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Abstract

This paper extends previous studies on learnability in non-acceptable number-
ings by considering the question: for which criteria which numberings are opti-
mal, that is, for which numberings it holds that one can learn every learnable
class using the given numbering as hypothesis space. Furthermore an effective
version of optimality is studied as well. It is shown that the effectively optimal
numberings for finite learning are just the acceptable numberings. In contrast to
this, there are non-acceptable numberings which are optimal for finite learning
and effectively optimal for explanatory, vacillatory and behaviourally correct
learning. The numberings effectively optimal for explanatory learning are the
K-acceptable numberings. A similar characterization is obtained for the num-
berings which are effectively optimal for vacillatory learning. Furthermore, it
is studied which numberings are optimal for one and not for another criterion:
among the criteria of finite, explanatory, vacillatory and behaviourally correct
learning all separations can be obtained; however every numbering which is
optimal for explanatory learning is also optimal for consistent learning.

1. Introduction

Consider the following model of learning. The learner receives, over time, more
and more data about the concept to be learnt. From time to time, the learner
conjectures a potential explanation for the data it is receiving. One can say
that the learner learns the concept if the sequence of conjectures eventually
converges to a correct explanation for the concept. This is essentially the no-
tion of explanatory learning considered by Gold [10]. The concepts considered
are usually recursively enumerable (r.e.) languages (subsets of natural num-
bers) or recursive functions. In this paper we will be concentrating on learning
languages. The explanations thus take the form of grammars or indices from
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some hypothesis space or numbering of recursively enumerable languages.
Learning of just one r.e. language is not useful, as a learner which just con-

jectures a grammar for the language, on any data, will be successful on the
language. Thus, it is more useful to consider learnability of a class of languages.
A learner explanatorily learns a class of languages if it explanatorily learns each
language in the class. Since Gold’s paper [10], several other criteria of learn-
ability have been explored and some of them will be considered in the current
paper.

The learnability of the class depends not only on the class itself but also
on the underlying numbering used as a hypothesis space. Angluin [1] initiated
the systematic study of uniformly recursive hypothesis spaces; as such hypothe-
sis spaces can contain only some but not all recursive sets, these spaces have
to be selected in dependence of the class to be learnt. Lange and Zeugmann
[14, 15, 24] investigated the topic thoroughly. De Jongh and Kanazawa [6]
investigated to which extent one can generalize Angluin’s characterization of
learnability [1] from uniformly recursive to uniformly r.e. hypothesis spaces.
Zilles [25, 26] studied the question of how to synthesize a learner from an index
of a uniformly r.e. hypothesis space. Most of this and related work consid-
ered specialized hypothesis spaces, which permit only to learn some and not
all classes; these specialized hypothesis spaces often do not even contain all r.e.
sets.

In contrast to this, the focus of the present work lies on the question which
hypothesis spaces are optimal for learning in the sense that every learnable
class can be learnt using this hypothesis space. Therefore, a valid hypothesis
space A0, A1, A2, . . . must be a universal numbering, that is, it must satisfy
that {〈e, x〉 : x ∈ Ae} is recursively enumerable and that, for every r.e. set B,
there is an index e with B = Ae. In particular, acceptable, K-acceptable and
Ke-numberings are considered, where K denotes the halting problem. (Here
a numbering A0, A1, A2, . . . is acceptable (K-acceptable) if for every further
numbering B0, B1, B2, . . . there is a recursive (K-recursive) function f such
that Be = Af(e) for all e. A Ke-numbering is a universal numbering for
which the grammar equivalence problem is K-recursive.) A more restrictive
notion is that of an effectively optimal hypothesis space where, additionally,
one can effectively obtain a learner for the class using A0, A1, A2, . . . as hy-
pothesis space from any learner for the class using another numbering B0, B1,
B2, . . . as hypothesis space.

The optimality of the hypothesis space depends on the criterion of learning
considered. The main criteria considered are finite, explanatory, vacillatory and
behaviourally correct learning as defined below in Definition 1; but some inter-
esting results are also obtained for other criteria of learning.

Intuitively, a learner M finitely learns [10] a language class if, for every lan-
guage L in the class, for any order of presentation of elements of L, M outputs
only one conjecture and the conjecture is an index for L. A learner M ex-
planatorily learns [10] a language class if, for every language L in the class, for
any order of presentation of elements of L, M outputs a sequence of conjec-
tures which converges to an index for L. A learner M behaviourally correctly
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learns [2, 20] a language class if, for every language L in the class, for any
order of presentation of elements of L, M outputs an infinite sequence of con-
jectures, all but finitely many of which are indices for L. Vacillatory learning [4]
is a restriction of behaviourally correct learning, where the learner outputs only
finitely many distinct conjectures (although some of them might be repeated
infinitely often).

The most prominent numberings are the acceptable numberings and Fried-
berg numberings. Acceptable numberings are used by many authors as the
standard hypothesis space [10] and every learnable class (according to most cri-
teria) is also learnable using an acceptable numbering — one exception is the
criterion of learning with additional information, see Theorem 31. However,
one-one numberings, also known as Friedberg numberings [8], are not optimal
for learning [7, 12]. A central contribution of the present work is to show that
there are many optimal numberings besides the acceptable numberings, but that
it depends a lot on the underlying learning criterion which numberings are opti-
mal for learning and which are not. For example, a nearly acceptable numbering
(as defined in Definition 4) is effectively optimal for explanatory, vacillatory and
behaviourally correct learning as well as optimal for finite learning (see Propo-
sition 5).

In Theorem 6, we show characterizations for numberings which are effectively
optimal for finite, explanatory and vacillatory learning. In particular, a num-
bering A0, A1, A2, . . . is effectively optimal for finite learning iff the numbering
is acceptable. A numbering A0, A1, A2, . . . is effectively optimal for explanatory
learning iff the numbering is K-acceptable. One can also similarly characterize
effectively optimal numberings for vacillatory learning. We do not have a good
characterization of numberings which are effectively optimal for behaviourally
correct learning.

We show that there are numberings which are (non-effectively) optimal but
not effectively optimal for various criteria of inference: Theorem 9 gives this
result for finite learning; Theorem 13 gives this result for explanatory and vacil-
latory learning; Theorem 16 gives this result for behaviourally correct learning.

We also show that the set of optimal numberings for finite, explanatory, vac-
illatory and behaviourally correct learning are incomparable. Theorem 9 gives
this result for finite learning versus explanatory, vacillatory and behaviourally
correct learning. Theorem 12 gives this result for behaviourally correct learning
versus finite, explanatory and vacillatory learning. Theorem 11 gives this result
for explanatory and vacillatory learning versus finite learning and behaviourally
correct learning. Theorem 10 gives this result for vacillatory learning versus
explanatory learning. The numbering A0, A1, A2, . . . in Theorem 13 gives this
result for explanatory learning versus vacillatory learning.

In Section 4 we give special attention to consistent learning. Theorem 22
shows that optimal numberings for explanatory learning are optimal for con-
sistent learning. This is one of the rare cases of an inclusion in the sense that
every numbering optimal for a criterion I is also optimal for a different crite-
rion J . The inclusion also holds with effective optimality in place of optimality.
However, there are numberings which are effectively optimal for consistent learn-
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ing but not optimal for finite, explanatory, vacillatory or behaviourally correct
learning.

2. Preliminaries

Any unexplained recursion theoretic notion is from [21, 17, 18]. N denotes the
set of natural numbers. Languages are recursively enumerable (r.e.) subsets of
N. We often identify L with its characteristic function, that is L(x) = 1 denotes
that x ∈ L and L(x) = 0 denotes that x 6∈ L.

For the ease of notation, learnability of r.e. subsets of N is studied (and
other possible domains are ignored). The learners use some hypothesis space to
represent their conjectures.

A numbering A0, A1, . . . is any listing of recursively enumerable sets such that
{〈e, x〉 : x ∈ Ae} is recursively enumerable. A numbering is called a universal
numbering if it contains an index for all r.e. sets. The standard hypothesis
space W0,W1,W2, . . . is some fixed acceptable numbering [21], that is, for every
further numbering A0, A1, A2, . . . of r.e. sets, there is a recursive function f with
Wf(e) = Ae for all e. In general, every universal numbering can be a hypothesis
space. A numbering A0, A1, A2, . . . is called K-acceptable iff, for every further
numbering B0, B1, B2, . . ., there is a K-recursive function f with Af(e) = Be
for all e. Here K denotes the halting problem {x : x ∈ Wx}. The concept of
translating numberings in the limit is quite natural and occurs in the work of
Lange and Zeugmann [15] as well as in the work of Case, Jain and Suraj [5].
We,s denotes the set of x < s which are enumerated into We within s steps.
Similarly, Ae,s denotes the set of x < s which are enumerated into Ae within s
steps.

A text T is a member of (N∪{#})∞. T (0), T (1), T (2) and so on denote the
members of T ; T [n] denotes T (0)T (1) . . . T (n − 1). A sequence σ is a member
of (N ∪ {#})∗. λ denotes the empty sequence. For a text T let content(T ) =
{T (n) : n ∈ N ∧ T (n) ∈ N}; similarly one defines content(σ). The length of a
sequence σ, denoted |σ|, is the number of elements in the domain of σ. One says
that σ � T and σ � τ iff σ is a prefix of T and τ , respectively. Furthermore,
T is a text for L iff L = content(T ). Note that there is a uniformly recursive
method for generating a text Te for We; this text Te is called a canonical text
for We.

The general model of learning is that the learner M assigns, to every prefix
T [n] of a given text T for the set L to be learnt, an index M(T [n]) interpreted as
M ’s conjecture for the language L; for finite learning, the learner M is allowed
to output a special symbol “?” which denotes that the learner does not wish
to make a conjecture at this point. One says that a learner M converges on
a text T to an index e (denoted M(T ) = e) iff M(T [n]) = e for almost all n.
Furthermore, one says that M outputs an index e on T iff there is an n with
M(T [n]) = e. The following definition gives various criteria of learning.

Definition 1 (Bārzdins [2], Case [4], Gold [10], Osherson and Weinstein [20]).
A learner M finitely learns a language L using a numbering A0, A1, A2, . . . as
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hypothesis space [10] iff for every text T for L, M on T outputs exactly one
index e, besides ?, and this index e satisfies Ae = L.

A learner M explanatorily learns a language L using a numbering A0, A1,
A2, . . . as hypothesis space [10] iff for every text T for L, M converges on T to
an index e such that Ae = L.

A learner M vacillatorily learns a language L using a numbering A0, A1,
A2, . . . as hypothesis space [4] iff for every text T for L, M converges on T to
an index d such that, for some e ≤ d, Ae = L.

A learner M behaviourally correctly learns a language L using a numbering
A0, A1, A2, . . . as hypothesis space [2, 20] iff for every text T for L, AM(T [n]) = L
for almost all n. Note that it is permitted, but not required, that the M(T [n])
are syntactically different.

