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Abstract. A partial learner in the limit [16], given a representation of
the target language (a text), outputs a sequence of conjectures, where one
correct conjecture appears infinitely many times and other conjectures
each appear a finite number of times. Following [5] and [14], we define
intrinsic complexity of partial learning, based on reducibilities between
learning problems. Although the whole class of recursively enumerable
languages is partially learnable (see [16]) and, thus, belongs to the com-
plete learnability degree, we discovered a rich structure of incomplete
degrees, reflecting different types of learning strategies (based, to some
extent, on topological structures of the target language classes). We also
exhibit examples of complete classes that illuminate the character of the
strategies for partial learning of the hardest classes.

1 Introduction

In his seminal paper [8], E. M. Gold introduced the framework for algorithmic
learning of languages in the limit from their representations (texts), which be-
came the standard for exploring learnability of languages in the limit (see, for
example [16]). In this model (we will refer to it as TxtEx), a learner outputs an
infinite sequence of conjectures stabilizing on a correct grammar for the target
language. However, Gold himself was the first one to notice that the TxtEx
model has a strong limitation: whereas the class of all finite languages is easily
learnable within this framework, no class £ containing just one infinite language
and all its finite subsets is TxtEx-learnable. In particular, the class of all regular
languages cannot be learnt in the limit just from positive data. To capture the
extent to which the aforementioned class £ would still be learnable from positive
data, Osherson, Stob and Weinstein [16] introduced the concept of partial learn-
ing in the limit: a learner outputs an infinite sequence of conjectures, where one
correct grammar of the target language occurs infinitely many times, whereas
all other conjectures occur at most a finite number of times. The aforementioned
class £ containing an infinite recursive language L and all its finite subsets is
easily learnable in this model by a simple strategy that, every time when a
new datum appears on the input, conjectures a grammar for L, and conjectures
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some standard code for the input seen so far, otherwise. Yet, as it was noted in
[16], partial learning, without any other constraints, is very powerful: the whole
class of all recursively enumerable languages turns out to be partially learnable
— albeit by a much more complex strategy than the one trivially learning the
aforementioned class L.

Partial learning, under various natural constraints, has attracted a lot of
attention recently (see, for example, [15,9,6,7,10]). Though partial learning
can be done for the whole class of recursively enumerable sets, partial learning
with constraints gives interesting results. Although partial learning does not
seem to be as natural as Gold’s classical model of inductive inference, one can
hope that partial learning strategies for important classes of languages (like the
class of regular languages) not learnable within Gold’s framework can shed new
light on the general problem of learnability of such classes (and, perhaps, their
important subclasses) from positive data and, possibly, additional information.
For example, if a relatively simple partial learning strategy for the class of regular
languages from positive data is found, one can try to look at what kind of
reasonable additional information could be sufficient for converting such partial
strategy to a more realistic learning strategy for this class (perhaps, it could be
different from Angluin’s classical strategy for learning regular languages from
membership queries and counterexamples to conjectures [2]). We hope that our
paper can be a start for this line of research.

One of the potential issues is to understand exactly how partial learning hap-
pens and what is involved in it, as, at no particular instant, one can say what is
the current “planned” hypothesis of the learner. To understand more about par-
tial learning, we consider reductions between different learning problems (classes
of languages). Reductions gave an interesting structure in explanatory learning
(see [5,14,13,12,4]), and we hope to be able to understand much more about
partial learning using reductions between different classes, which would, in some
sense, highlight the ease/difficulty of partial learning of various subsets of the
full class of all recursively enumerable languages.

Thus, our main goal in the current research is to find natural, yet non-TxtEx-
learnable, classes (in particular, indezed classes [1], with decidable membership
problem) and — whenever it would be possible — corresponding natural partial
learning strategies that would be simpler than that for the class of all recursively
enumerable languages. The concept of reducibility between partial learnability
problems that we introduce in this paper is based on similar models defined
first for learning in the limit of classes of recursive functions in [5] and then,
for TxtEx-learnability in [14] (see also [4] for a related but different concept of
complexity of learning).

A partial learnability problem (a class of languages £) is reducible to another
partial learning problem (a class of languages £’) if there exist two computable
operators, © and ¥, such that (a) © translates every text for a language in £ to a
text for a language in £ and (b) ¥ translates every sequence of conjectures where
a grammar for a language L' € L’ occurs infinitely many times and all other
conjectures occur at most a finite number of times (we will call such sequences



of conjectures admissible) back to an admissible sequence of conjectures for the
language L € L such that some text for L is translated by © to a text for
L’'. We make a distinction between strong reducibility, where © translates every
text for the same language in £ to a text for the same language in £ and weak
reducibility, where © may translate different texts of the same language L € L to
texts of different languages in £’. Based on this concept of reducibility, one can
naturally define degrees of learnability and the complete degree (which contains
the class of all recursively enumerable languages).

