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The effect of a partial explanation as additional information in the learning

process is investigated. A scientist performs experiments to gather experi-

mental data about some phenomenon, and then, tries to construct an expla-

nation (or theory) for the phenomenon. A plausible model for the practice

of science is an inductive inference machine (scientist) learning a program

(explanation) from graph (set of experiments) of a recursive function (phe-

nomenon). It is argued that this model of science is not an adequate one, as

scientists, in addition to performing experiments, make use of some approx-

imate partial explanation based on the “state of the art” knowledge about

that phenomenon. An attempt has been made to model this partial expla-

nation as an additional information in the scientific process. It is shown

that inference capability of machines is improved in the presence of such

a partial explanation. The quality of this additional information is mod-

eled using certain “density” notions. It is shown that additional information

about a “better” quality partial explanation enhances the inference capa-

bility of learning machines as scientists more than a “not so good” partial

explanation. Similar enhancements to inference of approximations, a more

sophisticated model of science, are demonstrated.

Inadequacies in Gold’s paradigm of language learning are investigated. It

is argued that Gold’s model fails to incorporate certain additional information

that children get from their environment. Children are sometimes told about

some grammatical rule that enumerates elements of the language. It is argued

that these rules are a kind of additional information. They enable children

to see in advance elements that are yet to appear in their environment. Also,

children are being given some information about what is not in the language.

Sometimes, they are rebuked for making incorrect utterances, or are told of a

rule that enumerates certain non-elements of the language. An attempt has

been made to extend Gold’s model to incorporate both the above types of

additional information. It is shown that either type of additional information
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enhances the learning capability of formal language learning devices.

1 Introduction

Consider the scenario in which a subject is attempting to learn ‘its’ environ-

ment. At any given time, the subject receives a finite piece of data about its

environment, and based upon this finite information, conjectures an expla-

nation about the environment. The subject is said to learn its environment,

just in case, the explanations conjectured by the subject become fixed over

time, and this fixed explanation is a correct representation of the subject’s

environment. Computational learning theory provides a framework for the

study of above scenario when the subject is an algorithmic machine. This

paper argues that a subject, in a number of learning situations, has some

partial explanation about its environment as additional information. We in-

troduce various formulations of this partial explanation and investigate the

impact of providing such an additional information on the learning capabil-

ity of algorithmic devices. The two learning situations investigated are the

practice of science and language acquisition.

Picture a scientist performing all possible experiments (in arbitrary order)

associated with a phenomenon, noting the result of each experiment, while

simultaneously, but algorithmically, conjecturing a succession of candidate

explanations for the phenomenon. A criterion of success is that the scien-

tist eventually conjectures an explanation which he/she never gives up, and

this final explanation correctly predicts the results of every experiment about

the phenomenon. The set of all pairs of the form 〈experiment, correspond-

ing result〉 associated with the phenomenon can be taken to be coded by a

function from N to N, where N is the set of natural numbers. If, the ever

experimenting scientist in the above scenario is replaced by a machine, then

algorithmic identification in the limit of a program for a recursive function

3



from its graph serves as a plausible model for the practice of science. This

is essentially the theme of inductive inference studied by Gold [Gol67]. A

machine M Ex-identifies a function iff (by definition) the scientist is replaced

by machine M in the above scenario for success. Ex is defined to be the class

of sets S of recursive functions such that some machine Ex-identifies each

recursive function in S.

We feel that the above model of science is somewhat inadequate. For

one thing, a scientist has more information available than just the result of

experiments. For another, the result of a scientist’s investigation need not

be a final theory. C. S. Peirce [Pei58, Rei70] argues that science is a non-

terminating process of successive approximations. Finally, a scientist might

have some partial explanation of the phenomenon based on the “state of the

art” knowledge about that phenomenon and probably uses this additional

information in coming up with an explanation. The model described above

does not take in to account the presence of this additional information. In

the present paper, we attempt to model this additional information.

Our approach to modeling a scientist’s knowledge of partial explanations

is described thus. We require a learning machine to be presented with any

program which computes a partial recursive function that (1) agrees suffi-

ciently (infinitely-often) with the function being learned; and (2) does not

contradict the function being learned. In other words, a machine learning

a function f , is fed, in addition to a graph of f , a program that computes

an infinite subset of f as additional information. For a number of function

inference criteria, we show that such an additional information enhances the

learning capability of machines.

We model the quality of partial explanations using certain “density” no-

tions due to Royer [Roy86]. Intuitively, a good partial explanation has, in

some sense, a greater agreement with the function being learned than a not

so good partial explanation. We show that a better quality partial explana-
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tion enhances the function inference capability of machines more than a not

so good partial explanation.

The restriction that the partial function computed by the additional in-

formation program not contradict the function being learned, we feel, makes

our approach a simplistic one, as there is no reason to believe that the state of

the art partial explanation available to a scientist has only errors of omission

and no errors of commission.

A related idea to “scientific” inference of functions is Gold’s seminal no-

tion of identification [Gol67]. We will refer to it as TxtEx-identification

following [CL82]. In the following, a language is a recursively enumerable

(r.e.) set, and a grammar (type 0) for a language is a program that enu-

merates the language [HU79] in some fixed acceptable programming system

[Rog58, Rog67, MY78].

According to Gold’s paradigm, a child (modeled as a machine) receives

(in arbitrary order) all the well-defined strings of a language (a text for the

language), and simultaneously, conjectures a succession of candidate gram-

mars for the language being received. A criterion of success is for the child to

eventually conjecture a correct grammar and to never change its conjecture

thereafter. A machine M TxtEx-identifies a language iff (by definition) the

child is replaced by machine M in the above scenario for success. Machine

M is often called a language learning machine. TxtEx is defined to be the

class of sets L of r.e. languages such that some machine TxtEx-identifies

each language in L.

Additional information, in the context of language learning, is modeled

as a grammar for any infinite subset of the language being learned. Such

an additional information to a language learning machine is justified, as it

is not uncommon for an elder person (a parent or a teacher) to tell a child

some small grammatical rule that enables the child to enumerate a list of

elements of the language. Basically, this additional information, in the form
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of a grammatical rule, enables the child to know certain elements of the

language before these elements actually appear in the child’s text.

It turns out that this kind of additional information, henceforth referred

to as positive additional information, indeed increases the learning power of

language learning machines. We further model the quality of positive ad-

ditional information by measuring the “density of agreement” between the

language being learned and the subset language whose grammar is provided

as additional information. Not surprisingly, a “better quality” positive ad-

ditional information enhances the learning capability of language learning

devices more than a “not so good” positive additional information.

Gold’s paradigm is based on the assumption that children are rarely in-

formed of their grammatical errors. However, there are studies that refute

this assumption [BB64, Dal76]. It is plausible that children are receiving

some information about the complement of the language. A rebuke from an

elder person for any ungrammatical utterance may act as a clue to a child

about the absence of certain strings from the language. Better still, the elder

person may provide the child with a rule that enumerates some ungrammat-

ical strings in the language. We model such an additional information about

what is not in the language by providing a language learning machine with

any grammar that generates a subset of the complement of the language be-

ing learned. We refer to such additional information as negative additional

information, and show that even negative additional information enhances

the learning capability of language learning devices. We model the quality

of negative additional information by measuring the density of agreement

between the complement of the language being learned and the subset of the

complement language whose grammar is provided as additional information.

Even in this case, we show that a better quality negative additional infor-

mation enhances the learning power of language learning devices more than

a not so good negative additional information.
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Finally, we consider language learning scenarios in which a machine is

provided with both positive additional information and negative additional

information.

