
Machine Induction Without Revolutionary Changes in

Hypothesis Size

John Case

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716, USA

Email: case@cis.udel.edu

Sanjay Jain

Department of Information Systems and Computer Science

National University of Singapore

Singapore 119260, Republic of Singapore

Email: sanjay@iscs.nus.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

Email: arun@cse.unsw.edu.au

Abstract

This paper provides a beginning study of the effects on inductive inference of paradigm
shifts whose absence is approximately modeled by various formal approaches to forbidding
large changes in the size of programs conjectured.

One approach, called severely parsimonious, requires all the programs conjectured on the
way to success to be nearly (i.e., within a recursive function of) minimal size. It is shown that
this very conservative constraint allows learning infinite classes of functions, but not infinite
r.e. classes of functions.

Another approach, called non-revolutionary, requires all conjectures to be nearly the same
size as one another. This quite conservative constraint is, nonetheless, shown to permit learning
some infinite r.e. classes of functions.

Allowing up to one extra bounded size mind change towards a final program learned cer-
tainly doesn’t appear revolutionary. However, somewhat surprisingly for scientific (inductive)
inference, it is shown that there are classes learnable with the non-revolutionary constraint
(respectively, with severe parsimony), up to (i + 1) mind changes, and no anomalies, which
classes cannot be learned with no size constraint, an unbounded, finite number of anomalies in
the final program, but with no more than i mind changes. Hence, in some cases, the possibility
of one extra mind change is considerably more liberating than removal of very conservative size
shift constraints. The proofs of these results are also combinatorially interesting.

1 Introduction

The present paper is a beginning study of the phenomenon of paradigm shift (see Kuhn [26])
in the context of machine inductive learning/inference. The issues are difficult to formalize
directly mathematically, so instead of tackling them directly, we take an indirect approach and
investigate the effects on induction of disallowing certain formalizable kinds of paradigm shift.
A number of mathematical formulations that capture some interesting notions of paradigm
shift are proposed. The induction task we chose for this investigation is the identification of
computer programs for computable functions from their graphs.1

A paradigm shift is usually associated with a significant conceptual change in the hypothesis
conjectured by the “learner.” Conceptual change (significant or otherwise) is difficult to for-
malize rigorously. A possible, though overly simple expectation is that a significant conceptual
change in hypotheses is also accompanied by a significant change in the size of the hypotheses.
Thus, keeping learners from conjecturing hypotheses of extreme variation in size may be seen
as disallowing a kind of paradigm shift. This forms the basis of our beginning attempt herein
to model induction without paradigm shifts.

Learning machines may be thought of as Turing machines computing a mapping from “finite
sequences of data” into computer programs. A typical variable for learning machines is M. A
function learning machine may be thought of as a learning machine that at any given time,
takes an initial segment of the graph of a function as input2 and outputs (the index of) a
computer program in some fixed acceptable programming system [36, 28, 38]. We now describe
what it means for such a machine to learn a function.

Let N denote the set of natural numbers. Let R denote the set of all computable functions
(i.e., the set of partial computable functions that are total) with arguments and values from
N . The following definition is essentially Gold’s [22] criterion for successful identification of
functions by learning machines.

Definition 1 [22]

(a) M Ex-identifies f ∈ R just in case M, successively fed initial segments of f of increasing
length, converges to an index of a program for f . In this case we say that f ∈ Ex(M).

(b) Ex denotes the collection of all classes S of computable functions such that some machine
Ex-identifies each function in S.

Ex is a set theoretic summary of the capability of single machines to Ex-identify classes of
functions. In the sequel, we will refer to “an index of a program” by “a program.”

As noted, in the present study, we will approximately model disallowing paradigm shift in
terms of restrictions regarding the size of a machine’s conjectures on the graph of a function. It
is instructive, then, to review studies of size restriction on hypotheses in the inductive inference
literature. These studies have been motivated by a desire to model Occam’s Razor 3—a heuristic
about the desirability of parsimony in explanations.

1Several papers in computational learning theory, which investigate identification of computer programs for
computable functions, have already provided explicit insights into inductive inference in science (see, for example,
[33, 6, 15, 12, 2, 11, 21, 27]).

2For each of the criteria of successful learning studied in this paper, it is easy to show that, without loss of

generality, the graphs of the (total) function inputs can be received in standard order.
3Entia non sunt multiplicanda, præter necessitatem: attributed to the medieval philosopher William of Occam.

However, W. M. Thorburn [41] raises some doubts as to whether William of Occam ever used the above expression,
and raises the possibility that it may have originated in the work of Duns Scotus. According to Thorburn [42],
the terminology, Occam’s Razor, seems to have first appeared in 1852 in the work of Sir William Hamilton.
Moody [31] provides a study of the philosophy of William of Occam. ‘Occam’ is sometimes spelled ‘Ockham’.

1

The study of size restriction on hypotheses requires that we clarify the notion of size of
hypotheses. Since hypotheses conjectured by learning machines are computer programs, any
size measure that satisfies Blum’s [8] axioms for size measures suffices. It is easy to see that one
of the simplest size measures satisfying Blum’s axioms is the index of the program. We present
our results in the context of this simple size measure. We, however, note that all the results
described in the present paper hold for any Blum size measure. The choice of index of program
as the size measure is motivated by its simplicity and its use in earlier studies of program size
restrictions in machine induction.

Freivalds [17] was the first to consider a criterion of success in which a learning machine was
required to conjecture the minimal size program for the function being identified. Unfortunately,
this criterion of success turned out to be mathematically problematical since the collections of
functions that could be identified according to this criterion were dependent on the acceptable
programming system used to interpret a learner’s conjectures. More precisely, he showed that
there are acceptable programming systems in which only finite classes of computable functions
can be minimally identified and other acceptable systems in which infinite classes of computable
functions can be so identified. Freivalds [17] relaxed the stringent minimality requirement to
introduce a criterion of success called nearly minimal identification according to which a learner
need converge only to a program for the function whose size is within a computable “fudge
factor” of the minimal size program for the function. This criterion, called herein MEx and
which is acceptable programming system independent4, turned out to be a useful notion and
was extended in Chen [16] to include the case of anomalies in the final hypothesis (see [24]
for extension of Freivalds’ and Chen’s work to language identification). However, it is easy to
see that nearly minimal identification does not provide a suitable model for inference without
paradigm shift because, although there is a size restriction placed on the final hypothesis,
a learner is free to conjecture hypotheses of arbitrary size before the onset of convergence.5

Addressing this objection yields our first model of induction without paradigm shift. This
formulation, referred to as severely parsimonious identification, requires that a learner not only
conjecture a final program that is within a computable fudge factor of minimal size, but all its
conjectures on the function being identified are required to be within that computable fudge
factor of minimal size. We clarify this notion in the next definition.

Definition 2 (a) M is severely parsimonious on a collection of functions S just in case there
exists a computable function h such that, for each f ∈ S, M, on initial segments of f ,
outputs only programs that are of size no greater than h(minimal size program for f).

(b) SpEx denotes the set of collections S of functions such that there exists a machine that
is severely parsimonious on S and that Ex-identifies S.

A somewhat stronger requirement in which the learner behaves severely parsimoniously on every
computable function is referred to as globally severely parsimonious identification. The class
gSpEx is defined to be the collection of sets of functions, S, such that there exists a machine
that is severely parsimonious on every computable function and that Ex-identifies S. This
latter, global version of severe parsimony turns out to be too restrictive since we are able to
show that only finite collections of functions can be identified by globally severely parsimonious
learners. On the other hand there are infinite collections of functions that can be identified by

4Furthermore, the presence of the computable fudge factor in nearly minimal identification and in our new

criteria below together with Blum’s recursive relatedness result for his program size measures [8] nicely wash out
any possible dependence of these criteria on the choice of Blum program size measure.

5It does quite importantly model the possible goal in science of eventually finding parsimonious explanations.

2

severely parsimonious learners. However, no infinite r.e. class of (total) computable functions
is identifiable by severely parsimonious machines! Surprisingly, then, standard classes easily
and naturally identifiable without the constraint of severe parsimony (for example, by the
enumeration technique [22, 6]) are no longer identifiable with this constraint.

The simplicity of severely parsimonious identification notwithstanding, it suffers from a
crucial drawback as a model of induction without paradigm shift. The following argument
illuminates this point.

There is nothing that prevents a learner from going from a small size conjecture to a large
size conjecture: The restriction is due to the size of the programs conjectured in relation to the
minimal size program for the function being learned, and not due to the sizes of the various
conjectured programs. To see this point, suppose on successive initial segments a learner outputs
a very small size program and a very large size program. It is not clear if a paradigm shift (of
the kinds we are considering) has taken place. One cannot be sure that such a paradigm shift
has taken place since later parts of the function may be complex enough so that the size of
minimal program for the function is huge, hiding all the earlier differences in the conjectures.
Although the global version of severe parsimony avoids this problem, as noted above, it turns
out to be too restrictive.