Firstly, we found two relatively simple and transparent classes that are com-
plete for weak and, respectively, strong reducibilities — these classes illuminate
the character of the partial learning strategies for the hardest problems. We also
show (Theorem 13) that the class of all recursive languages is not strongly com-
plete. In particular, it means that all indexed classes, including the class of all
regular languages, are not strongly complete.

A major accomplishment of our research is the discovery of a rich structure of
incomplete classes under the degree of the class of all regular languages — based
on a number of classes representing certain natural partial learning strategies.
In particular, we define the class iCOINIT, which contains an infinite chain
Ly, Lo, ... of infinite recursive subsets of a recursive infinite language, and all
their finite subsets, where, for every i, L;;1 C L;. The natural strategy to learn
this class, when choosing an infinite language as its conjecture, immediately
finds out an upper bound on the possible number of infinite languages that may
be conjectured in the future. We also define the counterpart of iCOINIT, the
class iINIT, which also contains an enumerable, but indefinitely growing chain
of infinite recursive languages and all their finite subsets. The natural learning
strategy for iIINIT, when choosing an infinite language as its conjecture, also
faces a bound on the number of infinite languages that can be conjectured in the
future, but unlike the case of iCOINIT, this bound is not known to the learner.
We show that iCOINIT is weakly reducible to iINIT (Theorem 15), yet it is
not strongly reducible to iINIT (Theorem 16); also, iINIT is not even weakly
reducible to iCOINIT (Theorem 17).

We also introduce the class iRINIT, which contains an infinitely growing
chain of recursive languages and all their finite subsets, yet, unlike the case
of iINIT, the enumeration of members of the chain is based on the set of all
rational numbers between 0 and 1. In particular, for any two infinite languages
L,L' € iRINIT, L C L', there is another language in iRINIT between L
and L. We show that iRINIT is not weakly complete (Corollary 19), yet all
variants and generalizations formed using iINIT and iCOINIT (as defined in
this paper) are strongly reducible to iRINIT (Theorem 26), and iRINIT is
strongly reducible to none of them (Theorem 26). On the other hand, iRINIT
itself turns out to be weakly reducible to iINIT (Theorem 22). iRINIT is also
strictly under the degree of all regular languages (Theorem 18 and Theorem 24).

We also define a variant iCOINIT;, of iCOINIT, which, in addition to ev-
ery infinite language L in the chain, contains also all languages extending L by
at most k additional elements. A natural strategy learning an infinite target lan-



guage L € iCOINITy, when a new datum appears on the input, first conjectures
an infinite language M € iCOINIT, and when up to k new elements x ¢ M
appear on the input, conjectures appropriate finite variants of M, before moving
to the next M’ in the chain when the number of new data not in M exceeds
k. Similarly the variant iINIT}, is defined for iINIT. Interestingly, though, all
classes iCOINIT}, k > 1 turn out to be strongly reducible to iCOINIT; and,
respectively, all classes iINITy,k > 1 are strongly reducible to iINIT;. Yet,
surprisingly, iINIT; is not strongly reducible to iINIT and iCOINIT; is not
even weakly reducible to iCOINIT (see Theorem 25). All these classes, though,
are weakly reducible to iINIT (as iRINIT is weakly reducible to iINIT, see
above).

Lastly, based on similar multidimensional classes of languages defined in [13],
one can define classes of “multidimensional” languages, where partial learning
of one “dimension” aids in learning next “dimension”. For example, one can,
using cylindrification, define the class (iINIT,iCOINIT), where the conjecture
that is output infinitely many times for the first “dimension” can be used to
partially learn the second “dimension”. We have extended this idea to any ar-
bitrary sequence @ of iINIT and iCOINIT and have shown that if a sequence
Q) is a proper subsequence of )', then the class corresponding to @ is strongly
reducible to the one corresponding to Q’, but not vice versa. Due to space con-
straints, results on multi-dimensional languages are not described in this paper
but will be given in the full paper.

Our result on the incompleteness of any indexed class suggests that there
may exist natural, relatively simple, strategies that can partially learn an indexed
class. This can shed a new light on the potential of learnability of many important
classes of languages from positive data.