A learner M finitely (explanatorily, vacillatorily, behaviourally correctly)
learns S iff it finitely (explanatorily, vacillatorily, behaviourally correctly) learns
each L ∈ S.

A class S is finitely (explanatorily, vacillatorily, behaviourally correctly) learn-
able iff some learner finitely (explanatorily, vacillatorily, behaviourally correctly)
learns S.

Note that the definition of vacillatorily learnable, as defined by Case [4], re-
quires the learner to eventually output its conjecture only from finitely many
correct indices for the input language — that is, the learner eventually vacillates
among only finitely many correct indices for the input language. The definition
used above is equivalent to this definition and is a useful characterization of
vacillatory learning (this follows using Proposition 16 in [11]). We defined vac-
illatory learning using this characterization mainly because of its ease of use in
the proofs below.

For ease of notation below, if the hypothesis space is not specified, then the
default numbering W0,W1,W2, . . . is assumed as hypothesis space.

Definition 2 (Blum and Blum [3], Fulk [9]). A stabilizing sequence for M
on L is a sequence σ such that content(σ) ⊆ L and M(στ) = M(σ) for all
τ ∈ (L ∪ {#})∗. A locking sequence for M on L is a stabilizing sequence σ for
M on L such that M(σ) is an index for L (in the hypothesis space used).

Note that by the locking-sequence hunting construction [3, 9] there is a recur-
sive enumeration of learners M0,M1,M2, . . . such that (a) every explanatorily
learnable class is learnt by one of these learners, (b) whenever Me converges on
some text for L, then Me converges on all texts for L to the same index, (c)
whenever Me explanatorily learns L and T is a text for L, then for some n, T [n]
is a locking sequence for Me on L.

Definition 3. A numbering A0, A1, A2, . . . is called optimal for explanatory
learning iff every explanatorily learnable class can be learnt using the num-
bering A0, A1, A2, . . . as hypothesis space.

A numberingA0, A1, A2, . . . is called effectively optimal for explanatory learn-
ing iff for every numbering B0, B1, B2, . . ., given a learner M , we can effec-
tively find a learner M ′ such that if M witnesses explanatory learnability of a
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class S of languages using the numbering B0, B1, B2, . . . as hypothesis space,
then M ′ witnesses explanatory learnability of S using the numbering A0, A1,
A2, . . . as hypothesis space.

Similarly, one can also define optimality and effective optimality for other
learning criteria.

As W0,W1,W2, . . . is acceptable, for showing (effective) optimality of A0, A1,
A2, . . ., it is sufficient to consider converting learners using W0,W1,W2, . . . as
hypothesis space to learners using A0, A1, A2, . . . as hypothesis space.

Let C be the plain Kolmogorov complexity [16] and CK be the Kolmogorov
complexity relative to K. That is, for a fixed universal Turing Machine U , C(x)
is the length of the smallest string y such that U(y) = x, and CK(x) is the length
of the smallest string y such that UK(y) = x. Here UK denotes computations
using the oracle K for the halting problem. Note that CK can be approximated
from above relative to K. Let CKs denote an approximation of CK relative
to K. Approximations from above or from below relative to K have an easy
characterization: A function g can be approximated from above (below) relative
to K iff there are uniformly recursive functions gs with g(n) = lim sups gs(n)
for all n (respectively, g(n) = lim infs gs(n) for all n).
〈·, ·〉 denotes a recursive bijection from N × N to N. Here we assume that

〈·, ·〉 is increasing in both its arguments.

3. Optimality and Effective Optimality

The following notion generalizes the notion of acceptable numberings; it is an
example of a natural class of numberings which goes beyond acceptable number-
ings but is still optimal for most of the learning criteria studied in the literature.

Definition 4. A numbering A0, A1, A2, . . . is called nearly acceptable iff there
is a recursive function f such that Af(d,e) = We whenever d ∈We.

Proposition 5. Let A0, A1, A2, . . . be given by the equations

A0 = ∅;
A〈d,e〉+1 = We ∪ {d}.

The numbering A0, A1, A2, . . . is nearly acceptable but not acceptable.
Furthermore, every nearly acceptable numbering is optimal for finite learn-

ing and effectively optimal for explanatory, vacillatory and behaviourally correct
learning.

Proof. The numbering A0, A1, A2, . . . is not acceptable as the Theorem of Rice
[21] does not hold. In particular, the index set of ∅ is the recursive set {0}.

However, A0, A1, A2, . . . is nearly acceptable via the function (d, e) 7→ 〈d, e〉+
1: if d ∈We, then A〈d,e〉+1 = We ∪ {d} = We.

Now assume that B0, B1, B2, . . . is nearly acceptable and that this fact is
witnessed by f . Let u be a fixed index of the empty set: Bu = ∅. For the
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criteria of explanatory or behaviourally correct learning, let a learner M be
given. The new learner N is defined as

N(σ) =

{
u, if content(σ) = ∅;
f(d,M(σ)), if d = min(content(σ)).

This learner clearly identifies ∅. Furthermore, if L is not empty and belongs to
the class S learnt by M , then, for almost all n, N(T [n]) = f(min(L),M(T [n])).
Thus, if WM(T [n]) = L, then AN(T [n]) = L. Furthermore, if M converges on a
text T , then so does N . Hence B0, B1, B2, . . . is effectively optimal for beha-
viourally correct and explanatory learning. Furthermore, by the implication in
Theorem 6 below, B0, B1, B2, . . . is also effectively optimal for vacillatory learn-
ing.

For finite learning, one has to do a case distinction. If S = {∅}, then the
new learner N outputs always the index u of the empty set. If ∅ /∈ S, then the
new learner N waits for an element d to show up in the input and for M to
output a hypothesis e; once d, e are known, N conjectures f(d, e) and does not
revise this hypothesis. The verification that this works is straightforward. �

The effectively optimal numberings for finite, explanatory and vacillatory learn-
ing are easy to characterize.

Theorem 6. A numbering A0, A1, A2, . . . of all r.e. sets is
(a) effectively optimal for finite learning iff it is acceptable;
(b) effectively optimal for explanatory learning iff it is K-acceptable;
(c) effectively optimal for vacillatory learning iff there is a limit-recursive func-
tion g such that, for all d, there is an e ≤ g(d) with Ae = Wd.

Proof. We first consider necessity.
Suppose Td is the canonical text for Wd. Let Md be a learner which al-

ways conjectures d on any input. Then clearly Md finitely, explanatorily and
vacillatorily learns {Wd} using W0,W1,W2, . . . as hypothesis space.

Let Md
fin (Md

ex,M
d
vac) be a learner obtained effectively from Md (and thus

from d) to finitely (explanatorily, vacillatorily) learn {Wd} using A0, A1, A2, . . .
as hypothesis space.

(a) For all d, Md
fin outputs exactly one hypothesis on Td, which is a grammar

for Wd in the numbering A0, A1, A2, . . .; thus, there exists a recursive function h
which maps d to the hypothesis output by Md

fin on Td. This recursive function
witnesses that A0, A1, A2, . . . is acceptable.

(b) For all d, Md
ex converges on Td to a grammar for Wd in the numbering A0,

A1, A2, . . .; thus, there exists a limiting recursive function h which maps d to the
hypothesis output by Md

ex, in the limit, on Td. This limiting recursive function
h witnesses that A0, A1, A2, . . . is K-acceptable.

(c) For all d Md
vac converges on Td to an upper bound on the grammar for Wd

in the numbering A0, A1, A2, . . .; thus, there exists a limiting recursive function
g which maps d to the hypothesis output by Md

vac, in the limit, on Td. This
limiting recursive function g witnesses that (c) holds.
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We now consider sufficiency.
(a) Suppose h is a recursive function which witnesses that A0, A1, A2, . . . is

acceptable. Then, given a finite learner M using W0,W1,W2, . . . as hypothesis
space, one can construct M ′ as follows. M ′(T [n]) = h(M(T [n])). It is easy to
verify that M ′ finitely identifies each language which is finitely identified by M .

(b) Suppose h is a K-recursive function which witnesses that A0, A1, A2, . . .
is K-acceptable. Let N be an oracle Turing Machine which computes h us-
ing oracle K. Then, given an explanatory learner M using W0,W1,W2, . . . as
the hypothesis space, one can construct M ′ as follows. Let K0,K1, . . . be a
recursive approximation to K. M ′(T [n]) = NKn(M(T [n])), if NKn(M(T [n]))
halts within n steps; M ′(T [n]) = 0 otherwise. It is easy to verify that M ′

explanatorily learns each language which is explanatorily learnt by M .
(c) Suppose g is as given in the hypothesis. Let g′ be a recursive func-

tion such that g(x) = limt→∞ g′(x, t). Given a vacillatory learner M us-
ing W0,W1,W2, . . . as the hypothesis space, one can construct M ′ as follows.
M ′(T [n]) = max({g′(i, n) : i ≤ M(T [n])}). Suppose M(T ) converges. Then,
M ′(T ) = max({g(i) : i ≤M(T )}). Thus, if exists an i ≤M(T ) such that Wi =
content(T ), then, there exists an i′ ≤ g(i) ≤M ′(T ) such that Ai′ = content(T ).
Thus, M ′ vacillatorily learns each language which is vacillatorily learnt by M . �

We now turn our attention to the separation of effectively and non-effectively
optimal numberings, as well as the separation of optimal numberings for various
criteria of inference. The following propositions are useful for showing some of
our results.

Proposition 7. If S is a finitely learnable class, then there is a number d such
that almost all members of S have at least 2 non-elements below d.

Proof. Suppose M finitely learns S. Fix an L ∈ S. Let σ be such that
content(σ) ⊆ L and M(σ) is an index for L. Let d1 = max(content(σ)). Note
that for L′ ∈ S with L 6= L′, content(σ) 6⊆ L′. The reason is that otherwise
M does not finitely learn {L,L′}. Thus, for all L′ ∈ S − {L}, there exists an
i ≤ d1, such that i 6∈ L′.

Let Si = {L′ ∈ S : i 6∈ L′}. For non-empty Si, let Li be a fixed member of
Si and let σi be such that content(σi) ⊆ Li and M(σi) is an index for Li. Let
d2 = max({max(content(σi)) : i ≤ d1 ∧ Si 6= ∅}). Note that if Si 6= ∅, then for
L′ ∈ S with Li 6= L′, content(σi) 6⊆ L′; thus, for all L′ ∈ S − {Li}, there exists
a j ≤ d2, such that j 6= i and j 6∈ L′.

Thus, for all L′ ∈ S − ({L} ∪ {Li : Si 6= ∅, i ≤ d1}), the set (N − L′) ∩ {x :
x ≤ d1 + d2} contains at least two elements. �

For any n and n distinct numbers a1, a2, . . . , an, let De = {a1, a2, . . . , an} iff
e = 2a1 + 2a2 + . . .+ 2an ; furthermore, let D0 = ∅. The number e is called the
canonical index of De. Recall that CK is the Kolmogorov complexity relative
to K.

