracle K ′ one can find the unique member c ∈ D such that there are
indices i, j of total recursive functions with ∀x∀t∃s > t [ψd,s(x) = ψc,s(ϕi(x))]
and ∀x∀t∃s > t [ψc,s(x) = ψd,s(ϕj(x))]; note that the search always terminates.
Now one can check whether c is among the two unique indices of partial-recursive
functions with range {0} and recursive domain. If so, We is recursive, otherwise
We is not recursive. Hence K ′′ ≤T MINm

ψ . The other direction MINm
ψ ≤T K ′′

is known to hold for all numberings ψ. �

Remark 15. Teutsch [21, 22] considered also the problem DMINT
ψ = {e :

∀d < e [Wψ
d 6≡T Wψ

e ]}. He showed that if ψ is an acceptable numbering then
K ′′′ ≤T DMINT

ψ ⊕K ′. The above techniques can also be used to show that if
ψ is a Kolmogorov numbering then K ′′′ ≡T DMINT

ψ and K ′′′ ≡T MINT
ψ .

4. Prominent Index Sets

It is known from Rice’s Theorem that almost all index sets in Gödel numberings
are Turing hard for K. On the other hand, in Friedberg numberings, the index
set of the everywhere undefined function is just a singleton and hence recursive.
So it is a natural question how the index sets depend on the chosen underlying
universal numbering. In particular the following index sets are investigated
within this section.

Definition 16. For a universal numbering ψ define the following notions:
• EQψ = {〈i, j〉 : ψi = ψj} and EQ∗

ψ = {〈i, j〉 : ψi =∗ ψj};
• DEQψ = {〈i, j〉 : Wψ

i = Wψ
j } and DEQ∗

ψ = {〈i, j〉 : Wψ
i =∗ Wψ

j };
• INCψ = {〈i, j〉 : Wψ

i ⊆Wψ
j } and INC∗

ψ = {〈i, j〉 : Wψ
i ⊆∗ Wψ

j };
• EXTψ = {〈i, j〉 : ∀x ∈Wψ

i [x ∈Wψ
j ∧ ψj(x) = ψi(x)]};

• CONSψ = {〈i, j〉 : ∀x ∈Wψ
i ∩Wψ

j [ψi(x) = ψj(x)]};
• DISJψ = {〈i, j〉 : Wψ

i ∩Wψ
j = ∅};

• INFψ = {i : Wψ
i is infinite}.

Note that although these sets come as sets of pairs (except INFψ), one can also
fix the index i and consider the classic index set of all j such that 〈i, j〉 is in the
corresponding index set. For example, in the case of CONSψ, it would be the
set {j : ψj is consistent with ψi}. But as the index sets of pairs are quite natural
and give rise to interesting questions, several of these sets are investigated in
the present work.

Kummer [11] obtained a breakthrough and solved an open problem of Herr-
mann posed around 10 years earlier by showing that there is a domain-universal
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numbering where the domain inclusion problem is K-recursive. He further-
more concluded that also the extension-problem for universal numberings can
be made K-recursive.

Theorem 17 (Kummer [11]). There is a domain universal numbering ψ and a
universal numbering ϑ such that

(a) INCψ ≤T K;

(b) EXTϑ ≡T K.

The numbering ϑ can easily be obtained from ψ.

Note that this result needs that ψ is only domain universal and not universal; if
ψ would be universal then K ′ ≤T INCψ ⊕K and hence INCψ 6≤T K. It is still
open whether K ≤T INCψ for all domain universal numberings ψ. But for the
function-extension problem, Kummer’s result is optimal.

Proposition 18. EXTψ ≥T K for every universal numbering.

Proof. Let a0, a1, a2, . . . be a recursive enumeration ofK and choose i such that
ψi(x) is the least s with as = x whenever such an s exists, that is, whenever
x ∈ K. Now one can compute K(x) by using the oracle EXTψ to search for a j
where ψj(x) is defined and 〈i, j〉 ∈ EXTψ. This j exists since it can be obtained
by modifying the function ψi just at x in the case that ψi(x) is undefined.
Now x ∈ K iff aψj(x) = x: if x ∈ K then ψj(x) = ψi(x) and x = aψi(x) by
definition; if x /∈ K then x /∈ {a0, a1, a2, . . .} and therefore x 6= aψj(x). Hence
K ≤T EXTψ. �

As Kummer showed, this result cannot be improved. But in the special case
of K-Gödel numberings, EXTψ takes the Turing degree of K ′ as shown in the
next result.