2 Preliminaries

Any unexplained recursion theoretic notation is from [17]. N denotes the set
of natural numbers {0,1,2,...}. A language is any subset of N. We let (), C, C
, 2, D denote empty set, subset, proper subset, superset and proper superset
respectively. AAB denotes the symmetric difference of sets A and B, that is
AAB = (A- B)U (B — A). L = N — L denotes the complement of L. We
let card(S) denote the cardinality of a set S. For S C N, let max(S), min(S)
respectively denote maximum and minimum of a set S, where min()) = co and
max()) = 0. We sometimes use sets of rational numbers. In this case, we use
max(S) to denote the least upper bound of the rational numbers in the set S.

A finite set S C N can be coded as code(S) = 3, ¢ 2”. D; denotes the finite
set A with code(A) = .

¢ denotes a fixed standard acceptable numbering [17]. ¢; denotes the i-th
program in the acceptable numbering ¢. Let W; = domain(y;). Thus, W; is
the language/set enumerated by the i-th grammar in the acceptable program-
ming system Wy, Wi,.... Let @ be a Blum complexity measure [3] for the ¢



programming system. Let

‘ _ Jpi(x), ifr<sand @;(z) <s;
#ia(@) = {T, otherwise

Let W; s = domain(yp; s). Intuitively, W; 511 — W, 5 can be thought of as the
elements enumerated by W; in (s + 1)-th step. For purposes of this paper, one
can assume without loss of generality that W; ;41 — W, 5 contains at most one
element.

R denotes the class of all recursive languages. £ denotes the class of all
recursively enumerable sets.

An indexed family is a family (L;);cn of languages such that there exists a
recursive function f uniformly deciding the membership question for L;, that is,
for all i, x, f(i,2) =1iff z € L;.

Let (-,-) denote a fixed recursive bijection from N x N to N. (-,-) can be ex-
tended to pairing of n-ary tuples by taking (z1,xa,...,Zn) = (z1,{T2,...,Tn)).
For notation convenience we let (xr) = x. Let 7" ((z1,2,...,%n)) = x;, where
we drop the superscript in case n = 2.

Let pad(-,-) be a 1-1 recursive function, increasing in both its arguments,
such that for all i and j, Ypaa(i,;) = wi- Note that there exists such a padding
function pad (see [17]).

RAT) 1 denotes the set of rational numbers between 0 and 1 (both inclusive).
Let ntor be a recursive bijection from N to RATp 1. Let rton be the inverse of
ntor. Left r.e. real means a real number which is approximable from below using
rational numbers enumerated by a recursive procedure. That is, a real number
r is called a left r.e. real iff there exists a recursive function f mapping N to the
set of rational numbers such that: for all ¢, f(i) < f(i+ 1), and lim;ey f(i) = r.

We now give some concepts from language learning theory. Let # be a special
pause symbol. A finite sequence o is a mapping from an initial segment of N
to (N U {#}). Let A denote the empty sequence. SEQ denotes the set of all
finite sequences. A text is a mapping from N to (N U {#}). Let |o| denote the
length of sequence o. Let T'[n] denote the initial segment of length n of the text
T. For n < |o|, o[n] denotes the initial segment of length n of the sequence
o. The concatenation of sequences o and 7 is denoted by oor. The content of
T, denoted content(T"), is the set of the numbers in the range of T, that is,
{T'(n) : n € N} — {#}. Let content(c) be defined similarly. We say that T is a
text for a language L iff content(T") = L.

A language learning machine is a partial computable function which maps
SEQ to N. We let M, with or without decorations, range over learning machines.

Definition 1. [16]

(a) M Part-learns L iff for all texts T for L,
(i) for all n, M is defined on T'[n],
(ii) there exists a unique p such that p = M(T'[n]) for infinitely many n,
and
(iii) for p as in (ii) above, W, = L.



(b) M Part-learns a class £ iff it Part-learns each L € L.
(¢) Part = {£: (IM)M Part-learns L}.

It can be shown that & is Part-learnable [16]. If M Part-learns a class £
then we say that M witnesses Part-learnability of £. If an infinite sequence
pop1 - - - satisfies the following two requirements:

(i) there exists a unique p such that p = p,, for infinitely many n, and
(ii) for p as in (i) above, W, = L,

then, we say that the sequence pgp; ... witnesses Part-learnability of L.

