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Abstract
Partially conservative learning is a variant of partial learning whereby the learner, on a text for a
target language L, outputs one index e with L = We infinitely often and every further hypothesis
d is output only finitely often and satisfies L 6⊆ Wd. The present paper studies the learning
strength of this notion, comparing it with other learnability criteria such as confident partial
learning, explanatory learning, as well as behaviourally correct learning. It is further established
that for classes comprising infinite sets, partially conservative learnability is in fact equivalent to
explanatory learnability relative to the halting problem.
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1 Introduction

Gold [12] introduced a framework of learning in the limit to analyse linguistic structures and
the learnability of these structures. The underlying goal of his original model, which has
since been picked up and thoroughly expanded by various researchers [2, 5, 14, 18], was to
formulate precisely the intuitive notion of human language ability. Learning, according to
this model, is an inductive inference process in which the learner is presented piecewise with
examples of a concept, every particular example eventually appearing in the presentation,
while it outputs a sequence of guesses as each datum is revealed. If the learner’s sequence of
guesses converges to a single correct description of the underlying concept, then the inference
is correct; on the other hand, if it does not converge or converges to an incorrect description,
then the inference is incorrect. Gold [12, Theorem I.8] also showed that any class of formal
languages over an alphabet Σ that contains all finite languages and at least one infinite
language is not inferrable in the limit from a text presentation of positive data. This negative
result was widely interpreted as evidence that Gold’s original paradigm of learning in the
limit from positive data is too weak to adequately model the process of human language
acquisition.
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Various alternative models of learning by inference from positive data have since been
proposed [9, 18]. In particular, Osherson, Stob and Weinstein [18] generalised the notion of
learning in the limit to partial learning. Similar to the former setting, a recursive learner
receives piecewise information about the elements of an unknown recursively enumerable
language. At each stage, the learner is required to output a conjecture based on a pre-
assigned hypothesis space – usually taken to be a fixed acceptable numbering of all recursively
enumerable sets – and is judged to have successfully inferred a target language if it outputs
exactly one correct index of the language infinitely often and outputs any other conjecture
only finitely often. As it stands, partial learning is even more general than behaviourally
correct learning; in fact, a recursive learner can partially learn the class of all recursively
enumerable sets [18, Exercise 7.5A]. Osherson, Stob and Weinstein [18] called an explanatory
learner confident iff it converges on any text for any language to a hypothesis; this concept
was brought over to partial learning [11] by defining that the learner must issue exactly
one hypothesis infinitely often on any text for any language. This new hybrid of the two
learnability notions turns out to be restrictive in the case of language learning [11]: the class
of all cofinite sets is not confidently partially learnable. Other learning constraints considered
in the inductive inference literature, but studied mainly in the context of learning in the
limit, include consistency [7], conservativeness [2] and prudence [18].

The present paper continues the study of conservativeness and in particular transfers it
from learning in the limit to more general criteria like behaviourally correct learning and
partial learning. Angluin [2] noted that inference from positive rather than positive and
negative data is often stymied by the problem of overgeneralisation, by which is meant that
the learner conjectures a proper superset of the target language, so that it never witnesses
a counterexample to its hypothesis from a presentation of positive data. She suggested
a strategy termed conservative learning whereby a learner may avoid overgeneralisation,
and gave sufficient conditions for an indexed family of nonempty recursive languages to be
inferable by a conservative learner [2, Theorem 5]. Further research into the properties of
conservatively learnable classes, particularly for indexed families of recursive languages as
well as recursively enumerable languages, has been carried out in [8, 17]. This paper adapts
a slight variation of the original conservative learner to fit the partial learning model: a
recursive learner is said to partially conservatively learn a recursively enumerable language
L from text if it outputs exactly one correct index for L on each text for L and does not
conjecture any proper superset of L.

In the present work, it is shown that imposing conservativeness yields a close connection
between the models of learning in the limit (in both the syntactic and semantic sense) and
partial learning. To exemplify this point, Theorem 7 states that the set of all partially
conservatively learnable classes of r.e. languages strictly subsumes that of all conservatively
behaviourally correctly learnable classes of r.e. languages. We begin by proving that the
class containing all finite sets and the set of natural numbers is not partially conservatively
learnable, thereby showing that this new learning notion constitutes a greater restriction
than ordinary partial learning. However, partial conservativeness may still be a fairly
robust concept, as the class of graphs of all recursive functions is learnable according to
this criterion (Example 9). Theorem 8 frames a learning criterion that appears to be more
general than partially conservative learnability; nevertheless, one can show that this apparent
generalisation is equivalent in terms of learning strength to the original definition of partial
conservativeness. The paper also revisits vacillatory learning, introduced by Case [6], when
it is combined with conservativeness. The principal result obtained here is that conservative
vacillatory learning is as powerful as conservative explanatory learning. This result stands
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in contrast to that for the case when conservativeness is not stipulated: in [6], one finds an
example of a vacillatorily learnable class which is not explanatorily learnable.

As further evidence of the tie-in between partially conservative learning and learning
in the limit, several results draw comparisons between partially conservative learning and
explanatory learning relative to oracles; Theorem 17, for instance, asserts that for any
class of r.e. languages composed of infinite sets, the learning strengths of both notions
coincide when the oracle used for the explanatory learner is Turing equivalent to the diagonal
halting problem. In addition, this work proposes a characterisation of partially conservatively
learnable classes of r.e. languages as an analogue of Angluin’s Theorem 1 in [2]. The original
theorem, formulated in the intuitively appealing notion of a family of finite “telltale" sets,
gave necessary and sufficient conditions for an indexed family of recursive languages to be
explanatorily learnable from positive data. De Jongh and Kanazawa [8] later generalised
Angluin’s telltale condition to characterise indexed families of r.e. languages. Similarly,
Zeugmann, Lange, and Kapur [17] proved a characterisation of conservative learnability
for indexed families of recursive languages; this was subsequently extended by de Jongh
and Kanazawa [8] to the case of indexed families of r.e. languages. In Theorem 20, a
characterisation similar to that of Angluin [2] and Zeugmann, Lange and Kapur [17] is given
for partial conservative learning.

The final part of the paper is devoted to the study of consistency in partial learning.
Although consistency is quite a stringent criterion, even when partial learning is permitted,
Theorem 22 demonstrates that a weaker variant of consistent and conservative partial
learnability does follow from partially conservative learnability. To complete the analysis
of the relative learning strength of consistent partial learning in relation to other learning
criteria studied in this paper, several separating class examples are given towards the end.

2 Notation

The notation and terminology from recursion theory adopted in this paper follows the
book of Rogers [19]. Background on inductive inference can be found in [14]. N denotes
the set of natural numbers. Let ϕ0, ϕ1, ϕ2, . . . denote a fixed acceptable numbering of all
partial-recursive functions. Given a set S, S denotes the complement of S, and S∗ denotes
the set of all finite sequences in S. D0, D1, D2, . . . is a canonical indexing of all finite sets.
Let W0,W1,W2, . . . be a universal numbering of all r.e. sets, where We is the domain of ϕe.
〈x, y〉 denotes Cantor’s pairing function, given by 〈x, y〉 = 1

2 (x+ y)(x+ y + 1) + y. ϕe(x) ↑
means that ϕe(x) remains undefined; ϕe,s(x) ↓ means that ϕe(x) is defined, and that the
computation of ϕe(x) halts within s steps.

Turing reducibility is denoted by ≤T ; A ≤T B holds if A can be computed via a machine
which uses B as an oracle; that is, it can give information on whether or not x belongs to
B. A ≡T B means that A ≤T B and B ≤T A both hold, and {A : A ≡T B} is called the
Turing degree of B. The class of all recursive functions is denoted by REC; the class of
all {0, 1}-valued recursive functions is denoted by REC0,1. For any two partial-recursive
functions f and g, f =∗ g denotes that for cofinitely many x, f(x) ↓= g(x) ↓. The symbol K
denotes the diagonal halting problem {e : ϕe(e)↓}. Furthermore, Ks is an approximation to
K; without loss of generality, Ks ⊆ {0, 1, . . . , s} ∩K and the set {〈x, s〉 : x ∈ Ks} is primitive
recursive.

The jump of a set A is denoted by A′ and denotes the relativised halting problem
A′ = {e : ϕAe (e) ↓}. An r.e. set S is simple if it is coinfinite and intersects every infinite
r.e. set. For any two sets A and B, A⊕B = {2x : x ∈ A} ∪ {2y + 1 : y ∈ B}. Analogously,
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A⊕B ⊕ C = {3x : x ∈ A} ∪ {3y + 1 : y ∈ B} ∪ {3z + 2 : z ∈ C}.
For any σ, τ ∈ (N ∪ {#})∗, σ � τ if and only if σ = τ or τ is an extension of σ, σ ≺ τ if

and only if σ is a proper prefix of τ , and σ(n) denotes the element in the nth position of σ,
starting from n = 0. σ[n] denotes the sequence σ(0) ◦ σ(1) ◦ . . . ◦ σ(n− 1). Given a number
a and some fixed n ≥ 1, denote by an the finite sequence a . . . a, where a occurs n times. a0

denotes the empty string. |σ| is the length of σ. The concatenation of two strings σ and τ
shall be denoted by σ ◦ τ ; for convenience, and whenever there is no possibility of confusion,
this is occasionally denoted by στ .