Theorem 19. EXTψ ≡T K ′ for every K-Gödel numbering ψ.

Proof. Let ψ be a given K-Gödel numbering. Clearly EXTψ ≤T K ′.
Furthermore, by Proposition 18, K ≤T EXTψ. Now, using this result, it is

shown that K ′ ≤T EXTψ. Let j be the index of the partial-recursive function
which satisfies, for some Gödel numbering ϕ, that

ψj(〈e, t〉) =
{

0 if t ≤ |Wϕ
e |;

↑ if t > |Wϕ
e |.

As ψ is K-acceptable, one can now, given any e, using the oracle EXTψ, find
an index i such that ψi(〈e, t〉) = 0 for all t and ψi is undefined at all other
places. Then Wϕ

e is infinite iff ψj extends ψi, that is, if 〈i, j〉 ∈ EXTψ. Hence
{e : |Wϕ

e | <∞} ≤T EXTψ. This completes the proof of EXTψ ≥T K ′. �

The next result is not that difficult and proves that there is one index set whose
Turing degree is independent of the underlying numbering: the index set of the
consistent functions. One direction can easily be seen as CONSψ is co-r.e. and
the other direction follows by using the same proof idea as in Proposition 18.
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Proposition 20. CONSψ ≡T K for all universal numberings ψ.

Remark 21. Another example of this type is the set DISJψ. Here DISJψ ≡T K
for every domain-universal numbering ψ. The sufficiency is easy as one can
test with one query to the halting problem whether Wψ

i and Wψ
j intersect.

The necessity is done by showing that the complement of K is r.e. relative to
DISJψ: Let i be an index with Wψ

i = K. Then x /∈ K iff there is a j with
x ∈Wψ

j ∧〈i, j〉 ∈ DISJψ. Hence the complement of K is recursively enumerable
relative to DISJψ and so K ≤T DISJψ.

Tennenbaum defined that A is Q-reducible to B [15, Section III.4] iff there
is a recursive function f with x ∈ A ⇔ Wf(x) ⊆ B for all x. Again let i be an
index of K: K = Wψ

i . Furthermore, define f such that Wf(x) = {〈i, j〉 : x ∈
Wψ
j }. Now K is Q-reducible to the complement of DISJψ as x ∈ K iff Wf(x) is

contained in the complement of DISJψ.
For wtt-reducibility and other reducibilities stronger than wtt, no such result

is possible. Indeed, one can choose ψ such that {e : ψe is total} is hypersimple
and Wψ

e = ∅ iff e = 0. Then {〈i, j〉 : i > 0 ∧ j > 0 ∧ 〈i, j〉 ∈ DISJψ} is
hyperimmune and wtt-equivalent to DISJψ. Then it follows from results by
Kjos-Hanssen, Merkle and Stephan [8] that the wtt-degree of DISJψ is not
diagonally nonrecursive; that is, there is no f ≤wtt DISJψ such that f(e) 6=
ϕe(e) for all e where ϕe(e) is defined. In particular, K 6≤wtt DISJψ for this
numbering ψ.

Remark 22. Since DISJψ ≡T K for all universal numberings ψ, one might
ask whether there are also index sets which are Turing equivalent to K ′ for
all universal numberings. One candidate might be INCψ, but this problem is
open. For the set A = {〈i, j, k〉 : Wψ

i ∩ Wψ
j ⊆ Wψ

k }, it can be proven that
A ≡T K ′. Note that A ≤T K ′. One can retrieve from A whether a set Wψ

e

equals N by asking whether the intersection of N with itself is contained in Wψ
e .

So it follows from Proposition 3 that K ′ ≤T A ⊕ K. Furthermore, N − K is
recursively enumerable relative to A as x /∈ K iff there is an index e such that
x ∈Wψ

e and Wψ
e ∩K is empty. Hence K ≤T A and thus A ≡T K ′.

Recall that a set A is 1-generic iff for every r.e. set B of strings there is an n
such that either A(0)A(1)A(2) . . . A(n) ∈ B or A(0)A(1)A(2) . . . A(n) · {0, 1}∗
is disjoint from B. Jockusch [9] gives an overview on 1-generic sets. Note that
the Turing degree of a 1-generic set G is generalized low1 which means that
G′ ≡T G ⊕ K. Hence G 6≥T K and this fact will be used at various places
below.