To address these concerns, we introduce another approach to modeling induction without
paradigm shifts. This new approach considers learners that, on any computable function,
conjecture programs which differ only “slightly” in size from each other. We make this idea
precise with the help of some technical machinery. Suppose M is a learning machine and f is
a computable function. Then, ProgSet(M, f) is defined to be the collection of programs that
are output by M on any initial segment of f .

Definition 3 A learning machine M is said to be non-revolutionary just in case there exists a
computable function h such that for each computable f ,

max(ProgSet(M, f)) ≤ h(min(ProgSet(M, f))).

In other words, the range of a non-revolutionary machine’s conjectures on any computable
function is limited in terms of size, in fact there is a bound on how large the largest size
conjecture can be in relation to the smallest size conjecture and this bound is uniform across
every computable function.

Definition 4 NrEx denotes the set of collections of functions, S, such that some non-
revolutionary machine Ex-identifies each function in S.6

Clearly, non-revolutionary learners capture an interesting notion of induction without
paradigm shifts.

In the present paper we completely compare the power of all criteria considered (with and
without anomalies allowed and/or mind change bounds [3, 15]), and below are some interesting
highlights.

Of course we would (correctly) expect the non-revolutionary restriction to limit learning
power, i.e., we expect and have (from Theorem 32) that (Ex − NrEx) 6= ∅. Surprisingly,
though, this theorem says, moreover, that some classes can be learned with severe parsimony, no

6It is easily seen that, were we to require instead in the definition of NrEx that some machine M Ex-identifies
each function in S, where M’s non-revolutionary behavior is exhibited on all f ∈ S (and not necessarily on all
computable f), the class NrEx would be the same. Likewise, it would be the same were we to require the
non-revolutionary behavior on all f , computable or otherwise.

3

anomalies and at most one mind change, which classes cannot be learned by a non-revolutionary
machine even with no restrictions on mind changes and allowing an unbounded, finite number
of anomalies in the final programs learned! By contrast, however, we see below from the proof
of Corollary 17(a) and from Proposition 31 that NrEx, unlike SpEx, does contain some infi-
nite r.e. classes of (total) computable functions; hence, the quite conservative non-revolutionary
restriction is, in some other and important cases7, not as strongly deleterious to learning power
as severe parsimony.

Of course the non-revolutionary constraint is quite conservative (as is severe parsimony).
Allowing, say, up to one extra mind change toward a final program learned under the non-
revolutionary constraint is seemingly trivially liberal—one little mind change of bounded size
doesn’t seem to make a revolution. However, by Theorem 35, somewhat surprisingly, there
are classes learnable with the non-revolutionary constraint, up to (i+ 1) mind changes, and no
anomalies, which classes cannot be learned with no size constraint, an unbounded, finite number
of anomalies in the final program, but with no more than i mind changes. Hence, in some cases,
the possibility of one extra mind change is considerably more liberating than removal of the
quite conservative non-revolutionary constraint. The proof of this result is combinatorially
interesting.

Also, we have, by Corollary 34(a), that possible anomalies, like possible mind changes, in
some cases, liberate more learning power than permitting revolutionary shifts in program size.
This result, however, follows easily from prior results in the literature.

Theorems 26 and 24 provide results similar to those of the just above two paragraphs, but
for the very conservative constraint of severe parsimony.

Though this paper is mostly concerned with function identification, the above notions have
counterparts in language identification. We would like to note that most results carry over to
the language learning context; however, the picture, for language learning without paradigm
shift, is more complicated for vacillatory identification [10, 13, 25]. Future work will also
consider slightly less conservative criteria in which the fudge factor functions h are allowed to
be limiting-recursive [40, 14].

We now proceed formally. Section 2 introduces the notation and preliminary notions from
inductive inference literature. Severely parsimonious identification is considered in Section 3.
Non-revolutionary identification is studied in Section 4. Section 5 deals with issues arising out
of behaviorally correct and vacillatory function learning, each without paradigm shift. Our
proofs of many of the theorems in this paper involve complicated combinatorial arguments.

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [37]. N denotes the set of
natural numbers. ∗ denotes a non-member of N and is assumed to satisfy (∀n)[n < ∗ < ∞].
We let e, i, j, k, l, m, n, p, r, s, t, x, y, and z, with or without decorations, range over N . We
let a, b, c, and d, with or without decorations, range over N ∪ {∗}. We let P, S, X, with
or without decorations, range over subsets of N and we let D range over finite subsets of
N . ∈,⊆,⊂,⊇,⊃, respectively denote membership, subset, proper subset, superset and proper
superset relations for sets. ∅ denotes emptyset. card(P) denotes the cardinality of P . So
then, ‘card(P) ≤ ∗’ means that card(P) is finite. min(P) and max(P) respectively denote the

7Infinite r.e. classes of total computable functions are archetypal examples of Ex-learnable classes [22, 6]
and the object of further important study (for example, [4] regarding the complexity of their inference and [20]
regarding their alleged ubiquity in learning).

4

minimum and maximum element in P . We take min(∅) to be ∞ and max(∅) to be 0.
〈·, ·〉 denotes a 1-1 computable mapping from pairs of natural numbers onto natural numbers.

π1, π2 are the corresponding projection functions. 〈·, ·〉 is extended to n-tuples in a natural way.
η, with or without decorations, ranges over partial functions. For a ∈ N ∪ {∗}, η1 =a η2

means that card({x | η1(x) 6= η2(x)}) ≤ a. (If η1 and η2 are both undefined on input x, then,
as is standard, we take η1(x) = η2(x).) domain(η) and range(η) respectively denote the domain
and range of the partial function η.

f, g, h, with or without decorations, range over R. C and S, with or without decorations,
range over subsets of R. ψ ranges over acceptable programming systems for the partial com-
putable functions: N → N . ψi denotes the partial function computed by the i-th program in
the ψ programming system. For the sake of brevity, we refer to the acceptable programming
system ψ as simply the ψ-system. ϕ denotes a fixed acceptable programming system. ϕi de-
notes the partial computable function computed by program i in the ϕ-system. We let Φ be an
arbitrary Blum complexity measure [7] associated with the acceptable programming system ϕ;
such measures exist for any acceptable programming system [7]. For a given partial computable
function η, we define MinProg(η) to denote min({i | ϕi = η}).

2.1 Function Identification in the Limit

We first describe function learning machines. We assume, without loss of generality, that the
graph of a function is fed to a machine in canonical order. For f ∈ R and n ∈ N , we let f [n]
denote the finite initial segment {(x, f(x)) | x < n}. Clearly, f [0] denotes the empty segment.
SEG denotes the set of all finite initial segments, {f [n] | f ∈ R ∧ n ∈ N}. We let σ, with or
without decorations, range over SEG.

Definition 5 [22] A function learning machine is an algorithmic device that computes a map-
ping from SEG into N ∪ {?}.

Intuitively, “?” above denotes the case when the machine may not wish to make a conjecture.
Although it is not necessary to consider learners that issue “?” for identification in the limit,
it becomes useful when the number of mind changes a learner can make is bounded. In this
paper, we assume, without loss of generality, that once a function learning machine has issued
a conjecture on some initial segment of a function, it outputs a conjecture on all extensions of
that initial segment. This is without loss of generality, because a machine wishing to emit “?”
after making a conjecture can instead be thought of as repeating its old conjecture. We let M,
with or without decorations, range over learning machines.

Since the set of all finite initial segments, SEG, can be coded onto N , we can view these
machines as taking natural numbers as input and emitting natural numbers or ?’s as output.
The next definition describes function identification in the limit. We also consider the case in
which the final program is allowed to have anomalies. Some notation about anomalous programs
is in order. Recall that for a ∈ N ∪ {∗}, a partial recursive function η, and a recursive function
f , we say that η =a f (read: η is an a-variant of f) just in case card({n | η(n) 6= f(n)}) ≤ a.
If η(x) is defined and η(x) 6= f(x), then η is said to be convergently different from f at x.
It is helpful to think of a program i for η as an “anomalous explanation” for f , that is, an
explanation with a finite number of anomalies (in fact, ≤ a anomalies) in its predictions of
values of f . In this case i is referred to as an a-error program for f . Finally, we say that M(f)

converges to i (written: M(f)↓ = i) iff (
∞
∀ n)[M(f [n]) = i]; M(f) is undefined if no such i

exists.

