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Abstract. This work extends studies of Angluin, Lange and Zeugmann on how learn-
ability of a language class depends on the hypothesis space used by the learner. While
previous studies mainly focused on the case where the learner chooses a particular
hypothesis space, the goal of this work is to investigate the case where the learner has
to cope with all possible hypothesis spaces. In that sense, the present work combines
the approach of Angluin, Lange and Zeugmann with the question of how a learner can
be synthesized. The investigation for the case of uniformly r.e. classes has been done
by Jain, Stephan and Ye [6]. This paper investigates the case for indexed families and
gives a special attention to the notions of conservative and non U-shaped learning.

1 Introduction

The goal of inductive inference [1, 2, 4] is to model the process of learning rigorously. Following
many real-world scenarios, the learner observes more and more data which in the limit uniquely
determines the concept (language) to be learnt. The learner is supposed to determine the target
concept from the data it observes. Following the model of linguistics, the concept to be learnt
is always considered to be an (often infinite) set of finite items which can be coded as natural
numbers. The language to be learnt is chosen from a concept class {L0, L1, L2, . . .} and the
learner is using an explicit hypothesis space {H0, H1, H2, . . .}. This hypothesis space may be
either the same as {L0, L1, L2, . . .} (exact learning [1]) or chosen by the learner (class-preserving
and class-comprising learning [8, 14, 15]) or imposed on the learner (prescribed and uniform
learning [6]). Angluin [1] considered the important case that the concept class and hypothesis
class are both given by an indexed family, that is, the class is uniformly recursive. She has given
a characterization when such a class is explanatorily learnable and introduced also important
variants like consistent and conservative learning.

The goal of the present work is to study prescribed and uniform learning and to contrast the
results obtained for them to the well-studied cases of exact, class-preserving and class-comprising
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learning. The idea that the learner has to accept a given choice of the hypothesis class is not
completely new; besides the case of exact learning (for which the results would be equivalent
to the (not considered case of) class-preserving prescribed learning), it has also been considered
under the framework of synthesis of learners. But the models like those considered by Zilles
[17, 18] differ from the scenario in the present work. Jain, Stephan and Ye [6] have studied the
more general case of uniformly r.e. concept and hypothesis spaces in a separate paper. The main
difference to the setting in the r.e. case is that there it is more reasonable to consider class-
preserving-uniformly and class-preserving-prescribed learning instead of uniform and prescribed
learning. Furthermore, the relation between non U-shaped learning and conservative learning
depends crucially on the indexed family nature of the hypothesis space.

The study of prescribed and uniform learning is done for the criteria of finite learning (Section
2), conservative learning (Section 3), non U-shaped learning (Section 4) and the various notions
of monotonic learning (Section 5).

In the following, we will provide more details, but have to introduce some formal notations first.
Let N be the set of natural numbers. Let 〈·, ·〉 be a fixed pairing function: a recursive bijective
mapping from N

2 to N. Let |S| denote the cardinality of set S. Let S denote N− S. Let min(S)
and max(S) denote the minimum and maximum of a set respectively. Let ϕ0, ϕ1, ϕ2, . . . denote a
fixed acceptable numbering of the partial recursive functions from N to N. In some cases, we use
ϕi as a function of two arguments. In such cases one implicitly assumes a pairing function being
used to code the inputs: thus, ϕi(x, y) means ϕi(〈x, y〉). The set We is the domain of ϕe. The
set K = {e : e ∈ We} is the diagonal halting problem which is used as a standard example of an
r.e. but nonrecursive set. Let Kt denote the set of elements enumerated into K within t steps,
via some standard enumeration procedure. We assume without loss of generality that K0 = ∅.
Basic formal definitions of learning are given as follows.

Definition 1. A learner is a mapping from (N∪{#})∗ to N∪{?}. Let M be a given learner, {L0,
L1, L2, . . .} be a language class and {H0, H1, H2, . . .} be a hypothesis space. M itself is a partial-
recursive function and {L0, L1, L2, . . .}, {H0, H1, H2, . . .} are indexed families of subsets of the
natural numbers, that is, the mappings e, x 7→ Le(x) and e, x 7→ He(x) are recursive functions
from N×N to {0, 1}. Let σ, τ, ρ range over (N∪ {#})∗. Furthermore, let σ ⊆ τ denote that τ is
an extension of σ as a string. Call T a text if T is a total function which maps N to N ∪ {#};
call T a text for La iff the numbers occurring in T are exactly those in La. Given a class {L0,
L1, L2, . . .}, one can uniformly (in n) generate a text for n — such a text is called canonical text
for Ln.

A learner converges [4] on T to b iff there is an n with M(T [m]) = b for all m ≥ n; here T [m]
is the finite string consisting of the first m members of T .

A learner M is total if M(σ) is defined for all finite strings σ in (N ∪ {#})∗. Without loss of
generality, for the learning criteria in this paper, learners can be assumed to be total and this is
done from now onwards.

A learner M is finite [4] if for every text T there is one index e such that for all n, either
M(T [n]) = ? or M(T [n]) = e.

A learner M is confident [10] if M is total and converges on every text T to a hypothesis.
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A learner M is conservative [1] if for all σ, τ with HM(σ) 6= HM(στ) there is an x occurring in
στ such that x /∈ HM(σ).

A learner M is non U-shaped [3] if there are no a and σ, τ, ρ ∈ (La ∪ {#})∗ such that
HM(σ) = HM(στρ) = La and HM(στ) 6= La. In other words, M never changes from a correct to an
incorrect and then back to a correct hypothesis.

A learner M is decisive [3] if there are no σ, τ, ρ such that HM(στρ) = HM(σ) and HM(στ) 6=
HM(σ). In other words, M never returns to a once abandoned hypothesis (even semantically).

A learner M is monotonic [5] if for every La and for every σ, τ ∈ (La ∪ {#})∗ the inclusion
La ∩HM(σ) ⊆ La ∩HM(στ) holds. A learner M is strong-monotonic [5] if for all σ, τ ∈ (N∪{#})∗

the inclusion HM(σ) ⊆ HM(στ) holds.
Here note that ? is not considered as a conjecture and thus the constraints in conditions

like conservative, monotonic, strong-monotonic, non U-shaped and decisive refer only to inputs
where M makes a conjecture and does not output ?: so, more formally, a learner would be
strong-monotonic iff for all σ, τ , M(σ) 6= ? and M(στ) 6= ? implies HM(σ) ⊆ HM(στ). Similarly
for the other criteria.