Theorem 23. There is a K-Gödel numbering ψ such that

(a) DMINψ and DMIN∗
ψ are 1-generic;

(b) DEQψ and INCψ have the Turing degree K ′;

(c) DEQ∗
ψ and INC∗

ψ have the Turing degree K ′′.

13



Proof. The basic idea is the following: One partitions, in the limit, the natural
numbers into two types of intervals: coding intervals {em} and genericity inter-
vals Jm. The coding intervals contain exactly one element while the genericity
intervals are very large. They satisfy the following requirements:

• |Jm| ≥ cK(m) where cK is the convergence module of K, that is, cK(m) =
min{s ≥ m : ∀n ≤ m [n ∈ K ⇒ n ∈ Ks]}. In the construction, an
approximation cKs of cK from below is used.

• There is a limit-recursive function m 7→ σm such that σm ∈ {0, 1}|Jm| and
for every τ ∈ {0, 1}min(Jm) and for every genericity requirement set Rn
with n ≤ m the following implication holds: if τσm has an extension in
Rn then already τσm ∈ Rn. Here

Rn = {ρ ∈ {0, 1}∗ : some prefix of ρ is enumerated into Wϕ
n

within |ρ| steps}.

Note that the Rn are uniformly recursive and ϕ is the default Gödel num-
bering.

• There are infinitely many genericity intervals Jm such that for all x ∈ Jm
it holds that σm(x−min(Jm)) = DMINψ(x) = DMIN∗

ψ(x).

All strings σk,0 are just 0 and in stage s+ 1 the following is done:

• Inductively over k define e0,s = 0 and ek+1,s = ek,s + |σk,s| + 1 and
Jk,s = {x : ek,s < x < ek+1,s}.

• Determine the minimal m such that one of the following three cases hold:

(ρm) m < s and ∃ρm ∈ {0, 1}s ∃τ ∈ {0, 1}min(Jm,s) ∃n ≤ m [τσm,sρm ∈
Rn ∧ τσm,s /∈ Rn];

(cK) m < s and |Jm,s| < cKs
(m) ≤ s;

(none) m = s.

Note that one of the three cases is always satisfied and thus the search
terminates.

• In the case (ρm), update the approximations to σm as follows:

σk,s+1 =
{
σk,sρm if k = m;
σk,s if k 6= m.

• In the case (cK) the major goal is to make the interval Jm,s having a
sufficient long length. Thus

σk,s+1 =
{
σk,s0s if k = m;
σk,s if k 6= m.
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• In the case (none), no change is made, that is, σk,s+1 = σk,s for all k.

Let em, Jm, σm be the limit of all em,s, Jm,s, σm,s. One can show by induction
that all these limits exist. The set {d : ∃m [d ∈ Jm]} is recursively enumerable
as whenever em,s+1 6= em,s then em,s+1 ≥ s; hence ∃m [d ∈ Jm] iff ∃s >
d+1 ∃m [d ∈ Jm,s]. Now one constructs the numbering ψ from a given universal
numberings ϕ by taking for any d, x the first case which is found to apply:

• if there are s > x+ d and m ≤ d with d = em,s and ϕm,s(x) defined then
let ψd(x) = ϕm(x);

• if there are s > x+d andm ≤ d with d ∈ Jm,s and (σm,s(d−min(Jm)) = 0)
∨ ∀y [x 6= 〈d, y〉] then let ψd(x) = 0;

• if none of these two cases ever applies then ψd(x) remains undefined.

Without loss of generality it is assumed that ϕ0 is total and thus 0 is the least
index e with Wψ

e = N. It is easy to see that the following three constraints are
satisfied.

• If d = em then ψd = ϕm;

• If d ∈ Jm and σm(d−min(Jm)) = 1 then Wψ
d =∗ {〈x, y〉 : x 6= d};

• If d ∈ Jm and σm(d−min(Jm)) = 0 then Wψ
d = N.