An enumeration operator (or just operator) © is an algorithm mapping from
SEQ to SEQ such that for all 0,7 € SEQ, if ¢ C 7, then O(c) C O(1). We let
(1) = U, e O(T[n)).

We further assume that lim,, o |©(T'[n])| = oo, that is texts are mapped to
texts by the operator ©. Note that any operator © can be modified to satisfy
the above property without violating the content of its output on infinite texts.

We will also use © as an operator on languages (rather than individual texts
representing them, as above). Note that, in general, for different texts T, 7" of a
language L, © may produce texts O(T) and O(T") of different languages. Thus,
we define ©(L) as a collection of languages: O(L) = {content(O(T)) : T is a
text for L}, and, accordingly, the image O(L) = (J, ., ©(L). In the special case
(important for our strong reductions, defined below), when ©(L) is a singleton
{L'}, we abuse notation and say simply ©(L) = L. (Note that if ©(L) = {L'},
then L' = U, content(o)c 1, CONtENE(O(0))).

We let @ and ¥ range over operators, where for ease of notation, we assume
that for ¥ the input and output sequences contain only elements of N (and thus
do not contain #). We view ¥ as mapping sequences of grammars to sequences
of grammars. Again, as in the definition of operator ©, we assume that ¥ maps
infinite sequences to infinite sequences. This can be easily done without changing
the set of grammars which appear infinitely often in the sequence.

The following two definitions are based on the corresponding reductions for
explanatory function learning [5] and explanatory language learning [14]. In these
definitions, we view operators © as mapping texts to texts, as well as mapping
languages to collections of languages (as discussed above).

Definition 2. We say that £ <{y¢ak £’ iff there exist operators © and ¥ such
that

(a) forall Le £, O(L) C L.
(b) for all L € L, for all L' € O(L), if pop; ... is a sequence witnessing Part-
learnability of L', then W(pop; ...) witnesses Part-learnability of L.

Intuitively, © reduces a text for a language L € L to a text for a language L' €
L'. ¥ then converts sequences witnessing Part-learnability of L’ to sequences
witnessing Part-learnability of L.

However, as we noted above, different texts for L may be mapped by © to
texts for different languages in £’. If we require that the mapping should be to
the texts of the same language, then we get strong reduction.



Definition 3. We say that £ <p/" £/, iff there exist operators @ and ¥ such
that

(a) © and ¥ witness that £ <PF¢%* £ and
(b) for all L € £, card(©(L)) = 1.

For ease of notation, when considering strong reductions, as discussed above, we
consider @ as directly mapping languages to languages, rather than considering
it as a mapping from languages to a set containing just one language.

We say that £ <peak £/ if £ <Feak £/ but £/ g¥eak L. Similarly, £ =Rk
if £ <¥eak £ and L' <Weak L.

Similarly, we can define £ <pror? £ and £ =g L.

Definition 4. We say that £ is <F¢%-complete if

(a) £ € Part and
(b) For all L' € Part, L' <Jeek L.
<prord_completeness can be defined similarly.

We now define some languages and classes which are often used in the paper.
We used the names iINIT, iCOINIT, iRINIT for the classes defined below
as the infinite languages in these classes are obtained by cylindrification of the
languages in INIT, COINIT and RINIT used in the literature (the class
INIT contains languages {1,2,...,i} and COINIT contains languages {i,i +
1,9+ 2,...}; RINIT is similar to INIT and contains, for each r € Ry 1, the
language having (the representatives of ) rational numbers below ). Additionally
the classes iINIT,iCOINIT,iRINIT contain all the finite languages. For ¢ €
N,r € RATO’l,

INIT; = {(z,y) : z,y € N and x < i},

COINIT; = {{z,y) : z,y € N and = > i},

RINIT, = {{z,y) : ,y € N and ntor(z) < r},
INIT;, = D, UINIT;,

COINIT; s =D;UCOINIT;,

FIN ={L: L is finite},

iIINIT = {INIT; :i € N}UFIN,

iCOINIT = {COINIT; :i € N}UFIN,

iRINIT = {RINIT, : r € RATy 1} UFIN,

{INIT), = iINIT U {INIT;, : card(D,) < k,i € N},
iCOINIT,, = iCOINIT U {COINIT;, : card(D,) < k,i € N}.
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A natural partial learning strategy for the languages in iINIT is as follows:
when a new datum (j, z), where j is larger than all m for all pairs (m,y) seen so
far, appears on the input, the learner, for the first time, outputs the conjecture
INIT;. Now, as long as no new (not previously seen) datum appears on the
input, the learner conjectures the finite set representing the input seen so far;
if a new datum (not previously seen) from INIT; appears on the input, the
learner repeats the conjecture I/NIT';. This continues as long as no datum outside



INIT; is seen. Clearly, the correct language INIT; or some finite input set is
the only one that will be conjectured infinite number of times. A similar strategy
works for iRINIT.