Finite learning is quite restrictive since the learner has to make up its mind without having
viewed all of the available infinite information. Learning in the limit (or just “learning”) is more
powerful since the learner can revise its hypothesis a finite but arbitrary number of times. A
similar observation has been made by Staiger [12] with respect to accepting ω-languages by
Turing machines.

In this paper we will only be concerned about learning indexed families and using hypothesis
spaces which are also indexed families. Angluin, Kapur, Lange and Zeugmann [1, 7–9, 13–15]
studied how learnability of the family to be learned depends on the hypothesis space {H0, H1,
H2, . . .} used by the learner. To formalize this, they introduced the notions of exact, class-
preserving and class-comprising learning. In addition to this we consider notions like uniform
and prescribed learning [6]. Here I ranges over properties of the learner as defined in Definition 1,
so I stands for “conservative”, “finite”, “monotonic” and so on.

Definition 2. In the following, let {L0, L1, L2, . . .} and {H0, H1, H2, . . .} be indexed families.
The class {L0, L1, L2, . . .} is explanatory learnable [4] with hypothesis space {H0, H1, H2, . . .}

iff there is a learner M which converges on every text of a language La to a hypothesis b such
that Hb = La.

For a property I from Definition 1, {L0, L1, L2, . . .} is I learnable with hypothesis space {H0,
H1, H2, . . .} iff there is a learner M which explanatory learns {L0, L1, L2, . . .} using hypothesis
space {H0, H1, H2, . . .} and furthermore satisfies the requirement I.

The class {L0, L1, L2, . . .} is class-comprisingly I learnable iff it is I learnable with some hy-
pothesis space {H0, H1, H2, . . .}; note that learnability automatically implies {L0, L1, L2, . . .} ⊆
{H0, H1, H2, . . .}.

The class {L0, L1, L2, . . .} is class-preservingly I learnable iff it is I learnable with some
hypothesis space {H0, H1, H2, . . .} satisfying {H0, H1, H2, . . .} = {L0, L1, L2, . . .}.

The class {L0, L1, L2, . . .} is exactly I learnable iff it is I learnable with {L0, L1, L2, . . .} itself
taken as hypothesis space.

3



The class {L0, L1, L2, . . .} is prescribed I learnable iff it is I learnable with respect to every
hypothesis space {H0, H1, H2, . . .} such that {L0, L1, L2, . . .} ⊆ {H0, H1, H2, . . .}.

The class {L0, L1, L2, . . .} is uniformly I learnable iff there is a recursive enumeration of
partial-recursive functions M0,M1,M2, . . . such that whenever ϕe is a decision-procedure b, x 7→
Hb(x) for an indexed family {H0, H1, H2, . . .} ⊇ {L0, L1, L2, . . .} then Me is an I learner for {L0,
L1, L2, . . .} using this hypothesis space {H0, H1, H2, . . .}.

The class {L0, L1, L2, . . .} is class-preserving-uniformly I learnable iff there is a recursive
enumeration of partial-recursive functions M0,M1,M2, . . . such that whenever ϕe is a decision-
procedure b, x 7→ Hb(x) for an indexed family {H0, H1, H2, . . .} = {L0, L1, L2, . . .} then Me is an
I learner for {L0, L1, L2, . . .} using this hypothesis space {H0, H1, H2, . . .}.

Remark 3. For the basic notion explanatory learning (= learning in the limit), all these notions
are the same. This is so, as class comprising learning is the same as exact learning for explana-
tory learning [14]. Furthermore, given any hypothesis space {H0, H1, H2, . . .} covering {L0, L1,
L2, . . .}, for each a, one can find in the limit a b such that La = Hb.

Exact finite learning and class comprising finite learning are the same [14]. For strong-
monotonic, monotonic and conservative learning, there is a proper hierarchy for learning from
exact, class preserving and class comprising hypothesis spaces [14]. For every criterion I, the
following implications hold:

– Every uniformly I learnable family is also class-preserving-uniformly I learnable and pre-
scribed I learnable.

– Every class-preserving-uniformly I learnable family and every prescribed I learnable family
is also exactly I learnable.

– Every exactly I learnable family is also class-preservingly I learnable.
– Every class-preservingly I learnable family is also class-comprisingly I learnable.

It depends on the actual choice of I what other implications hold (besides the transitive ones).

For example, for confident learning, the class containing all {x} where |Wx| < ∞ and {x, y}
where x 6= y is not class-preservingly but class-comprisingly confidently learnable. Although
confident learnability becomes more general in the class-comprising case, one can show that it
coincides for all other criteria from Definition 2. Suppose that N is an exact confident learner
for the class {L0, L1, L2, . . .} and e is given such that ϕe is total and the hypothesis space {H0,
H1, H2, . . .} satisfies Hd = {x : ϕe(〈d, x〉) = 1} for all d and {L0, L1, L2, . . .} ⊆ {H0, H1, H2, . . .}.
Then Me simulates the learner N as follows: if N on text T converges to a then Me on text T
converges to the least b such that Hb = La.

From the definition of uniform learning, we can easily obtain the following useful lemma.

Lemma 4. Let L be a uniformly I learnable indexed family. If H0,H1,H2, . . . is a recursive

enumeration of indexed family hypothesis spaces for L, then there exists a recursive enumeration

of learners M0,M1,M2, . . . such that Mn I learns L with respect to Hn.

We will often make use of the following simple set in our proofs.
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Definition 5. Define S = ∪n=0,1,2,...Jn, where Jn contains for each e < n the first element,
if any, of We enumerated from In = {2n − 1, 2n, 2n + 1, . . . , 2n+1 − 2}. Then: S is recursively
enumerable; S intersects with every infinite recursively enumerable set; for every n there is an
m in In which is not in S. In other words, S is a simple set [11]. Let St be the set of elements
enumerated into S within t steps via some standard procedure. Here we take S0 = ∅.