Note that the first condition is co-r.e.: Hence one can either compute from d an
m with em = d or find out that d is in

⋃
m′∈N Jm′ . But it might be that one

first comes up with a candidate m for em = d and later finds out that actually
d ∈

⋃
m′∈N Jm′ . So the algorithm is first to determine an m and to follow ϕm

where m is correct whenever really the first case applies; later, in the case that
the second or third case applies, one has already fixed only finitely many values
of ψd and can satisfy the corresponding condition (Wψ

d =∗ {〈x, y〉 : x 6= d} and
Wψ
d = N, respectively) in the limit. The latter is done by defining ψd(〈x, y〉) = 0

for all x, y where there are m, s with s > x + y + d and d ∈ Jm,s and either
x 6= d or σm,s(d−min(Jm,s)) = 0.

For each n there is at most one interval Jm and at most one d ∈ Jm such
that d > en and Wψ

d =∗ {〈x, y〉 : x 6= d} =∗ Wψ
en

; if d exists then let F (n) = d
else let F (n) = 0. Now for every Jm and every d ∈ Jm, d ∈ DMIN∗

ψ iff
σm(d−min(Jm)) = 1 and d 6= F (n) for all n ≤ m. As there are infinitely many
indices of total functions, F (m) = 0 infinitely often and there are infinitely
many genericity intervals Jm which do not intersect the range of F . For each
such interval Jm and every d not in the range of F , the construction of σm
and ψ implies the following: if σm(d − min(Jm)) = 1 then d ∈ DMINψ ∩
DMIN∗

ψ ∧W
ψ
d 6=∗ N else d /∈ DMINψ ∪ DMIN∗

ψ ∧W
ψ
d = N. Furthermore, if

τ is the characteristic function of DMINψ or DMIN∗
ψ restricted to the domain

{0, 1, 2, . . . , em} and n ≤ m then τσm ∈ Rn whenever some extension of τσm is
in Rn. Hence the sets DMINψ and DMIN∗

ψ are both 1-generic.
Furthermore, let {a0, a1, a2, . . .} be either {d : Wψ

d = {0}} or {d : Wψ
d =∗
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{0}}. It is easy to see that {a0, a1, a2, . . .} ⊆ {e0, e1, e2, . . .} and an ≥ en. By
construction an+1 ≥ en+1 ≥ cK(n) for all n and it follows that K ≤T DEQψ,
K ≤T DEQ∗

ψ, K ≤T INCψ and K ≤T INC∗
ψ. Having the oracle K and knowing

that ψ is a K-Gödel numbering, one can now use the same methods as in Gödel
numberings to prove that the sets DEQψ and INCψ (respectively, DEQ∗

ψ and
INC∗

ψ), are complete for K ′ (respectively, complete for K ′′). �

Remark 24. Note that the proof of the above theorem also shows that the
set {e : ψe is total} is 1-generic. Using Sacks’ Splitting Theorem iteratively, it
can be shown [1, 2] that one can produce an uniformly r.e. array of disjoint r.e.
sets A0, A1, A2, . . . such that Ai 6≤T Aj whenever i 6= j. Now one keeps the
construction of Theorem 23 the same until one reaches the construction of Wψ

d

which is now done as follows:

• If d = em then ψd = ϕm;

• If d ∈ Jm and σm(d−min(Jm)) = 1 then Wψ
d is a finite variant of Ad;

• If d ∈ Jm and σm(d−min(Jm)) = 0 then Wψ
d is finite.

One can verify using the remaining part of the proof of Theorem 23 that the
numbering ψ satisfies that DMINm

ψ and DMINT
ψ are 1-generic. Hence these two

sets are not above K.
A further result is that one can make a K-Gödel numbering ψ where MIN∗

ψ

is 1-generic and DMIN∗
ψ ≡T K ′′. This is done by adjusting the construction of

the functions ψd as follows:

• If d = em then ψd = ϕm;

• If d ∈ Jm and σm(d−min(Jm)) = 1 then ψd is total and takes the range
{0, 1, . . . , 〈d, u〉} for some u;

• If d ∈ Jm and σm(d−min(Jm)) = 0 then ψd is total and takes the range
N.