3 Learnability

Let C be a class of r.e. languages. Throughout this paper, the mode of data presentation is
that of a text, by which is meant an infinite sequence of natural numbers and the # symbol.
Formally, a text TL for some L in C is a map TL : N→ N ∪ {#} such that L = content(TL);
here TL[n] denotes the sequence TL(0) ◦ TL(1) ◦ . . . ◦ TL(n − 1) and the content of a text
T , denoted content(T ), is the set of numbers in the range of T . Analogously, for a finite
sequence σ, content(σ) is the set of numbers in the range of σ. The main learning criteria
studied in this paper are partial learning, explanatory learning and behaviourally correct
learning. In the following definitions, M is a recursive function mapping (N ∪ {#})∗ into
N ∪ {?}; the ? symbol permits M to abstain from conjecturing at any stage.

I Definition 1. i. [18] M partially (Part) learns C if, for every L in C and each text TL for
L, there is exactly one index e such that M(TL[k]) = e for infinitely many k; furthermore,
if M outputs e infinitely often on TL, then L = We.

ii. [12] M explanatorily (Ex) learns C if, for every L in C and each text TL for L, there is a
number n for which L = WM(TL[n]) and, for any j ≥ n, M(TL[j]) = M(TL[n]).

iii. [5] M behaviourally correctly (BC) learns C if, for every L in C and each text TL for L,
there is a number n for which L = WM(TL[j]) whenever j ≥ n.

In some cases, learners are equipped with oracles and then Ex[A] denotes the criterion
of explanatory learning with oracle A and so on. Furthermore, in some cases, the learner
does not use the default hypothesis space W0,W1,W2, . . . but instead uses a uniformly r.e.
hypothesis space H0, H1, H2, . . . where in the corresponding definitions We is replaced by
He. The next series of definitions impose additional constraints on the learner.

I Definition 2. i. [11] M is said to confidently partially (ConfPart) learn C if it partially
learns C from text and, on every infinite sequence, outputs exactly one index infinitely
often.

ii. M is said to partially conservatively (ConsvPart) learn C if it partially learns C from
text and, on each text for every L in C, outputs exactly one index e with L ⊆We.

iii. [2]M conservatively explanatorily (ConsvEx) learns C if it Ex learns C and, for any σ, τ ∈
(N∪ {#})∗ such that M(σ) 6= M(σ ◦ τ), there is a number x with x ∈ range(σ ◦ τ)−Wσ.

iv. M is said to conservatively behaviourally correctly (ConsvBC) learn C if it BC learns
C and is semantically conservative. Here, a learner M is semantically conservative
iff, for any σ, τ ∈ (N ∪ {#})∗ with WM(σ) 6= WM(σ◦τ), there is a number x with
x ∈ range(σ ◦ τ)−WM(σ).

v. [18] M is prudent if it learns the class {WM(σ) : σ ∈ (N ∪ {#})∗,M(σ) 6=?}. In other
words, M learns every set it conjectures.

vi. [6] M vacillatorily (V ac) learns C if it BC learns C from text, and outputs on each text
for every L in C only finitely many different indices.
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vii. M is said to conservatively vacillatorily (ConsvV ac) learn C if it ConsvBC learns C from
text, and outputs on each text for every L in C only finitely many different indices.

viii. [7] M is consistent (Cons) if for all σ ∈ (N ∪ {#})∗, content(σ) ⊆WM(σ).
ix. M is said to class-comprisingly (ClsCom) learn C if it learns C from text with respect

to a hypothesis space {H0, H1, H2, . . .}. As M learns C, it is immediate that C ⊆
{H0, H1, H2, . . .}.

x. M is said to class-preservingly (ClsPresv) learn C if it learns C from text with respect
to a hypothesis space {H0, H1, H2, . . .} such that C = {H0, H1, H2, . . .}.

Blum and Blum [7] introduced the notion of a locking sequence for explanatory learning,
whose existence is a necessary criterion for a learner to successfully identify the r.e. language
generating the text seen.

I Lemma 3. [7] Let M be a recursive learner and L be an r.e. language explanatorily learnt
by M . Then there is a finite sequence σ such that

WM(σ) = L;
For all τ ∈ (L ∪ {#})∗, M(σ) = M(σ ◦ τ).

This σ is called a locking sequence for L.

One may consider a weakened notion of a locking sequence, whereby the learner need not
output an index of the target language L on this sequence; such a sequence is called a
stabilising sequence for L.

I Definition 4. [14] Let M be a recursive learner and L be an r.e. language. Then σ is a
stabilising sequence for M on L if

content(σ) ⊆ L;
For all τ ∈ (L ∪ {#})∗, M(σ) = M(σ ◦ τ).

With a slight modification, one can adapt Lemma 3 to the partial learning model.

I Lemma 5. Let M be a recursive learner and L be an r.e. language partially learnt by M .
Then there is a finite sequence σ such that

WM(σ) = L;
For all τ ∈ (L ∪ {#})∗, there is an η ∈ (L ∪ {#})∗ such that M(σ ◦ τ ◦ η) = M(σ).

4 Partially conservative learning

Conservativeness is a learnability constraint that has been studied fairly extensively in the
inductive inference literature, especially in the setting of indexed families [2, 17]. In this
paper, we consider the notion of partial conservativeness in language learning; in brief, this
is partial learning combined with the constraint that if a learner outputs e infinitely often on
a text for some target language L, then none of its other conjectures on this text can contain
L as a subset. Gold [12] observed that the class {N} ∪ {F : F is finite} is not behaviourally
correctly learnable, even when granting access to any oracle. Nonetheless, Gold’s class is
partially learnable from text: it is only necessary to output a canonical index for N as many
times as a new datum appears, and to conjecture for every input σ a canonical index for
the finite set content(σ). By contrast, one can show that Gold’s class cannot be partially
conservatively learnt.

I Example 6. The class C = {N} ∪ {F : F is finite} is not partially conservatively learnable.
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Proof. Assume by way of contradiction thatM were a recursive partially conservative learner
of C. SinceM learns N, it follows from Lemma 5 there is a sequence a0◦a1◦. . .◦an ∈ (N∪{#})∗
such that M(a0 ◦ a1 ◦ . . . ◦ an) = e for some e with N = We. Then a0 ◦ a1 ◦ . . . ◦ an is the
initial segment of a text for the finite set {a0, a1, . . . , an} − {#}, but since M outputs an
index e with N = We ⊃ {a0, a1, . . . , an} − {#}, M cannot be a partially conservative learner
of C. J

The main theorem of the present paper establishes a hierarchy of the major learnability
notions treated herein. It yields a connection between the criteria of partial learning and
learning in the limit - both syntactic and semantic - when one imposes the learning constraint
of conservativeness.

I Theorem 7. ConsvEx = ConsvV ac ⊂ ConsvBC ⊂ ConsvPart ⊂ ConsvEx[K].

Before proceeding with the proof of Theorem 7, we shall lay out a series of somewhat more
general statements, from which Theorem 7 may be deduced. The first of these results shows
that the criterion for partial conservativeness may in fact be slightly relaxed. It asserts that
for any class C of r.e. languages to be ConsvPart learnable, it is sufficient that there is a
recursive learner which, on every text for a target language L in C, outputs at least one
correct index and does not overgeneralise at any stage.

I Theorem 8. Let C be a class of r.e. languages such that there is a recursive learner which,
on any text for some L ∈ C, outputs at least one correct index for L, and does not output an
index for a proper superset of L. Then C is ConsvPart learnable.