In the following sections, without loss of generality we assume for i, j < |{L0, L1, L2, . . .}| that
Li = Lj implies i = j.

2 Finite Learning

Finite learning or one-shot learning requires the learner to make a correct guess using only
finite amount of information. So it is not a surprise that this criterion turns out to be very
restrictive for prescribed and uniform learning, as shown below. The following theorem gives
some characterization results and separates various notions of finite learning. It can be shown
that class comprising finitely learnable classes are also exact finitely learnable [14].

Theorem 6. Let {L0, L1, L2, . . .} be exactly finitely learnable.

(a) {L0, L1, L2, . . .} is not uniformly finitely learnable.

(b) {L0, L1, L2, . . .} is class-preserving-uniformly finitely learnable.

(c) {L0, L1, L2, . . .} is prescribed finitely learnable iff the class is finite and for all i, j < |{L0, L1,
L2, . . .}|, either i = j or Li 6⊂ Lj.

Hence, the class {{0}, {1}, {2}, . . .} is exactly finitely learnable but not prescribed finitely learn-
able; furthermore, a class is prescribed finitely learnable iff it is finitely learnable and finite.
Proof. (a) Let Ge = Le if e < |{L0, L1, L2, . . .}|; otherwise let Ge be some recursive set outside
{L0, L1, L2, . . .}. Note that the numbering {G0, G1, G2, . . .} is introduced in order to handle finite
and infinite classes uniformly (for infinite {L0, L1, L2, . . .}, note that Gi = Li). Suppose {L0, L1,
L2, . . .} is uniformly finitely learnable as witnessed by the recursive enumeration of learners
M0,M1,M2, . . .. Let F be a recursive set such that no finite variant of F is in {L0, L1, L2, . . .}.
By Kleene’s recursion theorem [16], there exists an e such that for every d ∈ N and c ∈ {0, 1},

ϕe(2d + c, x) =







F (x), if Me outputs 2d + c as first grammar on the
canonical text Td for Ld in up to x steps;

Gd(x), otherwise.

For this e, ϕe defines an indexed family hypothesis space {H0, H1, H2, . . .} which is a superclass
of {L0, L1, L2, . . .}. By construction, Me does not finitely learn any language in {L0, L1, L2, . . .}
with respect to the given hypothesis space.

(b) Let N be an exact finite learner for {L0, L1, L2, . . .}. We define a recursive enumeration
of learners M0,M1,M2, . . . that class-preserving-uniformly learn {L0, L1, L2, . . .}. For n ∈ N,
Mn(T [t]) is defined as follows. If for all k ≤ t, N(T [k]) = ?, then output ?. Otherwise, N(T [k]) 6= ?
for some k ≤ t. Search for the minimum i ≤ t such that for all j ∈ content(T [k]), ϕn(i, j) ↓= 1.
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Output i if found, else output ?. It is easy to verify that Me is a finite learner for {L0, L1,
L2, . . .} whenever ϕe defines a class-preserving hypothesis space for {L0, L1, L2, . . .}.

(c) If {L0, L1, L2, . . .} = {L0, . . . , Ln} for some n ∈ N and Li 6⊆ Lj for all i, j < n + 1 with
i 6= j, then it is prescribed finitely learnable as follows: Given a hypothesis space {H0, H1,
H2, . . .}, let i0, . . . , in be indices for L0, . . . , Ln in {H0, H1, H2, . . .} respectively and let xk,l be
an element in Lk − Ll for all k, l ≤ n with k 6= l. On input T [t], search for the least k such
that xk,l ∈ content(T [t]) for all l ≤ n with l 6= k. If such k is found, output ik and stop;
otherwise output ?. It is easy to verify that the above learner finitely learns {L0, L1, L2, . . .}
using hypothesis space {H0, H1, H2, . . .}.

Suppose {L0, L1, L2, . . .} is prescribed finitely learnable but infinite. Let In be as defined in
Definition 5. For each m ∈ N, let n ∈ N be the number such that m ∈ In, then Hm is defined as
follows:

Hm(x) =

{

1 − Lx−m−t(x), if x ≥ m + t and m ∈ St+1 − St for some t ∈ {0, 1, . . . , x};
Ln(x), otherwise.

Note that {H0, H1, H2, . . .} ⊇ {L0, L1, L2, . . .} and {H0, H1, H2, . . .} is an indexed family. Let
M be a finite learner for {L0, L1, L2, . . .} with respect to {H0, H1, H2, . . .}. For each i ∈ N, let
f(i) be the first index which M outputs on the canonical text Ti for Li. Note that f(i) /∈ S and
f(i) ∈ Ii; hence f(i) 6= f(j) for distinct i, j. Thus f(0), f(1), f(2), . . . is a an infinite r.e. subset
of S, a contradiction. Hence, {L0, L1, L2, . . .} must be finite. In addition, there do not exist i, j
with i 6= j and Li ⊂ Lj — otherwise, a σ such that content(σ) ⊆ Li on which the learner outputs
a hypothesis for Li can be extended to a text for Lj; thus the learner fails to finitely learn Lj.

3 Conservative Learning

Conservative learning is non-trivial, in the sense that there is an infinite indexed family which
is uniformly conservatively learnable. This is shown in the next example.

Example 7. Let La = N−{a} for all a ∈ N. Then {L0, L1, L2, . . .} is uniformly conservatively

learnable.

Proof. For i ∈ N, define Mi as follows: given a text T , at time t, find the least m ∈ N such that
m /∈ content(T [t]). Find the least j ≤ t such that ϕi(j,m) = 0 and for all k ≤ t with k 6= m,
ϕi(j, k) = 1. Output j if found; otherwise output ?. It is easy to verify that M0,M1,M2, . . .
witness that {L0, L1, L2, . . .} is uniformly conservatively learnable.

The class used in above example consists of co-finite sets only. The next result shows that this
is necessary for uniform conservative learning.

