
Open Problems in Systems that Learn

Mark Fulk 1

Department of Computer Science

University of Rochester

Rochester, New York 14627

email: fulk@cs.rochester.edu

Sanjay Jain

Department of Computer and Information Sciences

University of Delaware

Newark, Delaware 19716

email: sjain@cis.udel.edu

Daniel N. Osherson 2

IDIAP

C. P. 609

CH-1920 Martigny

Switzerland

email: osherson@idiap.ch

March 12, 2007

1Supported by NSF grant CCR 832-0136.

2Supported in part by ONR grants N00014-87-K-0401 and N00014-89-J-1725.

Abstract

In this paper we solve some of the open problems in [19]. We also give partial solutions to some

other open problems in the book. In particular we show that the collection of classes of languages

that can be identified on “noisy” text (i.e. a text which may contain some elements which are

not in the language being learned) strictly contains the collection of classes of languages that

can be identified on “imperfect” text (i.e. a text which may contain some extra elements and

may leave out some elements from the language being learned). We also show that memory

limited identification is strictly more restrictive that memory bounded identification. Besides

solving the above two open problems from [19] we also give partial solutions to other open

problems in [19].

1

1 Introduction

A typical learning scenario involving a subject learning a concept could be described thus:

Subject receives successive finite pieces of data, about the concept being learned, over time.

Based upon these data, the subject, each time, either holds or changes its previous explanation

for the concept. The subject converges to a particular explanation, if, after some time, it always

holds that explanation. The subject is said to learn the concept, just in case, it converges to

a correct explanation for the concept. Computational learning theory provides a framework

for studying problems of this nature when the subject is an algorithmic device. Instances of

learning situations are inductive hypothesis formation and language acquisition.

The following is based on the theme of inductive inference studied by Gold [13]. Picture a

scientist performing all possible experiments (in arbitrary order) associated with a phenomenon,

noting the result of each experiment, while simultaneously, but algorithmically, conjecturing a

succession of candidate explanations for the phenomenon. A criterion of success is that the

scientist converges to an explanation which correctly predicts the results of every experiment

about the phenomenon. The set of all pairs of the form (experiment, corresponding result)

associated with the phenomenon can be taken to be coded by a function from N to N , where

N is the set of natural numbers. If the scientist in the above scenario is replaced by a machine

(we call such a machine an inductive inference machine or IIM for short), then algorithmic

identification in the limit of a program for a recursive function from its graph serves as a

plausible model for the practice of science. A machine M Ex-identifies a function iff (by

definition) the scientist is replaced by machine M in the above scenario for success. Given an

IIM M, let Ex(M) denote the class of functions Ex-identified by M. Ex is defined to be the

collection of classes S, of recursive functions, such that, for some M, S ⊆ Ex(M).

A related idea to “scientific” inference of functions is Gold’s seminal notion of language

identification [13]. We will refer to it as TxtEx-identification following [6]. In the following,

a language is a recursively enumerable (r.e.) set, and a grammar (type 0) for a language is

a program that enumerates the language [14] in some fixed acceptable programming system

[21, 22, 18].

According to Gold’s paradigm, a child (modeled as a machine) receives (in arbitrary order)

all and only the well-defined strings of a language (a text for the language), and simultaneously,

2

conjectures a succession of candidate grammars for the language being received. A criterion

of success is for the child to converge to a correct grammar for the language. A machine M

TxtEx-identifies a language iff (by definition) the child is replaced by machine M in the above

scenario for success. Given an IIM M, let TxtEx(M) denote the class of languages TxtEx-

identified by M. TxtEx is defined to be the collection of classes L, of r.e. languages, such that,

for some M, L ⊆ TxtEx(M).

In this paper we consider some restrictions on the above model of learning. These restrictions

were first considered by Osherson, Stob and Weinstein [19]. We show that the collection of

classes of languages that can be TxtEx-identified on “noisy” text (i.e. a text which may contain

some elements which are not in the language being learned) strictly contains the collection of

classes of languages that can be TxtEx-identified on “imperfect” text (i.e. a text which may

contain some extra elements and may leave out some elements from the language being learned).

This solves an open question (open question 5.4.3A, page 105) in [19]. In Section 4 we show that

memory limited identification is strictly more restrictive than memory bounded identification

(see Section 4 for Definitions), which solves another open question (open question 4.4.1A, page

73) in [19]. We also give partial solutions to other open problems in [19]. Some of these results

were announced in [16].

2 Preliminaries

2.1 Notations

Any unexplained recursion theoretic notation is from [22]. N denotes the set of natural num-

bers, {0, 1, 2, 3, . . .}. e, i, j, k, l,m, n, p, q, r, s, x, y, z, with or without decorations (decorations

are subscript, superscirpt and the like), range over N . ∗ denotes a non-member of N and

is assumed to satisfy (∀n)[n < ∗ < ∞]. a, b and c, with or without decorations, range over

(N ∪ {∗}). ∅ denotes the empty set. ∈, ⊆, ⊂, ⊇, ⊃ respectively denote member of, subset,

proper subset, superset and proper superset. ↑ denotes undefined. ↓ denotes defined. S, with

or without decorations, ranges over subsets of N . S1 ⊕ S2 denotes the symmetric difference of

the sets S1 and S2, i.e., (S1 − S2) ∪ (S2 − S1). card(S) denotes the cardinality of the set S.

max(), min() denote the maximum and minimum of a set respectively. For n ∈ N and any two

3

sets S1 and S2, S1 =n S2 means card(S1 ⊕ S2) ≤ n; S1 =∗ S2 means card(S1 ⊕ S2) is finite.