In the present work, we are concerned with extending TxtEx-identification

and Ex-identification by providing additional information to the learning

machine. We briefly note other attempts to extending these fundamental

learning paradigms. L. Blum and M. Blum [BB75] and Case and Smith

[CS83], in the context of function inference, consider the case where the pro-

gram inferred by the learning machine is allowed to make a finite number of

mistakes. For language learning, Case and Lynes [CL82] and Osherson and

Weinstein [OW82b, OW82a] consider learning criteria in which the grammar

inferred is allowed to be a grammar for a finite variant of the language being

learned. Smith [Smi82] considers the function inference criteria in which the

learning machine is replaced by a “team” of learning machines and successful

learning takes place if any one member of the team succeeds in learning the

language. Osherson, Stob, and Weinstein [OSW86a] consider a generalized

notion of team learning. Pitt [Pit84] has shown that the power of proba-

bilistic machines can be neatly characterized in terms of teams [Smi82] of

deterministic machines. Jain and Sharma [JS90b] consider team inference in

the context of language learning. Royer [Roy86] and Smith and Velauthapil-

lai [SV86] consider the case where the inferred program may have infinitely

many anomalies, but the “density” of these anomalies is bounded. Recently,

Case [Cas88] has considered language learning criteria in which the learning

agent is allowed to converge in the limit to a finite set of grammars instead

of one. Case, Jain and Sharma [CJS89] consider grammar size restrictions

in Case’s vacillating language learning criteria [Cas88]. Fulk [Ful85, Ful90a]

and Jain and Sharma [JS89] consider other forms of additional information

to learning machines.
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2 Notation

Any unexplained recursion theoretic notation is from [Rog67]. N denotes

the set of natural numbers, {0, 1, 2, 3, . . .}. N+ denotes the set of positive

integers, {1, 2, 3, . . .}. Unless otherwise specified, i, j, k, l,m, n, with or with-

out decorations, range over N. ∗ denotes any finite number which is not

prespecified. a, b and c, with or without decorations, range over (N ∪ {∗}).

∅ denotes the empty set. ⊆ denotes subset. ⊂ denotes proper subset. S,

with or without decorations, ranges over subsets of N. card(S) denotes the

cardinality of the set S. max, min denote the maximum and minimum of a

set, respectively. For n ∈ N and any two sets S1 and S2, S1 =n S2 means

card((S1 − S2)∪ (S2 − S1)) ≤ n; S1 =∗ S2 means card((S1 − S2)∪ (S2 − S1))

is finite.

η and θ range over partial functions with arguments and values from N. f

ranges over total functions with arguments and values from N. For n ∈ N and

partial functions η and θ, η =n θ means that card({x | η(x) 6= θ(x)}) ≤ n;

η =∗ θ means that card({x | η(x) 6= θ(x)}) is finite. domain(η) and range(η)

denote the domain and range of the function η, respectively. For a set S,

η(S) = i means for all x ∈ S, η(x) = i.

L, with or without decorations, ranges over subsets of N, usually con-

strued as a language. E denotes the class of all recursively enumerable (r.e.)

languages. L with or without decorations, ranges over subsets of E , i.e., L

is used to denote a class of r.e. languages. L denotes the complement of L,

i.e., L = N− L.

ϕ denotes a standard acceptable programming system [Rog58, Rog67,

MY78]. Φ denotes an arbitrary Blum complexity measure [Blu67, HU79]

for the ϕ-system. ϕi denotes the partial computable function computed by

program i in the ϕ-system. Wi = domain(ϕi). W s
i = {x ≤ s | Φi(x) ≤ s}.

The set of all total recursive functions of one variable is denoted by R. S, C,

with or without decoration, range over subsets of R. 〈i, j〉 stands for an arbi-
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trary computable one to one encoding of all pairs of natural numbers onto N

[Rog67] (we assume that 〈i, j〉 ≥ max({i, j})). S ⊆ N is called single-valued,

just in case, {(x, y) | 〈x, y〉 ∈ S} represents a function. A single-valued set

is said to be single-valued total, just in case, the function it represents is

total. For m and n ∈ N, [m,n] (respectively, [m,n), (m,n], and [m,∞))

generally denotes {x ∈ N | m ≤ x ≤ n} (respectively, {x ∈ N | m ≤ x < n},

{x ∈ N | m < x ≤ n}, and {x ∈ N | m ≤ x}), although sometimes

[m,n], (m,n] and [m,n) denote the corresponding interval in the real num-

bers. It will be clear from context which of these meanings is intended.

Variable d, with or without decorations, ranges over real numbers in the real

interval [0, 1].

The quantifiers ‘∀∞’ and ‘∃∞’, essentially from [Blu67], mean ‘for all but

finitely many’ and ‘there exist infinitely many’, respectively. The quantifier

‘∃!’ denotes ‘there exists a unique’. 2 denotes the end of proof of a claim or

a proposition; denotes the end of proof of a theorem.

3 Function Inference

3.1 Fundamental Function Inference Paradigms

An Inductive Inference Machine (IIM) [Gol67] is an algorithmic device which

takes as its input a set of data given one element at a time, and which

from time to time, as it is receiving its input, outputs programs. IIMs have

been used in the study of machine identification of programs for recursive

functions as well as algorithmic learning of grammars for languages [BB75,

CS83, Che81, Ful85, Gol67, OSW86b, Wie78]. For a survey of this work see

[AS83, OSW86b, KW80, Cas86].

M, with or without decorations, ranges over the class of inductive in-

ference machines. For inference of a recursive function f by an IIM M,

graph of f is fed to M in any order. Without loss of generality [BB75,
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CS83], we will assume that M is fed the graph of f in the sequence

(0, f(0)), (1, f(1)), (2, f(2)), . . .. For all recursive functions f , f |n denotes

the finite initial segment ((0, f(0)), (1, f(1)), . . . , (n, f(n))). Variables σ and

τ , with or without decorations, range over finite initial segments. M(σ) is

the last output of M after receiving input σ (note that σ can be encoded as

a natural number). We will assume, without loss of generality, that M(σ) is

always defined. We say that M(f) converges to i (written: M(f)↓ = i) iff

(∀∞n)[M(f |n) = i]; M(f) is undefined otherwise.

Definition 1 [Gol67, BB75, CS83] Suppose a ∈ N ∪ {∗}.

(a) M Exa-identifies a recursive function f (written: f ∈ Exa(M)) iff both

M(f)↓ and ϕM(f) =a f .

(b) Exa = {S ⊆ R | (∃M)[S ⊆ Exa(M)]}.

Case and Smith [CS83] introduced another infinite hierarchy of identifi-

cation criteria which we describe below. “Bc” stands for behaviorally correct.

Barzdin [Bar74] independently introduced a similar notion.

Definition 2 [CS83] Suppose a ∈ N ∪ {∗}.

(a) M Bca-identifies a recursive function f (written: f ∈ Bca(M)) iff M,

fed f , outputs over time an infinite sequence of programs p0, p1, p2, . . . such

that (∀∞n)[ϕpn
=a f ].

(b) Bca = {S ⊆ R | (∃M)[S ⊆ Bca(M)]}.

We usually write Ex for Ex0 and Bc for Bc0. Theorem 1 just below

states some of the basic hierarchy results about the Exa and Bca classes.

Theorem 1 For all n ∈ N,

(a) Exn ⊂ Exn+1;

(b)
⋃

n∈N Exn ⊂ Ex∗;

(c) Ex∗ ⊂ Bc;
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(d) Bcn ⊂ Bcn+1;

(e)
⋃

n∈N Bcn ⊂ Bc∗; and

(f) R ∈ Bc∗.

Parts (a), (b), (d), and (e) are due to Case and Smith [CS83]. John Steel

first observed that Ex∗ ⊆ Bc and part (c) is due to Case and Smith [CS83].

Part (f) is due to Harrington [CS83]. Blum and Blum [BB75] first showed

that Ex ⊂ Ex∗. Barzdin [Bar74] independently showed Ex ⊂ Bc.

3.2 Additional Information for Function Inference

We define the following notions of “density” from [Roy86]. Similar notions

were also used by Smith and Velauthapillai [SV86] in the context of inductive

inference.

Definition 3 (S. Tennenbaum: see page 156 in [Rog67], [Roy86])

(a) Suppose that A ⊆ N and that B is a finite, nonempty subset of N. We

define the density of A in B (denoted: d(A; B)) as card(A
⋂

B)/card(B).

(b) The density of a set A (denoted: d(A)) is limn→∞ inf({d(A; {z | z ≤ x}) |

x ≥ n}).