Theorem 8. If {L0, L1, L2, . . .} is uniformly conservatively learnable then every set La is cofi-

nite. Moreover, there is a recursive function r bounding the non-elements of La for all a < |{L0,
L1, L2, . . .}|.
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Proof. Let S be as in Definition 5. Furthermore, let Ga = La if a < |{L0, L1, L2, . . .}| and
Ga = N otherwise.

We define a sequence of hypothesis spaces H0,H1,H2, . . ., where for each n ∈ N the space
Hn = {Hn

0 , Hn
1 , Hn

2 , . . .} is defined as follows:

Hn
〈i,j〉 =







Gi, if j /∈ S and j > n;
Gi ∪ {t + 1, t + 2, t + 3, . . .}, if j ∈ St+1 − St and j > n;
N, if j ≤ n.

Note that the case distinction covers all cases as S0 = ∅. Furthermore, H0,H1,H2, . . . is a recur-
sive enumeration of indexed families. Since {L0, L1, L2, . . .} is uniformly conservatively learnable,
there exists a recursive enumeration of learners M0,M1,M2, . . . such that for all n, Mn conser-
vatively learns {L0, L1, L2, . . .} with respect to Hn.

For all a < |{L0, L1, L2, . . .}| and n ∈ N, let e = 〈v(a, n), w(a, n)〉 be the first number found
(in some dovetailing search) such that Mn outputs e on the canonical text Ta of La and one of
the following conditions hold:

(a) w(a, n) ∈ S and La ⊆ Hn
〈v(a,n),w(a,n)〉 (note that this can be verified by finding a t with

w(a, n) ∈ St and checking La(x) ≤ Hn
〈v(a,n),w(a,n)〉(x) for all x ≤ t);

(b) v(a, n) = a;
(c) w(a, n) ≤ n.

Note that such e = 〈v(a, n), w(a, n)〉 exist for all n. First note that for every a < |{L0, L1, L2, . . .}|
there is an n such that either w(a, n) ≤ n or w(a, n) ∈ S: Otherwise the set {w(a, n) : n ∈ N}
would be an infinite r.e. set disjoint to S, a contradiction as S is simple. Hence there is a recursive
function u which searches for this n; that is, w(a, u(a)) ≤ u(a)∨w(a, u(a)) ∈ S for all a < |{L0,
L1, L2, . . .}|.

It is easy to see that there is a further recursive function r such that either r(a) = 0 ∧

w(a, u(a)) ≤ u(a) or r(a) > 0 ∧ w(a, u(a)) ∈ Sr(a). Note that La ⊆ H
u(a)
〈v(a,u(a)),w(a,u(a))〉 and

{r(a), r(a) + 1, r(a) + 2, . . .} ⊆ H
u(a)
〈v(a,u(a)),w(a,u(a))〉. Since each Mn is conservative, it follows that

La = H
u(a)
〈v(a,u(a)),w(a,u(a))〉 and thus N − La contains only elements below r(a) for all a < |{L0, L1,

L2, . . .}|.

For prescribed conservative learning, we have a less stringent necessary condition as compared
to uniform conservative learning.

Theorem 9. If {L0, L1, L2, . . .} is prescribed conservatively learnable then almost every set in

{L0, L1, L2, . . .} is cofinite. Moreover, there is a recursive function r bounding the non-elements

of the cofinite La.

Proof. Let S and In be as in Definition 5. Define a hypothesis space {H0, H1, H2, . . .} as follows.
For m ∈ N, define Hm as follows: suppose n is such that m ∈ In; then let

Hm =

{

Ln, if m /∈ S;
Ln ∪ {m + t,m + t + 1, . . .}, if m ∈ St+1 − St for some t ∈ N.
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The hypothesis space {H0, H1, H2, . . .} is an indexed family which is a superclass of {L0, L1,
L2, . . .}. Let M be a learner for {L0, L1, L2, . . .} with respect to {H0, H1, H2, . . .}. Let mn be
the first index output by M on the canonical text Tn for Ln such that mn ∈ In (mn may
not always be defined). Then the set {mn : n ∈ N and mn exists} is recursively enumerable.
Let e be an index for this set. Suppose there are infinitely many coinfinite sets in {L0, L1,
L2, . . .}, then there exists an a > e such that La is coinfinite. Since La is coinfinite, ma exists (as
only indices in In can be indices for coinfinite Ln). Furthermore, ma ∈ S because ma is the only
element in We ∩ Ia. But this implies Hma

⊃ La. Hence M cannot be conservative. The function
r can be found by techniques similar to those in the proof of Theorem 8.

The above is not a characterization as the class of all cofinite sets is not learnable in the limit.
On the other hand, one can get the following characterization: Assume that {L0, L1, L2, . . .}
is exactly conservatively learnable. (a) {L0, L1, L2, . . .} is uniformly conservatively learnable iff
there is a recursive function r such that, for all a and x, x > r(a) ⇒ x ∈ La. (b) {L0, L1,
L2, . . .} is prescribed conservatively learnable iff there is a recursive function r such that, for
almost all a and for all x, x > r(a) ⇒ x ∈ La. The only if direction can be shown as in above
theorems. If direction, can be proven easily using standard techniques.

The next example shows that there is also a learnable class of cofinite sets which is not
prescribed conservatively learnable; this class is still class-comprising conservative learnable.

Example 10. Suppose {L0, L1, L2, . . .} consists of all sets of the form N − {a} and all sets of

the form N − {a, b} where a < b, a ∈ K − Kb. Then {L0, L1, L2, . . .} is class-preservingly con-

servatively learnable but not prescribed conservatively learnable. More precisely, {L0, L1, L2, . . .}
is not conservatively learnable with respect to the hypothesis space {H0, H1, H2, . . .} given by

H2a = N−{a} and H1, H3, H5, . . . being an enumeration of those sets in {L0, L1, L2, . . .} with 2
elements in the complement.

Proof. Without loss of generality assume that, from i, one can effectively determine N − Li.