5

Definition 6 [22, 6, 15] Let a, b ∈ N ∪ {∗}. Let f ∈ R.

(a) M Exab -identifies f (written: f ∈ Exab (M)) just in case there exists an a-error program i

for f such that M(f)↓ = i and card({n |? 6= M(f [n]) 6= M(f [n+1])}) ≤ b (i.e., M makes
no more than b mind changes on f).

(b) M Exab -identifies S iff M Exab -identifies each f ∈ S.

(c) Exab = {S ⊆ R | (∃M)[S ⊆ Exab (M)]}.

The relationship between the above criteria is summarized in the following theorem.

Theorem 7 [15, 6]

(a) Let b ∈ N ∪ {∗}. Then, Exb = Ex0
b ⊂ Ex1

b ⊂ Ex2
b ⊂ · · · ⊂ Ex∗

b .

(b) Let a ∈ N ∪ {∗}. Then, Exa0 ⊂ Exa1 ⊂ Exa2 ⊂ · · · ⊂ Exa∗.

(c) (∀a, b, c, d ∈ N ∪ {∗})[Exab ⊆ Excd ⇐⇒ (a ≤ c) ∧ (b ≤ d)].

2.2 Nearly Minimal Identification

Since our study of induction without paradigm shift is intimately related to identification of suc-
cinct programs, we next define the notion nearly minimal identification considered by Freivalds
[17] and extended by Chen [16].

Definition 8 [17, 19, 16] Let a, b ∈ N ∪ {∗}.

(a) M MExab -identifies f , with recursive fudge factor h, (written: f ∈ MExab (M, h)) iff M

Exab -identifies f and M(f) ≤ h(MinProg(f)).

(b) M MExab -identifies S, iff there exists a recursive fudge factor h such that, S ⊆
MExab (M, h).

(c) MExab = {S ⊆ R | (∃M)[M MExab -identifies S]}.

We write MEx for MEx0
∗ and MExa for MExa∗.

The following is a theorem relating MEx-identification and Ex-identification.

Theorem 9 [16, 23] Let a, b, c, d ∈ N ∪ {∗} and n ∈ N . Then

(a) MExab ⊆ Excd ⇐⇒ (a ≤ c) ∧ (b ≤ d).

(b) Exan ⊂ MExa∗.

(c) Ex0
0 −MEx∗

n 6= ∅.

(d) Ex0 −MExn 6= ∅.

(e) Ex∗ = MEx∗.

Before we begin our discussion of machine induction without revolutionary paradigm shifts,
we present the following lemma which is useful in many of our diagonalization results.

Lemma 10 [32] There exists an r.e. sequence M0,M1, . . . , of learning machines such that for
all criterion of identification, I, discussed in this paper, for all S ∈ I, there exists an i such
that S ∈ I(Mi).

6

The reader should note that the above lemma holds not only for I ∈ {Exab ,MExab} but for all the
other criteria defined in the sequel. The advantage of the above lemma is that in diagonalization
arguments it suffices to show that none of the learning machines in the sequence M0,M1,M2, . . .

is successful.

3 Severely Parsimonious Identification

As noted in the introductory section, the constraint of severe parsimony requires a learning ma-
chine to emit programs of size within a computable “fudge” factor of the minimal size program.
We formalize this notion in the next definition. In doing so we also consider the following two
modifications on the constraint of severe parsimony as described in the introduction.

(a) Allowing the final programs to contain errors.

(b) Introducing a bound on the number of mind changes before the onset of convergence.

Definition 11 Let a, b ∈ N ∪ {∗}.

(a) M is severely parsimonious on S ⊆ R just in case there exists a recursive function h such
that, for each f ∈ S, for each n ∈ N , M(f [n]) ≤ h(MinProg(f)).

(b) M is globally severely parsimonious just in case M is severely parsimonious on R.

(c) SpExab = {S ⊆ R | (∃M)[M is severely parsimonious on S and M Exab -identifies S]}.

(d) gSpExab = {S ⊆ R | (∃M)[M is globally severely parsimonious and M Exab -identifies
S]}.

Intuitively, SpExab denotes the class of sets of functions, S, such that some machine that is
severely parsimonious on S Exab -identifies S. On the other hand gSpExab denotes the class of
sets of functions that can be identified by a globally severely parsimonious machine. It is easy
to see that for all a, b ∈ N ∪ {∗},

gSpExab ⊆ SpExab .

Clearly, SpEx is SpEx0
∗. Also, by SpExa we mean SpExa∗. We first establish the following

result which shows that, if a machine M is severely parsimonious on an r.e. collection of functions
S, then M outputs only finitely many programs on initial sequences drawn from functions in
S. This result is used to show that gSpEx is a trivial class.

Theorem 12 Suppose S is an r.e. class of recursive functions and M is severely parsimonious
on S. Then card({M(f [n]) | f ∈ S ∧ n ∈ N}) <∞.

Proof. Let S be an r.e. class of recursive functions. Suppose by way of contradiction that M

is severely parsimonious on S and card({M(f [n]) | f ∈ S ∧ n ∈ N}) = ∞. Then for all i,
there exists an f ∈ S and an n ∈ N such that M(f [n]) > i.

Let h be such that, for all f ∈ S and n ∈ N , M(f [n]) ≤ h(MinProg(f)). Without loss of
generality we can assume that h is an increasing function. Now, by the implicit use of Kleene’s
recursion theorem [37], there exists an e such that ϕe may be defined as follows.

7

begin {Definition of ϕe}

Search for an f ∈ S and n ∈ N such that M(f [n]) > h(e).
{This search is possible because S is r.e. and because of the supposition.}

If and when such an f, n are found, let ϕe = f .

end {Definition of ϕe}

It is easy to see that ϕe ∈ S and for some n, M(ϕe[n]) > h(e). A contradiction. Thus, if
M is severely parsimonious on S, then card({M(f [n]) | f ∈ S ∧ n ∈ N}) <∞.

The construction in the just previous proof is quite like of Blum’s [8] in his proof that
programs in an acceptable system can be vastly more succinct than corresponding programs
from a subrecursive system such as loop programs [30] for the primitive recursive functions (see
also [29, 39]).

As a corollary to the above theorem we have.

Corollary 13 Suppose S is an infinite r.e. class of recursive functions. Then, S 6∈ SpEx.

As a corollary to proof of Theorem 12 we have that, if M is severely parsimonious on R,
then range of M consists of only finitely many conjectures. Thus,

Corollary 14 (∀S ⊆ R)[S ∈ gSpEx ⇐⇒ card(S) <∞].

Thus, globally parsimonious machines can Ex-identify only finitely many functions.8 The non-
global version of severe parsimony, however, is not so restrictive since it can potentially identify
classes that are not r.e. This is the subject of the next theorem.

Theorem 15 (∃S ⊆ R)[card(S) = ∞∧ S ∈ SpEx0
0].

Proof. We will construct an acceptable programming system ψ such that an infinite class
of functions is SpEx0

0 identifiable in the programming system ψ. Since the class SpExab is
acceptable programming system independent, we have our result. Such constructions will be
used in other proofs in this paper. Freivalds was the first to use such constructions [17] (see
also, [18]).

Define ψ as follows.
Let ψ3i = ϕi. Note that this makes ψ acceptable. For j not divisible by 3, let ψj be defined

as follows: ψj(x) = j, for all x. Let S = {ψj | j is not divisible by 3 and MinProg(ψj) = j}. It
is easy to see that S is an infinite class.

Define a machine M as follows: for n > 0, M(f [n]) = f(0). It is easy to see that M

witnesses S ∈ SpEx0
0.

An immediate corollary of the above two theorems follows:

Corollary 16 gSpEx ⊂ SpEx.

Intuitively, the reason for the validity of the above corollary is that for global parsimony
one requires a machine to be parsimonious on all initial segments; this restricts the machine
to emit only finitely many distinct conjectures. However, for successful SpEx-identification a
machine need not be parsimonious on all initial segments; it needs to be parsimonious only on
initial segments of functions from the class being identified. This leaves open the possibility
that a machine may parsimoniously identify a class of functions that contains no infinite r.e.
class as a subset. This is what is exploited in the proof of Theorem 15 above.

8Even for identification with anomalies globally parsimonious machines cannot identify much since all the
functions identified by the machines must be within the specified error bound of functions computed by finitely
many programs.

8

3.1 Severe Parsimony and Nearly Minimal Identification

Because of the results in the previous section, we only investigate the non-global version of
severe parsimony. Our first aim is to compare the effects of altering the parameters a and b in
SpExab . This is facilitated by looking at SpExab in relation to nearly minimal identification,
that is classes MExab . It is easy to verify that for all a, b ∈ N ∪ {∗},

SpExab ⊆ MExab .