For iCOINIT a similar strategy chooses a new infinite conjecture COINIT;
when a new pair (j,z), where j is smaller than all m for all pairs (m,y) seen
so far, appears on the input. Otherwise, the strategy is identical to the one for
iINIT.

For iINIT}, the above iINIT-learning strategy can be adjusted as follows:
the learner keeps track of the smallest j such that the set E = {(z,y) : x > j and
(x,y) is seen in the input so far} has at most k elements. Then, the strategy for
learning iINIT}, is similar to that of iINIT, except that whenever the strategy
for iINIT outputs an infinite conjecture, strategy for ilNIT}, outputs an infinite
conjecture for INIT; 5, where D, = E, where j, IV are as described above. Similar
modification to the strategy for iCOINIT works for iCOINIT),.

3 Basic Properties of Reductions

In this section, we establish a number of technical facts used in many proofs of
our results.

Lemma 5. Suppose © witnesses part (a) of Definition 2 for £ < L', Sup-
pose Fy, Fy are computable functions such that, for any L € L and L' € O(L),
the following three properties hold:

(i) if L' is finite, then Fy (L") is a grammar for L.
(i) if L' is infinite and p is a grammar for L', then lim;_, o Fa(p,t) exists and
is a grammar for L.
(ii1) if L' is infinite, then for any sequence of finite sets Si,Ss,... such that
So €Sy CSy...and ey Si = L', for all t, for all but finitely many t',
F1(Sy) # F1(Sy).

Then, there exists a W such that, for all L € L, for any sequence of gram-
mars popi - . - witnessing Part-learnability of L' € O(L), ¥(pop1---) = qoq1 - - -
witnesses Part-learnability of L.

The above lemma is useful in simplifying the construction of ¥ in many of
the proofs: we can just give the relevant F; and F5.

Proposition 6. There exists an operator ¥ such that for any sequence qoqs . . .,
Y(qoq1---) = qbq,, .. such that:

(a) at most one grammar appears in q\q; . .. infinitely often,
(b) if q is the least grammar which appears infinitely often in qoq - .., then ¢’
appears infinitely often in q4q; . .., where Wy = W,,.



Proof. Let q; = pad(q;,j), where j = card({¢' : i <iand ¢; < ¢;}). It is easy to
verify that the above sequence satisfies the requirements of the proposition.

The above proposition is useful to simplify some of the constructions for ¥
in our proofs.

Proposition 7. Suppose L §g§f§ L' as witnessed by © and Y. Then, for all
distinct L, L' € £, O(L)NO(L') = 0.

Proposition 8. For any operator O, if L C L', O(L) = {X} and (L) =
{X'}, then X C X'.

Proposition 9. Suppose L is infinite and L contains L and all finite subsets of
L. Suppose further that L <Y L' as witnessed by © and W. Then, for all finite
sets S such that S C L' for some L' € O(L), there exists an infinite superset of
S in ©(L) (in particular, ©(L) contains an infinite language).

4 Complete Classes and the Class R

As £ € Part, we trivially have that & is <pr.or*?-complete. The following results
give some simple classes which are complete.

Let iCOINIT, = {COINIT; UA :i € N and A is finite}. We first show
that every text for every recursively enumerable language can be appropriately
“encoded” as a text for some language in iCOINIT, — thus showing that
iCOINIT, is weakly complete.

Theorem 10. iCOINIT, is <Z2k_complete.

Proof. To show that & S%Zﬁf iCOINIT,, define © and ¥ as follows.

Suppose T is a given text. Let Cppr = max({t : W, C content(T") and
content(T'[t]) € Wp}). Note that Cp o can be approximated from below (that is,
there exists a recursive function f such that f(p,T[n]) < f(p,Tn+1]) < Cpr
and lim,, o f(p,T[n]) = Cp 1.

Define © as follows. ©(T) = T’ such that content(T”) = {{¢,z) : (3¢’ <
Dl < Cyrl.

Now, suppose p is the least grammar for W), T is a text for W), and T" =
O(T). Then, it is easy to verify that content(T”") = COINIT, ,, for some s, as
Cp,r = 00, but Cpy p < oo for p’ < p.