Intuitively, d(A; B) can be thought of as the probability of selecting an

element of A when choosing an arbitrary element from B.

We now describe our notion of additional information to an inductive

inference machine learning a program from the graph of a recursive function.

An IIM, trying to infer a program for a recursive function f , is given as

additional information, a program for a partial recursive function η which

agrees with f to some extent. In Definition 4 just below, we precisely define

what we mean by “a partial function η agrees with f to some extent”.

11



Definition 4 Suppose d is a real number in the interval [0, 1]. A partial

function η is said to be d-conforming with a total function f iff η satisfies

the following two conditions:

(1) η ⊆ f , i.e., η does not contradict f ; and

(2) d(domain(η)) ≥ d.

Using Definition 4, we define below our new learning criterion for identi-

fication of a program from graph of a recursive function in the presence of a

partial explanation. In the following definition, Ap stands for Approximate

partial additional information.

Definition 5 Suppose d is a real number in the interval [0, 1]. Suppose

a ∈ N ∪ {∗}.

(a) A machine M ApdExa-identifies a recursive function f (written: f ∈

ApdExa(M)) iff M, fed f and any program p such that ϕp is d-conforming

with f , converges in the limit to a program i such that ϕi =a f .

(b) ApdExa = {S ⊆ R | (∃M)[S ⊆ ApdExa(M)]}.

We similarly define the corresponding identification criterion for Bc in-

ference.

Definition 6 Suppose d is a real number in the interval [0, 1]. Suppose

a ∈ N ∪ {∗}.

(a) A machine M ApdBca-identifies a recursive function f (written: f ∈

ApdBca(M)) iff M, fed f and any program p such that ϕp is d-conforming

with f , outputs an infinite sequence of programs p0, p1, p2, . . . such that

(∀∞n)[ϕpn
=a f ].

(b) ApdBca = {S ⊆ R | (∃M)[S ⊆ ApdBca(M)]}.

In the above identification criteria, ϕp — an approximation to f , is a good

plausible additional information to a machine trying to learn a program for
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f from a graph of f . However, ϕp may be a very bad approximator locally

for large intervals which may be of importance. To overcome this situa-

tion, we use the notion of “uniform density” from [Roy86] to define a new

identification criterion.

Definition 7 [Roy86] The uniform density of a set A in intervals of length

≥ n (denoted: udn(A)) is inf({d(A; {z | x ≤ z ≤ y}) | x, y ∈ N and y − x ≥

n}). Uniform density of A (denoted: ud(A)) is limn→∞ udn(A).

Using the notion of uniform density we define an improved learning crite-

rion. Definition 8 just below is an analogous notion to Definition 4 for this

new density notion.

Definition 8 Suppose d is a real number in the interval [0, 1]. A partial

function η is said to be d-uniform conforming with a total function f iff η

satisfies the following two conditions:

(1) η ⊆ f , i.e., η does not contradict f ; and

(2) ud(domain(η)) ≥ d.

In the following definition, UAp stands for Uniform Approximate partial

additional information.

Definition 9 Suppose d is a real number in the interval [0, 1]. Suppose

a ∈ N ∪ {∗}.

(a) A machine M UApdExa-identifies a recursive function f (written: f ∈

UApdExa(M)) iff M, fed f and any program p such that ϕp is d-uniform

conforming with f , converges in the limit to a program i such that ϕi =a f .

(b) UApdExa = {S ⊆ R | (∃M)[S ⊆ UApdExa(M)]}.

We similarly define the corresponding identification criterion for Bc infer-

ence.
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Definition 10 Suppose d is a real number in the interval [0, 1]. Suppose

a ∈ N ∪ {∗}.

(a) A machine M UApdBca-identifies a recursive function f (written: f ∈

UApdBca(M)) iff M, fed f and any program p such that ϕp is d-uniform

conforming with f , outputs an infinite sequence of programs p0, p1, p2, . . .

such that (∀∞n)[ϕpn
=a f ].

(b) UApdBca = {S ⊆ R | (∃M)[S ⊆ UApdBca(M)]}.

In what follows, we will refer to the two types of additional information as

Ap and UAp type. Intuitively, UAp type additional information is a better

kind of additional information; hence, we could expect the corresponding

criteria of identification to be more general. Since, any UApd type additional

information is also an Apd additional information we have the following two

propositions.

Proposition 1 (∀a ∈ N ∪ {∗})(∀d ∈ [0, 1]) [ApdExa ⊆ UApdExa].

Proposition 2 (∀a ∈ N ∪ {∗})(∀d ∈ [0, 1]) [ApdBca ⊆ UApdBca].

Following theorems deal with the trade-offs between anomalies in the con-

jectured program, additional information, and types of identification criteria.

Theorem 2 (∀d ∈ (0, 1])(∀m ∈ N) [UApdEx − Ap1Bcm 6= ∅].

Theorem 2 says that there are classes of recursive functions that can be Ex-

identified with some UAp type additional information of non-zero density,

but cannot be Bc-identified with any predetermined number of anomalies

allowed per program and even the best possible Ap type additional informa-

tion. In other words, the best possible Ap type additional information and

a more general criterion of inference cannot, in general, compensate for any

UAp type additional information of non-zero density.
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Proof of Theorem 2: Let N0 = 0. For i ≥ 0, let N2i+1 = N2i + i + 1 and

N2i+2 = N2i+1 ∗ 2i. Let Sj denote the set
⋃

k∈N[N2∗〈j,k〉, N2∗〈j,k〉+1). Consider

the following class of functions:

C = {f ∈ R | the following conditions hold:

1. f(
⋃

i∈N[N2i+1, N2i+2)) = 0

2. (∀j, x, y)[[x ∈ Sj ∧ y ∈ Sj] ⇒ [f(x) = f(y)]]

}

Claim 1 (∀m ∈ N)[C 6∈ Ap1Bcm].

Proof of Claim 1: Consider the following function η:

η(x) =







0 x ∈
⋃

i∈N[N2i+1, N2i+2);

↑ otherwise.

It is easy to see that (∀f ∈ C)[d({x | η(x) = f(x)}) = 1]. Suppose by

way of contradiction that machine M, with a program for η as the additional

information, Bcm-identifies all f in C. It is, then, easy to convert M to M′

such that M′ Bcm-identifies all recursive functions. To see this, for a function

f , define f ′ as follows:

f ′(x) =







0 if x ∈
⋃

i∈N[N2i+1, N2i+2);

f(j) if x ∈ Sj.
.

Let S = {f ′ | f ∈ R}. Clearly, [C ∈ Ap1Bcm] ⇒ [S ∈ Ap1Bcm] ⇒ [S ∈

Bcm] ⇒ [R ∈ Bcm]. But R 6∈ Bcm [CS83]. Thus, no such machine M exists

that Ap1Bcm-identifies C. 2

Claim 2 (∀d ∈ (0, 1])[C ∈ UApdEx].

Proof of Claim 2: Consider machine M which, on additional information

program s, outputs a program P (s) described as follows:
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begin {ϕP (s)(x)}

if x ∈
⋃

k∈N[N2k+1, N2k+2)

then

output 0

else

let j be such that x ∈ Sj;

search for y such that y ∈ Sj
∧

ϕs(y)↓;

when such a y is found output ϕs(y)

endif

end {ϕP (s)(x)}

It is easy to see that if a program s for ϕs is additional information of

type UApd, d > 0, for f ∈ C, then, for all j, there exists a y such that y ∈ Sj

and ϕs(y)↓. Thus, ϕP (s) = f . 2

Theorem 2.

As a contrast to Theorem 2 above, Theorem 3 below says that there

are classes of recursive functions that can be Ex-identified with Ap type

additional information but cannot be Bc-identified with any predetermined

number of anomalies and UAp type additional information if the density

associated with Ap type additional information is better than the one asso-

ciated with UAp type additional information.

Theorem 3 (∀d2 > d1 | d1, d2 ∈ [0, 1])(∀l ∈ N) [Apd2Ex−UApd1Bcl 6= ∅].