µx[Q(x)] is the least natural number x such that Q(x) is true (if such an x exists).

η and θ range over partial functions with arguments and values from N . f and g, with or

without decorations, range over total functions with arguments and values from N . For n ∈ N

and partial functions η and θ, η =n θ means that card({x | η(x) 6= θ(x)}) ≤ n; η =∗ θ means

that card({x | η(x) 6= θ(x)}) is finite. domain(η) and range(η) denote the domain and range of

the function η, respectively.

L, with or without decorations, ranges over subsets of N , usually construed as a language.

E denotes the class of all recursively enumerable languages. L, with or without decorations,

ranges over subsets of E . L denotes the complement of L, i.e., L = N − L.

ϕ denotes a standard acceptable programming system [21, 22, 18]. Φ denotes an arbitrary

Blum complexity measure [4, 14] for the ϕ-system. ϕi denotes the partial computable function

computed by program i in the ϕ-system. Wi = domain(ϕi). W s
i = {x ≤ s | Φi(x) ≤ s}. The set

of all total recursive functions of one variable is denoted by R. S, C, with or without decorations,

range over subsets of R. 〈i, j〉 stands for an arbitrary computable one to one encoding of all

pairs of natural numbers onto N [22] (we assume that 〈i, j〉 ≥ max({i, j})). π1 and π2 are the

corresponding projection functions. For n > 2, 〈·, ·〉 is extended to n-tuples in the usual way.

We let 〈 〉 = 0 and 〈x〉 = x. S ⊆ N is called single-valued just in case {(x, y) | 〈x, y〉 ∈ S}

represents a function. A single-valued set is said to be single-valued total (svt), just in case,

the function it represents is total.

The quantifiers ‘
∞
∀ ’ and ‘

∞
∃ ’, essentially from [4], mean ‘for all but finitely many’ and ‘there

exist infinitely many’, respectively. The quantifier ‘∃!’ denotes ‘there exists a unique’.

2.2 Fundamental Learning Paradigms

In this section we briefly discuss notions from the machine learning theoretic literature. For

detailed discussion see [19, 7, 13, 1, 17, 3].

A text is a mapping from N into (N ∪ {#}). Texts are also referred to as information

sequences. A segment (also called finite sequence) is a mapping, for some natural number i,

from {x | x < i} into (N ∪ {#}). Λ denotes an empty sequence. For notational convenience, we

sometimes write a sequence, {(0, x0), (1, x1), . . . , (k, xk)} as simply (x0, x1, . . . , xk). T , with or

4

without decorations, ranges over texts. σ, τ , with or without decorations, range over segments.

|σ| denotes the length of σ, i.e., the number of elements in σ. σ1 �σ2 denotes the concatenation

of σ1 and σ2, i.e., if σ = σ1 � σ2, then, for all x,

σ(x) =















σ1(x), if x < |σ1|;

σ2(x − |σ1|), if |σ1| ≤ x < |σ1| + |σ2|;

↑, otherwise.

T [n] denotes the initial segment of T with length n. content(T) = range(T) − {#}; intuitively

it is the set of meaningful things presented in T . content(σ) = range(σ) − {#}. A text for a

language L is an information sequence T such that content(T) = L.

M, with or without decorations, ranges over IIMs. Inductive Inference Machines have

been used in the study of identification of recursive functions as well as recursively enumerable

languages [13, 7, 6, 1, 17, 9, 3, 19]. M(σ) denotes the last output of M, if any, by the time it

has received σ as input. Without loss of generality, we will assume that M(σ) is always defined.

M(T)↓= i iff (
∞
∀ n)[M(T [n]) = i]. We write M(T)↓ iff (∃i)[M(T)↓= i].

For a total function f , f [n] denotes the sequence ((0, f(0)), (1, f(1)), . . . , (n−1, f(n−1))).

For function learning the input sequence given to the IIM is (0, f(0)), (1, f(1)), . . ., where f

is the function being learned. M(f [n]) denotes the last output of M, if any, by the time it

has received f [n] as input. Without loss of generality, we will assume that M(f [n]) is always

defined. M(f)↓= i iff (
∞
∀ n)[M(f [n]) = i]. We write M(f)↓ iff (∃i)[M(f)↓= i]. We now

formally define Ex-identification introduced in Section 1.

Definition 1 [13, 3, 7] Recall that a ranges over N ∪ {∗}.

(a) M Exa-identifies f iff both M(f)↓ and ϕM(f) =a f . If M Exa-identifies f , then we write

f ∈ Exa(M).

(b) Exa = {S ⊆ R | (∃M)[S ⊆ Exa(M)]}.