We define ¥’ as follows.

' (pop1 -..) = qoq1 - - ., where

¢; = pad(j, p;), where, for some z, (j, z) is the last new element enumerated
in Wy, r and k is the number of times p; appears in pop; ... p;.

Claim 11. Suppose L € &€, and L' € O(L).

If pop1 . .. witnesses Part-learnability of L', then qoq, ... is a sequence sat-
1sfying:

there exists a minimal q such that q appears infinitely often in qoqy ... and
this ¢ = pad(4,p), for minimal grammar j for L and some p.



To see the claim, suppose L' € ©(L) and pg, p; - - . is a sequence witnessing Part-
learnability of L’ and ¥/ (pop1...) = qoqi1--.. Suppose p is the only grammar
which appears infinitely often in pgp; . ... Then only ¢; with p; = p can possibly
appear infinitely often in the sequence qpq; ... as ¢; used p; in its padding.
Furthermore, pad(j,p), with j > min({e : W, = L}) appear infinitely often in
the sequence ¢oqy . ... The claim follows.

Now the theorem follows using Proposition 6. |

. Str
We now consider a <p"Y-complete class.

Let V(L) =4 +Y ., 47"

Intuitively, V maps languages to real numbers where the mapping is mono-
tonic in L. Furthermore, if L # L’ and min(LAL') € L, then V(L) > V(L’).

The reason for choosing the additive part “%” is just to make sure that V(L)
is non-zero.

Let Lyy ry,...r, = {{¢,z) : ¢ < k and ntor(z) < r; or i > k and ntor(z) < r4}.

Let STRCOMP =A{Lyyry,.op k€ N,19 <11 <...<rg,and7ro,71,...,7%
are left r.e. reals}.

STRCOMP denotes “strong complete class”. The languages in STRCOMP
can be thought of as follows: in the i-th cylinder we keep rational numbers < r;.
The r;’s are monotonically non-decreasing left r.e. real numbers and the sequence
70,71, ... converges (that is, for some k, for all i > k, r; = ). We suggest the
reader to contrast this class with the previously defined class iRINIT (which,
in the sequel, will be shown to be incomplete).

Theorem 12. STRCOMP is Sl‘it;ffg—complete.

Proof. For any index i and any language L, let

Xip={} 2,y eN,y#0, L <V(W;NL)and z,y <min({t : Wi, — L # 0})}.
Intuitively, sup(X; 1) gives a value to how much W; and L are similar to

each other:

(P1) If W; = L, then sup(X; 1) is V(L) (as min({t : W;; — L # 0}) is infinite).

(P2) If W; # L, then sup(X; ) < V(L). To see this note that if L ¢ W;, then
clearly V(W; N L) < V(L) and thus sup(X; 1) < V(W;NL) < V(L). On the
other hand, if W; € L, then sup(X; ) < V(W; N L) < V(L), as X; 1 is a
finite set and the supremum of a finite set of rational numbers < r is < r for
any positive real number r.

Note that X; ; depends only on ¢ and L and not on the particular presen-
tation of L. This allows us to construct © (and corresponding ¥) which give a
strong reduction from £ to STRCOMP.

O(L) = Usen[{liry) : (3 < i)(3s € Xur.1) ntor(y) < s}

Intuitively, © just collects all the members of X; r in the i-th cylinder and
then does an upward closure.

Note that ©(L) can be enumerated from a text T' for L. Moreover, ©(L) de-
pends only on L and not on the particular presentation 7', and thus the reduction
is a strong reduction.



We say that m improves at time step j in the enumeration of W), if, for some
z, the following two conditions are satisfied:

(1) (m,x) gets enumerated at time step j in W),

(ii) Suppose j’ < j is the largest earlier time step when m improved, if any, in
the enumeration of W), (take j/ = 0, if m did not improve earlier). Then,
for any y such that (m’,y) € W, 7, ntor(x) > ntor(y).

Note that for any grammar p for L' = Ly vy, r., With rg <7 < 719... <
rp—1 < Tk, k improves at infinitely many steps j in the enumeration of W), but
0,1,...,k — 1 improve only for finitely many steps j in the enumeration of W,,.

We define an operator ¥’ as follows. This can then be converted to the desired
¥ using Proposition 6. ¥'(pop; -..) = qoqi - - ., where g; is defined below. Note
that if L € £, ©(L) = L’ and py, p1, . . . witnessed Part-learning of L', then we
want ¥ (pops - . .) to witness Part-learning of L.