Proof of Theorem 3: Without loss of generality, let d2 = (m + 3)/n and

d1 = m/n, where m + 3 ≤ n and m,n ∈ N. Let N0 = −1 and Ni = ni. Let

Sj denote the set
⋃

k∈N(N〈j,k〉, N〈j,k〉+1]. Let S ′
j = Sj

⋂

{x | x ≥ m mod n}.

Consider the class C of recursive functions defined below.

C = {f ∈ R | the following two conditions hold:
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1. (∀x)[[x < m mod n] ⇒ [f(x) = 0]]

2. (∀j, x, y)[[x ∈ S ′
j ∧ y ∈ S ′

j] ⇒ [f(x) = f(y)]]

}

Claim 3 (∀k ∈ N)[C 6∈ UApd1Bck]

Proof of Claim 3: Let η be such that η(x) = 0 if x < m mod n and η(x)

is undefined otherwise. Clearly, any program for η is an UApd1 additional

information for all f ∈ C. Now proceeding in the same way as in Claim 1 in

Theorem 2, we have that C 6∈ UApd1Bck. 2

Claim 4 C ∈ Apd2Ex.

Proof of Claim 4: Consider machine M, which on additional information

program s outputs a program P (s), defined as follows:

begin {ϕP (s)(x)}

if (x < m mod n)

then

output 0

else

let j be such that x ∈ S ′
j;

search for y ∈ S ′
j such that ϕs(y)↓;

when such a y is found output ϕs(y)

endif

end {ϕP (s)(x)}

Let program s for ϕs be additional information of type Apd2 for f ∈ C.

Now for large enough i, card({x | x ≤ Ni
∧

ϕs(x) = f(x)})/(Ni + 1) ≥

(m + 2)/n. Since Ni−1/Ni = 1/n, there exists a y,Ni−1 < y ≤ Ni and

y ≥ m mod n, such that ϕs(y)↓. Thus, ϕP (s) = f . 2

Theorem 3.
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Theorem 4 (∀i ∈ N)

1) Exi+1 − UAp1Exi 6= ∅.

2) Bci+1 − UAp1Bci 6= ∅.

3) Ex∗ −
⋃

i UAp1Exi 6= ∅.

4) Bc − UAp1Ex∗ 6= ∅.

Proof of Theorem 4: For all f ∈ R, let f ′ be defined as follows:

f ′(x) =







f(y) if (∃y)[2y = x];

0 otherwise.

For any class of functions C, let C ′ = {f ′ | f ∈ C}. It is easy to see

that for all a ∈ N
⋃

{∗}, C ∈ Exa ⇔ C ′ ∈ Exa ⇔ C ′ ∈ UAp1Exa and

C ∈ Bca ⇔ C ′ ∈ Bca ⇔ C ′ ∈ UAp1Bca.

Theorem follows from the results in [CS83] (see theorem 1).

Theorem 4.

The above theorems give the complete relationship between different Ex

and Bc identification criteria formed with both Ap and UAp type additional

information. We observe some of these relationships in Corollary 1 below

which follows from results presented in this section and Theorem 1.

Corollary 1 Let d1, d2 ∈ [0, 1]. Let a, b ∈ N ∪ {∗}.

a) Apd1Exa ⊆ Apd2Exb ⇔ [d1 ≤ d2 and a ≤ b].

b) Apd1Bca ⊆ Apd2Bcb ⇔ [[b = ∗] or [d1 ≤ d2 and a ≤ b]].

c) UApd1Exa ⊆ UApd2Exb ⇔ [d1 ≤ d2 and a ≤ b].

d) UApd1Bca ⊆ UApd2Bcb ⇔ [[b = ∗] or [d1 ≤ d2 and a ≤ b]].

e) (∀d ∈ (0, 1])[ApdExa ⊂ UApdExa].

f ) (∀d ∈ (0, 1])(∀i ∈ N)[ApdBci ⊂ UApdBci].
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3.3 Additional Information for Approximate Function

Inference

Royer [Roy86] provides criticism of Exn and Ex∗ criteria as models of science.

They are too strict to reflect how anomalies occur in actual scientific theo-

ries. Case [Cas86] criticizes Ex∗ criterion as being too impractical because

under this criterion one can converge to an explanation for a phenomenon

which is almost everywhere correct, but which is still incorrect on predicting

all the experiments which one would care about. To address these issues,

Royer [Roy86] considered the inductive inference criteria which permit in-

finitely many errors in explanations, but which require that the “density”

of these errors be no more than a certain prespecified amount. Smith and

Velauthapillai [SV86] also investigated similar criteria of inference. We in-

vestigate the effect of a partial explanation on such criteria. The following

definitions are from [Roy86]. Also, see [SV86] for similar notions.

Definition 11

(a) [Roy86] The asymptotic agreement between two partial functions η and

θ (denoted: aa(η, θ)) is d({x | η(x) = θ(x)}).

(b) [RU63, Roy86] The Asymptotic disagreement between two partial func-

tions η and θ (denoted: ad(η, θ)) is 1 − aa(η, θ).

Definition 12 [Roy86] Let d ∈ [0, 1].

(a) A machine M Aexd-identifies a recursive function f (written: f ∈

Aexd(M)) iff M(f)↓ = i and ad(f, ϕi) ≤ d.

(b) Aexd = {C ⊆ R | (∃M)[C ⊆ Aexd(M)]}.

Definition 13 [Roy86]

(a) The asymptotic uniform agreement between two partial functions η and

θ (denoted: aua(η, θ)) is ud({x | η(x) = θ(x)}).

(b) The Asymptotic uniform disagreement between two partial functions η

and θ (denoted: aud(η, θ)) is 1 − aua(η, θ).
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Definition 14 [Roy86] Let d ∈ [0, 1].

(a) A machine M UAexd-identifies a recursive function f (written: f ∈

UAexd(M)) iff M(f)↓ = i and aud(f, ϕi) ≤ d.

(b) UAexd = {C ⊆ R | (∃M)[C ⊆ UAexd(M)]}.

Above criteria can be extended to identification with additional infor-

mation to give Apd1Aexd2,Apd1UAexd2,UApd1Aexd2 and UApd1UAexd2

criteria of identification.

Royer showed the following result about Aex-identification.

Theorem 5 [Roy86] (∀d ∈ [0, 1) )[R 6∈ Aexd].

Proposition 3 (∀d ∈ [0, 1])[R ∈ ApdAex1−d].

Proof of Proposition 3: A machine which just outputs the additional

information program given to it ApdAex1−d-identifies R. 2

Proposition 4 (∀d ∈ [0, 1])[R ∈ UApdUAex1−d].

Proof of Proposition 4: A machine which just outputs the additional

information program given to it UApdUAex1−d-identifies R. 2

The following theorems give the relationship between different criteria of

approximate identification with additional information.

Theorem 6 (∀d1 > 0)(∀d2, d3 | d2 + d3 < 1)[UApd1Ex − Apd2Aexd3 6= ∅].

Proof of Theorem 6: Without loss of generality, assume that d1 = 2/n,

d2 = l/n, d3 = (n − l − 1)/n, n > 1, where l, n ∈ N. Let N0 = 0, N2i+1 =

ni+1+N2i, and N2i+2 = N2i+1+(i+1)∗n. Let Sj =
⋃

k∈N[N2∗〈j,k〉+1, N2∗〈j,k〉+2).

Consider the following class of functions:

C = {f ∈ R | following two conditions hold:

1. f({
⋃

i∈N[N2i, N2i+1)}
⋂

{x | x < l mod n}) = 0

2. (∀j)[[x ∈ Sj] ⇒ [f(x) = f(j)]]

}
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To UApd1Ex-identify f , M, on additional information program s for ϕs,

outputs a program P (s) described as follows:

begin {ϕP (s)(x)}

search for y ∈ Sx such that ϕs(y)↓;

when such a y is found output ϕs(y)

end {ϕP (s)(x)}

It is easy to see that if, f ∈ C, ϕs is additional information of type UApd1,

where d1 = 2/n, then for all x, there exists a y ∈ Sx such that ϕs(y)↓. Thus,

ϕP (s) = f .