In the above definitions a stands for the number of anomalies allowed in the final program.

a = ∗ means that unbounded but finite number of anomalies is allowed in the final program.

A criterion of success for language learning can be defined similarly.

Definition 2 [13, 6]

5

(a) M TxtExa-identifies L iff (∀ texts T for L)[M(T)↓ ∧ WM(T) =a L]. If M TxtExa-

identifies L, then we write L ∈ TxtExa(M).

(b) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

We now introduce some technical notions which are useful in the study of learning capabil-

ities of the IIMs.

Definition 3

(a) [9] σ is a TxtEx-stabilizing segment for M on L iff content(σ) ⊆ L and (∀σ′ | content(σ′) ⊆

L ∧ σ ⊆ σ′)[M(σ′) = M(σ)].

(b) [3, 20] σ is a TxtExa-locking sequence for M on L iff σ is a TxtEx-stabilizing segment

for M on L and WM(σ) =a L.

We often refer to TxtExa-locking sequence by just locking sequence (a will be clear from

context). We now present a very important lemma in learning theory due to L. Blum and M.

Blum.

Lemma 4 [3, 20] If M TxtExa-identifies L, then there is a TxtExa-locking sequence for M

on L.

Case and Smith [7] introduced another infinite hierarchy of identification criteria which we

describe below. “Bc” stands for behaviorally correct. Barzdin [2] independently introduced a

similar notion.

Definition 5 [7]

(a) M Bca-identifies f iff (
∞
∀ n)[ϕM(f [n]) =a f]. If M Bca-identifies f , then we write f ∈

Bca(M).

(b) Bca = {S ⊆ R | (∃M)[S ⊆ Bca(M)]}.

Definition 6 [6]

(a) M TxtBca-identifies L iff (∀ texts T for L)(
∞
∀ n)[WM(T [n]) =a L]. If M TxtBca-identifies

L, then we write L ∈ TxtBca(M).

6

(b) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

We usually write Ex for Ex0, TxtEx for TxtEx0, Bc for Bc0, and TxtBc for TxtBc0.

3 Advantages of Having Noisy Text as Compared to Imperfect

Text

In the real world input data is rarely free of error. Osherson, Stob and Weinstein considered

three types of inaccuracies in input data.

(1) The input text may contain elements not in the language (noisy text).

(2) Some elements of the language may be absent from the text (incomplete text).

(3) A combination of (1) and (2) may occur (imperfect text).

They showed that inaccurate input restricts the learning capabilities of an inductive infer-

ence machine. They left open whether imperfect text commits strictly more harm than noisy

text. We show that this is indeed the case.

Definition 7 [19, 11]

(a) We say that a text T is a-noisy for L iff

(i) L ⊆ content(T), and

(ii) card(content(T) − L) ≤ a.

(b) We say that a text T is a-incomplete for L iff

(i) content(T) ⊆ L, and

(ii) card(L − content(T)) ≤ a.

(c) We say that a text T is a-imperfect for L iff card(L ⊕ content(T)) ≤ a.

We now consider criteria for identification with respect to noisy, incomplete or imperfect

text.

Definition 8 Let L ∈ E .

7

(a) We say that M NaTxtExb-identifies L iff (∀a-noisy texts T for L)[M(T)↓ ∧ WM(T) =b

L].

(b) We say that M InaTxtExb-identifies L iff (∀a-incomplete texts T for

L)[M(T)↓ ∧ WM(T) =b L].

(c) We say that M ImaTxtExb-identifies L iff (∀a-imperfect texts T for

L)[M(T)↓ ∧ WM(T) =b L].

In Definition 8(a), if M NaTxtExb-identifies L, then we write L ∈ NaTxtExb(M).

We denote by NaTxtExb the collection of language classes L such that, for some M,

L ⊆ NaTxtExb(M). We do similarly for InaTxtExb and ImaTxtExb.

We similarly define the criteria of identification for function inference. For a function f , let

Lf = {〈x, f(x)〉 | x ∈ N}.

Definition 9 Let f ∈ R.

(a) We say that M NaExb-identifies f iff (∀a-noisy texts T for Lf)[M(T)↓ ∧ ϕM(T) =b f].

(b) We say that M InaExb-identifies f iff (∀a-incomplete texts T for Lf)[M(T)↓ ∧ ϕM(T) =b

f].

(c) We say that M ImaExb-identifies f iff (∀a-imperfect texts T for Lf)[M(T)↓ ∧ ϕM(T) =b

f].

In Definition 9(a), if M NaExb-identifies f , then we write f ∈ NaExb(M). We denote by

NaExb the collection of classes S such that for some M, S ⊆ NaExb(M). We do similarly for

InaExb and ImaExb.

Theorem 10 N∗Ex − In1Ex∗ 6= ∅.

As a corollary we obtain.

Corollary 11 Im∗TxtEx ⊂ N∗TxtEx.

8

Proof of Theorem 10. Given f ∈ R define f ′ as follows.

Let i = min({j | ϕj = f}). For j < i, let errj = min({x | ϕj(x) 6= f(x)}).

f ′(0) = 〈i, 〈err0, err1, err2, . . . , erri−1〉〉.