We define a class-preserving hypothesis space {H ′
0, H

′
1, H

′
2, . . .} by setting H ′

2i+1 = Li, H ′
2i =

{x ∈ N : (x 6= i) ∧ ¬(x > i and i ∈ Kx+1 − Kx)}, for all i ∈ N. The class {L0, L1, L2, . . .} is
conservatively learnable with respect to {H ′

0, H
′
1, H

′
2, . . .} as follows: Given T [t] as input, learner

first finds the least two elements n1, n2 /∈ content(T [t]), with n1 < n2. If n1 6∈ Kj+1 − Kj,
for any j ∈ content(T [t]), then the learner outputs a grammar for H ′

2n1
. Otherwise there is a

j ∈ content(T [t]) such that n1 ∈ Kj+1 − Kj. Now, if n2 ≤ j, then the learner outputs 2r + 1,
for the least r such that Lr = N − {n1, n2}; otherwise the learner outputs 2r + 1, for the least r
such that Lr = N − {n1}. It is easy to verify that the above learner conservatively learns {L0,
L1, L2, . . .} using the class-preserving hypothesis space {H ′

0, H
′
1, . . .}.

Suppose a learner M conservatively learns {L0, L1, L2, . . .} with respect to the given hypoth-
esis space {H0, H1, H2, . . .}. For any n ∈ N, we can decide whether n ∈ K as follows: Let T be a
text for N − {n}. Then M(σ) = 2n for some σ ⊂ T because H2n is the only correct hypothesis
for N − {n}. Let t be the minimum number in N − ({0, 1, 2, . . . , n} ∪ content(σ)). If n ∈ K, but
n /∈ Kt, then N−{n, t} ∈ {L0, L1, L2, . . .} and σ can be extended to be a text T ′ for N− {n, t},
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violating the conservativeness of M . Also, clearly if n ∈ Kt, then n ∈ K. Hence n ∈ K iff n ∈ Kt.
So we have an effective procedure to decide whether n ∈ K, a contradiction.

The following theorem shows that class-preserving-uniformly conservative learnability and pre-
scribed conservative learnability are not comparable.

Theorem 11. (a) There exists a class {L0, L1, L2, . . .} which is class-preserving-uniformly con-

servatively learnable, but not prescribed conservatively learnable.

(b) There exists a class {L0, L1, L2, . . .} which is prescribed conservatively learnable but not

class-preserving-uniformly conservatively learnable.

Proof. (a) Let La = {a}. Then {L0, L1, L2, . . .} is clearly class-preserving-uniformly conser-
vatively learnable. However, by Theorem 9, {L0, L1, L2, . . .} is not prescribed conservatively
learnable.

(b) Let L0 = ∅. Let Li+1 = {x : x ≥ i}. Then, {L0, L1, L2, . . .} is prescribed conservatively
learnable as follows. Suppose hypothesis space {H0, H1, H2, . . .} is given. Suppose z is such that
Hz = ∅. On input T [t], if content(T [t]) = ∅, then output z. If content(T [t]) is contained in the
previous hypothesis, then repeat the previous hypothesis. Otherwise, let i be minimal such that
i ∈ content(T [t]). Let j ≤ t be minimal such that Hj(x) = 1, for x ∈ {i, i + 1, i + 2, . . . , t} and
Hj(x) = 0, for x < i. If such a j exists, then output j, otherwise repeat the previous hypothesis.
It is easy to verify that the above learner conservatively learns {L0, L1, L2, . . .} using hypothesis
space {H0, H1, H2, . . .}.

Now we show that {L0, L1, L2, . . .} is not class-preserving-uniformly conservatively learnable.
Suppose by way of contradiction that M0,M1,M2, . . . witnesses that {L0, L1, L2, . . .} is class-
preserving-uniformly conservatively learnable. Then by Kleene’s recursion theorem [16], there
exists an e such that ϕe may be defined as follows:

ϕe(2i + 1, x) = Li+1(x);

ϕe(2i, x) =







1, if 2i is the first hypothesis output by Me on #∞

and this hypothesis is output by Me within x steps;
0, otherwise.

It is easy to verify that Me does not conservatively identify {L0, L1, L2, . . .} using the class-
preserving hypothesis space given by ϕe.

4 Non U-Shaped Learning

Every conservative learner is clearly non U-shaped. Furthermore, one can modify a conservative
learner to be decisive by only changing to a new hypothesis if it is consistent with the input.

The following theorem thus shows that non U-shaped learning is equivalent to conservative
learning in the case of exact, class-preserving and class-preserving-uniform learning.
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Theorem 12. Assume that the class {L0, L1, L2, . . .} is class-preserving-uniformly non U-shaped

learnable. Then {L0, L1, L2, . . .} is already class-preserving-uniformly conservatively learnable by

the same learner. The same applies for exact and class-preserving learning.

Proof. We show that if M non U-shaped learns {L0, L1, L2, . . .} with respect to a class-
preserving hypothesis space {H0, H1, H2, . . .}, then M conservatively learns {L0, L1, L2, . . .} with
respect to {H0, H1, H2, . . .}. Assume M is not conservative, then there exist τ, σ such that
HM(τ) 6= HM(τσ), but content(τσ) ⊆ HM(τ). Since {H0, H1, H2, . . .} is class-preserving, there
exists an n such that Ln = HM(τ). Let T be a text for Ln, then τσT is a text for Ln. However,
M is not non U-shaped on τσT , as it first outputs a correct hypothesis HM(τ) = Ln and then
abandons it. The same argument applies for an exact hypothesis space.

However, for class-comprising learning, non U-shaped learning is more powerful than conservative
learning, as shown by the following theorem.

Theorem 13. Assume that {L0, L1, L2, . . .} contains all sets {x, x + 1, x + 2, . . .} and all finite

sets D such that there is an s with min(D) ∈ Ks+1 − Ks and 0 < |D| < s. Then {L0, L1,
L2, . . .} has a non U-shaped class-comprising learner but not a conservative class-comprising

learner.