First, we would like to find out how does SpEx0 compare with Ex0
0. To this end it is helpful to

consider the class S0 = {f | ϕf(0) = f}. It can be shown that S0 contains an infinite r.e. class as

a subset. It is also easy to see that S0 ∈ Ex0
0. Thus, as an immediate consequence of Theorem 13

above we have Corollary 17(a) below which says that there are collections of functions that can
be finitely identified, but which cannot be identified in the limit by severely parsimonious
learners. Additionally, since Freivalds [17] (see also Chen [16]) showed that S0 ∈ MEx0, we
also get Corollary 17(b).

Corollary 17

(a) Ex0
0 − SpEx0 6= ∅.

(b) MEx0 − SpEx0 6= ∅.

A natural question is, if the anomalous version of severe parsimony is considered, does Part
(a) of the above corollary still hold (i.e., is Ex0

0 − SpEx∗ 6= ∅?). To answer this question, we
introduce the following technical definition.

Definition 18 Let a ∈ N ∪ {∗}.

(a) A finite set D a-supports a class of recursive functions S just in case, for each f ∈ S,
there exists an i ∈ D such that ϕi =a f .

(b) S ⊆ R is a-supportable just in case there exists a finite set that a-supports S.

Intuitively, D a-supports S iff, for each f ∈ S, D contains a program for an a-variant of f .
The next corollary is a counterpart of Corollary 13 for SpExa. It follows immediately from
Theorem 12.

Corollary 19 Let a ∈ N ∪ {∗}. Suppose S is r.e. and not a-supportable. Then S 6∈ SpExa.

It can be shown that S0 contains r.e. classes of functions that are not a-supportable for any
a ∈ N ∪ {∗}. Hence, an immediate consequence of Corollary 19 is that S0 6∈ SpExa for any
a ∈ N ∪ {∗}. This yields the following corollary.

Corollary 20

(a) Ex0
0 − SpEx∗ 6= ∅.

(b) MEx0 − SpEx∗ 6= ∅.

We now consider whether Part (b) of the above corollary can be further strengthened when
mind changes are introduced in the class MEx0. Also, the following proposition is immediate.

Proposition 21 Let a ∈ N ∪ {∗}. MExa0 ⊆ SpExa0.

9

Note that, since SpExab ⊆ MExab , it follows that MExa0 = SpExa0.
A natural question is what happens to the above proposition if we allow up to one mind

change in nearly minimal identification. That is, we would like to know, if by allowing extra
mind changes in nearly minimal identification, can we get out of severely parsimonious iden-
tification. The answer to this question turns out to be affirmative as implied by the following
theorem.

Theorem 22 MEx0
1 − SpEx∗ 6= ∅.

Proof. We assume that M0,M1,M2, . . . is an r.e. sequence of learning machines given in
Lemma 10. We will construct an acceptable programming system ψ and a class Cψ such that,
with respect to this programming system, Cψ is in MEx0

1−SpEx∗
∗. (Since the inference classes

MEx0
1 and SpEx∗

∗ are acceptable programming system independent, we will have our result.)
Let C0

ψ = {f ∈ R | (∀x)[f(x) = MinProgψ(f)]}.

Let C1
ψ = {f ∈ R | (∃y > 0)[f(y) = MinProgψ(f) ∧ (∀x < y)[f(x) = f(0) 6= f(y)] ∧ (∀x >

y)[f(x) = f(y)]]}.
Let Cψ = C0

ψ ∪ C1
ψ.

It is easy to see that, for each acceptable programming system ψ, Cψ ∈ MEx0
1.

We will now construct an acceptable programming system ψ such that Cψ 6∈ SpEx∗
∗. Our

intention is to make C0
ψ infinite, forcing any machine which SpEx∗-identifies C0

ψ to output
arbitrarily large programs on constant functions. This in turn will allow us to construct members
of C1

ψ diagonalizing against such machines. We now proceed formally.
Let, ψ4i = ϕi. Note that this makes ψ acceptable.
For all i, for all j, such that 42i+1 < j < 42i+2, for all x, let ψj(x) = j.
Let Si = {ψj | 42i+1 < j < 42i+2}. Note that for any i, at least card(Si)− (42i+1 + 1) of the

functions in Si are in C0
ψ. This ensures that any M that witnesses Cψ ∈ SpEx∗

∗ must output
arbitrarily large programs on functions in CONST = {f | (∀x)[f(x) = f(0)]}. We will use this
fact to define ψj , where 42i < j < 42i+1. Our intention is to use these ψj to define functions
in C1

ψ diagonalizing against machines which output arbitrarily large programs on functions in

CONST (programs j, such that 42〈k,l〉 < j < 42〈k,l〉+1, will be used to diagonalize against
machine Mk, with fudge factor ϕl).

Let gi denote the constant function λx [i], i.e., for all x, gi(x) = i.
Let Xk,l = {i > 42〈k,l〉+1 | ϕl(4

2〈k,l〉+1)↓ ∧ (∃n)[Mk(gi[n]) > ϕl(4
2〈k,l〉+1)]}.

Intuitively, Xk,l is used to collect the functions gi, such that Mk on gi outputs a large
program (a program larger than ϕl(4

2〈k,l〉+1)). Note that if Mk, using recursive fudge factor
ϕl, witnesses that C0

ψ ∈ SpEx∗
∗ then Xk,l must be infinite (note that ϕl must be total and thus

ϕl(4
2〈k,l〉+1) is defined).
Fix j, such that 42〈k,l〉 < j < 42〈k,l〉+1. We now define ψj . Let i be (j−42〈k,l〉)-th element in

some fixed 1–1 recursive enumeration of Xk,l (if no such element exists, then ψj is everywhere
undefined). Let n be such that Mk(gi[n]) > ϕl(4

2〈k,l〉+1). Let ψj be defined as follows: ψj(x) =
i, if x ≤ n; ψj(x) = j otherwise.

We now show that Cψ 6∈ SpEx∗
∗. So suppose by way of contradiction that Mk witnesses

Cψ ∈ SpEx∗
∗, where the recursive fudge factor is ϕl. Without loss of generality we assume that

ϕl is increasing. Now let us consider the functions ψj , where 42〈k,l〉 < j < 42〈k,l〉+1. It is easy to
see (by the construction of these ψj ’s) that each of these ψj ’s are total, distinct, and on each of
them Mk outputs a program larger than ϕl(4

2〈k,l〉+1). Also, at least one of these ψj ’s is in C1
ψ

(since at most 42〈k,l〉 + 1 of these ψj ’s do not belong to C1
ψ). This contradicts the assumption

10

that Mk witnesses Cψ ∈ SpEx∗
∗ where the recursive fudge factor is ϕl. Thus, no such Mk can

exist and we have Cψ 6∈ SpEx∗
∗.

As a corollary to the above results, we have:

Corollary 23 Suppose a, b, c, d ∈ N ∪ {∗}. MExab ⊆ SpExcd ⇐⇒ (b = 0) ∧ (a ≤ c).

3.2 Anomaly Hierarchy for Severe Parsimony

Using Proposition 21 and Theorem 9 we get the next result which says that there are collections
of functions that can be severely parsimoniously identified with up to i + 1 errors in the final
program, but that cannot be identified by allowing only up to i errors in the final program.

Theorem 24 (∀i ∈ N)[SpExi+1
0 − Exi 6= ∅].

This result yields the following anomaly hierarchy that underscores the fact that allowing ex-
tra errors in the final program makes larger collections of functions identifiable by severely
parsimonious machines.

Corollary 25 SpEx ⊂ SpEx1 ⊂ SpEx2 ⊂ · · · ⊂ SpEx∗.

3.3 Mind Changes and Severe Parsimony

We now consider bounding the number of mind changes in severely parsimonious identification.
We are able to establish the following result which says that there are collections of functions
for which 0-error programs can be identified by severely parsimonious learners by allowing up
to i + 1 mind changes, but for which even a finite variant program cannot be Ex-identified if
up to only i mind changes are allowed.

Theorem 26 (∀i ∈ N)[SpExi+1 − Ex∗
i 6= ∅].

Proof. We assume that M0,M1,M2, . . . is an r.e. sequence of learning machines given in
Lemma 10. We will construct an acceptable programming system ψ and a class C such that
C ∈ SpEx0

i+1 − Ex∗
i .

The construction of ψ will be facilitated by a recursive function h. We will set h(0) = 0. For
j ∈ N , h(j) will denote the beginning of the jth group of programs. Program between h(j) and
h(j+1) will be further divided into (j+2) groups of (2i+3) programs. Programs between h(j)
and h(j + 1) will be used for diagonalization against machine Mj . We now proceed formally.