For all j, k : f ′(1 + 〈j, k〉) = f(j).

Let C = {f ′ | f ∈ R}. We show that C ∈ N∗Ex − In1Ex∗. Intuitively, for f ′ defined as

above, f ′(0) codes sufficient information about f ′, so that C can be identified from noisy texts;

however, if f ′(0) is missing from the input data, then identifying, C is equivalent to identifying

R.

Claim 12 C 6∈ In1Ex∗.

Proof. Suppose by way of contradiction that M In1Ex∗-identifies C. We then describe a

machine M′ which Ex∗-identifies R. Given f ∈ R, define a text T ′ as follows. Let T ′(〈x, k〉) =

〈1 + 〈x, k〉, f(x)〉. Note that T ′ is a 1-incomplete text for f ′. Also note that T ′[n] can be

effectively constructed from f [n]. Let G be a recursive function such that, for all x, p, ϕG(p)(x) =

ϕp(〈1 + 〈x, 0〉〉). Define M′ as follows: M′(f [n]) = G(M(T ′[n])). Note that such a machine M′

can easily be constructed from M. Clearly, for f ∈ R, if ϕp =∗ f ′, then ϕG(p) =∗ f . Since M

In1Ex∗-identifies C, it follows that M′ Ex∗-identifies R. [3, 7] observed that R 6∈ Ex∗. Thus

we have that C 6∈ In1Ex∗. 2 (Claim 12)

Claim 13 C ∈ N∗Ex.

Proof. We describe a machine M which N∗Ex-identifies C. Let G be a recursive function

such that, for all e, z, j, k,

ϕG(e,z)(0) = z;

ϕG(e,z)(1 + 〈j, k〉) = ϕe(j).

Suppose f ∈ R and T is a ∗-noisy text for f ′ (∈ C). We describe how M computes its output

on T [n]. For this we first describe, Xn, Yn, en (which depend on T, n). Let

Xn = {x | 〈0, x〉 ∈ content(T [n])}

and

9

Yn = {(j, y) | (∃k)[〈1 + 〈j, k〉, y〉 ∈ content(T [n]) ∧

(∀k′ | (∃y′)[〈1+〈j, k′〉, y′〉 ∈ content(T [n])])(∃k ≥ k′)[〈1+〈j, k〉, y〉 ∈ content(T [n])]]}

Note that, for large enough n, Yn ⊆ f . Let

en = max({i | (∃err0, err1, . . . , erri−1 | 〈i, 〈err0, err1, err2, . . . erri−1〉〉 ∈ Xn)

[(∀j < i)[Φj(errj) > n ∨ (errj, ϕj(errj)) 6∈ Yn]]}).

It is easy to see that, for large enough n, en = min({j | ϕj = f}).

Let

zn = 〈en, 〈err0, . . . , erren−1〉〉,

where, for j < en, errj = min({n} ∪ {x < n | Φj(x) > n ∨ Φen(x) > n ∨ ϕj(x) 6= ϕen(x)}).

From, the definition of f ′, it follows that for large enough n, zn = f ′(0).

Let M(T [n]) = G(en, zn). It is easy to see that, f ′ ∈ N∗Ex(M). Since f ′ was an arbitrary

member of C, we have C ⊆ N∗Ex(M). 2 (Claim 13) (Theorem 10)

In [11, 15] it is shown that InaExb ⊆ NaExb. However, in the case of language learning,

it is shown in [11, 15] that In∗TxtEx − N∗TxtEx∗ 6= ∅. For further results relating different

criteria of inference formed using inaccurate texts see [11, 15].

4 Memory Limited Identification Versus Memory Bounded Iden-

tification

In Gold’s model of learning the learner is allowed to look at the whole initial segment of the text

for its new conjecture. However a child, having a finite head size, cannot retain in its memory

all the sentences it has heard. Motivated by this observation we consider the following learning

criteria.

Let σ−i denote the last i elements of σ (in order). Formally, for all x,

σ−i(x) =

{

σ(|σ| − i + x), if x < i;

↑, otherwise.

Let σ− denote σ with the last element removed. Formally, for all x,

σ−(x) =

{

σ(x), if x < |σ| − 1;

↑, otherwise.

10

Definition 14 [19] M is i-memory limited iff (∀σ, τ)[[M(σ−) = M(τ−) ∧ σ−i = τ−i] ⇒

M(σ) = M(τ)].

Intuitively, i-memory limitation allows the machine to remember only its last conjecture and

the last i elements of the input.

Definition 15 [19]

(a) mem, a mapping from finite sequences to finite sequences, is an i-memory function iff,

for all σ, content(mem(σ)) ⊆ content(σ), length(mem(σ)) = i and content(mem(σ)) −

content(mem(σ−)) ⊆ {σ−1}.

(b) M is i-memory bounded iff there is an i-memory function mem such that,

(∀σ, τ)[[M(σ−) = M(τ−) ∧ σ−1 = τ−1 ∧ mem(σ) = mem(τ)] ⇒ M(σ) = M(τ)].

Intuitively, i-memory boundedness allows a machine to remember only its last conjecture,

the last element of the input, and i selected elements of the input.