Proof. Let the hypotheses space {H0, H1, H2, . . .} be such that H3x = {x + t : x /∈ Kt, t ∈ N},
H3x+1 = {x, x + 1, x + 2, . . .} and H3x+2 = Dx, where D0, D1, D2, . . . is the canonical numbering
of all finite sets. Then a non U-shaped learner M for {L0, L1, L2, . . .} with respect to {H0,
H1, H2, . . .} is defined as follows. Given any text T , at time t, find the smallest element x ∈
content(T [t]) and the largest s such that s ≤ t∧ x /∈ Ks; without loss of generality it is assumed
that K0 = ∅ and thus s always exists. If x ∈ Ks+1 and |content(T [t])| < s, then output the
hypothesis H3y+2 with H3y+2 = content(T [t]); if x ∈ Ks+1 and |content(T [t])| ≥ s, then output
H3x+1; if x /∈ Ks+1, then output H3x. Note that H3x /∈ {L0, L1, L2, . . .} whenever x ∈ K; hence
it can be verified easily that the above learner is non U-shaped.

Suppose that {L0, L1, L2, . . .} has a conservative class-comprising learner M . Then for any
x ∈ N, on the canonical text T for {x, x + 1, x + 2, . . .}, there exists some t such that HM(T [t]) ⊃
content(T [t]). If x ∈ K, then x must be in K|content(T [t])|+1, otherwise we can extend T [t] to be a
text for content(T [t]), which is a language in {L0, L1, L2, . . .}, thus violating the conservativeness
of M . Clearly x ∈ K|content(T [t])|+1 implies x ∈ K. Thus, we have x ∈ K iff x ∈ K|content(T [t])|+1.
Hence, we have an effective procedure to decide whether x ∈ K, a contradiction.

The following theorem gives a sufficient condition for uniform non U-shaped learnability. Fur-
thermore, this condition helps us to separate uniform non U-shaped learnability from prescribed
conservative learnability.

Theorem 14. If the class {L0, L1, L2, . . .} is exactly finitely learnable then {L0, L1, L2, . . .} is

uniformly non U-shaped learnable. In particular, there are classes which are uniformly non U-

shaped learnable but not prescribed conservatively learnable.
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Proof. Let M be an exact finite learner for {L0, L1, L2, . . .}, we define a recursive enumeration
of non U-shaped learners M0,M1,M2, . . . which uniformly learn {L0, L1, L2, . . .}. For each i ∈ N,
Mi(T [t]) is defined as follows: if M(T [t]) = ?, then output ?; if M(T [t]) = e, then for each j ≤ t,
define rj = min{x : x > t or Le(x) 6= ϕi(j, x)}. Output the minimal j which maximizes rj.
It can be easily verified that the above learners witness that {L0, L1, L2, . . .} is uniformly non
U-shaped learnable.

Take any exactly finitely learnable language collection with infinitely many coinfinite lan-
guages, then it is uniformly non U-shaped learnable but not prescribed conservatively learnable.
An example is the language collection {L0, L1, L2, . . .} where Ln = {0, 2, 4, 6, . . .} ∪ {2n + 1}.

With the following result we can see that non U-shaped learning and decisive learning are
equivalent for prescribed learning and uniform learning.

Theorem 15. If {L0, L1, L2, . . .} is prescribed non U-shaped learnable then {L0, L1, L2, . . .} is

also prescribed decisively learnable. If {L0, L1, L2, . . .} is uniformly non U-shaped learnable then

{L0, L1, L2, . . .} is also uniformly decisively learnable.

Proof. It suffices to show that if M non U-shaped learns {L0, L1, L2, . . .} with respect to
a given hypothesis space {H0, H1, H2, . . .}, then we can effectively build another learner M ′

which decisively learns {L0, L1, L2, . . .} with respect to {H0, H1, H2, . . .}. The desired M ′ can
be defined as follows. Given a text T , let M ′(T [0]) = M(T [0]). For t > 0, M ′(T [t]) = M(T [t])
if for all t′ < t, for some x ≤ t, HM(T [t])(x) 6= HM ′(T [t′])(x); and M ′(T [t]) = M ′(T [t − 1])
otherwise. It can be easily verified that M ′ is decisively learning {L0, L1, L2, . . .} using {H0, H1,
H2, . . .}.

As in the case of conservative learning, class-preserving-uniform non U-shaped learnability and
prescribed non U-shaped learnability are not comparable as well.

Theorem 16. (a) There exists an {L0, L1, L2, . . .} which is class-preserving-uniformly non U-

shaped learnable but not prescribed non U-shaped learnable.

(b) There exists an {L0, L1, L2, . . .} which is prescribed non U-shaped learnable but not class-

preserving-uniformly non U-shaped learnable.

Proof. (a) Let {L0, L1, L2, . . .} be a recursive enumeration of all sets {2x} with x /∈ K and
{2x, 2y + 1} with x ∈ K ∧ y ∈ N. It is easy to see that such an enumeration exists.

To see that {L0, L1, L2, . . .} is class-preserving-uniformly non U-shaped learnable consider
the following recursive sequence M0,M1, . . . of learners.

Me on input T [t] does the following. If content(T [t]) is empty, then output ?. Otherwise
output the least j ≤ t such that content(T [t]) ⊆ {x : ϕe(j, x) = 1}, if any. Otherwise repeat
the previous hypothesis. It is easy to verify that Me conservatively learns {L0, L1, L2, . . .} using
hypothesis space provided by ϕe, if this ϕe is recursive and defines a class-preserving hypothesis
space for {L0, L1, L2, . . .}.

We now show that {L0, L1, L2, . . .} is not prescribed non U-shaped learnable. Let cK be the
convergence modulus of the halting problem K, that is, cK(i) = min{t : ∀j ≤ i [Kt(j) = K(j)]}.
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Furthermore, cK,k(i) = min{t : ∀j ≤ i [Kt(j) = Kk(j)]} is the k-th approximation to cK; clearly
cK,k(i) ≤ k for all i. Now consider the following superclass of {L0, L1, L2, . . .}:

H〈i,j,k〉 =







{2i, 2j + 1} if k = 0;
{2i} if k > 0 ∧ cK,k(i) = cK(i);
{2i, 2t + 1} otherwise, where t = min{s : cK,s(i) > cK,k(i)}.

{H0, H1, H2, . . .} is an indexed family and it contains {L0, L1, L2, . . .}. Now assume that N is a
recursive learner for {L0, L1, L2, . . .} with hypothesis space {H0, H1, H2, . . .}.