Proof. Given a recursive learner M satisfying the hypothesis of the theorem, one can make
the following learner N . N outputs a canonical index for ∅ until N sees the first datum. Then
N analyses the sequence e0, e1, . . . of M given as response to some intput text. N conjectures
for each input σ a canonical index for range(σ). Furthermore, for each σ with range(σ) 6= ∅
and each en, N outputs an index f(en, σ) where Wf(en,σ) is the union of ∅ and all Wen,s

where Wen,s ⊂ Wen,s+1 and range(σ) 6⊆ Wem,s for all m < n and Wen,s ⊇ range(σ) and it
can be deduced that Wen,s 6⊆Wf(en,τ) for all proper prefixes τ of σ. Here “it can be deduced
that Wen,s 6⊆Wf(en,τ)” means there is some m < n and some t < s with range(τ) ⊆Wem,t

and Wen,t ⊂Wen,s; it then follows that Wf(en,τ) ⊆Wen,t ⊂Wen,s.
Clearly N learns the empty set. If M learns a finite non-empty set L then N outputs

a canonical index for range(σ). Furthermore, no index en output by M while learning L
is a proper superset of L; hence the Wen,s used in the union of a conjecture of the form
f(en, σ) satisfy that either L 6⊆ Wen or Wen,s ⊂ Wen,s+1 ⊆ L; hence L 6⊆ Wf(en,σ). So the
hypothesis of N for L is unique. If M learns an infinite set L then there is a first n such
that Wen = L. For all sufficiently long prefixes σ of L, range(σ) 6⊆ Wem for all m < n.
Let σ be the first prefix of the text with this property. Then there are infinitely many
stages s such that Wen,s ⊂Wen,s+1 range(σ) ⊆Wen,s and for τ ≺ σ it can be deduced that
Wen,s 6⊆Wf(en,τ). Wf(en,σ) is the union of these Wen,s and hence equal to Wen and equal to
L. For prefixes η of the text properly extending σ, there is no s such that it can be deduced
that Wen,s 6⊆Wf(en,σ); thus Wen,η is empty. Furthermore, for k > n, each Wf(ek,η) satisfies
that range(η) ⊆ Wen and hence Wf(ek,η) is a finite set different from L. Hence f(en, σ) is
the unique index of L output by N and all other indices are not supersets of L.

To finish the construction, one can build a new learner N ′ that first observes the
conjectures c0, c1, c2, c3, . . . output by N on the given text T . For each conjecture ci that
N outputs, N ′ outputs ci at least n times iff there is a stage s > n such that ∀x < n[x ∈
Wci,s(x)⇔ x ∈ content(T [s])] holds. Consequently, N ′ outputs on T the unique index of L
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issued by N infinitely often, and it outputs all other conjectures of N only finitely often. N ′
is therefore a ConsvPart learner of C. J

Whilst partially conservative learnability may appear at first sight to be quite a stringent
learning criterion, one can furnish a relatively natural example of a partially conservatively
learnable class of r.e. languages which is neither behaviourally correctly nor confidently
partially learnable.

I Example 9. Let G = {graph(f) : f is recursive}. Then G is ConsvPart learnable but
neither confidently partially learnable nor behaviourally correctly learnable.

Proof. By Theorem 17 and the fact that G composes of infinite r.e. sets, it suffices to show
that G is Ex[K] learnable. Adleman and Blum [1, Theorem 3] have shown that REC is
Ex[K] learnable, and so G is indeed Ex[K] learnable as well.

Assume by way of contradiction that G were confidently partially learnable via a recursive
learner M . By the confidence of M and the corresponding variant of Lemma 5, one may
find a finite sequence α = 〈0, y0〉 ◦ 〈1, y1〉 ◦ . . . ◦ 〈n, yn〉 such that, for some unique index e,
M(α) = e, and for each σ ∈ (N ∪ {#})∗ of the form σ = 〈n+ 1, zn+1〉 ◦ . . . ◦ 〈n+ k, zn+k〉,
there is a sequence τ ∈ (N ∪ {#})∗ of the form
τ = 〈n + k + 1, zn+k+1〉 ◦ . . . ◦ 〈n + k + i, zn+k+i〉 with M(α ◦ σ ◦ τ) = e. A new recursive
function g may now be defined inductively as follows.

Set g(i) = yi for all i ≤ n.
Assume that k ≥ n and g(x) has been defined for all x ≤ k. Run a search for a sequence of
the form 〈k+1, zk+1〉◦ . . .◦〈k+ l, zk+l〉 such thatM(〈0, g(0)〉◦〈1, g(1)〉◦ . . .◦g(k)◦〈k+1,
zk+1〉 ◦ . . . ◦ 〈k + l, zk+l〉) = e; this search must terminate due to the definition of e as
mentioned above. Set g(k+ j) = zk+j for j = 1, . . . , l, and g(k+ l+ 1) = ϕe′(k+ l+ 1) + 1
if We is the graph of a recursive function ϕe′ ; otherwise, g(k + l + 1) remains undefined
until the next stage.

If We is not the graph of a recursive function, then We 6= {〈x, y〉 : x ∈ N ∧ g(x) ↓= y}; M ,
however, outputs e infinitely often on the text 〈0, g(0)〉 ◦ 〈1, g(1)〉 ◦ 〈2, g(2)〉 ◦ . . ., and so it
cannot confidently partially learn the graph of g. In the case that We were the graph of
some recursive function ϕe′ , then, since g is defined to be such that 〈k, g(k)〉 6= 〈k, ϕe′(k)〉
for infinitely many k, We 6= {〈x, y〉 : x ∈ N ∧ g(x) ↓= y} still holds, and thus M fails
to confidently partially learn the graph of g. This contradiction establishes that G is not
confidently partially learnable. Furthermore, it has already been established [21, Corollary
20] that the class of all graphs of recursive functions is not BC learnable. J

As an immediate consequence of Theorem 8 and Example 9, one has that the notion of
partially conservative learning strictly subsumes that of conservative behaviourally correct
learning, as claimed in Theorem 7. The subsequent theorem places the last inclusion relation
of Theorem 7 in a broader setting, characterising the oracles relative to which a partially
conservatively learnable class is also explanatorily learnable.

I Theorem 10. Every ConsvPart learnable class is ConsvEx[A] learnable if and only if
K ≤T A.

Proof. Assume that K ≤T A, and that M is a ConsvPart learner of C. On input σ, a
new A-recursive learner N may effectively search via oracle A for the shortest τ � σ such
that content(σ) ⊆ WM(τ), and output M(τ); if no such τ exists, it outputs a canonical
index for ∅. As N processes a text T for some L ∈ C, NA(T [s + 1]) 6= NA(T [s]) only if
T (s) /∈WNA(T [s]), and so it is conservative. Furthermore, if T [s] is the shortest text segment
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such that WM(T [s]) = L, it follows from the partial conservativeness of M that for every
k < s, there is a number xk ∈ L−WM(T [k]). Hence there is a sufficiently long text segment
T [l] with l > s for which content(T [u]) 6⊆WM(T [k]) and content(T [u]) ⊆WM(T [s]) whenever
u ≥ l and k < s, which establishes that NA ConsvEx[A] learns C.

Conversely, one may show that the class {K∪D : D is finite}, while ConsvPart learnable,
is Ex[A] learnable iff K ≤T A. To verify this, one may first construct an Ex[K] learnerMK of
the given class: on input σ, MK outputs a canonical index for K ∪ {x ∈ content(σ) : x /∈ K}.
An application of Theorem 17 then gives that this class, consisting of infinite sets, is
ConsvPart learnable. Next, consider a locking sequence (Lemma 3) σ ∈ (K ∪ {#})∗ for
K corresponding to an Ex[A] learner MA of {K ∪ D : D is finite}. Then it holds that
x /∈ K⇔ ∃τ ∈ (K ∪ {x} ∪ {#})∗[MA(σ ◦ τ) 6= MA(σ)], and therefore K ≤T A. Furthermore,
suppose that K ≤T A; then, since it was shown above that the given class is Ex[K] learnable,
this class must also be Ex[A] learnable. J

To complement the preceding theorem, one can show that for every nonrecursive set A,
ConsvEx[A] learning is more powerful than ConsvPart learning.

I Example 11. If A is not recursive, then there is a class which is ConsvEx[A] learnable
but not partially conservatively learnable.

Proof. Let C contain the following sets:

1. All sets of the form D ⊕ E where D,E is finite and |D| 6= 1;
2. All sets {e} ⊕ E where E is finite and e /∈ A⊕A;
3. All sets {e} ⊕ N where e ∈ A⊕A.
The following ConsvEx[A]-learner infers C: If e ∈ A⊕A and range(σ) = {e}⊕E for a finite
set E then M conjectures {e} ⊕ N else M conjectures range(σ). In the case that e ∈ A⊕A
and the text is for {e} ⊕ N then the learner will eventually converge to an index for this set;
if the text is for a finite set different from all {e} ⊕ E with e ∈ A⊕A then the learner will
converge to an index for this finite set. Hence the class is ConsvEx[A]-learnable.

Assume now by way of contradiction that a partial conservative learner infers this class.
Then, for each e, this learner overgeneralises on some input with range {e}⊕E iff e ∈ A⊕A:
in the case that e is in this set, the learner must overgeneralise eventually as it has to output
the set {e} ⊕ N, in the case that e is not in this set, the learner has to learn {e} ⊕ E and
therefore cannot conjecture any proper superset of this language. Hence A⊕A is recursively
enumerable and thus recursive, a contradiction to the assumption on A. J

Returning to the first equality of Theorem 7, the concept of vacillatory learning, introduced
by Case in [6], will be considered conjointly with conservativeness. Vacillatory learning,
when imposed together with conservativeness, is a fairly stringent criterion; the next theorem
asserts that it implies conservative explanatory learning in general.