One can verify using the remaining part of the proof of Theorem 23 that the
numbering ψ satisfies that MIN∗

ψ and MINm
ψ are both 1-generic. However,

except for the least element of ∪mJm, all of the indices in ∪mJm must be outside
DMIN∗

ψ and outside DMINm
ψ as they are indices for N; hence the principal

functions of DMIN∗
ψ and DMINm

ψ both dominate the mapping m 7→ em. A
small modification of the construction would ensure that this sequence grows
faster than the convergence modulus of K and hence K ≤T DMIN∗

ψ and K ≤T
DMINm

ψ . Now one can use Propositions 5 and 6 in order to show that K ′ ≤T
DMIN∗

ψ and K ′′ ≤T DMIN∗
ψ. This then implies that DMIN∗

ψ ≡T K ′′; so MIN∗
ψ

and DMIN∗
ψ have different Turing degrees. Similarly MINm

ψ and DMINm
ψ have

different Turing degrees, although it is not clear whether DMINm
ψ ≡T K ′′ for

the numbering ψ constructed here.

While DMINψ, DMIN∗
ψ and MIN∗

ψ can be 1-generic, this can never happen for
MINψ.
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Proposition 25. For any universal numbering ψ, the set MINψ is never 1-
generic and never hyperimmune.

Proof. Jockusch and Posner [20, Exercise VI.3.8] noted that 1-generic sets are
hyperimmune; see also Jockusch’s overview [9] of the degrees of generic sets.
Hence it is enough to show that MINψ is not hyperimmune. So let f(n) be the
first number s found such that for all m ≤ n there is an index em ≤ s with
ψem,s(0) = m. This bound s exists since every constant function has an index
in the ψ-numbering and thus the search terminates. Now one knows that all
function ψem

are different and hence there are n + 1 different functions below
f(n). It follows that |MINψ ∩ {0, 1, 2, . . . , f(n)}| > n for all n and hence MINψ

is not hyperimmune. �

Proposition 26. There is a domain-universal numbering η such that every
infinite r.e. set equals to exactly one W η

e and INFη is 1-generic.

Proof. First, for a given r.e. set E to be determined later, a one-one numbering
φ0, φ1, φ2, . . . of a certain class of functions with range ∅ or {0} will be defined
below. For this, one needs a recursive one-one enumeration u0, u1, u2, . . . of E
and a domain-universal Friedberg numbering φ′0, φ

′
1, φ

′
2, . . . so that each domain

occurs exactly once. Now one chooses φ such that

Wφ
0 = N,

Wφ
2k+1 = N− {uk} and

Wφ
2〈i,j,k〉+2 = {0, 1, . . . , i− 1} ∪ {i+ 1, i+ 2, . . . , i+ j}

∪{z + i+ j + 2 : z ∈Wφ′

k }

for any i, j, k ∈ N; the resulting numbering is a one-one numbering which con-
tains all functions with range {0} or ∅ such that the co-domain is either empty
or contains at least two elements or is {uk} for some k.

Second, the idea is now to go on by making a construction as in Theorem 23
with em and Jm being defined as there. At the place where Wψ

d is defined, one
defines instead W η

d by the following adjusted conditions:

• If d = em then ηd = φm;

• If d ∈ Jm and σm(d−min(Jm)) = 1 then W η
d is N− {〈d, s〉} for the first

stage s where Jm, σm have converged to their final values;

• If d ∈ Jm and σm(d−min(Jm)) = 0 then W η
d is {0, 1, 2, . . . , 〈d, s〉− 1} for

the first stage s where Jm, σm have converged to their final values.

A pair 〈d, s〉 is enumerated into E iff there is no m such that d ∈ Jm, σm(d −
min(Jm)) = 1 and s is the first stage such that Jm and σm have converged to
their final values. One can show that E is recursively enumerable and hence
one can build the corresponding numbering.

It can be seen that every infinite set V equals to exactly one set W η
d . Either

V = Wφ
m for some m and then V = W η

em
or V = N−{〈d, s〉} for some pair 〈d, s〉

17



not enumerated into E and then V = W η
d . So the numbering W η

0 ,W
η
1 ,W

η
2 , . . .

contains every infinite set exactly once. The finite sets are contained at least
once by the assumption on φ but might occur more often. Furthermore, by the
choice of Jm and σm in Theorem 23, it follows that INFη is 1-generic. �

Theorem 27. Assume that the numbering η contains for each infinite r.e. set
exactly one index. Then there is a universal numbering ψ with DEQψ ≡T INFη.