Let η be defined as follows:

η(x) =







0 [x < l mod n]
∧

[x ∈
⋃

i∈N[N2i, N2i+1)];

↑ otherwise.

It is easy to see that (∀f ∈ C)[d({x | η(x) = f(x)}) = l/n]. Suppose by

way of contradiction that a machine M Apd2Aexd3-identifies C. It is, then,

easy to convert M to a machine M′ such that M′ Aex(n−l−1)/(n−l)-identifies

any f ∈ R. Since this is not possible, no such machine M can exist.

Theorem 6.

Similar proofs can be worked out for the following Theorems 7 and 8.

Theorem 7 (∀d1, d2, d3 | d1 > d3 ≥ 0
∧

d2+d3 < 1)[UAexd1−UApd2Aexd3 6=

∅].

Corollary 2 (∀d1, d2, d3 | d1 > d3 ≥ 0
∧

d2+d3 < 1)[UAexd1−UApd2UAexd3 6=

∅].

Theorem 8 (∀d1, d2 | d1 + d2 < 1)[Aex0 − UApd1UAexd2 6= ∅].

Corollary 3 (∀d < 1)[Aex0 − Ap1UAexd 6= ∅].
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Theorem 9 (∀d1 > 0)(∀d2 < 1)[UApd1Ex − Ap1UAexd2 6= ∅].

Proof of Theorem 9: Without loss of generality let d1 = 2/n and d2 =

(n − 2)/n, where n ∈ N. Let N0 = 0, N2i+1 = ni+1 + N2i, and N2i+2 =

N2i+1 + (i + 1) ∗ n. Let Sj =
⋃

k∈N
+ [N2∗〈j,k〉+1, N2∗〈j,k〉+2). Note that here k

ranges over N+ and not over N. Consider the following class of functions:

Let C = {f ∈ R | following two conditions hold:

1. f(
⋃

i∈N[N2i, N2i+1)) = 0

2. (∀j, x)[[x ∈ Sj] ⇒ [f(x) = f(j)]]

}

It is easy to see that C ∈ UApd1Ex. Define η as follows:

η(x) =







0 x ∈
⋃

i∈N[N2i, N2i+1);

↑ otherwise.

Clearly, any program for η is a valid additional information for any f ∈ C.

Suppose by way of contradiction that a machine M Ap1UAexd2-identifies

C. It is, then, easy to convert M to M′ such that M′ UAex(n−2)/n-identifies

R. But by theorem 5, no such machine M′ can exist. Thus, no such machine

M exists.

Theorem 9.

Theorem 10 (∀d1, d2, d3 | d2 < d1
∧

d3 < 1)[Apd1Ex − Apd2UAexd3 6= ∅].

Proof of Theorem 10: Without loss of generality, assume that d2 =

l/n, d1 = (l + 2)/n, and d3 = (n − 2)/n, where l, n ∈ N, n > 3. Let

N0 = 0, N2i+1 = ni+1 + N2i, and N2i+2 = N2i+1 + (i + 1) ∗ n. Let Sj =
⋃

k∈N[N2∗〈j,k〉, N2∗〈j,k〉+1). Let S ′
j = Sj ∩ {x | x ≥ l mod n}. Consider the

following class of functions:
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Let C = {f ∈ R | following two conditions hold:

1. f({
⋃

i∈N[N2i, N2i+1)}
⋂

{x | x < l mod n}) = 0

2. (∀j, x)[[x ∈ S ′
j] ⇒ [f(x) = f(j)]]

}

It is easy to see that C ∈ Apd1Ex. Define η as follows:

η(x) =







0 [x < l mod n]
∧

[x ∈
⋃

i∈N[N2i, N2i+1)];

↑ otherwise.

Since any program for η is a valid additional information for any f ∈ C, a

machine M which Apd2UAexd3-identifies C can be converted to a machine

M′ which UAex(n−2)/n-identifies R. But by theorem 5, no such machine M′

can exist.

Theorem 10.

Theorems 11 and 12 below can be proved similarly.

Theorem 11 (∀d1, d2 | d1 > d2)[UAexd1 − Ap1UAexd2 6= ∅].

Theorem 12 (∀d1, d2, d3 | d2 > d1
∧

d1+d3 < 1)[Apd2Ex−UApd1Aexd3 6=

∅].

Results presented in this section give the complete relationship between

different Ex, Aex, and UAex identification criteria formed with both Ap

and UAp type additional information.

4 Language Learning

4.1 Fundamental Language Learning Paradigms

Definition 15 [Gol67] A text for a language L is a mapping t from N into

(N ∪ {#}) such that L is the set of natural numbers in the range of t.
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Intuitively, a text for a language is an enumeration of the objects in the

language with #’s representing pauses in the listing of such objects. For

a finite initial segment σ, content(σ) = range(σ) − {#} and |σ| denotes

the length of the finite initial segment σ, i.e., the number of elements in

σ. t, t′ range over texts for languages. tn denotes the initial segment of t

with length n. σ ⊂ t means σ is an initial segment of t. Similarly σ ⊆ σ′

means σ is an initial segment of σ′. content(t) = range(t)−{#}; intuitively,

content(t) is the set of meaningful things presented in text t. σ1 �σ2 denotes

the concatenation of σ1 and σ2, i.e.,

σ1 � σ2(x) =







σ1(x) if x < |σ1|;

σ2(x − |σ1|) if x ≥ |σ1|.

M(t)↓= i iff (∀∞n)[M(tn) = i]. We write M(t)↓ iff (∃i)[M(t)↓= i]. If L

is a recursively enumerable language, then i is a grammar for L iff Wi = L.

σ is in L iff content(σ) ⊆ L.

Definition 16 [Gol67, CL82, OW82a, OW82b]

(a) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) iff

for any text t for L, M(t)↓ and WM(t) =a L.

(b) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

Definition 17 [Ful85, Ful90b] σ is a TxtEx-stabilizing segment for M on

L iff content(σ) ⊆ L and (∀σ′ | content(σ′) ⊆ L ∧ σ ⊆ σ′)[M(σ′) = M(σ)].

Definition 18 [BB75, OW82a] σ is a TxtExa-locking sequence for M on L

iff σ is a TxtEx-stabilizing segment for M on L and WM(σ) =a L.

We often refer to TxtExa-locking sequence by just locking sequence (a

will be clear from context). We now present a very important lemma in learn-

ing theory due to L. Blum and M. Blum [BB75]. We will have opportunity

to use this lemma on many occasions.
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Lemma 1 [BB75, OW82a] If M TxtExa-identifies L, then there is a TxtExa-

locking sequence for M on L.

Analogously to Bc-identification criteria in the context of function in-

ference, we define a more general language learning criteria than TxtEx-

identification.

Definition 19 [CL82]

(a) M TxtBca-identifies an r.e. language L (written: L ∈ TxtBca(M)) iff

M, fed any text t for L, outputs over time an infinite sequence of grammars

p0, p1, p2, . . . such that (∀∞n)[Wpn
=a L].

(b) TxtBca = {L ⊆ E | (∃M)[L ⊆ TxtBca(M)]}.

We usually write TxtEx for TxtEx0 and TxtBc for TxtBc0.

Case [Cas88] considered the question whether humans converge to more

than one distinct, but equivalent, correct grammars. He captured this notion

through a new criterion of language learning, viz., TxtFex-identification —

a more general criterion than Gold’s TxtEx-identification. We also study

the effect of additional information on this criterion.

Definition 20 [Cas88] Suppose M is a learning machine and t is a text.

Then M(t) finitely-converges (written M(t)⇓) ⇔ {M(σ) | σ ⊂ t} is finite. If

M(t)⇓ then M(t) is defined = {p | (∃∞σ ⊂ t)[M(σ) = p]}; otherwise, M(t)

is undefined.