I Theorem 12. If a class of r.e. languages is ConsvV ac learnable, then it is ConsvEx
learnable.

Proof. Assume that the class C of r.e. languages is ConsvV ac learnable via a recursive
learner M . We first build an Ex learner N1 of C which is semantically conservative, in the
sense that for any two finite sequences σ, τ with WN1(σ) 6= WN1(σ◦τ), content(σ ◦τ) 6⊆WN1(σ).
On input σ, simulate M and observe the conjectures e0, e1, . . . , e|σ|−1 output by M on
piecewise increasing segments of σ. N1 then outputs el iff l is the maximum number such
that el 6= ei for all i < l, that is, el is the latest conjecture of M which differs from all its
prior ones.
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For the verification, suppose that N1 processes a text for some L ∈ C. Owing to the fact
that M V ac learns L, M outputs only finitely many different hypotheses e0, e1, . . . , el on this
text, where it is assumed that i < j iff M conjectures ei prior to ej ; moreover, at least one of
these conjectures is correct. Then el is the last hypothesis of M which is different from all its
previous ones, and so N1 outputs el in the limit. If Wel 6= L, then there is some k < l such
that L = Wek . But if σel is the text segment on which M outputs el, the conservativeness of
M implies that content(σel) 6⊆ Wek , contradicting the fact that L = Wek . The learner N1
is also semantically conservative: if it outputs ea and eb on the text segments σea and σeb
respectively with σea � σeb , and Wea 6= Web , then M conjectures eb on some text segment η
such that σea � η � σeb . By the conservativeness of M , content(η) 6⊆Wea . This verifies the
required properties of N1.

Based on the learner N1, one may construct a ConsvEx learner N of C as follows. First,
for any σ ∈ (N ∪ {#})∗, let f be a recursive function for which Wf(σ) =

⋃
s∈Aσ WN1(σ),s,

where Aσ = {t : ∀τ ∈ (WN1(σ),t∪{#})∗[|τ | > t∨M(σ) = M(σ◦τ)]}. N is defined inductively
on a text T (0) ◦ T (1) ◦ T (2) ◦ . . . according to the following algorithm:

Stage 0. Set σ0 = T (0) and N(T (0)) = f(σ0).
Stage s+ 1; N reads the current input T [s+ 2]. Assume that f(σs) is the conjecture of N
at stage s. For any finite sequence σ, denote byWf(σ),s the set

⋃
t∈(Aσ∩{0,1,...,s}) WN1(σ),t,

and let xs+1 be the least number in the range of T [s + 2] which is not contained in
content(σs); if no such number exists, let xs+1 = #. N searches for the shortest sequence
γ with |γ| ≤ s+ 1 and γ ∈ (range(T [s+ 2])∪ {#})∗ such that N1(σs) 6= N1(σs ◦ xs+1 ◦ γ)
and content(σs ◦ xs+1 ◦ γ) 6⊆Wf(σs),|γ|+1; if γ is found, N outputs f(σs ◦ xs+1 ◦ γ), and
one defines σs+1 = σs ◦ xs+1 ◦ γ. If no such γ exists, N outputs f(σs), and one defines
σs+1 = σs.

The syntactic conservativeness of N follows directly from construction: retaining the notation
in the algorithm described above, it suffices to note that whenever N makes a mind change,
then it has found a sequence γ with content(γ) contained in the current range of the
text such that content(γ) 6⊆ Wf(σs),|γ|+1, which implies, by the definition of f and the
property that xs+1 ◦ γ enforces a mind change of N1, that content(γ) 6⊆Wf(σs). It remains
to show that N is an Ex learner of C. For a contradiction, assume first that N makes
infinitely many mind changes on an input text TL for some L ∈ C. It follows that there
are infinitely many stages s such that σs ≺ σs+1 and N1(σs) 6= N1(σs+1); furthermore,⋃
s content(σs) = L. Hence limsσs is a text for L on which N1 makes infinitely many

mind changes, contradicting the fact that it Ex learns L. Secondly, suppose that on TL,
N outputs f(σs) in the limit. Fix a text extension T ′L of σs for L. If σs is a locking
sequence for N1 on L, then Wf(σs) = WN1(σs) = L, so that N explanatorily learns L. If
σs is not a locking sequence for N1 on L, then there is a text prefix T ′L[l] extending σs
such that WN1(T ′

L
[l]) = L and N1(T ′L[l]) = N1(T ′L[k]) for all k ≥ l. Since N converges

to the index f(σs), it follows from construction that whenever σs � T ′L[p] � T ′L[l] and
N1(T ′L[p]) 6= N1(σs), then content(T ′L[p]) ⊆ Wf(σs) ⊆ WN1(σs); thus, by the semantic
conservativeness of N1, WN1(σs) = WN1(T ′

L
[p]), whence, WN1(σs) = WN1(T ′

L
[l]) = L. Therefore,

whenever N1(σs) 6= N1(σs ◦ τ) for some τ ∈ (WN1(σs) ∪ {#})∗, one has content(τ) ⊆Wf(σs),
giving that Wf(σs) = WN1(σs) = L, as required. J

The proof of the preceding theorem hinges on the construction of a specific text for some
language in the class to be learnt, on which an explanatory learner may output indices of
languages outside this class. In the next example, it is shown that if one imposes the condition
that the learner must use a class-preserving hypothesis space, then semantic conservativeness
does not in general imply its syntactic analogue for explanatory learning.
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I Example 13. If A is a nonrecursive r.e. set, then the class C = {A ∪ {x} : x /∈ A} is
semantically conservatively and explanatorily learnable using a class-preserving hypothesis
space, as well as syntactically conservatively and prudently explanatorily learnable using
a class-comprising hypothesis space, but not ConsvEx learnable using a class-preserving
hypothesis space.

Proof. Given a non-recursive r.e. set A, let a0, a1, a2, . . . be a recursive one-one enumeration
of A, and let As denote the sth approximation {a0, a1, . . . , as}. One may construct a learner
M which executes the following instructions. First, it fixes any x /∈ A. On input σ, if
x ∈ range(σ) or if content(σ) ⊆ A|σ|, then M conjectures a canonical index for A ∪ {x}; if
x /∈ range(σ) and content(σ) 6⊆ A|σ|, then it searches for the least y ∈ range(σ) with y /∈ A|σ|,
and conjectures the index e such that

We =
{

A ∪ {x} if y ∈ A;
A ∪ {y} if y /∈ A.

The class-preserving property of M is immediate from construction. Furthermore, if M
makes a semantic mind change between two stages s and s′ with s < s′ on some text T , then
it must hold that WM(T [s+1]) = A ∪ {x} and WM(T [s′+1]) = A ∪ {y} for some y /∈ A with
y 6= x and y ∈ content(T [s′ + 1]); hence M is also semantically conservative. In addition,
on any text for some L ∈ C, M eventually identifies the unique z ∈ L − A, and therefore
explanatorily learns L.

To produce a syntactically conservative PrudEx learner P of C that uses a class-comprising
uniformly r.e. hypothesis space, one may set P to work as follows. For any σ ∈ (N ∪ {#})∗,
denote by σ′ the sequence σ[|σ|−1] if |σ| > 1, and the empty sequence λ otherwise. On input
σ, if content(σ) ⊆ A|σ| and σ(|σ|−1) /∈ content(σ′)∪{#}, P conjectures a canonical index for
{an : ∃x ∈ content(σ)[x ≥ an]}. If content(σ) ⊆ A|σ| and σ(|σ| − 1) ∈ content(σ′) ∪ {#}, P
repeats its previous hypothesis. If y is the least number such that y ∈ content(σ)−A|σ|, then
P outputs the index e satisfying We = {y} ∪ {an : y /∈ {am : m < n}}. P uses the uniformly
r.e. hypothesis space L = {L0, L1, L2, . . .}, where Lx = {x} ∪ {an : x /∈ {am : am < an}},
and C ⊂ L; it only remains to show that it syntactically conservatively Ex learns L. On
any text T , if there are stages s, s′ with s < s′ such that P (T [s + 1]) 6= P (T [s′ + 1]),
then exactly one of the following cases must hold: (i) WP (T [s+1]) = {a0, a1, . . . , am} and
WP (T [s′+1]) = {a0, a1, . . . , am′} for some m,m′ such that m < m′, and am′ ∈ range(T [s′ +
1])−WP (T [s+1]); or (ii) WP (T [s+1]) = {a0, a1, . . . , am} and WP (T [s′+1]) = {y}∪A for some m
and y ∈ range(T [s′+ 1])−A. In either case, P is always syntactically conservative; moreover,
if T is a text for some Lx ∈ L, then it must eventually converge to an index for Lx.