Let f be the partial-recursive function such that f(i) is the first s such that N((2i)s) is an
index for either {2i} or some set {2i, 2j + 1}. Note that f(i) is defined for all i /∈ K. Due to
the fast growth-rate of cK, for almost all the i in the domain of f , it holds that N((2i)f(i)) is an
index for some set {2i, 2ji + 1} with ji depending on i, f(i). As N learns {2i} on the text (2i)∞

for all i /∈ K, there exists a further partial-recursive function g with the following properties: g is
defined on almost all elements in N−K; for all i in the domain of g, g(i) > f(i) and N((2i)g(i)) is
an index for a set containing 2i but not 2ji +1. As N−K is not recursively enumerable, f(i), g(i)
are defined for infinitely many i ∈ K as well. So there is some i ∈ K with N((2i)f(i)) being an
index for {2i, 2ji + 1} and N((2i)g(i)) being an index of some other set. It follows that N is not
U-shaped on the text (2i)g(i) (2ji + 1)∞.

(b) The class {L : |L| ≤ 1} is easily seen to be prescribed non U-shaped learnable. Let {H0, H1,
H2, . . .} contain the class to be learnt. If content(T [t]) = ∅ then the learner outputs the least
index for ∅. Otherwise, let x be the least member of content(T [t]); the learner outputs the least
number e with {0, 1, 2, . . . , x + t} ∩ He = {x}.

Now it is shown that the above class is not class-preserving-uniformly non U-shaped learnable.
The reason is that one cannot figure out the index of the empty set in a given indexing; indeed
one can make an indexing He of {L : |L| ≤ 1} for which the index of ∅ is larger than the
convergence modulus cK(e). Let Me be a uniformly obtained learner for {L : |L| ≤ 1} using
hypothesis space He; such a learner exists, but it will be shown that for some e the learner Me

cannot be non U-shaped. Let f(e) be the index of the first hypothesis output by Me on #∞. As
f(e) < cK(e) for infinitely many e, there is an e such that the first index output on #∞ by Me

is for some set {x}. As Me learns #∞ there is some later index output for ∅ after having seen
#s for some s. It follows that Me is U-shaped on #sx∞.

5 Monotonic Learning

The prescribed and uniform versions of strong-monotonic and monotonic learning are very re-
strictive.

Theorem 17. (a) {L0, L1, L2, . . .} is prescribed strong-monotonically learnable iff {L0, L1, L2, . . .}
is finite.

(b) {L0, L1, L2, . . .} cannot be uniformly strong-monotonically learnable.
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Proof. (a) If {L0, L1, L2, . . .} is finite, then it is easily seen to be prescribed strong-monotonical-
ly learnable.

Now assume that {L0, L1, L2, . . .} is infinite. Let odd(x) = 1 for odd x and odd(x) = 0 for
even x. Furthermore even(x) = 1 − odd(x). Let M0,M1,M2, . . . be a fixed enumeration of all
learners. Suppose {L0, L1, L2, . . .} is infinite. We define an indexed family hypothesis space {H0,
H1, H2, . . .} such that {L0, L1, L2, . . .} is not strong-monotonically learnable with respect to {H0,
H1, H2, . . .}. Let F be a recursive set such that F differs from each set in {L0, L1, L2, . . .} on
infinitely many even and infinitely many odd places. Let Ti denote a standard text for Li,
obtained effectively from i.

H〈i,j〉(x) =







































max{even(x), F (x)}, if 〈i, j〉 is the first index, with the
first component being i, output by Mi

on Ti within x steps;
min{odd(x), F (x)}, if 〈i, j〉 is the second distinct index, with the

first component being i, output by Mi

on Ti within x steps;
Li(x), otherwise.

{H0, H1, H2, . . .} is an indexed family hypothesis space for {L0, L1, L2, . . .}. For i ∈ N, consider
the behaviour of Mi on the canonical text Ti for Li:

1. If Mi does not output an index of the form 〈i, j〉, then Mi fails to learn Li because from the
definition of {H0, H1, H2, . . .}, only indices of such form can be indices for Li.

2. If Mi outputs only one such index, then from the definition of {H0, H1, H2, . . .}, the index
is not for any L ∈ {L0, L1, L2, . . .}, thus not for Li.

3. If Mi outputs two different such indices, say 〈i, j1〉 and 〈i, j2〉 being the first and second
one respectively, then from the definition of {H0, H1, H2, . . .}, H〈i,j1〉 6⊆ H〈i,j2〉, because H〈i,j1〉

contains all even numbers larger than x while H〈i,j2〉 does not, where x is the number of steps
needed for Mi to output 〈i, j2〉.

Hence, Mi fails to learn Li strong-monotonically from Ti. Thus, no learner learns {L0, L1, L2, . . .}
strong-monotonically with respect to {H0, H1, H2, . . .}, a contradiction. Hence, {L0, L1, L2, . . .}
must be finite.

(b) Let Ge = Le if e < |{L0, L1, L2, . . .}| and let Ge be some recursive set outside {L0, L1, L2, . . .}
otherwise. To see that {L0, L1, L2, . . .} is not uniformly strong-monotonically learnable, suppose
by way of contradiction that there exists a recursive enumeration of learners M0,M1, . . . such
that whenever ϕi defines a hypothesis space {H0, H1, H2, . . .} which contains {L0, L1, L2, . . .},
then Mi learns {L0, L1, L2, . . .} strong-monotonically with respect to {H0, H1, H2, . . .}. Let F be
a recursive set such that F differs from each set in {L0, L1, L2, . . .} on infinitely many even and
infinitely many odd places. Let Ti denote a standard text for Li, obtained effectively from i. By
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Kleene’s recursion theorem [16], there exists an e such that:

ϕe(〈i, j〉, x) =







































max{even(x), F (x)}, if 〈i, j〉 is the first index, with the
first component being i, output by Me

on Ti within x steps;
min{odd(x), F (x)}, if 〈i, j〉 is the second distinct index, with the

first component being i, output by Me

on Ti within x steps;
Gi(x), otherwise.

It can be verified that Me does not strong-monotonically learn {L0, L1, L2, . . .} with respect to
the hypothesis space defined by ϕe in a way similar to part (a).