Proof. In the following, let σk be the k-th string in a recursive one-one enu-
meration of all strings with σ0 being the empty string. Given η, define φj(x) by
the first case which is found to apply:

• φj(x) = 0 if |W η
j | > x + 1 and there are inconsistent strings σh, σk with

h, k ∈W η
j ;

• φj(x) = σk(x) if |W η
j | > x+1 and k is the first number found in W η

j with
σk(x)↓.

If no case applies then φj(x) is undefined.
Note that a set of at least x + 2 strings either contains two incomparable

strings or a string of length x+ 1 or more which is then defined at the input x.
Hence whenever |W η

j | > x+ 1 then φj is defined by one of the two cases. So, if
j ∈ INFη then φj is total else φj has a finite domain.

Furthermore, for every recursive function f there is a j with W η
j = {k : ∃n ∈

N [σk = f(0)f(1)f(2) . . . f(n)]}; it follows that φj = f .
These properties will now be used to define the following enumeration ψ.

There are three types of indices for ψ; indices ei,j,k which try to produce a finite
variant of the function φj on the domainW η

i ; eD,0,k which try to produce a finite
function with domain D but might have to change the finite domain once; eD,1,k
which produce a finite function with domain D as a second attempt after eD,0,k
fails. Note that an index in the numbering ψ may not be chosen for all possible
combinations of these parameters. The algorithms below, which correspond
to these parameters, state explicitly when such an index is chosen and what
the corresponding function in the numbering ψ does. The indices chosen are
assumed to cover the natural numbers in a one-one way. All algorithms work
for all k in parallel and the domain of each such function is independent of k.

• Algorithm for (i, j, k).

• Let u0, u1, u2, . . . be a recursive one-one enumeration of W η
i uniformly in

i; if this set is finite then the corresponding enumeration is partial.

• Wait until D = {u0, u1, . . . , u2i·3j−1} is known and the corresponding
elements are enumerated into W η

i .

• Choose the index ei,j,k; if this stage is not reached, no index for parameters
(i, j, k) is chosen.

• For all x ∈ D, if x ∈ dom(σk) then let ψei,j,k
(x) = σk(x) else let ψei,j,k

(x) =
0.

18



• For h = 1, 2, 3, . . . do Begin

- Let E = {u` : 2i3j5h−1 ≤ ` < 2i3j5h} and wait until all elements of
E are known, that is, until the first 2i3j5h elements are enumerated
into W η

i .

- Wait until φj(`) is defined on all ` < 2i3j5h.

- For ` = 2i3j5h−1 to 2i3j5h − 1 do Begin

If u` ∈ dom(σk) then let ψei,j,k
(u`) = σk(u`) else let ψei,j,k

(u`) =
φj(`).

End of for-loop for `.

End of for-loop for h.

Note that ψei,j,k
(x) remains undefined for all x where it is not explicitly defined

in the above algorithm. The next algorithms are there to cover all functions
with finite domain. The first one intends to cover the domain D but might
be redirected to some other finite domain in the case that there is a domain-
collision.

• Algorithm for (D, 0, k).

• Choose the index eD,0,k.

• For all x ∈ D, if x ∈ dom(σk) then let ψeD,0,k
(x) = σk(x) else let

ψeD,0,k
(x) = 0.

• Wait until there exists in some stage s some other index d such that
Wψ
d,s = D and there are i, j, h,D′ such that either d = ei,j,0∧2i3j5h = |D|

or d = eD′,0,0 ∧ |D| = 7|D′|.

• Let E be the set of the least 6|D| numbers outside D.

• For all x ∈ E, if x ∈ dom(σk) then let ψeD,0,k
(x) = σk(x) else let

ψeD,0,k
(x) = 0.

• Terminate.

In the case that D has 2i3j5h elements for some i, j, h it can happen that D
is temporarily equal to Wψ

ei,j,k,s
but later more elements are enumerated into

that set. The next case makes sure that then some other set replaces the given
domain.

• Algorithm for (D, 1, k).

• Determine i, j, h such that |D| = 2i3j5h; if these i, j, h do not exist then
abort.

• Wait for a stage s such that Wψ
eD,0,k,s

has |D| · 7 elements, index ei,j,k
exists and Wψ

ei,j,k,s
has at least 2i3j5h+1 elements.
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• Choose the index eD,1,k.

• For all x ∈ D, if x ∈ dom(σk) then let ψeD,1,k
(x) = σk(x) else let

ψeD,1,k
(x) = 0.