Assume by way of contradiction that C were class-preservingly ConsvEx learnable
via some recursive learner N . Fix any τ ∈ A∗ such that N(τ) ∈ N. Such a τ must
exist; otherwise, since N learns C, it must hold that for given any x, x /∈ A iff there is
some η ∈ A∗ with N(x ◦ η) ∈ N, contradicting the nonrecursiveness of A. By the class-
preservingness of N , WN(τ) = A ∪ {b} for some b /∈ A. It follows from the syntactic
conservativeness of N and the fact that it explanatorily learns any language A ∪ {z} with
z /∈ A that for all z 6= b, z /∈ A ⇔ ∃σ ∈ (A ∪ {#})∗[N(τ) 6= N(τ ◦ z ◦ σ)] holds, that is,
z /∈ A ∪ {b} ⇔ z 6= b ∧ ∃σ ∈ (A ∪ {#})∗[N(τ) 6= N(τ ◦ z ◦ σ)], giving that A is recursive, a
contradiction. J

Fulk [10] proved that every explanatorily learnable class is also prudently explanatorily
learnable; Jain, Stephan, and Ye [15] established the corresponding result for behaviourally
correct learning. In connection to these results, one may ask whether the relation in Theorem
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12 still holds when the learner is required to be prudent. The following theorem answers this
question affirmatively, showing that every conservatively explanatorily learnable class of r.e.
languages is also conservatively explanatorily learnable by a prudent learner.

I Theorem 14. If a class of r.e. languages is ConsvEx learnable, then it is PrudConsvEx
learnable.

Proof. Assume some recursive 1–1 listing of all the finite sequences, and consider ordering
among the sequences based on this listing.

Let Is = {x : x ≤ s}.
Let r(σ) = max

⋃
τ≤σ content(τ).

Let M be a conservative learner for a class L. Assume without loss of generality that if
content(σ) = ∅, then σ is not a stabilizing sequence for M on any language except maybe ∅.

By s-m-n theorem, there exists a recursive function P (σ, S) such that WP (σ,S) is defined
as follows:
WP (σ,S) = WM(σ) − [Ir(σ) − S], if

(1) content(σ) ⊆ S ⊆WM(σ) ∩ Ir(σ), and
(2) for all τ < σ, at least one of following holds:

(a) content(τ) 6⊆ S
(b) For some τ ′ with content(τ ′) ⊆WM(σ) − [Ir(σ) − S], M(ττ ′) 6= M(τ).

If any of the above conditions fails, then let WP (σ,S) = ∅.

I Claim 15. For all σ and S such that content(σ) ⊆ S ⊆ Ir(σ), if WP (σ,S) 6= ∅, then the
following properties hold.

(A) WP (σ,S) = WM(σ) − [Ir(σ) − S],
(B) WP (σ,S) ∩ Ir(σ) = S.
(C) σ is the least stabilizing sequence for M on WP (σ,S).

(A) is trivial by definition of WP (σ,S). (B) holds by condition (1), and the fact that if
WP (σ,S) 6= ∅, then WP (σ,S) = WM(σ) − [Ir(σ) − S]. (C) holds as by conservativeness of M ,
and content(σ) being contained in WM(σ), σ is a stabilizing sequence for M on WP (σ,S).
Furthermore, by (2), no smaller τ is a stabilizing sequence for M on WP (σ,S).

Note that for every L ∈ L− {∅}, for the least stabilizing sequence σ and S = L∩ Ir(σ), it
holds that P (σ, L∩ Ir(σ)) is an index for L. Thus, every language in L− {∅} has an index of
the form P (σ, S), with content(σ) ⊆ S ⊆ Ir(σ).

Now defineM ′ as follows. On input T [n], if content(T [n]) = ∅, thenM ′ outputs a standard
grammar for ∅. Otherwise, it searches for a σ such that, for S = content(T [n]) ∩ Ir(σ)

(a) content(σ) ⊆ S, |σ| ≤ n
(b) WP (σ,S) 6= ∅,
(c) for all τ < σ, either content(τ) 6⊆ S or for some τ ′ with |τ ′| ≤ n, content(τ ′) ⊆

content(T [n]), M(ττ ′) 6= M(τ),
(d) for all τ ′ with |τ ′| ≤ n, content(τ ′) ⊆ content(T [n]), M(στ ′) = M(σ)
If such a least σ is found, then M ′ outputs P (σ, S). Otherwise, M ′ repeats its previous

hypothesis.
Note that every non-empty WP (σ,S) is learnt by M ′, as once the input sequence contains

all elements in Ir(σ) along with witnesses content(τ ′) satisfying M(ττ ′) 6= M(τ), for each
τ < σ such that content(τ) ⊆ S (such a witness τ ′ exists by (2) in the definition of WP (σ,S))
and is large enough, we have that M ′ chooses P (σ, S) as its hypothesis. Thus, M ′ is prudent.
Thus, it suffices to show that M ′ is conservative. For this suppose M ′ outputs P (σ, S) on
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T [n] and then later outputs a different P (σ′, S′) on input T [n′] where n′ > n. Note that
content(σ′) ⊆ S′ ⊆ content(T [n′]).

Case 1: σ′ < σ: Then, clearly, content(σ′) 6⊆ S, as otherwise, by definition of M ′, there
exists a τ ′ such that M(σ′τ ′) 6= M(σ′), with |τ ′| ≤ n and content(τ ′) ⊆ content(T [n]) (by
condition (c) on input T [n]). But then condition (d) on input T [n′] will prevent M ′ from
outputting P (σ′, S′). Thus, content(σ′) 6⊆ WP (σ,S) by Claim 15(B), and thus the mind
change is conservative.

Case 2: σ′ > σ: Then, by (c) in the definition of M ′, we have that for some τ ′, M(στ ′) 6=
M(σ), where content(τ ′) ⊆ content(T [n′]). But then content(τ ′) 6⊆WM(σ) ⊇WP (σ,S), as M
is conservative. Thus, the mind change is conservative again. J

The following example emphasises the distinction between prudence and the use of a class-
preserving hypothesis space; even when combined with conservativeness, prudence is not
sufficient to guarantee that a uniformly r.e. class of languages is partially conservatively
learnable with respect to a class-preserving hypothesis space.

I Example 16. Let L = {L〈d,2s〉 : d, s ∈ N} ∪ {L〈d,2s+1〉 : d, s ∈ N}, where

L〈d,2s〉 =
{
{d} if Wd,s = Wd;
{d, t+ 1} if t is the first stage with Wd,s ⊂Wd,t,

L〈d,2s+1〉 = {d, d+ s+ 1}.

L is PrudConsvEx learnable but not ClsPresvConsvPart learnable.

Proof. If Wd is infinite then all L〈d,e〉 are different from {d}; if Wd is finite and Wd = Wd,s

then L〈d,e〉 = {d} for even e ≥ 2s.
A prudent conservative explanatory learner is given by a learner for all finite sets which

always conjectures the set of data items observed so far.
Furthermore, assume now that there is a learner which is conservative and uses a class

preserving hypothesis space H0, H1, H2, . . . of uniformly r.e. sets. One can check with oracle
K whether the learner outputs on text d ◦ d ◦ d ◦ d ◦ . . . any hypothesis e with d ∈ He.
Furthermore, with oracle K one can check whether He = {d}. If e exists and He = {d}
for the first such e found then Wd is finite as the learner uses a class-preserving hypothesis
space else the learner does not conservatively learn {d} by either overgeneralising or never
outputting a hypothesis containing d on the text d◦d◦d◦ . . ., henceWd must be infinite. This
would result in a decision procedure for {d : Wd is finite} relative to K which does not exist.
Hence the given class is neither ClsPresvConsvBC learnable nor ClsPresvConsvPart
learnable. J

I Remark. One also has that the conservatively vacillatorily learnable classes of r.e. languages
constitute a strict subset of the prudently conservatively behaviourally correctly learnable
classes when a class-preserving hypothesis space is enforced. For example, the class {K ∪
D : D is finite} is prudently conservatively behaviourally correctly learnable using a class-
preserving hypothesis space, but it is not vacillatorily learnable.

Proof of Theorem 7. As was shown in Theorem 12, every ConsvV ac learnable class of r.e.
languages is ConsvEx learnable. A ConsvEx learnable class of r.e. languages is, a fortiori,
also ConsvBC learnable. On the other hand, the class {K ∪D : D is finite} is ConsvBC
learnable but not Ex learnable, and this establishes the first strict inclusion.