Definition 21 [Cas88]

(a) For b ∈ N+ ∪ {∗}, a language learning machine, M, TxtFexa
b -identifies

an r.e. language L (written: L ∈ TxtFexa
b (M)) ⇔ (∀ texts t for L)[M(t)⇓ =

a set of cardinality ≤ b and (∀p ∈ M(t))[Wp =a L]].

(b) TxtFexa
b = {L ⊆ E | (∃M)[L ⊆ TxtFexa

b (M)]}.
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In TxtFexa
b -identification, the b is a “bound” on the number of final

grammars and the a is a bound on the number of anomalies allowed in these

final grammars. A bound of ∗ on the number of anomalies (or the number

of final grammars) means that the number of anomalies (or the number of

final grammars) is finite, however the bound is not prespecified.

The following definitions are analogue of Definitions 17 and 18 for TxtFex

and TxtBc identification criteria.

Definition 22 (Based on [BB75, Cas88]) Let a, b ∈ N ∪ {∗}.

(a) σ is a TxtFexb-stabilizing segment for M on L iff [content(σ) ⊆ L] and

there exists a set S of cardinality at most b such that

(∃σ′ ⊆ σ)[S = {M(σ′′) | σ′ ⊆ σ′′ ⊆ σ}] and

S = {M(σ′′′) | σ ⊆ σ′′′ ∧ content(σ′′′) ⊆ L}.

(b) σ is a TxtFexa
b -locking sequence for M on L iff σ is a TxtFexb-stabilizing

segment for M on L and (∀σ′ | σ ⊆ σ′ ∧ content(σ′) ⊆ L)[WM(σ′) =a L].

Definition 23 (Based on [BB75, CL82]) Let a ∈ N ∪ {∗}. σ is a TxtBca

locking sequence for M on L iff content(σ) ⊆ L and (∀σ′ | [σ ⊆ σ′] ∧

[content(σ′) ⊆ L])[WM(σ′) =a L].

There is an analogue of Lemma 1 for TxtBc [CL82] and TxtFex [Cas88]

learning also.

Lemma 2 (Based on [BB75, CL82, Cas88]) If M TxtFexa
b -identifies L,

then there is a TxtFexa
b -locking sequence for M on L. If M TxtBca-

identifies L, then there is a TxtBca-locking sequence for M on L.

Theorem 13 just below states some of the basic results in language learn-

ing.

Theorem 13 For all i, n ∈ N,

(a) TxtExn+1 − TxtFexn
∗ 6= ∅;
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(b) TxtEx2n+1 − TxtBcn 6= ∅;

(c) TxtEx2n ⊂ TxtBcn;

(d) TxtFex0
i+1 − TxtFex∗

i 6= ∅;

(e)
⋃

n TxtFexn
i ⊂ TxtFex∗

i ; and

(f)
⋃

n TxtBcn ⊂ TxtBc∗.

Parts (a), (d) and (e) are due to Case [Cas88]. Parts (b) and (c) are

due to Case and Lynes [CL82]. Part (f) follows from part (e) in Theorem 1.

Osherson and Weinstein independently established that TxtEx ⊂ TxtFex∗

[OW82b].

4.2 Additional Information for Language learning

Formal language learning theory was originally motivated by the study of

language learning in children. It relied on early claims of psycholinguists that

children are rarely, if ever, informed of grammatical errors; instead, children

are only exposed to strings in the language. Based on this, Gold [Gol67]

developed the notion of TxtEx-identification. However, it turns out that

the class TxtEx, which contains sets of r.e. languages that can be TxtEx-

identified by some language learning machine, contains “small” classes of

languages. For instance, none of the classes of languages in the Chomsky

hierarchy (regular, context free, context sensitive, and r.e.) are contained in

TxtEx. This led Gold to two possible conclusions. One was that the class of

natural languages is much “smaller” than previously thought, and the other

was that children are being given additional information in some subtle way.

Angluin [Ang80a, Ang80b] and Wiehagen [Wie77, KW80] address the first

conclusion of Gold. We will concern ourselves, in this section, with the second

conclusion of Gold.

It is not uncommon for an elder person (a parent or teacher) to tell a

child some small grammatical rule that enables the child to enumerate a
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list of elements of the language. Basically, this additional information (the

grammatical rule) enables the child to know certain elements of the language

before these elements appear in the child’s text. This kind of additional in-

formation can be modeled in Gold’s paradigm by requiring that, in addition

to a text for the language, the language learning device be provided with a

grammar for an infinite subset of the language. It turns out that such an

additional information indeed increases the language learning power of learn-

ing machines. We further model the quality of this additional information by

measuring the “density of agreement” between the language being learned

and the subset language whose grammar is provided as additional informa-

tion. Not surprisingly, a “better quality” additional information enhances

the learning power of language learning machines more than a “not so good”

additional information. We now define this “density” notion and the new

language learning criteria.

Definition 24 Let L1 and L2 be any two languages. Let x1 < x2 < x3, · · ·

be the elements of L2.

The relative density of L1 in L2 (denoted by rd(L1; L2)) is defined as

follows:

rd(L1; L2) =







d({i | xi ∈ L1}) If L2 is infinite;

d(L1; L2) otherwise.

Similarly, uniform relative density of L1 in L2 (denoted: urd(L1; L2)) is

defined as follows:

urd(L1; L2) =







ud({i | xi ∈ L1}) If L2 is infinite;

ud(L1; L2) otherwise.

Definition 25 Suppose d is a real number in the interval [0, 1].

(a) A language L′ is said to be d-language conforming with another language

L iff L′ satisfies the following two conditions:
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(1) L′ ⊆ L; and

(2) rd(L′; L) ≥ d.

(b) A language L′ is said to be d-language uniform conforming with another

language L iff L′ satisfies the following two conditions:

(1) L′ ⊆ L; and

(2) urd(L′; L) ≥ d.

Definition 26 Let d ∈ [0, 1] and a ∈ (N ∪ {∗}).

(a) A machine M ApdTxtExa-identifies an r.e. language L (written: L ∈

ApdTxtExa(M)) iff M, fed any text for L and any grammar p such that

Wp is d-language conforming with L, converges in the limit to a grammar i

such that Wi =a L.

(b) ApdTxtExa = {L ⊆ E | (∃M)[L ⊆ ApdTxtExa(M)]}.

We can similarly define UApdTxtExa, ApdTxtFexa
b , UApdTxtFexa

b , ApdTxtBca,

and UApdTxtBca criteria of language learning. Clearly, these criteria are

analogs of the similar criteria for function inference. It should be noted that

all the diagonalization theorems in function inference carry over to language

learning case.

Above, we were concerned with additional information that supplements

the information a child is already receiving in the form of a text for the lan-

guage. In other words, the additional information that we just modeled, is

about what is in the language and not about what is not in the language.

However, literature of speech language pathology and linguistics contains ex-

tensive refutations of the claim that children receive no negative data [BB64,

Dal76]. Intuitively, it is clear that children are receiving information about

the complement of the language they are trying to learn. If a child’s utter-

ances do not have the desired effect, it somehow works as a clue that the

utterance is not in the language. An elder person (a parent or a teacher)

either rebukes the child or tells it specifically that something is not in the
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language. Better still, an elder person can provide the child with a rule that

enumerates a list of strings which are not members of the language. This kind

of additional information can be modeled in Gold’s paradigm by requiring

that the language learning device be provided with a grammar for a subset

of the complement of the language being learned. It turns out that even

this kind of additional information enhances the learning power of language

learning devices.

Fulk [Ful85] investigated a different approach to additional information

about the complement of a language. He showed that being given text for

a language L, and a grammar for the complement of L is equivalent to be-

ing given a text for L and an enumeration of a non-empty, finite sequence of

grammars, the last of which is a grammar for the complement of L. However,

we feel, a grammar for the complement of the language is too much additional

information, and children certainly are not being given a rule that lists every-

thing that is ungrammatical. We further employ the above density notions to

differentiate a “good quality” additional information about the complement

from a “not so good quality” additional information. As in the previous

case, better the additional information, more is the enhancement achieved in

learning power of language learning devices. We now define this notion. In

the following definitions ACp stands for Approximate Complement partial

additional information.