Without loss of generality assume that, for any k, W enumerates at most
one element at any step. For any fixed 4, suppose p; appears j times in pgp; - . . p;,
and m; improves at step j in the enumeration of W), (if no such m; exists, then
take m; to be i + 1). Then, let ¢; = pad(m;, p;).

Now suppose L € £ and L' = ©(L) and 4 is the minimal grammar for L.
Then, by the properties (P1) and (P2), for all j < ¢, sup(X; 1) > sup(Xj 1), and
for all j > i, sup(X; 1) > sup(X; ). Thus, L' is of the form L, ., . r,, where
ro <rp <rimp <71y

Now, suppose p appears infinitely often in pgp; ..., which witnesses Part-
learnability of L'. Then for ¥/ (pop1...) = qog1 ... only ¢; with p; = p could
possibly appear infinitely often in the sequence goqi ... as ¢; used p; in its

padding. Furthermore, i is the minimal number which improves at infinitely
many steps in the enumeration of W,. It follows that pad(i,p) is the minimal
element which appears infinitely often in the sequence goq; - . ..

Now ¥’ can be converted to the required ¥ using Proposition 6. The theorem
follows. |

Our next result states that the class R of all recursive languages is not
strongly complete. In particular, this means that all indexed classes of languages,
including the class of all regular languages, are incomplete. This opens a possibil-
ity of creating partial learning strategies for these classes that would be simpler
than the general strategy for partial learning of all recursively enumerable lan-
guages.

Theorem 13. R is not §1‘93t;rofg-complete.

Proof. Suppose © (and ¥) witness that & <pr%" R. Let K denote the halting
set {i:4 € N and ¢;(i)}}. Now, by Proposition 7 and Proposition 8, for all z,
O(K) Cc O(K U{x}). Let S = O(K). Note that, by assumption, S is recursive.
Now, z € K iff ©({z} UK) C S. As S is recursive, this would imply that K is
recursively enumerable, which is in contradiction to a known fact that K is not
recursively enumerable [17]. |



5 Relationship between iINIT, iCOINIT and iRINIT
classes

In this section, we explore the relationships between the classes iINIT,iCOINIT
(and some of their variants), and iRINIT. We also establish that their degrees
are strictly under the degree of all regular languages.

Proposition 14. Fizn € N. Suppose L C £ contains only n infinite languages.
Then,

(a) L <grord iINIT.
(b) L <pro'9 {COINIT.

First, we explore the relationship between iINIT and iCOINIT. We be-
gin with establishing that iCOINIT is reducible to iINIT, but only weakly.
Perhaps, this fact and the fact that iINIT is not reducible to iCOINIT (see
below) are not surprising, as the chain of infinite languages in iINIT is growing
indefinitely, whereas every growing chain of infinite languages in iCOINIT is
finite.

Theorem 15. iCOINIT <¥eel jINIT.
Theorem 16. iCOINIT % %" iINIT.

On the other hand, iINIT is not reducible to iCOINIT even weakly.
Theorem 17. iINIT Z¥¢e* iCOINIT.

The class iRINIT is similar to iIINIT in that it features an infinitely growing
chain of infinite languages. However, unlike iINIT, between any two infinite
languages in iRINIT, there is always another language. We show that the degree
of iRINIT is strictly above the degrees of the classes iINIT and iCOINIT.
However, first we show that iRINIT is not even weakly complete. Let REG
denote the class of all regular sets [11] (we assume some standard recursive
bijection between strings and N, so that regular sets can be considered as subsets
of natural numbers). Topologically, REG is much more complex than containing
just one growing chain of infinite languages iRINIT (plus finite sets), and this
translates into greater complexity of partial learning of REG, as the following
theorem indicates.

Theorem 18. REG Z¥eak iRINIT.

Proof. Suppose by way of contradiction that © and ¥ witness that REG <Pk
iRINIT.

Inductively define o; as follows.

[ A.

041 is an extension of ¢;0i such that max({ntor(z) : (z,y) € O(ciy1)}) >
max({ntor(x) : (x,y) € O0;)}).



If all o541 get defined, then for T = (J;,cy 0i, T is a text for N (which
is regular), but sup({ntor(z) : (z,y) € content(©(T"))}) does not belong to
{ntor(z) : (z,y) € content(O(T))} (as if it belonged, then it would belong to
{ntor(z) : (x,y) € content(©(o;))}, for some j, and that would violate the
definitions of o;’s).