A ConsvBC learner satisfies the learning criterion in the hypothesis of Theorem 8, and
therefore every ConsvBC learnable class is ConsvPart learnable. Example 9 shows that
ConsvPart learning is in fact less restrictive than BC learning.
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The last inclusion ConsvPart ⊆ ConsvEx[K] follows as a particular case of Theorem
10. Moreover, Example 11 shows that the oracle K permits some classes which are not
ConsvPart learnable to be ConsvEx learnt. J

Coming to a more particular setting, the following result demonstrates the equivalence of
partially conservative learnability and Ex[K] learnability for classes comprising infinite sets.
The hypothesis that all the languages in the class be infinite cannot, however, be dropped,
as may be seen from Example 11.

I Theorem 17. Let C be a class of infinite r.e. sets. Then C is ConsvPart learnable if and
only if it is Ex[K] learnable.

Proof. Suppose that C is Ex[K] learnable via a K-recursive learner M that outputs r.e.
indices. On a text T (0) ◦T (1) ◦T (2) ◦T (3) ◦ . . ., let N be a learner that works by outputting,
for each σ ∈ (range(T ) ∪ {#})∗ and all s, the index f(σ, s), where f is a recursive function
such that Wf(σ,s) = {x : ∃t > x∀τ ∈ (WMKs (σ),t ∪ {#})∗∃u > t[[|τ | ≤ x ⇒ MKu(σ ◦ τ) =
MKs(σ)] ∧ [content(σ ◦ x) ⊆WMKs (σ),t]]}.

It shall be argued that N , on any text for a given L ∈ C, outputs at least one correct index
for L, and does not conjecture any proper superset of L; it will then follow as a consequence
of Theorem 8 that C is ConsvPart learnable.

First, if σ is not a locking sequence ofM for L, then for all s, Wf(σ,s) cannot be a superset
of L: for, if one assumes that L ⊆ WMKs (σ), then whenever t is sufficiently large, there is
some τ ∈ (WMKs (σ),t ∪ {#})∗ and u′ such that whenever u > u′, MKs(σ) 6= MKu(σ ◦ τ).
Thus if WMKs (σ) contains L, Wf(σ,s) does not enumerate any element greater than |τ |+ u′,
thus Wf(σ,s) is finite. On the other hand, by Lemma 3, there must be at least one locking
sequence σ ∈ (range(T ) ∪ {#})∗; if σ is a locking sequence of M for L, then whenever s
is sufficiently large, MKs(σ) is the same index for L. So, for every x ∈ L, there is a t > x

such that whenever τ ∈ (WMKs (σ),t ∪ {#})∗ and |τ | ≤ x, one can find a u > t satisfying
MKu(σ ◦ τ) = MKs(σ) and content(σ ◦ x) ⊆ WMKs (σ),t. Hence for such a σ and all large
enough s, Wf(σ,s) = WMKs (σ) = L. Therefore N has the required properties stated in the
preceding paragraph.

The converse direction of the proof has been demonstrated, in a more general form, in
Theorem 10. J

The subsequent example gives an instance of a set A such that A 6≤T K and the relation
Ex[A] ⊂ ConsvPart no longer holds, even when confined to classes of infinite sets.

I Example 18. The class of infinite sets

C = {{e} ⊕ (We ∪D) : D is finite and We is cofinite} ∪ {{e} ⊕ N : e ∈ N}

is Ex[K′] learnable but not partially conservatively learnable.

Proof. An Ex[K′] learnerM may be programmed as follows: on input σ, where content(σ) =
{e} ⊕D for some finite set D, M checks whether or not ∀x > |σ|∃s[x ∈ We,s] holds; if so,
then M conjectures {e} ⊕ (We ∪D) else M conjectures {e} ⊕ N. Note that formally this
learner is behaviourally correct, but it can easily be converted into an equivalent explanatory
learner, as the oracle is above K.

Suppose that M is presented with a text T for the set {e} ⊕ N. First, assume that We is
cofinite. Then there is a least number x such that for all y > x, y is contained in We. Further,
for a sufficiently long segment σ of the text, {z ≤ x : z 6∈We} ⊆ range(σ) and |σ| > x both
hold. Hence M will converge on T to a fixed index for the set {e} ⊕ N. Secondly, assume
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that We is coinfinite. In this case, the condition ∀y > x∃s[y ∈ We,s] fails to hold for all x,
and so M will conjecture the set {e} ⊕ N on all segments of T . Next, suppose that M is fed
with a text T ′ for the set {e} ⊕ (We ∪D), where We is cofinite and D is finite. Let x be the
minimum number such that for all y ≥ x, y ∈We holds. Then, upon witnessing a segment σ
of T ′ with |σ| ≥ x which contains all the elements of D, M will thenceforth always conjecture
a fixed index for {e} ⊕ (We ∪D). Therefore M is an Ex[K′] learner of C, as required.

On the other hand, assume for the sake of a contradiction that N were a partially
conservative learner of C. Fix any number e and give the text 2e ◦ 1 ◦ 3 ◦ 5 ◦ . . . ◦ (2n+ 1) ◦ . . .
to N . Since N partially learns the set {e} ⊕ N, there is a least number k such that N
outputs an index for {e} ⊕ N on the segment 2e ◦ 1 ◦ . . . ◦ 2k + 1; moreover, one can search
for k by means of the oracle K′. One may subsequently check relative to K′ whether or
not ∀z > k∃s[z ∈ We,s] holds. If it does hold, then We is cofinite; otherwise, We must be
coinfinite, for if We were cofinite and z > k were a number such that z 6∈ We, then the
segment 2e ◦ 1 ◦ . . . ◦ 2k + 1 may be extended to a text for {e} ⊕ (We ∪ {0, 1, . . . , k}), and
since N outputs an index for some set of which {e} ⊕ (We ∪ {0, 1, . . . , k}) is a proper subset,
this implies that N cannot partially conservatively learn {e} ⊕ (We ∪ {0, 1, . . . , k}), contrary
to hypothesis. Thus the initial assumption would lead to a decision procedure relative to
K′ for the Π0

3-complete set {e : We is coinfinite}, a contradiction. In conclusion, C is not
partially conservatively learnable, as required. J

The following theorem sharpens Theorem 7, demonstrating that by imposing the further learn-
ing constraint of prudence, ConsvBC learnability does not in general guarantee ConsvPart
learnability.

I Theorem 19. There is a class of r.e. languages which is ConsvPart learnable and
prudently ConsvBC learnable, but not prudently ConsvPart learnable.

Proof. Let S be a simple set. We shall show that while the class L = {S} ∪ {D :
D is finite and D 6⊆ S} is PrudConsvBC learnable, it cannot be PrudConsvPart learnt.
By Theorem 7, the class is also ConsvPart learnable.

A prudent ConsvBC learner N of L may work by conjecturing, on input σ, the r.e. set

WN(σ) =
{

content(σ) if content(σ) 6⊆ S;
S if content(σ) ⊆ S.

If N is fed with a text for S, then it will always conjecture S. If N is fed with a text for
some D 6⊆ S, then it will conjecture indices for S until the first member of D − S appears
in the text; from then onwards it will conjecture the finite set comprising the range of the
current input. Since N only outputs r.e. indices of sets in L, it also prudently learns L.

Now proceeding by contradiction, assume that L is PrudConsvPart learnable via a
recursive learner M . By Lemma 5, there is a sequence τ ∈ S∗ such that WM(τ) = S. Fixing
τ , let y be any given number. It shall be shown that the existence of M provides an effective
procedure for deciding whether or not y ∈ S, contradicting the fact that S is nonrecursive.

First, let A be the r.e. set {x : ∃σ � τ [M(σ) 6= M(τ) ∧ range(τ) ∪ {x} ⊆ WM(σ) ∧ x /∈
range(σ)]}. For any t, denote by St the t-th approximation to S. Let x be any number
contained in A, so that for some σ � τ with x /∈ range(σ), range(σ) ∪ {x} ⊆ WM(σ). If
WM(σ) ⊆ S, then, by the prudence of M , M must ConsvPart learn WM(σ), but since
M(σ) 6= M(τ), WM(σ) 6= S, and so WM(σ) is a proper subset of S; this contradicts the
partial conservativeness of M , as it conjectures S on τ , a prefix of σ. Hence there is some
z ∈ WM(σ) ∩ S. If x ∈ S, then x 6= z, and so M does not ConsvPart learn the set
content(σ) ∪ {z} ∈ L since its conjecture WM(σ) is a proper superset of content(σ) ∪ {z}.
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Therefore A ∩ S = ∅, and as S is simple, A must be finite. If y ∈ A, then y /∈ S immediately
follows; thus it may be assumed in the subsequent argument that y /∈ A.