Let h(0) = 0, and h(j + 1) = (j + 2) · (2i+ 3) + h(j) + 1.
Let ψh(j) = ϕj . This makes ψ an acceptable programming system.
Below, we define ψk, for k such that h(j) < k < h(j + 1); these programs will be used for

diagonalization against Mj .
Let g be a function defined as follows:
For j ∈ N , for k ≤ j+ 1, for s ≤ 2i+2, let g(j, k, s) = h(j)+ 1 + (2i+ 3) · k+ s. Intuitively,

for a given j, g is used to divide the programs between h(j) and h(j + 1) into j + 2 groups of
size 2i+ 3 each — the k-th group consisting of programs, g(j, k, 0), g(j, k, 1), . . . , g(j, k, 2i+ 2).
These programs will satisfy the following properties:

(A) (∀j)(∀k ≤ j + 1)(∀s ≤ 2i+ 2)[ψg(j,k,s)(0) = j ∧ ψg(j,k,s)(1) = k].

(B) For all j ∈ N , for all k ≤ j + 1 and for all s ≤ 2i+ 2, if ψg(j,k,s) ∈ R, then ψg(j,k,s) satisfies
the following properties:

11

(B.1) (
∞
∀ x)[ψg(j,k,s) = s].

(B.2) (∀x, x′ | 2 ≤ x ≤ x′)[ψg(j,k,s)(x) ≤ ψg(j,k,s)(x
′)].

Thus, for x ≥ 2, ψg(j,k,s) is a nondecreasing function bounded by s.

(B.3) card({ψg(j,k,s)(x) | x ≥ 2}) ≤ i+ 2.

Note: If ψg(j,k,s) 6∈ R, then it would be the case that (∀x ≥ 2)[ψg(j,k,s)(x)↑].

(C) For all j ∈ N , for all k ≤ j + 1, there exists an s ≤ 2i + 2, such that ψg(j,k,s) ∈ R and
ψg(j,k,s) 6∈ Ex∗

i (Mj).

We will describe ψg(j,k,s) satisfying the above properties later. However, we first show how

we can construct C ∈ (SpEx0
i+1 − Ex∗

i) using the above properties.
For each j, let kj ≤ j + 1 be such that (∀l ≤ j)[ϕl(1) 6= kj]. Note that, by the pigeonhole

principle, there exists such a kj . This property is needed to ensure that for all f ∈ C (defined
below), h(f(0)) < MinProgψ(f) < h(f(0) + 1).

Let C = {ψg(j,kj ,s) | ψg(j,kj ,s) ∈ R ∧ j ∈ N ∧ s ≤ 2i+ 2}.
It follows immediately by Property (C) above that, C 6∈ Ex∗

i . Also using the fact that for
all f ∈ C, h(f(0)) < MinProgψ(f) < h(f(0) + 1) and Property (B) above, it is easy to show

that C ∈ SpEx0
i+1. To see this note that a machine which on input f [n], for n > 2, outputs

g(f(0), f(1), f(n− 1)) witnesses that C ∈ SpEx0
i+1.

Fix j ∈ N and k ≤ j + 1. We now define ψg(j,k,s), for s ≤ 2i+ 2.

begin {Definition of ψg(j,k,s), for s ≤ 2i+ 2}

1. For s ≤ 2i+ 2, let ψg(j,k,s)(0) = j.

For s ≤ 2i+ 2, let ψg(j,k,s)(1) = k.

(The above satisfies Property (A).)

2. For x ≥ 2, let ψg(j,k,0)(x) = 0.

3. Search for a t > 2, such that Mj(ψg(j,k,0)[t]) 6=?.

Let p = 0.

4. for s = 0 to i do

4.1. Define ψg(j,k,2s+1) and ψg(j,k,2s+2) as follows.

ψg(j,k,2s+1)(x) =

{

ψg(j,k,p)(x), if x < t;
2s+ 1, otherwise.

ψg(j,k,2s+2)(x) =

{

ψg(j,k,p)(x), if x < t;
2s+ 2, otherwise.

4.2. Search for p′ ∈ {2s+ 1, 2s+ 2} and t′ > t such that Mj(ψg(j,k,p)[t]) 6= Mj(ψg(j,k,p′)[t
′]).

4.3. If and when such p′, t′ are found, let t = t′ and p = p′.

endfor

end {Definition of ψg(j,k,s), for s ≤ i+ 1}

We now show that the definition of ψg(j,k,s) satisfies clauses (B) and (C) above. Properties
(B.1) and (B.2) are immediate from the construction Step 4.1. Property (B.3) holds since, for
each s ≤ i, at most one of 2s+ 1, 2s+ 2, is placed in the range of any ψg(j,k,·) (see Step 4.1).

We now show Property (C). Consider the following cases.
Case 1: Search at Step 3 does not succeed.

12

In this case, clearly ϕg(j,k,0) 6∈ Ex∗
i (Mj).

Case 2: All the iterations of the for loop at Step 4 terminate.
In this case, for p′ as found in Step 4.2 of the last iteration of the for loop, Mj makes at

least i+1 mind changes on ψg(j,k,p′) (since each iteration of the for loop forces at least one mind
change by Mj).
Case 3: In the above construction, the for loop iteration with s = s′, is entered but not finished.

In this case Mj(ψg(j,k,2s′+1)) = Mj(ψg(j,k,2s′+2)) and both ψg(j,k,2s′+1) and ψg(j,k,2s′+2) are
total. Thus, at least one of ψg(j,k,2s′+1) and ψg(j,k,2s′+2) does not belong to Ex∗

i (Mj).
From the above cases in follows that the construction satisfies Property (C).

The above theorem yields the following hierarchy with the moral that allowing extra mind
changes before the onset of convergence makes larger collections of functions identifiable with
respect to severely parsimonious identification.

Corollary 27 Let a ∈ N ∪ {∗}. SpExa0 ⊂ SpExa1 ⊂ · · · ⊂ SpExa∗

As a corollary to Theorems 24 and 26, we have

Corollary 28 Let a, b, c, d ∈ N ∪ {∗}. Suppose I ∈ {Ex,SpEx,MEx}. Then,
SpExab ⊆ Icd ⇐⇒ (a ≤ c) ∧ (b ≤ d).

4 Non-Revolutionary Identification

As noted in the introductory section, the notion of severe parsimony has some drawbacks as
a model for induction without paradigm shift. In particular, a severely parsimonious learner
can issue conjectures that have wide variance in size because the only restriction on the size
of the conjectures is that they be within a computable factor of the minimal size program
for the function being learned. Now for a function with large minimal size program (together
with a high growth computable “fudge” factor), the requirement of severe parsimony leaves the
scope for conjectures to vary greatly in size. What seems to be needed is that the smallest
size conjecture and the largest size conjecture on a function do not vary too much. This need
motivates the notion of non-revolutionary identification.

Definition 29 Let M and f ∈ R be given. Then ProgSet(M, f) = {M(f [n]) | n ∈ N ∧
M(f [n]) 6=?}.

Definition 30 Let a, b ∈ N ∪ {∗}.

(a) M is non-revolutionary just in case there exists a recursive h such that, for each f ∈ R,
max(ProgSet(M, f)) ≤ h(min(ProgSet(M, f))).

(b) NrExab = {S | (∃M)[M is non-revolutionary and S ⊆ Exab (M)]}.

In the above definition we assume that h(∞) = ∞. This is needed for the case when
ProgSet(M, f) is empty (thus, when ProgSet(M, f) is empty, the non-revolutionary constraint
is satisfied). We consider the comparison between Exab , MExab , SpExab and NrExab for various
values of a and b. To begin with, the following proposition immediately follows from the
definition.

Proposition 31 Exa0 ⊆ NrExa0.

13

We first consider the case when it is possible for severely parsimonious identification to di-
agonalize against NrEx. The next theorem shows that there are collections of functions for
which a severely parsimonious machine can identify an error free program if it is allowed up
to 1 mind change, but for which even a finite variant program cannot be identified by any
non-revolutionary machine even if an unbounded number of mind changes are allowed.

Theorem 32 SpEx0
1 − NrEx∗

∗ 6= ∅.

Proof. We will construct an acceptable programming system ψ and a class Cψ such that
Cψ ∈ (SpEx0

1 − NrEx∗
∗). Since the classes SpEx0

1 and NrEx∗
∗ are acceptable programming

system independent, we have the theorem.
Let ZERO denote the everywhere 0 function.
Let Cψ = {ZERO} ∪ {f | min({x | f(x) 6= 0}) = MinProgψ(f)}.

It is easy to see that, for all ψ, Cψ ∈ SpEx0
1.