Proposition 8. Let a uniformly K-recursive one-one listing L0, L1, L2, . . . of
cofinite sets be given such that i = min(N − Li) for all i. Then there is a
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numbering H0, H1, H2, . . . of r.e. sets and a (non-recursive) function g such
that for all i, j:

• ∀i > 0 [Di ⊆ Hi ⊆ Di ∪ {max(Di),max(Di) + 1,max(Di) + 2, . . .}];

• ∀i [Hg(i) = Li];

• ∀i [i /∈ {g(0), g(1), g(2), . . .} ⇒ Hi is finite];

• ∀i, j [max({j : CK(j) ≤ 2i}) < g(i)].

The function g can be approximated from below relative to K.

Proof. The function g is defined by the following K-recursive approximation:

• in stage 0: choose g0(i) such that Dg0(i) = {0, 1, 2, . . . , i, i+ 1} − {i};

• in stage s+ 1: if there is an x with

– [max(Dgs(i)) ≤ x ≤ s and x /∈ Li] or

– [gs(i) ≤ x ≤ s and CKs (x) ≤ 2i]

then choose gs+1(i) such that Dgs+1(i) = {s+ 1} ∪ (Li ∩ {0, 1, 2, . . . , s})
else let gs+1(i) = gs(i).

Note that whenever gs+1(i) 6= gs(i), then max(Dgs+1(i)) > s and hence gs+1(i) >
s. It follows that the set G = N− {g(0), g(1), g(2), . . .} is K-r.e.; that is, there
is a recursive approximation with i ∈ G⇔ ∀∞s [i ∈ Gs]. Let H0 = ∅; for i > 0,
let

Hi = Di ∪ {t : ∃s [max(Di) ≤ t ≤ s ∧ i /∈ Gs]}.

The sets H0, H1, H2, . . . are uniformly r.e.; furthermore, Hi is finite iff i ∈ Gs
for almost all s. In the case that i = g(j) it follows that max(Di) is an upper
bound on all non-elements of Lj and therefore Hi = Lj . This completes the
proof. �

Theorem 9. There is a numbering which is optimal but not effectively optimal
for finite learning. This numbering is not optimal for explanatory, vacillatory
and behaviourally correct learning.

Proof. Let Le = N − {e} for all e; then choose the numbering H0, H1, H2, . . .
according to Proposition 8. Now let A〈0,0〉 = N and A〈0,e+1〉 = He for all e.
Furthermore, for every e and every d > 0, let

A〈d,e〉 =
⋃

s:|{0,1,2,...,d}−We,s|≥2

We,s.

Note that the resulting numbering covers all r.e. sets: first N and every set of
the form N − {a} is covered by sets of the form A〈0,e〉; second, a set We with
least non-elements a, b is equal to A〈d,e〉 for all d > a+ b.

Now let S be a finitely learnable class with learner M . Note that if N ∈ S,

9



then S contains no other languages and thus finite learnability in numbering A
will be trivial. So assume N 6∈ S. By Proposition 7 there is a number d such
that all but finitely many members of S have at least 2 non-elements below d.
Without loss of generality, d is so large that these exceptions are all of the form
N− {c} with c ≤ d. Now one builds a new learner N as follows:

• N(σ) is an index 〈0, ec〉 for the set N−{c} whenever {0, 1, 2, . . . , d}−{c} ⊆
content(σ) ⊆ N− {c} and N− {c} ∈ S.

• N(σ) = 〈d,M(σ)〉 whenever M(σ) is defined (that is, M(σ) 6= ?) and
c ∈ content(σ) for all c with N− {c} ∈ S.

• N(σ) = ?, otherwise.

It is easy to see that N is a finite learner for S.
Note that, by the definition of H0, H1, H2, . . . and A0, A1, A2, . . ., each of

the sets N− {c} have exactly one index 〈0, ec〉 (with respect to A0, A1, A2, . . .),
which also satisfies CK(ec) > 2c. It follows that the class {N − {c} : c ∈ N} is
not behaviourally correctly learnable usingA0, A1, A2, . . . as hypothesis space, as
otherwise CK(ec) will, for every c, be bounded by c plus a constant independent
of c. As {N − {c} : c ∈ N} is explanatorily learnable, it follows that A0,
A1, A2, . . . is not optimal for explanatory, vacillatory and behaviourally correct
learning.

Furthermore, A0, A1, A2, . . . is not acceptable as A0, A1, A2, . . . contains only
one index for each set of the form N − {c}. Thus, by Theorem 6, A0, A1,
A2, . . . is not effectively optimal for finite learning. �

Theorem 10. There is a numbering A0, A1, A2, . . . which is effectively optimal
for vacillatory learning but not optimal for explanatory learning.

Proof. Let CKss be an approximation of CK after s steps such that, for all x,
CK(x) = lim sup CKss (x) and for all s and c, there are less than 2c numbers y
with CKss (y) < c. Now let

A〈d,e〉 =
⋃

s:CKss (d)>2e

We,s.

Then A〈d,e〉 is finite for those d and e where CK(d) ≤ 2e. Furthermore, for
every e and all sufficiently large d it holds that CK(d) > 2e.

No class S containing infinitely many infinite sets is explanatorily learnable
using this numbering. The reason is that given the least index e of an infinite
member of the class, the learner will converge on the canonical text of We to
an index of Kolmogorov complexity (relative to K) at most a constant above
that of e; however every index in the given numbering A for We will have
Kolmogorov complexity (relative to K) at least 2e minus a constant. Hence
such an explanatory learner cannot exist. As there exist explanatorily learnable
classes (such as {{〈e, x〉 : x ∈ N} : e ∈ N}) containing infinitely many infinite
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sets, it follows that A0, A1, A2, . . . is not optimal for explanatory learning.
On the other hand, one can use Theorem 6 to obtain that the numbering

considered is effectively optimal for vacillatory learning: the reason is that for
every e there is a d ≤ 2e+1 with CK(d) > 2e and A〈d,e〉 = We. �

Theorem 11. There is a numbering A0, A1, A2, . . . which is effectively optimal
for explanatory and vacillatory learning but not optimal for behaviourally correct
learning or finite learning.

Proof. Recall that a simple set [21] is r.e., co-infinite and intersects every in-
finite r.e. set. Let a0, a1, a2, . . . be a recursive one-one enumeration of a simple
set B and define

A〈d,e〉 =

We, if d /∈ B ∧ d > e;
{0, 1, 2, . . . , 2s+1 · 3d · 5e}, if d = as ∧ d > e;
{0, 1, 2, . . . , 3d · 5e}, if d ≤ e.

This numbering is a K-acceptable numbering as, for every e, one can find the
least d /∈ B ∪ {0, 1, 2, . . . , e} using the oracle K and then A〈d,e〉 = We. By
Theorem 6, the numbering is effectively optimal for explanatory and vacillatory
learning.

It remains to show that the numbering is not optimal for behaviourally cor-
rect learning or finite learning.

Consider any class S of infinite languages which is behaviourally correctly
learnable but not vacillatorily learnable using W0,W1,W2, . . . as a hypothesis
space [4]. Suppose that M , using the numbering A0, A1, A2, . . . as hypothesis
space, behaviourally correctly learns S. As S is not vacillatorily learnable, it
follows by a result of Case [4] that there are L ∈ S and a recursive text T for L
on which the learner M outputs infinitely many distinct conjectures. For every
pair 〈d, e〉 with d ∈ {0, 1, 2, . . . , e} ∪ B, the set A〈d,e〉 is a finite set and has a

maximum which is a multiple of 3d · 5e. Hence M outputs only finitely many of
these pairs on the text T . Now let E be the infinite r.e. set of all indices 〈d, e〉
output by M on T such that d /∈ {0, 1, 2, . . . , e}∪B. The set {d : ∃e [〈d, e〉 ∈ E]}
is an r.e. set disjoint to B and hence finite. As for every e there are only pairs
〈d, e〉 with d > e in E, it follows that E is finite as well in contradiction to the
assumption.

From this contradiction it can be concluded that M is not a behaviourally
correct learner for S and the numbering A0, A1, A2, . . . is not optimal for beha-
viourally correct learning.

Consider Ln = {〈n, x〉 : x ∈ N}. Clearly, {L0, L1, L2, . . .} is finitely learn-
able using W0,W1,W2, . . . as hypothesis space. Suppose by way of contradic-
tion that some learner finitely learns {L0, L1, L2, . . .} using A0, A1, A2, . . . as
hypothesis space. Then, given n, one can effectively find an index 〈dn, en〉 such
that A〈dn,en〉 = Ln. In particular, dn 6∈ B, dn > en and Wen = Ln. Note
that all en are distinct. But then the set {dn : n ∈ N} is an infinite r.e.
set disjoint from B, a contradiction to B being a simple set. Thus, {L0, L1,
L2, . . .} is not finitely learnable using A0, A1, A2, . . . as hypothesis space. �
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Theorem 12. The numbering A0, A1, A2, . . . given by

A〈d,e〉 =
⋃

s:∃m [m=min(We,s)∧(d>|Wm,s|∨|We,s|≤|Wm|)]

We,s

is effectively optimal for behaviourally correct learning but not optimal for any
of finite, explanatory or vacillatory learning.

Proof. The behaviourally correct learner N using A0, A1, A2, . . . is effectively
built by simulating a given learner M using the numbering W0,W1,W2, . . . as
hypothesis space and defining N(σ) = 〈|σ|,M(σ)〉. Given a text T for a set L
learnt by M , use ed as shorthand for M(T [d]) and note that N(T [d]) = 〈d, ed〉.
The learner N succeeds as shown in the following case distinction.

• L = ∅: then almost all ed are indices of the empty set and hence A〈d,ed〉
is empty for almost all d as well.

• m = min(L) exists and Wm is infinite: then A〈d,ed〉 = Wed for all d where
Wed is correct. Hence N behaviourally correctly learns L as well.

• m = min(L) exists and Wm is finite: then A〈d,ed〉 = Wed for all d where
Wed is correct and d > |Wm|. Hence N behaviourally correctly learns L
as well.