• Terminate.

For the verification, it is first shown that DEQψ ≤T INFη. This is done by
showing that the following formula holds.

Wψ
a = Wψ

b iff either
∃i, j, k, j′, k′ [a = ei,j,k and b = ei,j′,k′ and j = j′ ∨ i, j, j′ ∈ INFη]
or ∃D, c, k, k′ [a = eD,c,k and b = eD,c,k′ ].

For the correctness, note that in above constructions the parameter k does not
have any influence on the domain; it only codes a finite string telling how to
replace certain elements in order to get all functions covered. Therefore, it
is sufficient to prove the above formula for the equivalence classes formed by
considering all indices with the same parameters except for k, k′ and then to
take the representatives where k, k′ are both 0. Now the formula is proven by
case distinction.

Case a = ei,j,0 and Wψ
a is finite. Note that this happens if the algorithm

for (i, j, 0) has gone far enough to define ei,j,0 but later gets stuck at some level
h in the for-loop of the variable of the same name by waiting for sufficiently
many elements to go either into Wψ

i or into Wψ
j to define φj . The domain has

2i3j5h−1 elements. In the case that b = ei′,j′,0 then Wψ
b is either infinite or has

2i
′
3j

′
5h

′−1 elements and the domain is the same iff i = i′ ∧ j = j′. In the case
that b = eD,c,0 then Wψ

b 6= Wψ
a : if D = Wψ

a then ψeD,c,0 will eventually become
defined on 7|D| elements and hence the domain is different from D while eD,1,0
will not become created as that would require that more than |D| elements go
into Wψ

a . Furthermore, no function ψeD′,c,0
with D′ ⊂ D has the same domain

as Wψ
a ; the reason is that such functions either have the domain D′ or have a

domain whose cardinality is a multiple of 7.
Case a = ei,j,0 and Wψ

a is infinite. Note that the domain of ψei,j,0 is W η
i .

Then i ∈ INFη and j ∈ INFη as otherwise the for-loop with the variable “h”
in the algorithm for (i, j, k) would get stuck with waiting for either elements
to go into W η

i or W η
j ; the latter is needed to get that φj is total. As argued

in the previous case, this is the case which always applies if i, j ∈ INFη. Now
Wψ
b 6= Wψ

a whenever b = eD,c,0 as a function with such an index is only defined
on a finite set. Furthermore, if b = ei′,j′,0 and i 6= i′ then Wψ

b is either finite or
equal to W η

i′ ; in both cases Wψ
b 6= Wψ

a . The remaining case is that b = ei,j′,0
and then Wψ

b = Wψ
a iff Wψ

b = W η
i iff j′ ∈ INFη. This verifies the formula for

this case.
Case a = eD,c,0. It follows from above case distinction that Wψ

a 6= Wψ
b

whenever b is of the form ei,j,0. Now let i, j, h be the maximal numbers such
that 2i, 3j , 5h divide |D|, respectively. Consider the following two subcases.

The subcase that there is no index ei,j,0 or there is no stage s such that
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Wψ
ei,j,0,s has exactly 2i3j5h elements. Then for all F such that i, j, h are the

maximal numbers such that 2i, 3j , 5h divide |F |, respectively, satisfy that index
eF,1,0 does not exist and Wψ

eF,0,0
= F . It follows that c = 0 and Wψ

b = Wψ
a iff

b = eD,0,0.
The subcase that there is an index ei,j,0 and Wψ

ei,j,0,s has at some stage s
exactly 2i3j5h elements. Then there is a sequence of sets E0, E1, E2, . . . such
that each En has exactly 2i3j5h7n elements and for that n, the set Wψ

eEn,0,0
first

consists of En and later of En+1. All sets F /∈ {E0, E1, E2, . . .} such that i, j, h
are the maximal numbers such that 2i, 3j , 5h divide |F |, respectively, satisfy
that the index eF,1,0 does not exist and Wψ

eF,0,0
= F . Furthermore, the index

eE0,1,0 exists iff E0 ⊂Wψ
ei,j,0

. Now one can see the following: if Wψ
eD,c,0

= En+1

for some n then D = En and c = 0; if Wψ
eD,c,0

= E0 then D = E0 and c = 1;
if Wψ

eD,c,0
= F for one F as considered above in this paragraph then D = F

and c = 0. This exhausts all the possibilities for Wψ
eD,c,0

. Hence Wψ
a = Wψ

b iff
b = eD,c,0.