It was shown in [19] that i-memory limited machines TxtEx-identify the same classes of

languages as 1-memory limited machines. It is easy to see that 0-memory bounded machines

TxtEx-identify the same classes of languages as 1-memory limited machines. Osherson, Stob

and Weinstein left it open whether 1-memory bounded machines can TxtEx-identify a class of

languages not TxtEx-identifiable by memory limited machines. We show that there is a class

of languages which can be TxtEx-identified by a 1-memory bounded machine, but cannot be

TxtEx-identified by any 1-memory limited machine.

Definition 16 [19] MLTxtEx = {L ⊆ E | (∃1-memory limited machine M)[L ⊆ TxtEx(M)]}.

Definition 17 [19] MBiTxtEx = {L ⊆ E | (∃i-memory bounded machine M)[L ⊆ TxtEx(M)]}.

Theorem 18 MB1TxtEx − MLTxtEx 6= ∅.

Proof: Let L0 = {〈0, x〉 | x ∈ N}; for i ≥ 1, let Li = {〈1, 0〉} ∪ {〈0, x〉 | x ≤ i}. Let

L = {Li | i ∈ N}.

We will show that L ∈ MB1TxtEx−MLTxtEx. Intuitively, a memory bounded machine

can remember the largest x such that 〈0, x〉 is in the input sequence, and thus TxtEx-identify

11

L. However, a memory limited machine, which TxtEx-identifies L0, cannot always remember

the largest x such that 〈0, x〉 is in the input sequence.

Claim 19 L ∈ MB1TxtEx.

Proof: Let proj2 be a function, from finite sequences to N , such that, for all x, proj2((x)) =

π2(x). Let mem be defined as follows.

mem(Λ) = (#),

mem(σ � (#)) = mem(σ),

and

mem(σ � (x)) =















(x), if σ = Λ ∨ mem(σ) = (#) ∨

[proj2(mem(σ)) < π2(x) and π1(x) = 0];

mem(σ), otherwise.

Let g be a recursive function such that Wg(j) = Lj . Let λx, y.pad(x, y) be a 1-1 padding

function for languages (thus for all x, y, Wpad(x,y) = Wx). Let pad−1
2 be a right projection

function for pad: pad−1
2 (pad(x, y)) = y.

Let M be an inductive inference machine such that:

M(Λ) = pad(g(0), 0),

M(σ � (#)) = M(σ),

and

M(σ � (x)) =

{

pad(g(proj2(mem(σ � (x)))), 1), if x = 〈1, 0〉 ∨ pad−1
2 (M(σ)) = 1;

pad(g(0), 0), otherwise.

It is easy to see that M is 1-memory bounded (with the memory function mem) and

L ⊆ TxtEx(M). 2 (Claim 19)

Claim 20 L 6∈ MLTxtEx.

Proof: Suppose M is a 1-memory limited and L0 ∈ TxtEx(M). We show that L 6⊆ TxtEx(M).

By Lemma 4, there exists a locking sequence, σ, for M on L0. Let m = max({x | 〈0, x〉 ∈

content(σ)}). Let σ′ be an extension of σ such that content(σ′) = {〈0, x〉 | x ≤ m}.

12

Let T = σ′�(〈0,m+1〉)�(〈1, 0〉)�(〈1, 0〉)�(〈1, 0〉) . . . and T ′ = σ′�(〈1, 0〉)�(〈1, 0〉)�(〈1, 0〉)

Since M is 1-memory limited and M(σ′ � (〈0,m + 1〉)) = M(σ′) we have M(T ′) =

M(T). But T, T ′ are texts for different languages in L. Thus L 6⊆ TxtEx(M). 2

(Claim 20) (Theorem 18)

A similar idea can be used to show that

Theorem 21 MBi+1TxtEx − MBiTxtEx 6= ∅.

5 Decisiveness

In the traditional model of learning a learner may conjecture a theory which it has abandoned

earlier. It may be reasonable to expect that the learner should not conjecture a theory it has

once abandoned. A machine is said to be decisive if it never conjectures a grammar for a

language which it has already abandoned. Formally

Definition 22 [19] M is decisive if (∀T)(∀n1 < n2 < n3)[WM(T [n1]) 6= WM(T [n2]) ⇒

WM(T [n1]) 6= WM(T [n3])].

It is open at present if decisiveness restricts TxtEx language learning (open question 4.5.5A,

page 82 in [19]). It was shown independently by Schafer [23] and Fulk that decisiveness does not

restrict Ex function learning. Fulk also showed that decisiveness does not restrict Bc function

learning. We show that decisiveness restricts TxtBc language learning.

Theorem 23 There exists a language class L ∈ TxtBc which cannot be TxtBc-identified by

any decisive machine.

Proof: Let M0,M1, . . . be a recursive enumeration of all the IIMs. Let Lj = {〈j, i〉 | i ∈ N},

σj,k = (〈j, 0〉, ..., 〈j, k〉), L1
j,k = {〈j, i〉 | i ≤ k}, and L2

j,k = WMj(σj,k). If (∃k)[L1
j,k ⊂ L2

j,k ⊆ Lj],

then let k0 be the least k such that [L1
j,k ⊂ L2

j,k ⊆ Lj] and then let χj = {L1
j,k0

, L2
j,k0

}; otherwise,

let χj = {Lj}. Let L =
⋃

j χj .