We now construct a ψ such that Cψ 6∈ NrEx∗
∗.

Let g be defined as follows.
g(0) = 1

g(j + 1) = 2 · g(j) + 3

Note that the card({p | g(j) < p < g(j + 1)}) = g(j) + 2.
Let ψg(j) = ϕj . This makes ψ an acceptable programming system.
Let ψ0 = ZERO, the everywhere 0 function.
Let fp denote the function,

fp(x) =

{

0, if x < p;
p, otherwise.

Note that for p 6= p′, fp 6=
∗ fp′ .

For p such that p > 0, and p is not in the range of g, let ψp = fp.
Now, for each j, at least one of fp, g(j) < p < g(j + 1), belongs to Cψ (since there are

g(j) + 2 such fp’s and thus at least one of them is not computed by any ψ program ≤ g(j)). It
follows that Cψ contains infinitely many fp’s.

We now show that Cψ 6∈ NrEx∗
∗. Suppose by way of contradiction that M witnesses NrEx∗

∗

identification of Cψ. Then since M witnesses NrEx∗
∗ identification of {ZERO}, there exists

a z such that M(ZERO[z]) 6=?. Let h be an increasing function such that, for all f ∈ R,
max(ProgSet(M, f)) ≤ h(min(ProgSet(M, f))). It follows that for all p > z and m > z,
M(fp[m]) ≤ h(M(ZERO[z])). But there are only finitely many programs ≤ h(M(ZERO[z])),
and infinitely many fp, such that p ≥ n and fp ∈ Cψ. Thus, M cannot Ex∗-identify all
fp ∈ Cψ.

Note that the above proof essentially shows that any class containing an accumulation point
is not in NrEx0

∗.
As a corollary to Proposition 31 and Theorems 24 and 32 we have the following.

Corollary 33 Suppose I ∈ {Ex,MEx,SpEx}. Then,
Iab ⊆ NrExcd ⇐⇒ (b = 0) ∧ (a ≤ c).

We now consider cases in which there are collections of functions that can be identified by non-
revolutionary machines but cannot be identified by other strategies introduced in this paper.

As a corollary to Proposition 31 and results from the previous sections, we have the following.

14

Corollary 34 Suppose n ∈ N .

(a) NrExn+1
0 − Exn∗ 6= ∅.

(b) NrEx0
0 − SpEx∗

∗ 6= ∅.

(c) NrEx0
0 − MEx∗

n 6= ∅.

Proof. Part (a) follows from the fact that Exn+1
0 ⊆ NrExn+1

0 (Proposition 31) and the fact
that Exn+1

0 − Exn∗ 6= ∅ (implied by Theorem 7(c).)
Part (b) follows from the fact that Ex0

0 ⊆ NrEx0
0 (Proposition 31) and the fact that

Ex0
0 − SpEx∗

∗ 6= ∅ (this is Corollary 20(b).)
Part (c) follows from the fact that Ex0

0 ⊆ NrEx0
0 (Proposition 31) and the fact that Ex0

0 −
MEx∗

n 6= ∅ (this is Theorem 9(c).)

Additionally, our proof of Theorem 26 also shows that the following result holds.

Theorem 35 NrEx0
i+1 − Ex∗

i 6= ∅.

Proof. Proof of Theorem 26 actually also shows this theorem, since the machine given in the
proof of Theorem 26 to SpEx0

i+1-identify C also NrEx0
i+1-identifies C.

As a corollary to the above theorem and Part (a) of Corollary 34, we have the following
relationship between NrExab and Excd for various values of a, b, c, d.

Corollary 36 NrExab ⊆ Excd iff a ≤ c and b ≤ d.

Since for n ∈ N and a ∈ N ∪ {∗}, NrExan ⊆ Exan ⊂ MExa (the latter inclusion implied by
Theorem 9(b)), the only case left to consider is NrExa∗ versus MExb∗. The next theorem helps
settle this question; it shows that there are collections of functions that can be identified by
non-revolutionary machines but cannot be identified in the nearly minimal sense even if the
number of errors allowed in the final program is large but bounded. The proof is surprisingly
a bit complex technically.

Theorem 37 For n ∈ N , NrEx0
∗ − MExn∗ 6= ∅.

Proof. For the ease of writing the proof we show only NrEx0 − MEx0 6= ∅. The proof can
be easily generalized to prove the theorem for n > 0, by using a cylindrification of the class C
defined below.

We construct an acceptable programming system ψ and a class C 6∈ MEx0, such that
C ∈ NrEx0(with respect to programming system ψ). Since NrEx0 is acceptable programming
system independent we have our theorem.

Let g be defined as follows.
g(0) = 0

g(i+ 1) = g(i) + i+ 2

Let ψg(i) = ϕi. This makes ψ an acceptable programming system.
We will be taking C = {ψj | ψj ∈ R ∧ j 6∈ range(g)}.
For j not in the range of g, the following properties will be satisfied by ψj :

(A) ψj(0) = i, where g(i) < j < g(i+ 1).

(B) Either ψj ∈ R or (∀x > 0)[ψj(x)↑].

(C) For all k, l, such that ϕl is total, there exist r ∈ N and s ≤ 〈k, l, r〉 such that ψg(〈k,l,r〉)+s+1

is total but ψg(〈k,l,r〉)+s+1 6∈ MEx(Mk, ϕl).

15

It is easy to see that C ∈ NrEx0. This is so since one can easily construct a machine
which, using Property (A), (B) above, Ex-identifies f ∈ C by using only the ψ-programs
g(f(0)) + 1, g(f(0)) + 2, . . . , g(f(0) + 1) − 1. Also by Property (C) above, we will have that
C 6∈ MEx0. Thus, construction of ψj satisfying the above properties would complete the proof.

For each k, l, by the implicit use of the parametric recursion theorem [37], we now define,

• ϕe(k,l) (and thus ψg(e(k,l))).

• functions ψj , where for some r ∈ N and s ≤ 〈k, l, r〉, j = g(〈k, l, r〉) + s+ 1.

We will do so in such a way that Property (C) above is satisfied. This essentially uses the idea
used by Chen [16] to show that functions of finite support cannot be MEx-identified.

Intuitively, e(k, l), plays the role of e in Chen’s construction. The functions of finite support
“actually needed” for diagonalization are computed by programs j of the form g(〈k, l, r〉)+s+1.

begin {Definition of ϕe(k,l) and, for all r ∈ N and s ≤ 〈k, l, r〉, ψg(〈k,l,r〉)+s+1}

1. For all r, s ≤ 〈k, l, r〉, let ψg(〈k,l,r〉)+s+1(0) = 〈k, l, r〉.

This ensures that Property (A) is satisfied.

2. Wait until ϕl(e(k, l))↓.

Let bnd= ϕl(e(k, l))

3. Pick r to be so large that 〈k, l, r〉 >bnd+2.

We will use the programs g(〈k, l, r〉) + s+ 1, where s ≤ 〈k, l, r〉, for diagonalization against
MEx-identification by Mk, using ϕl as the recursive bound.

4. For r′ 6= r, and s′ ≤ 〈k, l, r′〉, ψg(〈k,l,r′〉)+s′+1(x) is undefined for x > 0.

5. Let ψg(〈k,l,r〉)+1 be defined as follows:

ψg(〈k,l,r〉)+1(x) =

{

〈k, l, r〉, if x = 0;
0, otherwise.

6. Let Cancel = ∅, t = 0.

Let ϕe(k,l)(0) = 〈k, l, r〉.

for w = 1 to 〈k, l, r〉 do

loop

Dovetail Steps 6.1 and 6.2 until one of them succeeds. If Step 6.1 succeeds before Step
6.2 does, if ever, then go to Step 6.3. If Step 6.2 succeeds before Step 6.1 does, if
ever, then go to Step 6.4.

6.1. Search for p ≤ bnd such that p 6∈ Cancel, and y > t, ϕp(y)↓.
6.2. Search for t′ > t, such that Mk(ϕg(〈k,l,r〉)+w[t′]) > bnd.
6.3. If and when such a p, y in Step 6.1. is found define ψg(〈k,l,r〉)+w+1 as follows:

ψg(〈k,l,r〉)+w+1(x) =

ψg(〈k,l,r〉)+w(x), if x < y;
ϕp(x) + 1, if x = y;
0, otherwise.

Let Cancel = Cancel ∪ {p}.
For x ≤ y, let ϕe(k,l)(x) = ψg(〈k,l,r〉)+w+1(x).
Let t = y, as found in Step 6.1.
Go to Step 6.5.