Let pn be the n-th prime number and let Ln = {n, pn, p2n, p3n, p4n, p5n, . . .}. Note
that pn > n and Ln is the only set in L0, L1, L2, . . . containing {n, pmn } and
{pmn , pkn} as subsets for any different numbers m, k; hence one can identify Ln
from any two of its elements and the class {L0, L1, L2, . . .} is finitely learnable in
any acceptable numbering. However {L0, L1, L2, . . .} is not vacillatorily learn-
able in the numbering A0, A1, A2, . . . — otherwise, for any n, one can produce a
canonical text for Ln and then we will have that the largest hypothesis output
by the learner on this text is an upper bound for |Wn|, whenever Wn is finite;
this contradicts the fact that finiteness of r.e. sets cannot be decided in the
limit. �

Theorem 13. There are numberings A0, A1, A2, . . . and B0, B1, B2, . . . with the
following properties.
(a) Both numberings are optimal for explanatory learning.
(b) Both numberings are neither effectively optimal for explanatory nor effec-
tively optimal for vacillatory learning.
(c) Both numberings are not optimal for behaviourally correct learning.
(d) The numbering A0, A1, A2, . . . is not optimal for vacillatory learning.
(e) The numbering B0, B1, B2, . . . is optimal for vacillatory learning.

Proof. The numberings A0, A1, A2, . . . and B0, B1, B2, . . . are obtained using
two different versions of a K-recursive listing L0, L1, L2, . . . such that

(PA) {〈n, x〉 : x ∈ Ln} ≤T K;
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(PB) n = min(N− Ln) for all n;

(PC) each set Ln has at most n+ 1 non-elements;

(PD) the class {L0, L1, L2, . . .} has no infinite explanatorily learnable subclass.

The difference between these two numberings is that in the case of B0, B1,
B2, . . ., the class {L0, L1, L2, . . .} used has no infinite vacillatorily learnable
subclass while in the case of A0, A1, A2, . . ., the class {L0, L1, L2, . . .} itself is
an infinite vacillatorily learnable class.

Now let Lm,s(x) be a recursive approximation of Lm(x) using s steps and
let We,s the set of all x ≤ s which are enumerated into We within s steps. It is
assumed that the approximation also satisfies

∀m ∀s∀x ≤ m [Lm,s(x) = Lm(x)].

The numbering A0, A1, A2, . . . is built from the H0, H1, H2, . . . assigned to L0,
L1, L2, . . . in Proposition 8 as follows:

A〈d,e〉 =


N, if d = 0 and e = 0;
He−1, if d = 0 and e > 0;⋃
s:∀m≤s ∃x≤d [Lm,s(x)6=We,s(x)]

We,s, if d > 0.

Note that A0, A1, A2, . . . is a universal numbering. In the case of B0, B1, B2, . . .,
the only difference is that the parameter list L0, L1, L2, . . . is chosen differently.
Furthermore, let g denote the function g corresponding to H0, H1, H2, . . . from
Proposition 8.

(a): Now assume that a class S is explanatorily learnable using W0,W1,W2, . . .;
it is shown that S is also explanatorily learnable using A0, A1, A2, . . . and B0,
B1, B2, . . . as hypothesis space. The choice of L0, L1, L2, . . . is not yet fixed, but
only the properties (PA) to (PD) are used. Hence it is sufficient to show the
learnability using A0, A1, A2, . . . as hypothesis space; the learnability using B0,
B1, B2, . . . follows along the same lines. Assume that M is an explanatory
learner for S using W0,W1,W2, . . . as hypothesis space. Note that this learner
can only learn finitely many members of {L0, L1, L2, . . .}, as no learner can
explanatorily learn infinitely many members of {L0, L1, L2, . . .}. Let I = {n :
Ln ∈ S}. If n ∈ I, then let Fn be a corresponding tell-tale set [1] for Ln, that
is, Fn is a finite subset of Ln such that, for all B ∈ S − {Ln}, ¬[Fn ⊆ B ⊆ Ln].
Furthermore, in the case that N ∈ S, let E be a corresponding tell-tale set, that
is, E is a finite set such that for all B ∈ S − {N}, ¬[E ⊆ B].

Now, a new learner N , using A0, A1, A2, . . . as hypothesis space, on input σ
is defined as follows. Let emp be such that Aemp = ∅.

N(σ) =



emp, if content(σ) = ∅;
〈0, 0〉, if E ⊆ content(σ);
〈0, g(n) + 1〉, if n ∈ I and [Fn ⊆ content(σ) ⊆ Ln];
〈d,M(σ)〉, otherwise, where, for m = min(N− content(σ)),

d = min({c : c > m+ |σ|∨
c ∈ (Lm,|σ| − content(σ))∨
c ∈ (content(σ)− Lm,|σ|)}).
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The learner N is recursive. It is clear that N learns all sets in {∅,N, L0, L1,
L2, . . .} ∩ S using the first three cases.

Let T be a text of a set L ∈ S −{∅,N, L0, L1, L2, . . .}. If the initial segment
σ of T currently processed by N is sufficiently large, then e = M(σ) is the
hypothesis to which M converges on T , the value m in the above algorithm is the
least non-element of L and d is the least number with the property that L(d) 6=
Lm(d) (note that d > m). Thus N converges on T to 〈d, e〉. Furthermore, for all
n 6= m, We∩{0, 1, 2, . . . ,m} 6= Ln∩{0, 1, 2, . . . ,m}. Thus, We∩{0, 1, 2, . . . , d} 6=
Ln∩{0, 1, 2, . . . , d} for all n. It follows that A〈d,e〉 = We. Hence N explanatorily
learns S using the numbering A0, A1, A2, . . . as hypothesis space. It follows that
A0, A1, A2, . . . is optimal for explanatory learning.

(b): Now it is shown that A0, A1, A2, . . . and B0, B1, B2, . . . are not effectively
optimal for explanatory or vacillatory learning. Note that if A0, A1, A2, . . . is
effectively optimal for either explanatory or vacillatory learning (or both), then
it follows from Theorem 6 that there is a K-recursive function h such that

∀d∃e ≤ h(d) [Ae = N−Dd].

It is now shown that this property will lead to a contradiction. Suppose n and
the cardinality m = |N − Ln| are given. Recall that m ≤ n + 1. Then one can
find, using the oracle K, the unique index d with Dd = N − Ln, by searching
for these m non-elements. Then one can compute, using the oracle K, the
upper bound h(d) of an e with Ae = N −Dd. Due to Kolmogorov complexity
arguments, the complexity relative to K of h(d) is at most c + 2 log(n), for
some constant c, as one can describe n and m both by two binary numbers
having 1 + log(n) bits. But by construction, the only index 〈0, g(n)〉 of Ln in
A0, A1, A2, . . . has a second component, which is larger than all numbers with
Kolmogorov complexity at most 2n; a contradiction. It follows that A0, A1,
A2, . . . is neither effectively optimal for explanatory nor effectively optimal for
vacillatory learning. Similarly, B0, B1, B2, . . . is neither effectively optimal for
explanatory nor effectively optimal for vacillatory learning.

(c): Now it is shown that the numberings A0, A1, A2, . . . (B0, B1, B2, . . .) are
not optimal for behaviourally correct learning. This can be seen as follows.

The numbering A0, A1, A2, . . . has exactly one index for each set Ln. Hence
every behaviourally correct learner for {L0, L1, L2, . . .} using A0, A1, A2, . . . as
hypothesis space is also explanatorily learning {L0, L1, L2, . . .} using A0, A1,
A2, . . . as hypothesis space. As {L0, L1, L2, . . .} is not explanatorily learnable,
{L0, L1, L2, . . .} is not behaviourally correctly learnable using A0, A1, A2, . . . as
hypothesis space.

On the other hand, the class {L0, L1, L2, . . .} is behaviourally correctly learn-
able using W0,W1,W2, . . . as hypothesis space. To see this consider a learner
which, on sequence T [s], outputs an index (in W0,W1,W2, . . .) for

⋃
t>s Ln,t,

where n is the minimal element not in content(T [s]). Note that on any text T
for Lm, for all but finitely many s, the n found as above is m. Furthermore, for
all but finitely many s,

⋃
t>s Ln,t = Ln — as Ln,t converge pointwise to Ln, for
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sufficiently large t, Ln,t does not contain any of the finitely many non-elements
of Ln, whereas every element of Ln is contained in almost all Ln,t.

Thus, {L0, L1, L2, . . .} is behaviourally correctly learnable but not using A0,
A1, A2, . . . as hypothesis space. It follows that A0, A1, A2, . . . is not an optimal
numbering for behaviourally correct learning. It can be similarly shown that B0,
B1, B2, . . . is not optimal for behaviourally correct learning.

(d): Now it is shown that one can choose L0, L1, L2, . . . such that the resulting
numbering A0, A1, A2, . . . is not optimal for vacillatory learning. Let M0,M1,
M2, . . . be a listing of total learners such that every class which is explanatorily
learnable is explanatorily learnable by one of these machines using W0,W1,
W2, . . . as hypothesis space. Additionally we assume that for each Mi, for all
texts T for a language L which Mi explanatorily learns, there is a prefix of T
which is a locking sequence for Mi on L (see [9]).

For ease of notation we use � to denote concatenation of strings. We say
that T is a characteristic-text if T (i) ∈ {i,#} for all i. We say that a sequence
σ is a characteristic-sequence if σ(i) ∈ {i,#}, for all i < |σ|. We will now define
Ln. The construction below can be easily seen to be uniform in n.

Define a recursive function Fn as follows. For each binary string η of length
at most n, Fn(η, t) is a characteristic-sequence defined as follows. Let σinit =
0 � 1 � 2 � . . . � (n− 1) �# � n+ 1, be the characteristic-sequence of length n+ 2
with content {0, 1, 2 . . . , n− 1, n+ 1}.

For t ≤ n+ 1, let Fn(η, t) = σinit[t+ 1]. For t = n+ 2, n+ 3, n+ 4, . . ., the
value Fn(η, t) is defined inductively in stage t.

Stage t: Definition of Fn(η, t).

• (1) If η = λ:

– Let m = |Fn(η, t− 1)|.
– (1.1) If there exists a set X ⊆ {i : i < n} with |X| ≥ |η|+1 such that,

for all i ∈ X and for all σ ∈ (content(Fn(η, t − 1)) ∪ {x : x ≥ m} ∪
{#})∗ with |σ| ≤ t, it holds thatMi(Fn(η, t−1)) = Mi(Fn(η, t−1)�σ)
Then let Fn(η, t) = Fn(η, t− 1)
Else let Fn(η, t) = Fn(η, t− 1) �m �m+ 1 � . . . � t.

• (2) If η 6= λ:

– Let η = βa, where a ∈ {0, 1}.
– (2.1) If |Fn(β, t)| = t+ 1, then let Fn(η, t) = Fn(β, t).

– (2.2) If |Fn(β, t)| = t, then define Fn(η, t) = Fn(β, t)�w, where w = t,
if a = 1, and w = #, otherwise.

– (2.3) If |Fn(β, t)| < t:

– Let m = |Fn(η, t− 1)|.
– (2.3.1) If there exists a set X ⊆ {i : i < n} with |X| ≥ |η|+1 such

that for all i ∈ X, for all σ ∈ (content(Fn(η, t − 1)) ∪ {x : x ≥
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m} ∪ {#})∗ with |σ| ≤ t, Mi(Fn(η, t− 1)) = Mi(Fn(η, t− 1) � σ)
Then let Fn(η, t) = Fn(η, t− 1)
Else let Fn(η, t) = Fn(η, t− 1) �m �m+ 1 � . . . � t.