We will show that L ∈ TxtBc, and that no decisive machine can TxtBc-identify L.

Informally, we show that, if ¬(∃k)[L1
j,k ⊂ L2

j,k ⊆ Lj], then Lj 6∈ TxtEx(M); if L1
j,k ⊂ L2

j,k ⊆

Lj , then either Mj is not decisive or it cannot TxtEx-identify both L1
j,k and L2

j,k. Thus, either

Mj is not decisive or χj 6⊆ TxtEx(Mj).

13

Proof of L ∈ TxtBc is based on utilization of the fact that, if (∃k)[L1
j,k ⊂ L2

j,k ⊆ Lj], then

the least such k can be found in the limit.

Claim 24 L ∈ TxtBc.

Proof: Note that L ∈ χj ⇒ L ⊆ Lj . Consider M which behaves as follows:

M on input T [n]

Let j be such that content(T [n]) ⊆ Lj.

if n ≤ 1

then let M(T [n]) be a grammar for Lj .

else

let Cand = {k ≤ n | L1
j,k ⊂ Wn

Mj(σj,k) ⊆ Lj}.

if Cand = ∅

then let M(T [n]) be a grammar for Lj.

else

let k0 = min(Cand);

if content(T [n]) ⊆ L1
j,k0

then let M(T [n]) = f(j, k0), where f is defined below.

else let M(T [n]) = g(j, k0), where g is defined below.

endif

endif

endif

End M

In the above, f and g are such that:

Wf(j,k) =

{

Lj, if WMj(σj ,k) 6⊆ Lj ;

L1
j,k, otherwise.

Wg(j,k) =

{

Lj , if WMj(σj ,k) 6⊆ Lj ;

L2
j,k ∩ Lj , otherwise.

14

We claim that M TxtBc-identifies L. Let T be a text for L ∈ χj . Let P (j, k) be the

property that L1
j,k ⊂ L2

j,k ⊆ Lj. Now consider the following cases.

Case 1: (∀k)[¬P (j, k)].

In this case L = Lj. We claim that if M outputs f(j, k) or g(j, k), then [Wf(j,k) =

Wg(j,k) = Lj]. This will imply that M TxtBc-identifies L. Since f(j, k) or g(j, k)

is output by M only if W n
Mj(σj,k) ⊃ L1

j,k, [(∀r)[¬P (j, r)] and [M outputs f(j, k) or

g(j, k)]] implies that WMj(σj,k) 6⊆ Lj. Thus Wf(j,k) = Wg(j,k) = Lj .

Case 2: (∃k)[P (j, k)].

Let k0 be the least k such that P (j, k). Now for large enough n, Cand, as

computed by M on input T [n], would contain k0 as its least element. Now consider

the following cases.

Case 2.1: L = L1
j,k0

.

In this case, for sufficiently large n, M, on input T [n], outputs f(j, k0).

Since WMj(σj,k0
) ⊆ Lj, Wf(j,k0) = L1

j,k0
= L.

Case 2.2: L = L2
j,k0

.

In this case, for sufficiently large n, M, on input T [n], outputs g(j, k0).

Since WMj(σj,k0
) ⊆ Lj, Wg(j,k0) = L2

j,k0
= L. 2 (Claim 24)

Claim 25 L is not TxtBc-identifiable by any decisive machine.

Proof: Suppose by way of contradiction that machine Mj decisively TxtBc identifies L.

Now consider χj . Let P (j, k) be the property that L1
j,k ⊂ L2

j,k ⊆ Lj .

If (∀k)[¬P (j, k)], then Lj ∈ L which is not TxtEx-identified by Mj .

If (∃k)[P (j, k)], then let k0 be the least such k. Now L1
j,k0

, L2
j,k0

∈ L. Since on σj,k0
Mj

outputs a grammar for L2
j,k0

6= L1
j,k0

, there must be extension σ of σj,k0
such that content(σ) =

15

L1
j,k0

and WMj(σ) = L1
j,k0

. Also there must be an extension σ′ of σ, such that content(σ′) ⊆ L2
j,k0

and WMj(σ′) = L2
j,k0

(since Mj identifies both L1
j,k0

, L2
j,k0

). But then Mj is not decisive.

This proves the claim. 2 (Claim 25) (Theorem 23)

6 TxtFex and TxtFEXT Identification

In TxtEx-identification a machine is required to converge to a single grammar for the language

it is learning. [5] and [19] consider the situation in which the requirement to converge to a

single grammar is relaxed and the machine is allowed to vacillate between a finite number of

(nearly) correct grammars.

Definition 26 [5]

(a) M TxtFexa
b -identifies L iff (∀ texts T for L)(∃S | card(S) ≤ b ∧ (∀i ∈ S)[Wi =a L])(

∞
∀

n)[M(T [n]) ∈ S]. If M TxtFexa
b -identifies L, then we write L ∈ TxtFexa

b (M).