Now let f(y) be the first number found such that M(τ ◦ yf(y)) 6= M(τ) and content(τ) ∪
{y} ⊆WM(τ◦yf(y)), or y ∈ Sf(y); such a number must exist as M learns every finite set that
intersects S. For the same reason, one can find, for each x ∈ A, a number g(x, y) such that
content(τ) ∪ {x, y} ⊆WM(τ◦yf(y)◦xg(x,y)).

Suppose that y ∈ S: as was argued previously, WM(τ◦yf(y)) 6⊆ S, and so by the definition
of A there is some x ∈ A ∩WM(τ◦yf(y)). As content(τ) ∪ {x, y} ∈ L, and for any L ∈ L,
M cannot conjecture a proper superset of L on any text segment of L, it must hold that
WM(τ◦yf(y)) = WM(τ◦yf(y)◦xg(x,y)) = content(τ) ∪ {x, y}. Moreover, M must output exactly
one correct index on any text segment of L, and thus M(τ ◦ yf(y)) = M(τ ◦ yf(y) ◦ xg(x,y)).
On the other hand, if y /∈ S, then content(τ)∪{y} = WM(τ◦yf(y)), giving that M(τ ◦yf(y)) 6=
M(τ ◦ yf(y) ◦ xg(x,y)) for all x ∈ A. Hence if y /∈ A, one has the recursive condition
y ∈ S ⇔ ∃x ∈ A[M(τ ◦ yf(y) ◦ xg(x,y)) = M(τ ◦ yf(y))], contradicting the fact that S is
nonrecursive. J

Angluin [2] introduced the concept of a telltale set, which is a finite subset EL of some
language L to be learnt such that no language different from L and containing EL can be a
proper superset of L, and she characterised indexed families of recursive languages which are
explanatorily learnable from positive data using this notion. The next two theorems propose
criteria for partially conservative learnability as well as conservative Ex[K] learnability in a
similar fashion to Angluin’s original formulation.

I Theorem 20. A class C is ConsvPart learnable iff there is a recursive sequence of pairs
(ie, je) such that

1. Die ⊆Wje for all e;
2. For all L ∈ C there is an e with L = Wje ;
3. For all d, e, if Die ⊆Wjd ⊂Wje then Wjd /∈ C.

Proof. If M ConsvPart-learns a class C then one can make the first sequence as an enumer-
ation of the r.e. set of all (i, j) for which there is a σ with Di = range(σ) and j = M(σ)
and range(σ) ⊆ Wj . Clearly for every L ∈ C there is a pair (i, j) enumerated for which
M(σ) = j, Wj = L and Di = range(σ) ⊆ L. Furthermore, if L ∈ C then there is no σ with
range(σ) ⊆ L ⊂WM(σ). Hence all three conditions are satisfied.

For the converse direction, assume that a sequence of such (ie, je) is given. Then a learner
N conjectures all sets Wje for which all elements of Die have shown up in the text of the set
L to be learnt. This set L equals some Wjd by the second condition. Clearly jd will be among
the indices conjectured. Furthermore, for each index je conjectured by N , it holds that the
condition Dje ⊆ Wjd ⊂ Wje is not satisfied and therefore Wje is not a proper superset of
L. Hence the learner can be transformed into a conservative partial learner by means of
Theorem 8. J

I Theorem 21. A class C is ConsvEx[K] learnable iff there is a recursive sequence of pairs
(ie, je) such that

1. Wie ⊆Wje for all e;
2. For all L ∈ C there is an e with Wie being finite and L = Wje ;
3. For all d, e, if Wie is finite and Wie ⊆Wjd ⊂Wje then Wjd /∈ C.
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Proof. If M ConsvEx[K]-learns a class C then one can enumerate for each σ � T and each
s with range(σ) ⊆WMKs (σ) a pair (i, j) satisfying the following conditions:

Wi =
{

range(σ) if ∀t ≥ s [MKt(σ) = MKs(σ)];
N if ∃t ≥ s [MKt(σ) 6= MKs(σ)].

Wj =
{

WMKs (σ) if ∀t ≥ s [MKt(σ) = MKs(σ)];
N if ∃t ≥ s [MKt(σ) 6= MKs(σ)].

The first condition holds clearly. The second condition is satisfied as for each L ∈ C there
is a σ ∈ (L ∪ {#})∗ such that M(σ) is an index for L. So, for sufficiently large s, σ and s
cause a pair (i, j) to be enumerated where Wi = range(σ) and Wj = L. The third condition
follows from the fact that M is conservative. So if Wjd is in C − {N} and Wie ⊆Wjd then
Wie is finite and Wje is equal to a set conjectured by M on a string of elements from Wjd

and therefore Wje is not a proper superset of Wjd .
For the converse direction, assume that a recursive sequence of (ie, je) as above is

given. One can now make a ConsvEx[K]-learner N which does the following: If there is
no current conjecture or the current conjecture is inconsistent (that is, range(σ) is not in
the set what can be checked with K), then N checks using K whether there is a e ≤ |σ|
with Wie ⊆ range(σ) ⊆ Wje . This check can be done, as the learner checks whether Wie

enumerates some element outside range(σ) and whether Wje enumerates all elements inside
range(σ). If so, then the learner conjectures je for the least such e else the learner abstains
from conjecturing a hypothesis. Assume now that a set Wjd has to be learnt and that Wid

is finite. Then each conjecture Wje of N on a text for Wjd satisfies Wie ⊆ Wjd and hence
Wjd 6⊂Wie by the third condition. So the learner does not overgeneralise and is conservative.
Furthermore, eventually all hypotheses Wje which do not contain all elements of Wjd get
cancelled eventually and so the learner N ends up with either conjecturing d or conjecturing
a set Wje = Wjd . Thus the learner is indeed learning C. J

The learning constraint of consistency is often studied closely with conservativeness; indeed,
consistency may be viewed as a restrain on conservativeness, for a conservative learner
performs a mind change only if its latest conjecture is inconsistent with the current input
data. One can show that every ConsvPart learnable class is learnable in the following sense:
the learner is both consistent and partially conservative, and it outputs exactly one correct
index at least once, although this index need not be output infinitely often.

I Theorem 22. For every ConsvPart learnable class C, there is a recursive learner N such
that, on any text for some L ∈ C,

N is consistent and does not output an index for a proper superset of L;
N outputs exactly one index e with L = We and every other index only finitely often.

Proof. Assume that the class C of r.e. languages is ConsvPart learnable via a recursive
learner M . Let f be a recursive function such that for all numbers e and finite sets D ⊂ N,
Wf(e,D) =

⋃
s∈Ae,D We,s ∪ D, where s ∈ Ae,D iff D ⊆ We,s ⊂ We,s+1. Denote by σ′ the

sequence σ[|σ| − 1] if |σ| > 1, and the empty sequence λ otherwise. Let B =
⋃
s∈NBs be

an auxiliary r.e. set with B0 = ∅. Now define a new learner N that performs the following
on input σ. First, let e0, e1, . . . , ej be all the distinct indices output by M on piecewise
increasing prefixes of σ.

1. If content(σ) = content(σ′), Then N(σ) = N(σ′) and B|σ| = B|σ|−1,
2. Else If i = min{k ≤ j : ek /∈ B|σ|−1} exists, Then N outputs f(ei, content(σ)) and

updates B|σ| = B|σ|−1 ∪ {ei},
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3. Else (i does not exist) N outputs a canonical index for the set content(σ) and updates
B|σ| = B|σ|−1.

For the verification, suppose that N is fed with a text T for some language L ∈ C. First,
suppose that L is finite. There is a shortest text prefix T [l] with content(T [l]) = L, so that
whenever k > l, case 1 applies, and N converges to the index N(T [l]). On input T [l], either
case 2 or case 3 applies. If case 2 applies, then, since the new conjecture ei cannot be a proper
superset of L, either it does not contain content(T [l]), or it is precisely equal to content(T [l]),
and so WN(T [l]) = Wf(ei,content(T [l])) = L. If 3. applies, then WN(T [l]) = L also holds.
Furthermore, for all k < l, as content(T [k]) ⊂ L and every incorrect conjecture of M does
not contain some element of L, while if Wei = L then Wf(ei,content(T [k])) ⊂ L, WN(T [k]) 6= L

holds. Secondly, suppose that L is infinite. Then case 1 does not hold at infinitely many stages,
and therefore N outputs each index only finitely often. If case 2 applies on some text prefix
T [k] to an incorrect conjecture ei with Wei infinite, then either content(T [k]) 6⊂ Wei and
Wf(ei,content(T [k])) = content(T [k]), or content(T [k]) ⊂Wei and there is some x ∈ L−Wei ,
so that WN(T [k]) 6= L holds whenever Wei 6= L. If case 2 applies and ei is the single correct
index that M outputs on T , then WN(T [k]) = Wf(ei,content(T [k])) = Wei , that is, N outputs
a correct conjecture. Finally, every index that N outputs in case 3 is incorrect, and this
establishes that N satisfies the learning requirements of the theorem. J

The following theorem gives a necessary condition on all consistently partially learnable
classes of r.e. languages; it suggests that partial consistency may be quite a strong learning
requirement, as only recursive languages can be partially consistently learnt.