End Stage t.

The following claim follows easily by induction on the stages.

Claim 14. The following hold for all η of length at most n and all t.
(i) Fn(η, t+ 1) = Fn(η, t) or Fn(η, t+ 1) is of length t+ 2.
(ii) Fn(η, t) is a string of length at most t+ 1.
(iii) Fn(η, t) ⊆ Fn(ηa, t), for a ∈ {0, 1}, and η of length < n.
(iv) content(Fn(η, t)) ⊆ content(Fn(η, t+ 1)).
(v) If Fn(η, t′) = Fn(η, t), for all t′ > t, then Fn(η, t) is a stabilizing sequence for
at least |η|+1 machines among M0,M1,M2, . . . ,Mn−1 on content(Fn(η, t))∪{x :
x ≥ |Fn(η, t)|}.
(vi) If Fn(η, t) = Fn(η, t + 1), then for all t′ ≥ t, either Fn(η, t′) = Fn(η, t) or
Fn(η, t′)(t+ 1) = t+ 1.

Properties (i) – (v) are easy to verify. We can show (vi) by induction on length of
η. Note that if Fn(η, t+1) = Fn(η, t) and Fn(η, t′) 6= Fn(η, t), where t′ is minimal
such number greater than t, then it must be the case that Fn(β, t) = Fn(β, t′′),
for all t′′ such that t ≤ t′′ < t′ and β ⊆ η. Thus, Fn(η, t′) is defined via either
1.1 or 2.3.1 (in which case Fn(η, t′)(t + 1) = t + 1) or Fn(η, t′) is defined via
2.1 and thus Fn(η, t′)(t + 1) = Fn(β, t′)(t + 1) = t + 1, where β is the longest
proper prefix of η. Note that Fn(η, t′) cannot be defined via 2.2, as otherwise
Fn(η, t′ − 1) must also be different from Fn(η, t).

Claim 15. For all η with |η| ≤ n, for all t, Fn(η, t) is # for at most |η| + 1
inputs.

Note that # is introduced in Fn(η, t) only via step 2.2. or by initialization σinit.
It thus follows by induction on length of η that Fn(η, t) has at most (|η| + 1)
#s.

Now define Hn,η to be
⋃
t∈N content(Fn(η, t))∪ {t+ 1 : Fn(η, t) = Fn(η, t+ 1)}.

It follows from above claim that one can effectively find an index for Hn,η. It
thus follows using Claim 15 that Hn,η has at most n+ 1 non-elements. Also, by
definition of σinit, min({N−Hn,η}) = n.

Now we define Ln. Ln will be one of Hn,η, with η a binary string of length
at most n. We give below a procedure for defining Ln(t), using the oracle
K. Thus, L0, L1, . . . satisfy the requirements (PA), (PB) and (PC). Initially let
η = λ and Q = ∅. Intuitively, Q will denote the set of machines which have been
diagonalized against explicitly (by diagonalizing against the learner’s conjecture
on a stabilizing sequence for it on Ln).

Stage t: Definition of Ln(t).

• If |Fn(η, t)| < t+ 1, then let Ln(t) = 1.
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• If |Fn(η, t)| = t+ 1, then let Ln(t) = 1 if and only if t ∈ content(Fn(η, t)).

• If for all t′ > t, Fn(η, t′) = Fn(η, t), then

– (∗ Here Fn(η, t) is a stabilizing sequence for at least |η| + 1 ma-
chines among M0,M1,M2, . . . ,Mn−1 on content(Fn(η, t)) ∪ {x : x ≥
|Fn(η, t)|}. Furthermore, t is the point of convergence for Fn(η, ·). ∗)

– Let j ∈ {0, 1, 2, . . . , n− 1} −Q be such that Fn(η, t′) is a stabilizing
sequence for Mj on the set content(Fn(η, t)) ∪ {x : x ≥ |Fn(η, t)|}.

– Update η to η � (1−WMj(Fn(η,t))(t+ 1)).

– Update Q to Q ∪ {j}.
– (∗ Note that we will explicitly diagonalize against Mj , in stage t+ 1,

as for updated η, Fn(η, t+1)(t+1) is different from WMj(Fn(η,t))(t+1)
— note that Fn(η, t + 1), for the updated η, is defined via step 2.2.
∗)

End Stage t.

Let η, Q be the limiting value for η and Q in the above construction (note that
there exists such a limiting value, as Fn(β, ·), does not converge for all β of
length n). It is easy to verify that Ln above is Hn,η.

Now, Ln is not explanatorily learnt using numbering W0,W1,W2, . . . by
all Mj , j ∈ Q due to explicit diagonalization above. Furthermore, for all j ∈
{0, 1, 2, . . . , n−1}−Q, no prefix of the characteristic text T for Ln is a stabilizing
sequence for Mj on Ln (as otherwise, Fn(η, t) will converge). It follows that Mj ,
for j < n, do not explanatorily learn Ln using W0,W1,W2, . . . as hypothesis
space. Thus, L0, L1, . . . satisfy property (PD) also.

Furthermore, as Hn,η is equal to Ln, one has that Hn,β = Ln for some binary
string β of length at most n. Thus, from n, one can effectively find 2n+1 − 1
indices, one of which is an index for Ln. Thus, one can vacillatorily learn {L0,
L1, L2, . . .} using W0,W1,W2, . . . as hypothesis space. However L0, L1, L2, . . .
is not vacillatorily learnable using hypothesis space A0, A1, A2, . . . as can be
proved along the lines of part (c). It follows that A0, A1, A2, . . . is not optimal
for vacillatory learning.

(e): Now it is shown that one can choose L0, L1, L2, . . . such that the resulting
numbering B0, B1, B2, . . . is optimal for vacillatory learning. We will have that
no learner vacillatorily learns more than finitely many languages in {L0, L1,
L2, . . .} using W0,W1,W2, . . . as hypothesis space. We use a variable u below
which will change its value at most 2n times. Initially u = 0. We now define
Ln in stages s = 0, 1, . . ., starting with stage s = 0.

Stage s: Definition of Ln(s). Take the first case which applies.

• If s < n or s = n+ 1, then let Ln(s) = 1 and go to stage s+ 1.

• If s = n, then let Ln(s) = 0 and go to stage s+ 1.
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• If u > 0 and, for all e < u, Ln ∩ {0, 1, 2, . . . , s− 1} 6= We ∩ {0, 1, 2, . . . , s},
then let Ln(s) = 0, let u = 0 and go to stage s+ 1.

• If there is a k < n such that

– in no earlier stage Mk was dealt with,

– there is a σ ∈ (Ln ∩ {0, 1, 2, . . . , s− 1})s such that Mk(στ) = Mk(σ)
for all τ ∈ (Ln ∪ {s, s+ 1, s+ 2, . . .})∗,

then Mk (for least such k) is dealt with in this stage, let u = Mk(σ) + 1,
let Ln(s) = 1 and go to stage s+ 1.

• Otherwise let Ln(s) = 1 and go to stage s+ 1.

End Stage s.

It is easy to see that L0, L1, . . . satisfy (PA) and (PB). Furthermore, it is easy to
verify that u changes from 0 to a non-zero value at most n times as at each such
stage, the algorithm deals with a machine Mk with k < n and will later not deal
with the same machine again. Thus, Ln has at most n non-elements s, except
for s = n, where in stage s, u is changed from a non-zero value to 0. Thus,
L0, L1, . . . satisfy (PC). Whenever k < n and Mk has a stabilizing sequence
for Ln, then the algorithm will eventually deal with Mk on some stabilizing
sequence σ. In particular it will set u to an upper bound of Mk(σ). At each
subsequent stage t > s, there is

• either an index e ≤ u such that Ln ∩ {0, 1, 2, . . . , t − 1} equals We ∩
{0, 1, 2, . . . , t} and Ln is made different from We by letting Ln(t) = 1

• or none of the We with e ≤ u agrees with Ln ∩ {0, 1, 2, . . . , t− 1} and Ln
is ensured to be different from all We with e ≤ u by letting Ln(t) = 0.

It is easy to see that the latter happens latest at the stage t = u + s + 1 and
hence u goes back to 0 eventually. Hence every machine Mk can vacillatorily
learn only the sets L0, L1, L2, . . . , Lk but not any Ln with n > k. It follows that
L0, L1, . . . satisfy (PD) too.

The above can then be used to show that, for every class S having a vac-
illatory learner M using W0,W1,W2, . . ., there is a further vacillatory learner
N using B0, B1, B2, . . .; the translation of the learners is the same as in part
(a) with the only difference that now the learners converge to upper bounds of
correct indices instead of converging to the correct indices themselves. To see
this, note that if b is an upper bound of e, then 〈d, b〉 is an upper bound of 〈d, e〉
by the monotonicity of the pairing functions. Hence B0, B1, B2, . . . is optimal
for vacillatory learning. �

Theorem 16. There is a numbering which is optimal but not effectively optimal
for behaviourally correct learning.

Proof. The idea is to construct a uniformly K-r.e. listing L0, L1, L2, . . . of cofi-
nite sets such that, for every m,
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• min(N− Lm) exists and is m;

• the machines M0,M1,M2, . . . ,Mm do not behaviourally correctly learn
Lm.

Each set Lm is obtained using movable markers a0, a1, a2, . . . , am: One con-
structs a text Tm ≤T K for language Lm, which enumerates all numbers except
m and the final values of those markers which move only finitely often. Each
marker ak is initialized as m+k+1. Tm[s] contains only values below s+m+2.
In the case that the current value of ak is not in WMk(Tm[s]), move ak to the
value (s+ 1)(m+ 1) + k+ 1. Furthermore, Tm(s) is the least number x neither
in {m}∪ content(Tm[s]) nor a current value of any marker. In the case that the
value of ak changes infinitely often, Mk does not converge on Tm semantically
to Lm, as Mk infinitely often conjectures a set not containing some intermediate
value of ak, even though this intermediate value belongs to Lm. In the case that
the value of ak changes only finitely often, the final value of ak does not belong
to Lm, but belongs to almost all of the conjectures output by Mk on Tm.

The reader should note that there are uniformly recursive approximations
Lm,s satisfying for all m that

• ∀x ≤ m ∀s [x ∈ Lm,s ⇔ x < m];

• ∀x > m [x ∈ Lm ⇔ ∀∞s [x ∈ Lm,s]].

Using a construction similar to Proposition 8, one can construct a numberingH0,
H1, H2, . . . with the following property: For every k, the cofinite set N − Dk

has exactly one index g(k) and this g(k) satisfies CK(g(k)) > 2k. Thus no
infinite class of cofinite sets can be behaviourally correctly learnt using H0, H1,
H2, . . . as a hypothesis space.