This case distinction completes the proof of the formula and hence DEQψ ≤T
INFη.

For the converse direction, fix i with W η
i = N. Note that the index ei,j,0 exists

for all j as the creation of the index does not contain any condition on j but only
the condition that W η

i contains at least 2i3j elements. The mapping j 7→ ei,j,0 is
recursive. Now j ∈ INFη iff Wψ

ei,j,0
= Wψ

ei,i,0
iff 〈ei,j,0, ei,i,0〉 ∈ DEQψ and hence

INFη ≤m DEQψ. Together with the previous result, one has DEQψ ≡T INFη.
It remains to show that the numbering ψ is universal and covers all partial

recursive functions g. Given g with finite domain, let D be the domain and let
k be an index of a string σk such that σk(x) is defined and equal to g(x) for all
x ∈ D. There are three cases.

• There is a c with Wψ
D,c,0 = D. Then ψeD,c,k

(x) = σk(x) for all x ∈ D and
ψeD,c,k

= g.

• Wψ
ei,j,0

= D for some i, j. Then ψei,j,k
(x) = σk(x) for all x ∈ D and

ψei,j,k
= g.

• There is an F with |D| = 7|F | and Wψ
eF,0,0

= D. Then ψeF,0,k
(x) = σk(x)

for all x ∈ D and ψeF,0,k
= g.

This case-distinction is exhaustive. Given g with infinite domain, there is a
unique i such that W η

i is the domain of g. Let u0, u1, . . . be the underlying
recursive one-one enumeration of this domain considered in the construction
above. There is an index j such that φj(`) = g(u`) for all `. Now the function
ψei,j,0 has the domain Wψ

i and satisfies for almost all ` that ψei,j,0(u`) = g(u`).
There is a k such that σk(x)↓= g(x) for all x in the intersection of the domains
of σk and g and that the domain of σk contains all x with ψei,j,0(x) 6= g(x). It
follows that ψei,j,k

= g. This completes the proof of the Theorem. �

Combining Proposition 26 and Theorem 27 gives the following corollary which
was the main goal of these two results.
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Corollary 28. There is a universal numbering ψ such that DEQψ has 1-generic
Turing degree.

5. Open Problems

In the following several major open questions of the field are identified.

Open Problem 29. Is there a universal numbering ψ such that DMINψ has a
minimal Turing degree?

This is certainly possible for MINψ as one can code every Turing degree below
K into MINψ for a suitable ψ. Recall that INCψ = {〈i, j〉 : Wψ

i ⊆ Wψ
j } and

DEQψ = {〈i, j〉 : Wψ
i = Wψ

j }. Obviously

DMINψ ≤T DEQψ ≤T INCψ ≤T K ′.

By Theorem 23 there is a universal numbering ψ such that DMINψ <T DEQψ ≡T
K ′ and Friedberg showed that there is a domain-universal numbering ϑ for which
DEQϑ is recursive. Corollary 28 showed that one can make DEQψ to have 1-
generic Turing degree as well for some universal numbering. Hence the first two
Turing reductions can be made proper while the following remains unknown.

Open Problem 30. Is there a universal numbering ψ with INCψ <T K ′?

Note that for universal numberings, this question is equivalent to asking whether
INCψ 6≥T K. The reason is that INCψ ⊕ K ≡T K ′ holds for universal num-
berings by DMINψ ≤T INCψ ≤T K ′ and Proposition 4. For domain-universal
numberings, one can ask the even stronger question of whether there is a domain-
universal numbering ϑ with INCϑ <T K. Kummer [11] already showed that
INCϑ ≤T K can be obtained for some domain-universal numbering ϑ, see The-
orem 17 above.

In Theorem 8 above it was shown that for numberings ψ satisfying the Kol-
mogorov property, DMIN∗

ψ ≡T K ′′. On the other hand, by Theorem 23 there is
a universal numbering ψ with DMIN∗

ψ being 1-generic. Although these results
give already much knowledge about DMIN∗

ψ, the original problem of Schae-
fer [19] is still not completely solved.

Open Problem 31. Are MIN∗
ψ ≡T K ′′ and DMIN∗

ψ ≡T K ′′ for all Gödel
numberings ψ?
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