6.4. For x < t′, let ϕe(k,l)(x) = ψg(〈k,l,r〉)+w(x).

16

Let t = t′.
forever

6.5. Continue with the next iteration of for loop.

endfor

end {Definition of ϕe(k,l) and, for all r ∈ N and s ≤ 〈k, l, r〉, ϕg(〈k,l,r〉)+s+1 }

The above construction clearly, satisfies properties (A) and (B) above. We now show that
it satisfies Property (C). So suppose k and l are given such that ϕl is total. Thus, Step 2 in
the construction succeeds in seeing that ϕl(e(k, l))↓. Let bnd, r be as defined in Steps 2 and
3 of the construction. Clearly, the for loop can be executed at most bnd+1 times, since the
search in Step 6.1 can succeed only bnd+1 times (after which Cancel contains all the elements
≤ bnd). Thus, there is a last iteration of the for loop. So suppose the last iteration of the for
loop is with index value w. Now clearly, ψg(〈k,l,r〉)+w is a total function and thus a member of
C. We will show that Mk does not MEx-identify ψg(〈k,l,r〉)+w, with the recursive fudge factor
ϕl. We consider two cases:
Case 1: Step 6.2 succeeds finitely often.

In this case either Mk does not converge on ψg(〈k,l,r〉)+w, or it converges to a program ≤ bnd.
However, by Step 6.1 and 6.3 all programs ≤ bnd are convergently different from ψg(〈k,l,r〉)+w
or compute non-total functions.
Case 2: Step 6.2 succeeds infinitely often.

In this case clearly, ϕe(i,j) = ψg(〈k,l,r〉)+w. However, Mk on ψg(〈k,l,r〉)+w infinitely often
outputs a program > bnd= ϕl(e(k, l)) (since Step 6.2 succeeds infinitely often). Thus, Mk does
not MEx-identify ψg(〈k,l,r〉)+w with the recursive fudge factor ϕl.

From the above cases we have that Mk does not witness MEx identification of ψg(〈k,l,r〉)+w,
and thus Property (C) above is satisfied.

As a corollary to Theorem 37, Theorem 9 and Corollary 34 we have,

Corollary 38 NrExab ⊆ MExcd ⇐⇒ (d = ∗) ∧ (c ≥ a) ∧ [(b 6= ∗) ∨ (c = ∗)].

5 Severe Parsimony with Bc and Fex

We now extend the notion of severe parsimony to behaviorally correct identification and vacil-
latory identification. We first introduce these two criteria.

Definition 39 [15, 5] Let a ∈ N ∪ {∗}.

(a) M Bca-identifies f (written: f ∈ Bca(M)) just in case, (
∞
∀ n)[ϕM(f [n]) =a f]. We define

the class Bca = {S ⊆ R | (∃M)[S ⊆ Bca(M)]}.

(b) M Fexa-identifies f (written: f ∈ Fexa(M)) just in case there exists a nonempty finite
set D of a-error programs for f such that for all but finitely many n, M(f [n]) ∈ D. We
define the class Fexa = {S ⊆ R | (∃M)[S ⊆ Fexa(M)]}.

The next definition adapts the notion of severe parsimony to Bca-identification and Fexa-
identification.

Definition 40 Let a ∈ N ∪ {∗}.

(a) SpBca = {S ⊆ R | (∃M)[M is severely parsimonious on S and M Bca-identifies S]}.

17

(b) SpFexa = {S ⊆ R | (∃M)[M is severely parsimonious on S and M Fexa-identifies S]}.

The following proposition is immediate.

Proposition 41 (∀a ∈ N ∪ {∗})[SpBca = SpFexa].

The a = 0 case of the following theorem can be easily handled with a trick of Barzdin and
Podenieks [5] and the a = ∗ case with a trick of Case and Smith [15]; however, the proof of the
other cases is non-trivial.

Theorem 42 (∀a ∈ N ∪ {∗})[SpFexa = SpExa].

Proof. For a = ∗, the theorem follows using the proof of Case and Smith [15] for Fex∗ = Ex∗

(the simulation done in [15] maintains the size of the programs output within a recursive factor
of the maximum program output).

Now suppose a ∈ N . Suppose M is given. We will construct a machine M′ which Exa-
identifies the class of functions which are Fexa-identified by M. Moreover M′ will satisfy the
following property:

There exists a recursive function h such that, for any f ∈ R, the following two conditions
are satisfied:

• max(ProgSet(M′, f)) ≤ h(max(ProgSet(M, f))) and

• min(ProgSet(M′, f)) ≥ min(ProgSet(M, f)).

This would imply the theorem.
Intuitively, we would like to do the Case and Smith [15] simulation of Fex-identification,

except that we do patches in a slightly different way (see details below). This would limit the
variation in program sizes.

We first define some functions useful in the definition of M′.
Let unionpatch be a recursive function (defined implicitly using the s-m-n theorem [37])

such that ϕunionpatch(S,E,k), where k ∈ N and S,E are finite subsets of N , can be defined as
follows.

ϕunionpatch(S,E,k)(x)

if x ∈ E, then

Output ϕk(x).

else

Search for a j ∈ S such that ϕj(x)↓.
Output ϕj(x) for first such j found.

endif

End ϕunionpatch(S,E,j)(x).

Intuitively, ϕunionpatch(S,E,j) computes the union of programs in S, except at inputs from
the set E, where it computes the output based on a specific program k.

Let converr(S) = {x | (∃j, j ′ ∈ S)[ϕj(x)↓ 6= ϕj′(x)↓]}.
Note that if, for some f ∈ R, for all j ∈ S, ϕj =a f , then card(converr(S)) ≤ a · card(S).
Let upatchtwo be a recursive function (implicitly defined using s-m-n theorem [37]) such

that ϕupatchtwo(S,i,k) maybe defined as follows. (We assume without loss of generality that
upatchtwo(S, i, k) ≥ max(S)).

18

ϕupatchtwo(S,i,k)

1. Search for a set E of cardinality i such that E ⊆ {x | (∃j, j ′ ∈ S)[ϕj(x)↓ 6= ϕj′(x)↓]}.

Note that such a set E may not exists if card({x | (∃j, j ′ ∈ S)[ϕj(x)↓ 6= ϕj′(x)↓]}) < i. In
that case ϕupatchtwo(S,i,j)(x)↑, for all x.

2. If and when such an E is found, let ϕupatchtwo(S,i,k) = ϕunionpatch(S,E,k).

End ϕupatchtwo

Intuitively, ϕupatchtwo(S,i,k) assumes that card(converr(S)) = i, and then just simulates
ϕunionpatch(S,E,k), for E, a subset of converr(S) of size i.

Now suppose M is given. Let M′ be defined as follows:

M′(f [m])

Let P = {M(f [m′]) | m′ ≤ m}.

Let S = {i ∈ P | card({x < m | Φi(x) ≤ m ∧ ϕi(x) 6= f(x)}) ≤ a}.

Let E = {x < n | (∃j ∈ S)[Φj(x) ≤ m ∧ ϕj(x) 6= f(x)]}.

if S = ∅,

then

output M′(f [m− 1]) (if m = 0 then output ?).

else

output upatchtwo(S, card(E), p), where p is the (least) program in S which minimizes
card({y ∈ E | Φp(y) > m ∨ ϕp(y) 6= f(y)}).

endif

End M′(f [n])

We first show that M′ Exa-identifies every function that is Fexa-identified by M. To see
this suppose f ∈ Fexa(M) is given.

Let P = ProgSet(M, f).
Let S = {j ∈ P | card({x | ϕj(x)↓ 6= f(x)}) ≤ a}.
Let E = {x | (∃j ∈ S)[ϕj(x)↓ 6= f(x)]}.
Let p be the (least) element of S which minimizes, card({y ∈ E | Φp(y)↑ ∨ ϕp(y)↓ 6= f(y)}).
It is easy to see that M′(f)↓ = upatchtwo(S, card(E), p), and

card({x | ϕupatchtwo(S,card(E),p)(x) 6= f(x)}) ≤ min({card({x | ϕj(x) 6= f(x)}) | j ∈ S}) ≤ a

(since S contains an a error program for f). Thus, M′ Exa-identifies f .
We now show the bound on the elements of ProgSet(M′, f) as claimed, i.e., we show

that, there exists a recursive function h such that, for any f ∈ R, max(ProgSet(M′, f)) ≤
h(max(ProgSet(M, f))) and min(ProgSet(M′, f)) ≥ min(ProgSet(M, f)).

Due to the fact that upatchtwo(S, i, j) ≥ max(S), we have, for any f ∈ R and m ∈ N ,
M′(f [m]) ≥ min(ProgSet(M, f)). Thus, min(ProgSet(M′, f)) ≥ min(ProgSet(M, f)).