Definition 27 Let d ∈ [0, 1]. Let a ∈ (N ∪ {∗}).

(a) A machine M ACpdTxtExa-identifies an r.e. language L (written: L ∈

ACpdTxtExa(M)) iff M, fed any text for L and any grammar p such that

Wp is d-language conforming with the complement of L (i.e. N−L), converges

in the limit to a grammar i such that Wi =a L.

(b) ACpdTxtExa = {L ⊆ E | (∃M)[L ⊆ ACpdTxtExa(M)]}.

We can similarly define UACpdTxtExa, ACpdTxtFexa
b , UACpdTxtFexa

b ,

ACpdTxtBca, and UACpdTxtBca criteria of language learning.
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Finally, we define a language learning criteria that incorporates additional

information both about elements of the language (positive information) and

about elements of the complement of the language (negative information).

It turns out that this kind of additional information is better than just pro-

viding positive additional information or just providing negative additional

information.

Definition 28 Let d1, d2 ∈ [0, 1], a ∈ (N ∪ {∗}).

(a) A machine M Apd1ACpd2TxtExa-identifies an r.e. language L (written:

L ∈ Apd1ACpd2TxtExa(M)) iff M, fed any text for L and grammars p1 and

p2 such that Wp1
is d1-language conforming with L and Wp2

is d2-language

conforming with the complement of L ( i.e. N − L), converges in the limit

to a grammar i such that Wi =a L.

(b) Apd1ACpd2TxtExa = {L ⊆ E | (∃M)[L ⊆ Apd1ACpd2TxtExa(M)]}.

We can similarly define the following criteria of language learning.

(1) Apd1UACpd2TxtExa;

(2) UApd1ACpd2TxtExa;

(3) UApd1UACpd2TxtExa;

(4) Apd1ACpd2TxtFexa
b ;

(5) Apd1UACpd2TxtFexa
b ;

(6) UApd1ACpd2TxtFexa
b ;

(7) UApd1UACpd2TxtFexa
b ;

(8) Apd1ACpd2TxtBca;

(9) Apd1UACpd2TxtBca;

(10) UApd1ACpd2TxtBca; and

(11) UApd1UACpd2TxtBca.

All the results in function learning have a counterpart in language learn-

ing. The following theorems give results which are new to language learning.

Proposition 5 (∀i ∈ N)[{L | L =i+1 N} 6∈ TxtFexi
∗].

31



Proof of Proposition 5: Suppose by way of contradiction that M TxtFexi
∗-

identifies the above class. Let σ be a TxtFexi
∗-locking sequence for M on

N. Let S be the set of grammars output by M on σ which are at most

i different from N. Thus, for any extension τ of σ, M(τ) ∈ S. Let

T = {x | (∃j ∈ S)[x 6∈ Wj]}. Clearly, T is finite. Let L be a language

i + 1 different from N such that content(σ)
⋃

T ⊆ L. Now, for all j ∈ S,

Wj 6=
i L. Thus, M does not TxtFexi

∗-identify L. A contradiction. 2

Theorem 14 [CL82] (∀i ∈ N)[{L | L =2i+1 N} 6∈ TxtBci].

Theorem 15 [CL82] {L | L is finite or L = N} 6∈ TxtBc∗.

Theorem 16 For all k ∈ N,

1) TxtExk+1 − UAp1UACp1TxtFexk
∗ 6= ∅;

2) TxtBck+1 − UAp1UACp1TxtBck 6= ∅;

3) TxtEx∗ −
⋃

k UAp1UACp1TxtFexk
∗ 6= ∅;

4) TxtBc − UAp1UACp1TxtFex∗
∗ 6= ∅;

5) TxtEx2k+1 − UAp1UACp1TxtBck 6= ∅;

6) Apd1ACpd2TxtEx2k ⊆ Apd1ACpd2TxtBck;

7) UApd1ACpd2TxtEx2k ⊆ UApd1ACpd2TxtBck;

8) Apd1UACpd2TxtEx2k ⊆ Apd1UACpd2TxtBck;

9) UApd1UACpd2TxtEx2k ⊆ UApd1UACpd2TxtBck; and

10) E 6∈ UAp1UACp1TxtBc∗.

Proof of Theorem 16: (1) Let N0 = 0, N3i+1 = N3i+ni, N3i+2 = N3i+1+ni,

and N3i+3 = N3i+2 + 1, n > 1. Consider the following class of languages:

L = {L ∈ E | following conditions hold:

1.
⋃

i∈N[N3i, N3i+1) ⊆ L

2.
⋃

i∈N[N3i+1, N3i+2) ⊆ L

3. card(L ∩ [
⋃

i∈N{N3i+2}]) ≤ k + 1
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}

It is easy to see that L ∈ TxtExk+1. Also, since grammars for L1 =
⋃

i∈N[N3i, N3i+1) and L2 =
⋃

i∈N[N3i+1, N3i+2) are valid additional infor-

mation of type UAp1 and UACp1, L ∈ UAp1UACp1TxtFexk
∗ ⇔ L ∈

TxtFexk
∗. Suppose by way of contradiction that M TxtFexk

∗-identifies

L. It is, then, easy to convert M to M′ such that M′ TxtFexk
∗-identifies

{L | L =k+1 N}. But this is not true (proposition 5). Thus, no such M can

exist.

(2), (3), and (5) can be be proved similarly.

(4) Let the Ni’s be as defined in the proof of part 1. Consider the following

class of languages:

L = {L ∈ E | following conditions hold:

1.
⋃

i∈N[N3i, N3i+1) ⊆ L

2.
⋃

i∈N[N3i+1, N3i+2) ⊆ L

3. (∀i)(∃!j)[N3〈i,j〉+2 ∈ L]

4. (∀∞i)[[N3〈i,j〉+2 ∈ L] ⇒ [Wj = L]]

}

It is easy to see that L ∈ TxtBc. Also, L ∈ UAp1UACp1TxtFex∗
∗ ⇔

L ∈ TxtFex∗
∗ ⇔ {L′ | L ∈ L} ∈ TxtFex∗

∗, where L′ = {〈i, j〉 | N3〈i,j〉+2 ∈

L}.

However, the proof of Bc − Ex∗ 6= ∅ in [CS83] can easily be modified to

show that {L′ | L ∈ L} 6∈ TxtFex∗
∗. Hence, L 6∈ UAp1UACp1TxtFex∗

∗.

This proves 4.

(6) This proof is the same as used in [CL82] to prove that TxtEx2k ⊆

TxtBck. Let M Apd1ACpd2TxtEx2k-identify C. M′ can Apd1ACpd2TxtBck-
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identify C as follows. M′ given p1 (as positive additional information), p2 (as

negative additional information), and σ behaves as described below. Let

|σ| = s. Recall that as defined in Section 2, W s
j = {x ≤ s | Φj(x) ≤ s}.

Let M, given p1, p2, and σ, output j. Let T = {x | x ∈ W s
j − content(σ)}.

Let S be the set of k least elements of T (if card(T ) < k then let S = T ).

Output p(j) where Wp(j) = Wj ∪ content(σ) − S. It is easy to see that M′

Apd1ACpd2TxtBck-identifies C. This proves 6.

(7), (8), and (9) can be proved similarly.

(10) Let the Ni’s be as defined in the proof of part 1. For any language

L, define L′ as follows:

1.
⋃

i∈N[N3i, N3i+1) ⊆ L′

2.
⋃

i∈N[N3i+1, N3i+2) ⊆ L′

3. (∀i)[i ∈ L ⇔ N3i+2 ∈ L′]]

Clearly, {L′ | L ∈ E} ∈ UAp1UACp1TxtBc∗ ⇔ E ∈ TxtBc∗.

Since E 6∈ TxtBc∗ we have {L′ | L ∈ E} 6∈ UAp1UACp1TxtBc∗. Thus,

E 6∈ UAp1UACp1TxtBc∗. This proves the theorem.

Theorem 16.

Theorem 17 (∀d > 0)[UApdTxtEx − Ap1UACp1TxtBc∗ 6= ∅].