(b) TxtFexa
b = {L | (∃M)[L ⊆ TxtFexa

b (M)]}.

Osherson, Stob, and Weinstein referred to TxtFex∗
∗ as BFD identification.

Definition 27 [19]

(a) M TxtFEXTa
b -identifies L iff (∀ texts T for L)(∃S | card(S) ≤ b ∧ (∀i, j ∈ S)[Wi =

Wj =a L])(
∞
∀ n)[M(T [n]) ∈ S]. If M TxtFEXTa

b -identifies L, then we write L ∈

TxtFEXTa
b (M).

(b) TxtFEXTa
b = {L | (∃M)[L ⊆ TxtFEXTa

b (M)]}.

Osherson, Stob, and Weinstein left open whether TxtFex∗
∗ = TxtFEXT∗

∗ (open question

6.5.3C, page 142 [19]). We give a partial solution to this problem.

Theorem 28 (∀i, j)[TxtFex
j
i ⊆ TxtFEXT

cj
i] where c depends only on i.

Proof: For any given M we construct M′ such that if TxtFex
j
i (M) ⊆ TxtFEXT

cj
i (M′). The

proof is based on a careful (partial) simulation of grammars output by M.

16

M′ on input T [n]:

Let p = M(T [n]).

Let l = min({n} ∪ {m < n | card({M(T [m′]) | m ≤ m′ ≤ n}) ≤ i}).

Let S = {M(T [m′]) | l ≤ m′ ≤ n}.

(* Intuitively, S is the set of the last i distinct programs output by M on T [n] (if the

number of distinct programs output by M on T [n] is < i, then S is the set of all

the programs output by M on the initial segments of T [n]) *)

Output P (p, S − {p}), where P is a fixed recursive function such that

WP (p,S) = Wp ∪
⋃

{ExtraOut(p, p1, p2, ..., pr) | r ≤ card(S) ∧ (∀k | 1 ≤ k ≤ r)[pk ∈

S] ∧ (∀k, k′ | 1 ≤ k < k′ ≤ r)[pk 6= pk′]}, where

ExtraOut(p0, p1, p2, ..pr) =
⋃

{Wnr
pr

| (∃n0 ≥ n1 ≥ n2 ≥ . . . ≥ nr)(∀i <

r)[card((Wni
pi

− Wpi+1
) ∪ (W

ni+1
pi+1

− Wni
pi

)) ≤ 2 ∗ j]}.

End

We now argue that TxtFex
j
i (M) ⊆ TxtFEXT

cj
i (M′).

Let T be any text for L ∈ TxtFex
j
i (M). Consider M′ on T . Let l = min({m |

card({M(T [m′]) | m ≤ m′}) ≤ i}). Let S = {M(T [m′] | l ≤ m′}. Intuitively, S is the set

of the last i distinct grammars output by M on T (if M on T outputs less than i distinct

grammars, then S is the set of distinct grammars output by M on T). Let Q be the set of

grammars which M outputs infinitely often on T . Clearly, {P (q, S − {q}) | q ∈ Q} is the set of

grammars which M′ outputs infinitely often on T .

We need to show that, for each q ∈ Q, WP (q,S−{q}) =cj L and that all of the grammars in

{P (q,Q − {q}) | q ∈ Q}, are for the same language.

Note that, for q ∈ S, for p1, p2, . . . , pr such that r ≤ card(S − {q}) ∧ (∀k | 1 ≤ k ≤ r)[pk ∈

S − {q}] ∧ (∀k, k′ | 1 ≤ k < k′ ≤ r)[pk 6= pk′]}, ExtraOut(q, p1, p2, . . . , pr) − Wq has atmost

2j · r elements. Thus, for q ∈ Q, since Wq =j L, WP (q,S−{q}) =cj L, where c depends only on i.

It remains to show that all the grammars in {P (q,Q − {q}) | q ∈ Q}, are for the same

language. Assume without loss of generality that card(Q) ≥ 2 (otherwise we are done). Suppose

q1, q2 ∈ Q, such that q1 6= q2. We show that WP (q1,S−{q1}) ⊆ WP (q2,S−{q2}). (Since q1, q2 are

arbitrary members of Q, this suffices to show that all the grammars in {P (q,Q − {q}) | q ∈

17

Q}, are for the same language). Clearly, WP (q2,S−{q2}) ⊇ Wq1
(since Wq1

=2j Wq2
, Wq1

=

ExtraOut(q2, q1) ⊆ WP (q2,S−{q2})). Now consider ExtraOut(q1, p1, p2, .., pr) such that r ≤

card(S − {q1}) ∧ (∀k | 1 ≤ k ≤ r)[pk ∈ S − {q1}] ∧ (∀k, k′ | 1 ≤ k < k′ ≤ r)[pk 6= pk′].

Case 1: q2 = pk for some k.

In this case clearly, ExtraOut(q2, pk+1, pk+2, . . . , pr) ⊇ ExtraOut(q1, p1, p2, . . .)

Case 2: Not case 1.

In this case ExtraOut(q2, q1, p1, . . . , pr) = ExtraOut(q1, p1, p2, .., pm). This is so because

card((Wq1
− Wq2

) ∪ (Wq2
− Wq1

)) ≤ 2 ∗ j.