Let h be a function defined as follows:
h(j) = max({upatchtwo(S, i, j ′) | S ⊆ {x ≤ j} ∧ i ≤ a ∗ card(S) ∧ j ′ ∈ S}).
Clearly, h is a recursive function. Moreover, for all f ∈ R and m ∈ N , such that M′(f [m]) 6=

?, we have that, M′(f [m]) ≤ h(max(ProgSet(M, f))). Thus,

max(ProgSet(M′, f)) ≤ h(max(ProgSet(M, f))).

19

The bound on ProgSet(M′, f) is as claimed, and hence the theorem follows.

Note that Proposition 41 and the proof of Theorem 42 also work for the non-revolutionary
versions of Fexa and Bca.

6 Future Work

Besides the proposed handling of the cases of language learning and of slightly less conservative,
non paradigm-shifting criteria in which the fudge factor functions h are allowed to be limiting-
recursive [14], it would be interesting to investigate models of paradigm shifts in relation to
massive changes in program control structure [34, 35, 38] and to connect paradigm shifts to the
need, in some cases, for training sequences [1].

The present paper considered machine induction without revolutionary paradigm shifts
where the learning machine was allowed to conjecture hypotheses from an acceptable program-
ming system. An interesting direction to consider is a similar investigation for identification
in non-standard programming systems. This direction is likely to be particularly interesting
since several non-standard programming systems have been shown to be particularly suited to
identification (for example, see Wiehagen [44, 43]).

Acknowledgements

We are grateful to Raghu Raghavan who suggested to the second author to look at the phe-
nomenon of paradigm shift in science. The authors’ discussion of the difficulties of formalizing
paradigm shift eventually led to the present paper.

We are also grateful to the referee for many helpful suggestions, and especially for pointing
out the investigation of machine induction without paradigm shifts in the context of non-
standard programming systems.

This research was partially supported by a grant from the Australian Research Council.

References

[1] D. Angluin, W. Gasarch, and C. Smith. Training sequences. Theoretical Computer Science,
66(3):255–272, 1989.

[2] G. Baliga, J. Case, S. Jain, and M. Suraj. Machine learning of higher order programs.
Journal of Symbolic Logic, 59(2):486–500, June 1994.

[3] J. M. Barzdin and R. Freivalds. On the prediction of general recursive functions. Soviet
Mathematics Doklady, 13:1224–1228, 1972.

[4] J. M. Barzdin and R. Freivalds. Prediction and limiting synthesis of recursively enumerable
classes of functions. Latvijas Valsts Univ. Zimatm. Raksti, 210:101–111, 1974.

[5] J. M. Barzdin and K. Podnieks. The theory of inductive inference. In Mathematical
Foundations of Computer Science, High Tatras, Czechoslovakia, pages 9–15, 1973.

[6] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

[7] M. Blum. A machine-independent theory of the complexity of recursive functions. Journal
of the ACM, 14:322–336, 1967.

[8] M. Blum. On the size of machines. Information and Control, 11:257–265, 1967.

20

[9] J. Case. The power of vacillation. In D. Haussler and L. Pitt, editors, Proceedings of the
Workshop on Computational Learning Theory, pages 133–142. Morgan Kaufmann Pub-
lishers, Inc., 1988. Journal version being revised as per referees’ suggestions for possible
publication in SIAM Journal on Computing.

[10] J. Case. The power of vacillation in language learning. Technical Report 93-08, University
of Delaware, 1992. Expands on [9]; journal version being revised for possible publication
in SIAM Journal on Computing.

[11] J. Case, S. Jain, and Suzanne Ngo Manguelle. Refinements of inductive inference by
popperian and reliable machines. Kybernetika, 30(1):23–52, 1994.

[12] J. Case, S. Jain, and A. Sharma. On learning limiting programs. International Journal of
Foundations of Computer Science, 3(1):93–115, March 1992.

[13] J. Case, S. Jain, and A. Sharma. Vacillatory learning of nearly minimal size grammers.
Journal of Computer and System Sciences, 49(2):189–207, October 1994.

[14] J. Case, S. Jain, and M. Suraj. Not-so-nearly-minimal-size program inference. In Klaus P.
Jantke and Steffen Lange, editors, Algorithmic Learning for Knowledge-Based Systems,
volume 961 of Lecture Notes in Artificial Intelligence, pages 77–96. Springer-Verlag, 1995.

[15] J. Case and C. Smith. Comparison of identification criteria for machine inductive inference.
Theoretical Computer Science, 25:193–220, 1983.

[16] K. Chen. Tradeoffs in inductive inference of nearly minimal sized programs. Information
and Control, 52:68–86, 1982.

[17] R. Freivalds. Minimal Gödel numbers and their identification in the limit. In Proceedings
of the International Conference on Mathematical Foundations of Computer Science, Mar-
ianske Lazne, pages 219–225. Springer-Verlag, 1975. Lecture Notes in Computer Science
32.

[18] R. Freivalds. Inductive inference of minimal programs. In M. Fulk and J. Case, editors,
Proceedings of the Third Annual Workshop on Computational Learning Theory, pages 3–20.
Morgan Kaufmann Publishers, Inc., August 1990.

[19] R. Freivalds and E. B. Kinber. Limit identification of minimal Gödel numbers. Theory of
Algorithms and Programs 3;Riga 1977, pages 3–34, 1977.

[20] M. Fulk. Robust separations in inductive inference. 31st Annual Symposium on Founda-
tions of Computer Science, St. Louis, Missouri, pages 405–410, 1990.

[21] M. A. Fulk and S. Jain. Approximate inference and scientific method. Information and
Computation, 114(2):179–191, November 1994.

[22] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

[23] S. Jain. On a question about learning nearly minimal programs. Information Processing
Letters, 53(1):1–4, January 1995.

[24] S. Jain and A. Sharma. Program size restrictions in computational learning. Theoretical
Computer Science A, 127(2):351–386, May 1994.

[25] S. Jain and A. Sharma. Prudence in vacillatory language identification. Mathematical
Systems Theory, 28(3):267–279, May-June 1995.

[26] Thomas Kuhn. The Structure of Scientific Revolutions. University of Chicago Press,
Chicago, 1970.

21

[27] S. Lange and P. Watson. Machine discovery in the presence of incomplete or ambiguous
data. In K. Jantke and S. Arikawa, editors, Algorithmic Learning Theory, volume 872 of
Lecture Notes in Artificial Intelligence, pages 438–452. Springer-Verlag, Berlin, Reinhards-
brunn Castle, Germany, October 1994.

[28] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms. North
Holland, New York, 1978.

[29] A. Meyer. Program size in restricted programming languages. Information and Control,
21:382–394, 1972.

[30] A. Meyer and D. Ritchie. The complexity of loop programs. In Proceedings of the 22nd
National ACM Conference, pages 465–469. Thomas Book Co., 1967.

[31] Ernst E. Moody. The Logic of William of Ockham. New York, Sheed and Ward Inc., 1935.

[32] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to Learning
Theory for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

[33] H. Putnam. Probability and confirmation. In Mathematics, Matter, and Method. Cam-
bridge University Press, 1975.

[34] G. Riccardi. The Independence of Control Structures in Abstract Programming Systems.
PhD thesis, SUNY/ Buffalo, 1980.

[35] G. Riccardi. The independence of control structures in abstract programming systems.
Journal of Computer and System Sciences, 22:107–143, 1981.

[36] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,
23:331–341, 1958.

[37] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967. Reprinted, MIT Press 1987.

[38] J. Royer. A Connotational Theory of Program Structure. Lecture Notes in Computer
Science 273. Springer Verlag, 1987.

[39] J. Royer and J. Case. Subrecursive Programming Systems: Complexity and Succinctness.
Progress in Theoretical Computer Science. Birkhäuser Boston, 1994.

[40] N. Shapiro. Review of “Limiting recursion” by E.M. Gold and “Trial and error predicates
and the solution to a problem of Mostowski” by H. Putnam. Journal of Symbolic Logic,
36:342, 1971.

[41] W. M. Thorburn. Occam’s Razor. Mind, pages 287–288, 1915.

[42] W. M. Thorburn. The myth of Occam’s Razor. Mind, pages 345–353, 1918.

[43] R. Wiehagen. On the complexity of program synthesis from examples. Electronische
Informationverarbeitung und Kybernetik, 22:305–323, 1986.

[44] R. Wiehagen. A thesis in inductive inference. In P. Schmitt J. Dix, K. Jantke, editor,
Nonmonotonic and Inductive Logic, 1st International Workshop, Karlsruhe, Germany,
volume 543 of Lecture Notes in Artificial Intelligence, pages 184–207. Springer Verlag,
1990.

22