Now define, for all e and d > 0, that A〈0,e〉 = He and A〈d,e〉 is the union of
all We,s for which there are m,x such that

• m < x ≤ d ≤ s and

• m = min(N−We,s) and

• either x ∈
⋂
t=d,d+1,d+2,...,s Lm,t −We,s or x ∈We,s − Lm,s.

Note that A〈d,e〉 is finite if {0, 1, 2, . . . , d} ⊆We or there exists a number m < d
with Lm ∩ {0, 1, 2, . . . , d} = We ∩ {0, 1, 2, . . . , d}. Furthermore, H0, H1, H2, . . .
covers all cofinite sets and hence A0, A1, A2, . . . also covers all cofinite sets. The
coverage of the coinfinite sets is now based on the following claim.

Claim 17. Let B be a given r.e. set such that B /∈ {∅,N, L0, L1, L2, . . .}. Then
there is a constant c such that, for all e with We = B and all d > c, it holds
that A〈d,e〉 = B.

To see this claim, let m = min(N − B) and x = min((Lm − B) ∪ (B − Lm)).
Note that x > m. If x /∈ Lm, then let c = x + 1, else choose c so large that
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∀s ≥ c [c > x∧x ∈ Lm,s]. Let e be such that We = B. Assume that d > c. Note
that x ≤ d. There are two cases.

First x ∈ Lm ∧ x /∈ B. Then it holds, for all s ≥ d, that x ∈
⋂
t:d≤t≤s Lm,t−

We,s and hence A〈d,e〉 =
⋃
s:s≥dWe,s = We.

Second x /∈ Lm ∧ x ∈ B. Then there are infinitely many s with x ∈ We,s −
Lm,s and A〈d,e〉 is the union of the sets We,s for these s; hence A〈d,e〉 = We = B.
This completes the proof of the claim.

Let S be a behaviourally correctly learnable class with learner M and let I =
{i : Hi ∈ S ∩ {N, L0, L1, L2, . . .}}. By choice of L0, L1, L2, . . . and H0, H1,
H2, . . ., I is finite. For each i ∈ I, let Fi be a tell-tale set for Hi with respect
to S. That is, Fi is a finite subset of Hi such that, for all B ∈ S − {Hi},
¬[Fi ⊆ B ⊆ Hi]. One now defines a new learner N as follows:

N(σ) =

{
〈0, i〉, if i ∈ I and Fi ⊆ content(σ) ⊆ Hi;
〈|σ|,M(σ)〉, if such an i ∈ I does not exist.

If there are several i ∈ I qualifying, one just takes the least of these i. The new
learner N clearly learns {Hi : i ∈ I}. Now consider any text T for a set B ∈
S−{N, L0, L1, L2, . . .}. Then, for all sufficiently large s, WM(T [s]) = B, s > c for
the constant c from the claim and there is no i ∈ I with Fi ⊆ content(T [s]) ⊆ Hi.
It follows that N(T [s]) = 〈s,M(T [s])〉 and AN(T [s]) = A〈s,M(T [s])〉 = B. Hence
N behaviourally correctly learns B using A0, A1, A2, . . . as hypothesis space and
A0, A1, A2, . . . is optimal for behaviourally correct learning.

Now assume by way of contradiction that A0, A1, A2, . . . is effectively optimal
for behaviourally correct learning. Thus, one can effectively find a learner Nd
for {N−Dd} (using the numbering A0, A1, A2, . . . as hypothesis space). Let Td
be a text for N−Dd, obtained effectively from d. Let h be a partial K-recursive
function such that h(d) = e, if Nd on Td converges to e; otherwise, h(d) is
undefined. Note that h(d) = g(d) for all d such that N −Dd = Ln for some n.
Furthermore, CK(h(d)) ≤ d+ c, for some constant c, whenever h(d) is defined.
However, recall that CK(g(d)) ≥ 2d for all d. This leads to contradiction, as
there exist infinitely many distinct d such that N − Dd = Ln for some n. It
follows that A0, A1, A2, . . . is not effectively optimal for behaviourally correct
learning. �

4. Consistent and Confident Learning

There are various versions of requiring consistency for learning. For example,
one can either require that consistency holds only for texts for sets from the
class to be learnt or for all texts. Furthermore, one might either require that a
learner is partial or that a learner is total. In the following, the version is chosen
which Wiehagen and Zeugmann [23] called “totally consistent” and where the
learner has to be total and always outputs hypotheses containing all data seen
so far (even on data not belonging to any set to be learnt).

Definition 18 (Wiehagen and Liepe [22]). A learner M is consistent iff for
every sequence σ it holds that M(σ) is defined and content(σ) ⊆WM(σ). A class

20



S is consistently learnable iff there is a consistent learner which explanatorily
learns S.

Proposition 19. If a numbering is effectively optimal for explanatory learning
then it is also effectively optimal for consistent learning.

Proof. Let A0, A1, A2, . . . be a numbering which is effectively optimal for ex-
planatory learning. Then there is, by Theorem 6, a recursive function f such
that, for all e, d = lims f(e, s) exists and Ad = We. Now let S be a consis-
tently learnable class and let M be a consistent learner for S using W0,W1,
W2, . . . as hypothesis space. The new learner for S, using A0, A1, A2, . . . as
hypothesis space, is given as

N(σ) = f(M(σ), s) for the least s with s > |σ| ∧ content(σ) ⊆ Af(M(σ),s),s.

As M is consistent, content(σ) ⊆ WM(σ). Furthermore, f(M(σ), s) converges
to a fixed value d as s goes to infinity; this d satisfies content(σ) ⊆ Ad,s for
almost all s. Hence, if s is sufficiently large, content(σ) ⊆ Af(M(σ),s),s as well.
It follows that above new learner N is total and consistent.

Furthermore, when M converges on a text T to e, then N converges to a
value d = lims f(e, s). The reason is that there are only finitely many s for
which f(e, s) differs from d; thus if the initial segment σ � T processed by M
is sufficiently large, then M(σ) = e and all s > |σ| satisfy f(e, s) = d — hence
N(σ) = d. By the definition of f , Ad = We. So it follows that N using A0, A1,
A2, . . . explanatorily learns S. �

Definition 20 (Osherson, Stob and Weinstein [19], Fulk [9]). A learner
is called prudent if it learns (according to the relevant criterion) every set for
which it outputs a hypothesis on some data.

The next result shows that every consistently learnable class can be learnt by a
consistent and prudent learner.

Theorem 21. If M consistently learns a class S, then there is also a consistent
and prudent learner N for S.

Proof. Without loss of generality, one can assume that, for all L, if M converges
on some text for L to i, then M converges on all texts for L to i. Furthermore, if
M has a stabilizing sequence for L, then every text for L starts with a stabilizing
sequence for M on L. This can be shown essentially using the same proof as
Fulk [9] for explanatory learning.

Without loss of generality, we assume that S contains all sets consistently
learnt by M . Now make a recursive function f such that

Wf(σ) =



WM(σ), if σ is a stabilizing sequence for M on WM(σ);
N, if N ∈ S and σ is not a stabilizing sequence

for M on WM(σ);
{0, 1, 2, . . . , x}, if N /∈ S and x is the least number such that

x ≥ max({|σ|} ∪ content(σ)) and it is verified in
time x that σ is not a stabilizing sequence for
M on WM(σ).
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Note that whenever it is not disproved within time x that σ is a stabilizing
sequence for WM(σ), then

WM(σ) ∩ {0, 1, 2, . . . , x} ⊆Wf(σ).

This property is useful and will go into the construction of the new learner N .
On input σ, one defines N(σ) according to the first case which applies:

• If N /∈ S and content(σ) = {0, 1, 2, . . . , y} for some y, then N(σ) is a
canonical index for this set.

• If there is some τ � σ such that M(τ) = M(σ) and, for the parameter
x = max({|σ|} ∪ content(σ)), it cannot be verified in time x that τ is not
a stabilizing sequence for WM(τ), then N(σ) = f(τ) for the smallest such
τ .

• Otherwise N(σ) = f(σ).

Note that the conditions on τ in the second item imply that content(σ) ⊆Wf(τ).
Furthermore, content(σ) ⊆Wf(σ) for all σ. Hence N is consistent.

In the case that N /∈ S, one can see that N explanatorily learns all sets of
the form {0, 1, 2, . . . , y}. Furthermore, if L ∈ S and T is a text for L, then
there is a smallest stabilizing sequence σ � T for M on L. Now N converges
to f(σ) on T as all τ ≺ σ eventually disqualify. By definition, Wf(σ) = WM(σ)

and so N explanatorily learns L as well. Hence N explanatorily learns all sets
consistently learnt by M . Furthermore, whenever N outputs a hypothesis, it
is either a member of S or it can be, in the case of N /∈ S, a set of the form
{0, 1, 2, . . . , y}. N explanatorily learns all these sets and hence N is prudent. �

Theorem 22. If A0, A1, A2, . . . is optimal for explanatory learning, then A0,
A1, A2, . . . is also optimal for consistent learning.

Proof. Let Te be the canonical text for We; note that the Te are all uniformly
recursive. Assume that A0, A1, A2, . . . is optimal for explanatory learning and
let S be a consistently learnable class. By Theorem 21 there is a prudent and
consistent learner M for S using W0,W1,W2, . . . as hypothesis space. As A0, A1,
A2, . . . is optimal for explanatory learning, there is also a further explanatory
learner P using A0, A1, A2, . . . for the class consistently learnt by M . The new
consistent learner N using A0, A1, A2, . . . is defined as follows:

N(σ) = P (TM(σ)[n]) for the least n with n > |σ| and content(σ) ⊆
AP (TM(σ)[n]),n.

The learner N uses A0, A1, A2, . . . and is partial-recursive. As M(σ) is the index
of a set containing content(σ), the learner P converges on the text TM(σ) to an
index c with content(σ) ⊆WM(σ) = Ac. Hence the parameter n in the algorithm
to compute N(σ) is always found; so the learner N is total and consistent.
Furthermore, if M converges on a text to e, then P is, from some time onwards,
always simulated on Te. As P converges on Te to an index d with Ad = We
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and as N always chooses a parameter n > |σ|, it follows that N converges to
this d as well. Hence N explanatorily learns all the sets consistently learnt by
M ; in particular, N explanatorily learns the class S. This shows that A0, A1,
A2, . . . is optimal for consistent learning. �

The converse is not true. There is a numbering which is effectively optimal for
consistent learning but not optimal for explanatory learning.

Theorem 23. There is a numbering A0, A1, A2, . . . such that:
(a) A0, A1, A2, . . . is effectively optimal for consistent learning;
(b) A0, A1, A2, . . . is not optimal for finite, explanatory, vacillatory or beha-
viourally correct learning.