From the above cases it follows that WP (q1,S−{q1}) ⊆ WP (q2,S−{q2}). Thus TxtFex
j
i (M) ⊆

TxtFEXT
cj
i (M′). (Theorem 28)

Since the construction of M′ in the above proof is effective in M and i we also have

Theorem 29 (∀j)[TxtFexj
∗ ⊆ TxtFEXT∗

∗].

7 Conclusions

In this paper we have given some solutions and partial solutions to open problems in the book

[19]. We briefly mention solutions to two other problems in [19].

Two texts T and T ′ are said to be cousins if

content(T) = content(T ′) and

(∃m,n)(∀i)[T (m + i) = T ′(n + i)].

Thus T and T ′ are almost the same text for some language L. A machine is monotonic if

it behaves the same way for all cousins, i.e., if it identifies T (that is, M(T)↓ ∧ WM(T) =

content(T)) then it identifies all cousins T ′ of T . It can be shown that every L ∈ TxtEx can

be TxtEx-identified by some monotonic machine. This solves an open question (open question

4.6.3A, page 92) in [19]. This result follows directly from Theorem 13 in [10].

Another problem in [19] dealt with efficient identification. A machine M converges on

T faster than M′ iff the point of convergence for M on T is earlier than that of M′, i.e.,

18

max({n | M(T [n]) 6= M(T [n + 1])}) < max({n | M′(T [n]) 6= M′(T [n + 1])}).

A machine M text efficiently TxtEx-identifies L iff

(a) M TxtEx-identifies L and

(b) For all F , (may not be recursive) if F TxtEx-identifies L and F converges on a text T

for L ∈ L faster than M, then there exists a text T ′ for L′ ∈ L on which M converges

faster than F .

It can be shown that there exists a class of svt languages which can be text-efficiently identified

but is not recursively presentable [12], solving an open question (open question 8.2.4A, page

175) in [19].

8 Acknowledgements

We would like to thank John Case, Arun Sharma, Rajeev Raman and Lata Narayanan for

helpful discussions.

References

[1] D. Angluin and C. Smith. A survey of inductive inference: Theory and methods. Computing

Surveys, 15:237–289, 1983.

[2] J. M. Barzdin. Two theorems on the limiting synthesis of functions. In Theory of Algo-

rithms and Programs, Latvian State University, Riga, 210:82–88, 1974. In Russian.

[3] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information

and Control, 28:125–155, 1975.

[4] M. Blum. A machine independent theory of the complexity of recursive functions. Journal

of the ACM, 14:322–336, 1967.

[5] J. Case. The power of vacillation. In D. Haussler and L. Pitt, editors, Proceedings of the

Workshop on Computational Learning Theory, pages 133–142. Morgan Kaufmann Pub-

lishers, Inc., 1988. Expanded in [8].

19

[6] J. Case and C. Lynes. Machine inductive inference and language identification. Lecture

Notes in Computer Science, 140:107–115, 1982.

[7] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.

Theoretical Computer Science, 25:193–220, 1983.

[8] John Case. The power of vacillation in language learning. Technical Report 93-08, Uni-

versity of Delaware, 1992. Expands on [5]; journal article under review.

[9] M. Fulk. A Study of Inductive Inference machines. PhD thesis, SUNY at Buffalo, 1985.

[10] M. Fulk. Prudence and other conditions on formal language learning. Information and

Computation, 85:1–11, 1990.

[11] M. A. Fulk and S. Jain. Learning in the presence of inaccurate information. In R. Rivest,

D. Haussler, and M. K. Warmuth, editors, Proceedings of the Second Annual Workshop

on Computational Learning Theory, Santa Cruz, California, pages 175–188. Morgan Kauf-

mann Publishers, Inc., August 1989.

[12] M. A. Fulk and S. Jain. Open problems in systems that learn. Technical Report 285,

University of Rochester, 1989.

[13] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,

1967.

[14] J. Hopcroft and J. Ullman. Introduction to Automata Theory Languages and Computation.

Addison-Wesley Publishing Company, 1979.

[15] S. Jain. Learning in the Presence of Additional Information and Inaccurate Information.

PhD thesis, University of Rochester, 1990.

[16] S. Jain and M. Fulk. Open problems in systems that learn. In D Haussler and L. Pitt,

editors, Proceedings of the First Annual Workshop on Computational Learning Theory,

MIT, Cambridge, pages 425–426. Morgan Kaufmann Publishers, August 1988.

[17] R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR math-

ematicians – A survey. Information Sciences, 22:149–169, 1980.

20

[18] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North

Holland, New York, 1978.

[19] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning

Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

[20] D. Osherson and S. Weinstein. A note on formal learning theory. Cognition, 11:77–88,

1982.

[21] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,

23:331–341, 1958.

[22] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill, New

York, 1967. Reprinted, MIT Press 1987.

[23] G. Schäfer-Richter. Uber Eingabeabhangigkeit und Komplexitat von Inferenzstrategien. PhD

thesis, RWTH Aachen, 1984.

21