I Theorem 23. If a class L of r.e. languages is ConsPart learnable, then there is a
uniformly recursive family A such that L ⊆ A.

Proof. Given a recursive ConsPart learner M of L, let A be the uniformly recursive family
of all languages LD,σ,τ = {x : ∃η � τ [M(σ ◦ x ◦ η) ∈ D]}. For the verification that L ⊆ A,
choose any L ∈ L; it shall be shown that there are sequences σ, τ ∈ L∗ such that for all x ∈ L,
M(σ ◦ x ◦ η) = M(γ) for some η � τ and γ � σ with WM(γ) = L. Proceeding by way of a
contradiction, assume that for all σ, τ ∈ L∗, there is an x ∈ L such that M(σ ◦ x ◦ η) 6= M(γ)
for all γ � σ withWM(γ) = L and η � τ . Consequently, one can build a text T for L on which
M does not output any correct index infinitely often: first, let a0, a1, a2, . . . be a recursive
one-one enumeration of L. Set T (0) = a0. At stage s+ 1, suppose that T has been defined
up to and including 2s. By assumption, there is a number xs+1 ∈ L such that at least one of
the following conditions holds: WM(T [2s+1]◦xs+1) 6= L and WM(T [2s+1]◦xs+1◦as+1) 6= L; or, for
all k ≤ 2s+ 1, M(T [2s+ 1] ◦ xs+1) 6= M(T [k]) and M(T [2s+ 1] ◦ xs+1 ◦ as+1) 6= M(T [k]).
Set T (2s + 1) = xs+1 and T (2s + 2) = as+1. It follows from this construction that T is
a text on which M never outputs a single correct index for L infinitely often, as claimed.
Hence there are sequences σ, τ ∈ L∗ such that for all x ∈ L, M(σ ◦ x ◦ η) = M(γ) for some
η � τ and γ � σ with WM(γ) = L, that is, L ⊆ {x : ∃η � τ [M(σ ◦ x ◦ η) ∈ {M(γ) : γ �
σ ∧WM(γ) = L}]}. Furthermore, by the partial consistency of M , the reverse inclusion
{x : ∃η � τ [M(σ ◦ x ◦ η) ∈ {M(γ) : γ � σ ∧WM(γ) = L}]} ⊆ L also holds. By setting
D = {M(γ) : γ � σ ∧WM(γ) = L}, one has that L = LD,σ,τ ∈ A, establishing that L ⊆ A,
as required. J

I Remark. The class L = {{e} ⊕ {x : x ≤ |We|} : We is finite} is prudently as well
as consistently explanatorily learnable, but it has no uniformly recursive indexing. To
PrudConsEx learn this class, the learner may output a canonical index for content(σ)
on every input σ. However, if one assumes that L were uniformly recursively indexed by
{L0, L1, L2, . . .}, then for every number e one may check via oracle K whether or not the
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Σ0
1 condition ∃n[2e ∈ Ln] holds. If this condition holds, then We is finite; otherwise, We is

infinite. Hence the assumption would imply that the Π0
2-complete set {e : We is infinite} is

Turing reducible to K, a contradiction.

Furthermore, partial consistency does not follow directly from partial conservativeness; this
is witnessed by the class of graphs of all recursive functions. Moreover, the class {K,N}
establishes one direction of separation between PrudConsvEx and consistent partial learning,
which also gives by Theorem 7 that consistent partial learning is not less restrictive than
ConsvPart learning. Blum and Blum [7] showed that this particular class is prudently
ConsvEx learnable but not consistently explanatorily learnable. For the converse separation
of PrudConsvEx learning and consistent partial learning, one may consider the following
example.

I Example 24. The indexed family C = {L0, L1, L2, . . .} of recursive sets, where

L〈e,0,0〉 = {e+ x : x ∈ N}, L〈e,i,j〉 =
{
{e+ x : x ≤ j} if e ∈ Ki −Kj ;
{e+ x : x ∈ N} if e /∈ Ki ∨ e ∈ Kj ,

is prudently consistently Ex learnable but not ConsvPart learnable.

Proof. A prudent consistent Ex learner M outputs a canonical index for ∅ until the range
of the input σ is nonempty with e = min({x : x ∈ content(σ)}) and e + d = max({x : x ∈
content(σ)}). M then conjectures an index for the set {e+x : x ∈ N} if e /∈ K|σ| or if e ∈ Kd,
and an index for the set {e+ x : x ≤ d} if e ∈ K|σ| −Kd. Suppose that M is fed with a text
for the set {e+ x : x ∈ N}. If e 6∈ K then M will always output an index for the correct set.
If e ∈ Ks+1 −Ks, then M will converge to a correct index once the element e+ s+ 1 occurs
in a segment of the text of length at least s. On the other hand, if M processes a text of the
set {e+ x : x ≤ d} with e ∈ Ks −Kd for some s > d, then it will also converge to a correct
index on inputs containing {e+ x : x ≤ d} with length at least s.

For the sake of a contradiction, suppose that N were a partially conservative learner of
C. Define a recursive function f by setting f(e) to be the first number d found such that
{e, e+ 1, . . . , e+ d+ 1} ⊆WN(e◦e+1◦...◦e+d). Since N learns the set {e+ x : x ∈ N}, such a
number d must exist, and so f is a recursive function. Furthermore, owing to the partial
conservativeness of N , it follows that e ∈ K holds if and only if e ∈ Kf(e). This provides a
recursive procedure for the halting problem, which is a contradiction. Thus N cannot be a
partially conservative learner of C, as required. J

I Example 25. If A is a nonrecursive r.e. set, then the class C = {A ∪ {x} : x ∈ N} is
ConsvBC learnable but neither Ex learnable nor class consistently partially learnable.

Proof. A ConsvBC learner of C may work by always outputting, on input σ, an index for
the r.e. set A ∪ content(σ). Such a learner M is always conservative, for if WM(σ) 6= WM(τ)
for some σ ≺ τ , then, since WM(σ) ⊂ WM(τ) and WM(τ) −WM(σ) ⊆ content(τ), there is
some number x ∈ content(τ)−WM(σ).

Now assume by way of a contradiction that N were a class consistent partial learner of C.
The proof proceeds by building a text T for A on which N does not output any correct index
infinitely often. Let a0 be the first enumerated member of A, and set T (0) = a0. At stage s+1,
suppose that T (i) = ai and ai ∈ A for all 0 ≤ i ≤ 2s. Let bs+1 = min({A−range(T [2s+1])}),
and search for some a ∈ A such that the condition ∀k < 2s + 1[(N(T [2s + 1] ◦ a) 6=
N(T [k])∧N(T [2s+1]◦a◦bs+1) 6= N(T [k]))∨ (WN(T [2s+1]◦a) 6= A∧WN(T [2s+1]◦a◦bs+1) 6= A)]
holds. Set T (2s + 1) = a and T (2s + 2) = bs+1. This search must eventually terminate
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successfully, for if, whenever a ∈ A, then ei ∈ {N(T [2s + 1] ◦ a), N(T [2s + 1] ◦ a ◦ bs+1)}
for some ei ∈ {e0, e1, . . . , el}, where {e0, e1, . . . , el} ⊆ {N(T [k]) : k < 2s+ 1} and Wei = A

whenever 0 ≤ i ≤ l, then the class consistency of N would imply that for all x, x ∈ A

iff N(T [2s + 1] ◦ x) ∈ {e0, e1, . . . , el} ∨N(T [2s+ 1] ◦ x ◦ bs+1) ∈ {e0, e1, . . . , el} holds, and
this would furnish an effective decision procedure for the membership problem of A, a
contradiction. Thus T is a text for A on which N does not output any correct index infinitely
often, which is the desired contradiction. J

5 Conclusion

The main results of the foregoing discussion may be summarised in the following diagram.
The set of all classes of r.e. languages that are learnable according to each criterion is
represented by the corresponding notation given in Definitions 1 and 2. The learning criterion
in Theorem 22 is denoted by WConsConsvPart.

ConsvEx ConsvVac ConsvBC ConsvPart ConsvEx[K]

PrudConsvBC PrudConsvPart

WConsConsvPart

ClsPresvConsvVac

PrudConsvEx PrudConsvVac

ClsPresvConsvEx ClsPresvConsvBC

-

-� - - -

6

6

-

-

6

?

?

6

6 6

-

6

�
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3 Janis Bārzdiņs̆. Two theorems on the limiting synthesis of functions. In Theory of Al-

gorithms and Programs, vol. 1, pages 82–88. Latvian State University, 1974. In Russian.
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