Proof. The basic idea is to make a numbering A0, A1, A2, . . . such that, for
every recursive set We, one can find in the limit a parameter d such that
A〈d,e〉 = We; however, no infinite subclass of {L0, L1, L2, . . .}, where Ln = {2x :
x ∈ K} ∪ {2n + 1}, is learnable using A0, A1, A2, . . . under any of the criteria
mentioned in (b). As the class {L0, L1, L2, . . .} is finitely learnable using W0,
W1,W2, . . ., it follows that A0, A1, A2, . . . is not optimal for the criteria given
under (b).

The numbering A0, A1, A2, . . . is constructed as follows: Let H0, H1, H2, . . .
be a Friedberg numbering [8] of all r.e. sets such that no infinite class of infinite
sets is learnable using H0, H1, H2, . . . under any of the criteria of finite, explana-
tory, vacillatory and behaviourally correct learning [12]. Now let A〈0,e〉 = He.
For d > 0 let A〈d,e〉 be the union of all We,s where there is an x < d with
We,s(2x) 6= Ks(x). It is easy to see that whenever {x : 2x ∈ We} differs from
K, then there is an x with We(2x) 6= K(x) and thus A〈d,e〉 = We for all d > x.
Now let f(e, s) = 〈x+ 1, e〉 for the minimal x with either We,s(2x) 6= Ks(x) or
x = s. The function f is recursive and whenever {x : 2x ∈We} differs from K,
then lims f(e, s) exists and is 〈d, e〉 with A〈d,e〉 = We.

(a): Assume that M consistently learns a class S using W0,W1,W2, . . . as
hypothesis space. Let L be a set explanatorily learnt by M and let σ be a
locking sequence for M on L. Note that due to the totalness and consistency of
M , it holds that x ∈ L iff M(σx) = M(σ). Hence L is recursive and M does not
explanatory learn any nonrecursive sets. Let u be a fixed index with Au = N.

Now the new learner N is built as follows: Let σ be the input and e = M(σ).
Then N searches for the least s > |σ| satisfying one of the two conditions below
and continues according to the case which qualifies first.

• We,s(2x) = Ks(x) for all x ≤ |σ|: then N(σ) = u.

• content(σ) ⊆ Af(e,s),s: then N(σ) = f(e, s).

Note that the search for s always terminates as content(σ) ⊆ WM(σ) for all
σ and either K = {x : 2x ∈ We} or A〈d,e〉 = We for all sufficiently large
d. In the second case, the limit lims f(e, s) converges to such a 〈d, e〉; thus
content(σ) ⊆ Af(e,s),s for all sufficiently large s.

Furthermore, one can easily see that N is consistent as whichever case the
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search terminates in, N(σ) is an index satisfying content(σ) ⊆ AN(σ).
Furthermore, if M converges on a text T , for a language it consistently

learns, to an index e with We = content(T ), then there is a least x such that
We(2x) 6= K(x). Let d = x+ 1. For all sufficiently long σ � T and all s > |σ|,
f(e, s) = 〈d, e〉 and We,s(x) 6= Ks(x). Hence N(σ) = 〈d, e〉 and N converges
on T to the index 〈d, e〉 with A〈d,e〉 = We. Thus N explanatorily learns all sets
explanatorily learnt by M and N is a consistent learner for S. This implies that
A0, A1, A2, . . . is effectively optimal for consistent learning.

(b): The class L0, L1, L2, . . . is finitely learnable as one needs only to find
the unique odd number 2n + 1 in the text and then one knows that the set to
be learnt is Ln. For each Ln there is exactly one index en with Hen = Ln.
Then A〈0,en〉 is the only member of A0, A1, A2, . . . which equals Ln and any
behaviourally correct learner, on a text for Ln, has to syntactically converge to
〈0, en〉. By choice of the numbering H0, H1, H2, . . . this is impossible and hence
{L0, L1, L2, . . .} is not behaviourally correctly learnable using A0, A1, A2, . . .;
this non-learnability result transfers also to the criteria of finite, explanatory
and vacillatory learning. �

Note that the proof of Theorem 9 gives a numbering which is optimal for
finite learning but not optimal for consistent learning. The proof of Theo-
rem 10 gives a numbering which is effectively optimal for vacillatory learning
but not optimal for consistent learning. The proof of Theorem 12 gives a num-
bering which is effectively optimal for behaviourally correct learning but not
optimal for consistent learning. Separation of non-effective and effective op-
timality for consistent learning can be obtained using the numbering A0, A1,
A2, . . . in Theorem 13: using part (a) of Theorem 13 and Theorem 22, one
has that A0, A1, A2, . . . is optimal for consistent learning. Note that, given a
finite set D, one can effectively find a consistent learner for N − D using W0,
W1,W2, . . . as hypothesis space. Using this one can modify the proof of part
(b) of Theorem 13 to show that A0, A1, A2, . . . cannot be effectively optimal for
consistent learning.

The results and the proofs of confident learning are similar to the ones of consis-
tent learning. In the following, the definition of confidence is, as originally done,
based on syntactic convergence and hence confident learners are by definition
explanatory learners.

Definition 24 (Osherson, Stob and Weinstein [19]). A learner M is con-
fident iff it converges syntactically on every text. A class is confidently learnable
iff it has a confident explanatory learner.

The next remark gives all known implications for optimality and effective opti-
mality which can directly be derived from previous results.

Remark 25. Only finite subclasses of {N− {c} : c ∈ N} are confidently learn-
able. A modification of the proof of Theorem 9 can be used to show that the
numbering from there is optimal for confident learning but not for explanatory,
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consistent, vacillatory and behaviourally correct learning.
The numbering from Theorem 10 is an example of a numbering which is

effectively optimal for vacillatory learning but not for confident learning.
The numbering from Theorem 12 is an example of a numbering which is

effectively optimal for behaviourally correct learning but not optimal for confi-
dent learning.

The numbering from Theorem 23 is effectively optimal for consistent learn-
ing but not optimal for confident learning. The reason is that the class of
all Ln = {2n + 1} ∪ {2x : x ∈ K} is confidently learnable using W0,W1,
W2, . . . but not confidently learnable using the numbering in Theorem 23.

Theorem 28 below shows that every numbering which is optimal for ex-
planatory learning is also optimal for confident learning. It therefore follows
that there are numberings which are optimal for confident learning but not for
finite, vacillatory and behaviourally correct learning, respectively.

The numberings which are effectively optimal for confident learning are K-
acceptable numberings. Note that it is an immediate consequence of this char-
acterization that a numbering is effectively optimal for confident learning iff it is
effectively optimal for explanatory learning. The proof of following proposition
is exactly the same as the proof of Theorem 6(b) and hence the proof is omitted.

Proposition 26. A numbering is effectively optimal for confident learning iff
it is a K-acceptable numbering.

In the non-effective case only one inclusion holds. The proof needs the following
result.

Proposition 27. Every confidently learnable class has a prudent and confident
learner which also explanatorily learns N.

Proof. Let M be a confident learner for a given class S. Recall that a learner
is order independent [3], if for every language L, it either diverges on all texts
for L or it converges on all texts for L to the same index. Using a proof similar
to the locking sequence hunting construction for explanatory learning [3, 9], one
may assume without loss of generality that, M is order independent and, for
all L, every text for L starts with a stabilizing sequence for M on L. Thus,
if σ is a stabilizing sequence for M on WM(σ), then M explanatorily learns L.
Furthermore, define

Wf(τ) =

{
WM(τ), if M(τσ) = M(τ) for all σ ∈ (WM(τ) ∪ {#})∗;
N, otherwise.

Note that, if M explanatorily learns L, then Wf(τ) = WM(τ) = L for all sta-
bilizing sequences τ for M on L. Let η be a stabilizing sequence for M on N.
Let H = WM(η). If H 6= N, then let x = min(N −H), else let x = 0. Let u be
a fixed index for N. Let P (τ) denote the smallest prefix of τ such that, for all
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σ ∈ (content(τ) ∪ {#})∗ with |P (τ)σ| ≤ |τ |, M(P (τ)σ) = M(P (τ)) = M(τ).
Now define a new learner N as follows:

N(τ) =

{
f(P (τ)) if content(ηx) 6⊆ content(τ) and

content(P (τ)) ⊆WM(P (τ)),|τ |;
u otherwise.

Given a set L and a text T for L, P converges on T to the smallest prefix of
T which is a stabilizing sequence for M on L. Call this smallest prefix P (T ).
If content(P (T )) ⊆ WM(P (T )) and content(ηx) 6⊆ L, then N converges on T to
f(P (T )), else N converges on T to u.

As the learner N converges on every text, N is confident. It can easily be
seen that N explanatorily learns N. Furthermore, N explanatorily learns all
sets L such that M explanatorily learns L. Thus, N explanatorily learns S.

In the case that N outputs a conjecture of the form f(P (τ)), WM(P (τ))

contains content(P (τ)). If P (τ) a stabilizing sequence for M on WM(P (τ)), then
both M and N explanatorily learn WN(f(P (τ))) = WM(P (τ)), else Wf(P (τ)) = N
and N explanatorily learns N as well. Hence N is prudent. �

Theorem 28. Every numbering which is optimal for explanatory learning is
also optimal for confident learning.

Proof. Assume that A0, A1, A2, . . . is optimal for explanatory learning and that
S is a class containing N with a prudent and confident learner M using W0,W1,
W2, . . . as hypothesis space. Furthermore, let P be an explanatory learner for
S using A0, A1, A2, . . . as hypothesis space; P exists by the assumption that
A0, A1, A2, . . . is optimal for explanatory learning. Recall that Te denotes the
canonical text for We. Now a new learner N is defined by

N(σ) = P (TM(σ)[|σ|]).

Given a text T , M converges on T to some index d. As M is prudent, M , and
thus P , explanatorily learns Wd. Hence P converges on Td to some index e with
Ae = Wd. It follows that N(T [n]) outputs, for almost all n, the value P (Td[n])
and hence N converges on T to e. Hence N is confident. Furthermore, whenever
M explanatorily learns a set L, then M converges (on a text for L) to an index
d with Wd = L. It follows using above analysis that M and N explanatorily
learn Wd = L using A0, A1, A2, . . . and hence N explanatorily learns S. Thus,
N is a confident learner for S. �

5. Learning with Additional Information

Learning with additional information is a scenario in which a learner receives,
besides the text of the set to be learnt, also an upper bound on an index (in the
numbering used as hypothesis space) for the set to be learnt. We can consider
the learner as receiving two items as input: first an upper bound on an index
for the input language and second the text for the language to be learnt.
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Definition 29. A class S is explanatorily learnable with additional information
using A0, A1, A2, . . . as hypothesis space iff there is a learner M such that, for
every d, e with d ≥ e ∧Ae ∈ S and for every text T for Ae, limn→∞M(d, T [n])
converges to an index c with Ac = Ae.