Proof of Theorem 17 is similar to the proof of Theorem 18 below.

Theorem 18 (∀d > 0)[UACpdTxtEx − UAp1ACp1TxtBc∗ 6= ∅].

Proof of Theorem 18: Let N0 = 0, Ni(i+1)+1 = Ni(i+1) + ni, Ni(i+1)+2 =

Ni(i+1)+1+ni, Ni(i+1)+2+2j+1 = Ni(i+1)+2+(2j)+1, and Ni(i+1)+2+2j+2 = Ni(i+1)+2+(2j)+1+

ni, where j < i and n > 1. Let Sj =
⋃

k∈N
⋃

l<〈j,k〉{N〈j,k〉∗(〈j,k〉+1)+2+2l}. Con-

sider the following class of languages:
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L = {L ∈ E | following conditions hold:

1.
⋃

i∈N[Ni(i+1), Ni(i+1)+1) ⊆ L

2.
⋃

i∈N[Ni(i+1)+1, Ni(i+1)+2) ⊆ L

3.
⋃

i∈N
⋃

j<i[Ni(i+1)+2+2j+1, Ni(i+1)+2+2j+2) ⊆ L

4. (∀x, y, j)[[x ∈ Sj ∧ y ∈ Sj] ⇒ [x ∈ L ⇔ y ∈ L]]

5. {j | Sj ⊆ L} is finite or co-finite.

}

It is easy to see that L ∈ UACpdTxtEx (since the additional informa-

tion gives the text for the complement, and finite-cofinite languages can be

identified on characteristic function input).

Also, L ∈ UAp1ACp1TxtBc∗ ⇔ L ∈ TxtBc∗, and L ∈ TxtBc∗ ⇒

{L | L is finite or co-finite} ∈ TxtBc∗. But {L | L is finite or co-finite} 6∈

TxtBc∗. Hence, L 6∈ UAp1ACp1TxtBc∗. This proves the theorem.

Theorem 18.

Theorem 19 (∀d1, d2 | d2 > d1)[Apd2TxtEx − UApd1UACp1TxtBc∗ 6=

∅].

Proof of Theorem 19 is similar to the proof of Theorem 20 below.

Theorem 20 (∀d1, d2 | d2 > d1)[ACpd2TxtEx−UAp1UACpd1TxtBc∗ 6=

∅].

Proof of Theorem 20: Without loss of generality, let d1 = l/n, d2 =

(l + 3)/n, n > 3, where l, n ∈ N.

Let N0 = 0.

For j < ni, i ≥ 0, let

N2∗(ni−1)/(n−1)+2j+1 = N2∗(ni−1)/(n−1)+2j + n and

N2∗(ni−1)/(n−1)+2j+2 = N2∗(ni−1)/(n−1)+2j+1 + ni

Let Sj =
⋃

k∈N
⋃

m<n〈j,k〉

⋃

s∈{x|l≤x<n}{N2∗(n〈j,k〉−1)/(n−1)+2m + s}.

Consider the following class of languages:
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L = {L ∈ E | following conditions hold:

1.
⋃

i∈N
⋃

j<ni[N2∗(ni−1)/(n−1)+2j+1, N2∗(ni−1)/(n−1)+2j+2) ⊆ L

2.
⋃

i∈N
⋃

j<ni

⋃

r<l{N2∗(ni−1)/(n−1)+2j + r} ⊆ L

3. (∀x, y, j)[[x ∈ Sj ∧ y ∈ Sj] ⇒ [x ∈ L ⇔ y ∈ L]]

4. {j | Sj ⊆ L} is finite or co-finite.

}

It is easy to see that L ∈ ACpd2TxtEx.

Also, L ∈ UAp1UACpd1TxtBc∗ ⇔ L ∈ TxtBc∗, and L ∈ TxtBc∗ ⇒

{L | L is finite or co-finite} ∈ TxtBc∗. But {L | L is finite or co-finite} 6∈

TxtBc∗. Hence, L 6∈ UAp1UACpd1TxtBc∗. This proves the theorem.

Theorem 20.

The above theorems give the complete relationship between different lan-

guage identification criteria introduced in this section. We observe some

of these relationships in Corollary 4 below which follows from results pre-

sented in this section, language learning counterpart of results presented in

section 3.2, and Theorem 13.

Corollary 4 Let d1, d2, d3, d4 ∈ [0, 1]. Let a, b ∈ N ∪ {∗}.

a) Apd1ACpd2TxtExa ⊆ Apd3ACpd4TxtExb ⇔ [d1 ≤ d3 and d2 ≤ d4 and

a ≤ b].

b) Apd1ACpd2TxtBca ⊆ Apd3ACpd4TxtBcb ⇔ [d1 ≤ d3 and d2 ≤ d4 and

a ≤ b].

c) UApd1UACpd2TxtExa ⊆ UApd3UACpd4TxtExb ⇔ [d1 ≤ d3 and

d2 ≤ d4 and a ≤ b].

d) UApd1UACpd2TxtBca ⊆ UApd3UACpd4TxtBcb ⇔ [d1 ≤ d3 and

d2 ≤ d4 and a ≤ b].

e) (∀d1 ∈ (0, 1])[Apd1ACpd2TxtExa ⊂ UApd1ACpd2TxtExa].

f ) (∀d1 ∈ (0, 1])[Apd1UACpd2TxtExa ⊂ UApd1UACpd2TxtExa].
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g) (∀d2 ∈ (0, 1])[Apd1ACpd2TxtExa ⊂ Apd1UACpd2TxtExa].

h) (∀d2 ∈ (0, 1])[UApd1ACpd2TxtExa ⊂ UApd1UACpd2TxtExa].

i) (∀d1 ∈ (0, 1])[Apd1ACpd2TxtBca ⊂ UApd1ACpd2TxtBca].

j) (∀d1 ∈ (0, 1])[Apd1UACpd2TxtBca ⊂ UApd1UACpd2TxtBca].

k) (∀d2 ∈ (0, 1][Apd1ACpd2TxtBca ⊂ Apd1UACpd2TxtBca].

l) (∀d2 ∈ (0, 1][UApd1ACpd2TxtBca ⊂ UApd1UACpd2TxtBca].

5 Conclusions

The aim of this paper was to take a first step in modeling the presence of

partial explanations in learning situations, and to investigate the effect of

such additional information on the learning capability of algorithmic learn-

ing devices. Two learning situations were considered: practice of science

modeled as inference of programs for recursive functions and language learn-

ing modeled as inference of type 0 grammars for recursively enumerable sets.

It was shown, in both the learning situations, that the presence of partial

explanation as additional information enhances the learning capability of ma-

chines. Furthermore, certain density notions were used to model the quality

of partial explanation, and it was shown, in the context of both the learning

situations, that a better quality partial explanation enhances the learning

capability of algorithmic learning machines more than a not so good partial

explanation.

Finally, we would like to state two shortcomings in this work which sug-

gest obvious directions for further investigation.

In the context of “scientific” inference of functions, our partial explana-

tions do not contradict the function being learned. This is clearly a very

simplistic model of partial explanation, as there is no reason to believe that

the state of the art explanation available to a scientist makes no errors of

commission. Hence, a natural line of further investigation would be the study
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of partial explanations that are correct on a set of certain density and either

undefined or incorrect off that set.

Also, we would like to point out the ad hoc nature of approximate learn-

ing notions, as they are dependent on the choice of Gödel numbering used in

encoding the experiments and their outcomes. A particular encoding of ex-

periments and experimental outcomes is presupposed when a recursive func-

tion is used to model a phenomenon. The density of the codes of a class of

experiments for a phenomenon could change with the change in the encoding

scheme used. For instance, consider the predictions of Aristotelian Physics

on experiments in classical mechanics1. There exist Gödel numbering of ex-

periments for which Aristotelian Physics is correct on a set of density one,

and at the same time there exist Gödel numbering of experiments for which

Aristotelian Physics is correct only on a set of density of zero. Addressing

this issue of the dependence of density notions on the choice of Gödel num-

bering used to encode experiments and experimental outcomes is an obvious

future research direction.
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