If some ;41 does not get defined, then let r = max({ntor(x) : (x,y) €
content(©(o;))}). Now, for all infinite regular languages L containing content(o;),
RINIT, € O(L) (as O(L) contains an infinite language containing (rton(r), y),
for some y, and 0,41 did not get defined). A contradiction to Proposition 7, as
there are infinitely many (in particular at least two) infinite regular languages
which contain content(o;).

Corollary 19. iRINIT is not Sggﬁf—complete.

Our next result shows that both ilINIT and iCOINIT are strongly reducible
to iRINIT. Let 0 < rg,71,... in RATy, be a strictly increasing sequence of
rational numbers. {INIT; : i € N} can be naturally embedded into iRINIT,
by mapping INIT; to RINIT,,. Note that, by our convention on coding of finite
sets, Dy C Dy implies s < ¢'. For any s, let ks = max({z : (z,y) € Ds}). Now,
mapping finite sets Dy to RINIT,, 4 (r,. 1 —ry.)sr, ensures that iINIT <prong

iRINIT. A similar method works to show that iCOINIT §§f;f: 9 iRINIT.

Theorem 20. (a) iINIT <779 iRINIT.
(b) iICOINIT <p7°" iRINIT.

Next we show that iRINIT is neither strongly reducible to iINIT, nor even
weakly reducible to iCOINIT. Yet, it is weakly reducible to iINIT. The latter
fact is quite interesting: every text for a language in iRINIT can be encoded as
a text for a language in iINIT, yet the corresponding languages in iINIT for
such texts may be different for different texts of the same language in iRINIT.

Theorem 21. iRINIT #57%" iINIT.

Proof. Suppose by way of contradiction otherwise, as witnessed by @ and V.
Note that, by Proposition 9, ©O(RINITj2) cannot be a finite set. Suppose
O(RINITq5) = INIT},.

Then for two different values of r < 0.2, O(RINIT,) = INIT;, for same i,
as for all r < 0.2, O(RINIT,) C INIT}. A contradiction.

Theorem 22. iRINIT <¥c* iINTT.
Proof. Let rs = max({ntor(z) : (z,y) € S}). Define mry, as follows.

(i) ma = (rton(0),0).
(ll) Mrn4+1) = Mrn], if Tcontent(T[n+1]) = Tcontent(T[n]); otherwise Mmrmnp+1] =
<Tt0n(’rcontent(T[n+1]))7 Mrn] + 1>



Now, let O(T'[n]) = {(x,y) : < mypp,),y < code(content(T[n]))}.
It is easy to verify that,

(1) For a finite set L, O(L) C {{{z,y) : © < i,y < code(L)}:i € N}.

We can define the operator ¥ for the reduction using Lemma 5, where Fj
and F5 are defined as follows.

Fy(S) = canonical grammar for D,,, where w = max({y : (0,y) € S}).

Fy(p,t) = canonical grammar for RINIT o5, Where, for some w, (j, w) =
max({z : (z,y) € Wp.}).

It is now easy to verify using Lemma 5 that © and ¥ (as given by Lemma 5)
witness that iRINTT <Jeak iINTT.

Theorem 23. iRINIT %¥e% iCOINIT.

The next result shows that iRINIT is strongly reducible to REG, the class
of all regular languages. As we noted above, REG is not reducible to iRINIT
(even weakly), thus, the degree of iRINIT is strictly below the degree of REG.
Theorem 24. iRINIT <7 %" REG.

—Part

Now we turn our attention to the classes iINIT}; and iCOINIT}. The in-
finite languages in these classes do not form simple strict chains, as, for every
infinite language L in the chain, both classes contain its variants having up to
k extra elements. Interestingly, though, it turns out that, whereas adding one
such extra element to infinite languages in the chain makes the partial learning
problem harder, the difficulty of the partial learning problem does not increase
when more elements are added.

Theorem 25. For all k > 0,
(a) iINIT}, <pro'9 iINIT;.
(b) iCOINIT), <pro" iCOINIT),.
(¢) iINIT; Zprotd INIT.
(d) iICOINIT; g¥cek i{COINIT.
() iINIT,; <¥eak INIT.

Theorem 26. For all k > 0,
(a) iINIT), <pro" {RINIT.
(b) iCOINIT), <pro" iRINIT.
(¢) iRINIT #3709 {INTT,.
(d) iRINIT Z¥eak iCOINIT),.
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