Remark 30. Jain and Sharma [11] considered also the notion of vacillatory
learning with additional information (in Case’s original definition [4]) and showed
that the class of all r.e. sets is vacillatorily learnable using additional informa-
tion using W0,W1,W2, . . . as hypothesis space. More precisely, they showed
that there is a recursive learner M such that, on every text T for an r.e. set
We and every b ≥ e, for almost all n, M(b, T [n]) ≤ b ∧ WM(b,T [n]) = We.
The proof of Jain and Sharma [11] works for every universal numbering A0, A1,
A2, . . . and hence every universal numbering is optimal for vacillatory learning.
As one can use the same learner M for every class of r.e. sets, every universal
numbering is even effectively optimal for vacillatory learning with additional
information.

Note that the additional information d must be chosen according to the hy-
pothesis space A0, A1, A2, . . . used and not according to any other numbering.

Recall that Jain and Stephan [12] called a universal numbering A0, A1,
A2, . . . a Ke-numbering iff {〈i, j〉 : Ai = Aj} ≤T K. Ke-numberings are gener-
alizations of Friedberg numberings and can never be acceptable or K-acceptable.

Theorem 31. A numbering is optimal for learning with additional information
iff it is effectively optimal for learning with additional information iff it is a Ke-
numbering.

Proof. Assume that a Ke-numbering A0, A1, A2, . . . is given; then there is a
K-recursive function f with f(e) = min({d ≤ e : Ad = Ae}). This f can
be approximated using a recursive sequence of recursive functions (fs)s∈N. By
Remark 30 there is a recursive M such that, for every index e and for every text
T for Ae and every b ≥ e, almost all n satisfy M(b, T [n]) ≤ b∧We = AM(b,T [n]).
Given a set Ae, a text T of Ae and a bound b ≥ e, the new learner N given
as N(b, T [n]) = fn(M(b, T [n])) converges syntactically to the minimal index of
the given set Ae. This is so, as almost all hypotheses of M are from the finitely
many indices of Ae below b and fn coincides on these indices with f for almost
all n. Hence the class of all r.e. sets is explanatorily learnable with additional
information using A0, A1, A2, . . . as a hypothesis space. As one can use the
learner N also for every subclass of the class of all r.e. sets, it follows that A0,
A1, A2, . . . is effectively optimal for learning with additional information.

On the other hand, if an optimal numbering is given, one can do the following
to check in the limit whether Ai = Aj : Suppose a learner learning the class of
all r.e. sets using A0, A1, A2, . . . is given. One can find in the limit the least
stabilizing sequences for the learner on Ai and Aj respectively, with respect to
the upper bound i + j + 1. If the stabilizing sequence found for Ai equals to
that found for Aj , then Ai = Aj , else Ai 6= Aj . This completes the proof. �
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Remark 32. One can similarly show that a numbering is a Ke-numbering iff it
is optimal for confident learning with additional information iff it is effectively
optimal for confident learning with additional information. On one hand, one
can confidently learn the class of all r.e. sets using additional information in all
Ke-numberings. To see this, note that the M constructed by Jain and Sharma
[11, Proposition 16] and referred to in Remark 30 also satisfies the following:
given a bound b and text T which is not a text for any Ae with e ≤ b, the
algorithm converges to the least index e ≤ b such that max({x : ∀y < x [y ∈ Ae
⇔ y occurs in T ]}) is maximal. It follows that the translation fn(M(b, T [n]))
from Theorem 31 converges on all texts. Thus, N is confident as well. On
the other hand, by definition, confident learners with additional information are
explanatory learners with additional information. Thus, a numbering is optimal
only if it is a Ke-numbering.

A natural question is whether there are numberings which are optimal for fi-
nite learning with additional information. The following theorem answers this
question negatively.

Theorem 33. There is no numbering which is optimal or effectively optimal
for finite learning with additional information.

Proof. Suppose a universal numbering A0, A1, A2, . . . is given. Let M0,M1,
M2, . . . be a numbering of all finite learners with additional information (where
A0, A1, A2, . . . is the numbering used by these learners). Here one may assume
that for any text T and any additional information e, any learner Mi with
additional information e outputs at most one conjecture on the text T . Let g
be a (non-recursive) function such that g(n) is the sum of the least indices of
{2n} and {2n, 2n+ 1} in A0, A1, A2, . . .; note that g ≤T K (as using the oracle
K, one can test for every e whether Ae = {2n} or Ae = {2n, 2n + 1}). Let Tn
be a recursive text for {2n}, say, Tn(m) = 2n for all m. Let f(n) = 1, if Mn,
with additional information g(n), outputs on text Tn some index en such that
Aen = {2n}; otherwise let f(n) = 0. Note that f ≤T K. Let Ln = {2n}, if
f(n) = 0; Ln = {2n, 2n + 1} otherwise. It is now easy to verify that {L0, L1,
L2, . . .} is not finitely learnable with additional information using the numbering
A0, A1, A2, . . ., as Mn, with additional information g(n), does not finitely learn
Ln.

We now show that there is a universal numbering B0, B1, B2, . . . for which
{L0, L1, L2, . . .} is finitely learnable with additional information. Let fs be
a recursive approximation to f . One can then easily construct a universal
numbering B0, B1, B2, . . . along with its approximations from below Bi,s, such
that for each n there is a number tn with Btn = Btn,tn+1 = {2n}, Btn+1 =
Btn+1,tn+1 = {2n, 2n+ 1}, fs(n) = ftn(n) for all s > tn and

∀m < tn [2n ∈ Bm ⇒ Bm,tn+1 6⊆ {2n, 2n+ 1}].

Now the class {L0, L1, L2, . . .} is finitely learnable with additional information
using B0, B1, B2, . . . as hypothesis space. The learner, with additional informa-
tion s, waits for the first number of form 2n to occur in the input and then
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outputs the least index e ≤ s + 1 such that 2n ∈ Be,s+1, 2n + fs(n) ∈ Be,s+1,
and no x ∈ N − {2n, 2n + 1} belongs to Be,s+1. Note that by the definition of
the numbering B0, B1, B2, . . . and by s ≥ tn the index e is an index (in B0, B1,
B2, . . .) for the language Ln.

In summary, it has been shown that for every universal numbering A0, A1,
A2, . . . there is a further universal numbering B0, B1, B2, . . . and a class {L0,
L1, L2, . . .} such that {L0, L1, L2, . . .} can be learnt finitely with additional
information using B0, B1, B2, . . . but not using A0, A1, A2, . . .; hence A0, A1,
A2, . . . cannot be optimal or effectively optimal for finite learning with addi-
tional information. �

6. Open Problems

Not fully characterized is the optimality of Ke-numberings. First some facts.

Remark 34. It follows along the lines of previous work [12] that the classes {L0,
L1, L2, . . .} given by Ln = {2m : m ∈ N}∪ {2n+ 1} and {H0, H1, H2, . . .} given
by Hn = {2m : m ≤ |Wn|} ∪ {2n+ 1} are both finitely learnable using W0,W1,
W2, . . ., but for every Ke-numbering A0, A1, A2, . . . at least one of these classes
is not vacillatorily learnable using this numbering. Hence Ke-numberings are
not optimal for finite, explanatory and vacillatory learning.

An open question by Jain and Stephan [12] asks whether every behaviourally
correctly learnable class has a learner which uses a Ke-numbering as hypothesis
space. The natural counterpart of this question is to ask for the existence of a
Ke-numbering which is optimal for behaviourally correctly learning.

Open Problem 35. Is every behaviourally correct learnable class learnable us-
ing some Ke-numbering [12]? Is there a Ke-numbering which is optimal for
behaviourally correct learning?

Optimality of Ke-numberings for consistent learning is open as well.

Open Problem 36. Is there a Ke-numbering which is optimal for consistent
learning?

7. Conclusion

Acceptable numberings are quite convenient hypothesis spaces as they permit
the learning of all classes which are learnable with respect to any hypothesis
space (for most learning criteria). Freivalds, Kinber and Wiehagen [7] investi-
gated the one-one numberings as an alternative hypothesis space. They estab-
lished that, on the one hand, every explanatorily learnable class of functions can
be learnt using such a hypothesis space, but on the other hand, the hypothesis
space has to be tailored for the class to be learned — there is no single one-one
hypothesis space using which one can explanatorily learn every learnable class
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of functions. Jain and Stephan [12] transferred this result into the setting of
learning languages. Based on this result, one might ask whether, except for the
acceptable numberings, any other numbering is optimal for learning at all, that
is, any other numbering can be used to learn all learnable classes.

The starting point of the present work is the observation that not only ac-
ceptable numberings but also nearly acceptable numberings are optimal for the
criteria of finite, explanatory, consistent, vacillatory and behaviourally correct
learning. Based on this observation, it is investigated which numberings are
optimal for which learning criterion. In particular, it is shown that it depends
heavily on the learning criterion whether a numbering is optimal for this crite-
rion or not. Most distinct learning criteria I, J can be separated in the sense
that there is a numbering optimal for I learning but not optimal for J learning.
But there is one notable exception: numberings which are optimal for explana-
tory learning are also optimal for consistent learning. Furthermore, the notion
of learning with additional information is different from all others as there the
Ke-numberings are optimal for learning while the acceptable numberings are
not. The reason is that the additional information is numbering-dependent and
in a Ke-numbering the upper bound on the least index can be used much better
than in an acceptable numbering. While it is known that Ke-numberings are
not optimal for explanatory or vacillatory learning, it remains an open problem
whether they are optimal for behaviourally correct learning or consistent learn-
ing.

Besides optimality, also the notion of effective optimality has been consid-
ered. This notion turned out to be much more regular than optimality itself.
For example, a numbering is effectively optimal for finite learning iff it is ac-
ceptable and effectively optimal for explanatory learning iff it is K-acceptable.
Therefore, there are also more implications than in the case of optimality: for
example, every numbering effectively optimal for explanatory learning is also
effectively optimal for vacillatory learning, but not vice versa.
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[2] Janis Bārzdiņš. Two theorems on the limiting synthesis of functions. The-
ory of Algorithms and Programs, Volume 1, pages 82–88, Latvian State
University, Riga, Latvia, 1974.

[3] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125–155, 1975.

[4] John Case. The power of vacillation in language learning. SIAM Journal
on Computing, 28:1941–1969, 1999.

[5] John Case, Sanjay Jain and Mandayam Suraj. Control Structures in Hy-
pothesis Spaces: The Influence on Learning. Theoretical Computer Science,
270:287–308, 2002.

30



[6] Dick de Jongh and Makoto Kanazawa. Angluin’s theorem for indexed
families of r.e. sets and applications. Proceedings of the Ninth Annual
Conference on Computational Learning Theory, ACM Press, pages 193–
204, 1996.
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