As in the case of uniform conservative learning, there also exists an infinite class which is uni-
formly monotonically learnable.

Example 18. Let La = {a}. Then {L0, L1, L2, . . .} is an infinite class which is uniformly mono-

tonically learnable.

Proof. For each e ∈ N, define Me(T [t]) as follows. If content(T [t]) = ∅ then output ?. Otherwise,
let a ∈ content(T [t]). Let j ≤ t be minimal (if any) such that ϕe(j, a) = 1 and for all n ≤ t with
n 6= a, ϕe(j, n) = 0. If such j is found, output j; otherwise output ?. It is easy to verify that
M0,M1,M2, . . . uniformly monotonically learn {L0, L1, L2, . . .}.

The following result shows that in fact it is necessary for a class to contain only finite sets in
order to be uniformly monotonically learnable.

Theorem 19. If {L0, L1, L2, . . .} is uniformly monotonically learnable, then {L0, L1, L2, . . .}
contains only finite sets.

Proof. Let In be as in Definition 5. Let Ge = Le if e < |{L0, L1, L2, . . .}| and let Ge be some
recursive set outside {L0, L1, L2, . . .} otherwise. Let X = {x : ∃n∃i ≤ n [x = min(Li∩In)]}∪{x :
∃n∃i ≤ n [x = min(Li ∩ In)]}. Then X is recursive and for any finite variant Y of X and all d,
Y 6= Ld and Y ∩ Ld is infinite whenever Ld is infinite.

If {L0, L1, L2, . . .} is uniformly monotonically learnable, then there exists a recursive enu-
meration of learners M0,M1,M2, . . . such that whenever ϕi defines a hypothesis space {H0, H1,
H2, . . .} which contains {L0, L1, L2, . . .}, then Mi learns {L0, L1, L2, . . .} monotonically with re-
spect to {H0, H1, H2, . . .}. Let Ti denote a standard text for Li, obtained effectively from i. By
Kleene’s recursion theorem [16], there exists an e such that:

ϕe(〈i, j〉, x) =







































X(x), if 〈i, j〉 is the first index, with the
first component being i, output by Me

on Ti within x steps;
0, if 〈i, j〉 is the second distinct index, with the

first component being i, output by Me

on Ti within x steps;
Gi(x), otherwise.
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Let {H0, H1, H2, . . .} be the hypotheses defined by ϕe. Then clearly {H0, H1, H2, . . .} is an in-
dexed family and {H0, H1, H2, . . .} ⊇ {L0, L1, L2, . . .}. We show that if there exists any infinite
Ln with n < |{L0, L1, L2, . . .}|, then Me does not monotonically learn Ln with respect to {H0,
H1, H2, . . .}, thus Me fails to learn {L0, L1, L2, . . .} monotonically with respect to {H0, H1,
H2, . . .}.

1. If Me does not output any index of the form 〈n, j〉 on Tn, then Me fails to learn Ln, as only
indices of the form 〈n, j〉 can be indices for Ln.

2. If Me only output one distinct index of the form 〈n, j〉, say, 〈n, j0〉, then by the definition of
ϕe, H〈n,j0〉 6= Ln , as H〈n,j0〉 is a finite variant of X.

3. If Me outputs at least two distinct indices of the form 〈n, j〉, then let 〈n, j0〉 and 〈n, j1〉 be
the first and second such distinct indices respectively. By the definition of ϕe, H〈n,j0〉 ∩ Ln is
infinite while H〈n,j1〉 ∩ Ln is finite (as H〈n,j1〉 is finite). Hence Me is not monotonic.

This completes the proof.

For prescribed monotonic learning, finitely many sets in the language class can violate the above
necessary condition for uniform monotonic learning.

Theorem 20. If {L0, L1, L2, . . .} is prescribed monotonically learnable, then {L0, L1, L2, . . .}
contains only finitely many infinite sets.

Proof. Let A = {〈i, j〉 : ∃e ≤ i[ϕe(i, 0) ↓= 〈i, j〉]}, B = {〈i, j〉 : ∃e ≤ i∃k ≤ i + 2[ϕe(i, k) ↓=
〈i, j〉]}. Then A and B are both r.e. sets. Now suppose {L0, L1, L2, . . .} is infinite and uniformly
recursive. Let X be as in the proof for Theorem 19. Let Ax and Bx be the sets of elements
enumerated into A and B in x steps respectively. Let {H0, H1, H2, . . .} be as follows:

H〈i,j〉(x) =







X(x), if 〈i, j〉 ∈ Ax;
0, if 〈i, j〉 ∈ Bx − Ax;
Li(x), otherwise.

Then {H0, H1, H2, . . .} is a uniformly recursive hypothesis space containing {L0, L1, L2, . . .}.
Since {L0, L1, L2, . . .} is prescribed monotonically learnable, there exists a learner M which
monotonically learns {L0, L1, L2, . . .} with respect to {H0, H1, H2, . . .}. Define f(i, j) =the jth

(starting from 0) distinct index of the form 〈i, k〉(k ∈ N) output by M on the canonical text Ti

for Li. Then f(i, j) is partial recursive, and thus there exists n such that ϕn(i, j) = f(i, j).
Suppose to the contrary that {L0, L1, L2, . . .} contains infinitely many infinite languages, then

there exists m > n such that Lm is infinite. By the definition of {H0, H1, H2, . . .}, the indices
for Lm can only be of the form 〈m, k〉 for some k ∈ N, thus 〈m, j0〉 = ϕn(m, 0) is defined and
〈m, j0〉 ∈ A. By the definition of {H0, H1, H2, . . .}, H〈m,j0〉 6= Lm, and H〈m,j0〉∩Ln is an infinite set.
This implies 〈m, j1〉 = ϕn(m, 1) is defined and 〈m, j1〉 ∈ B. If 〈m, j1〉 /∈ A, then by the definition
of {H0, H1, H2, . . .}, H〈m,j1〉 ∩ Lm is finite. Thus H〈m,j0〉 ∩ Lm 6⊆ H〈m,j1〉 ∩ Lm and we are done.
Otherwise, we can see that as long as 〈m, jk〉 = ϕn(m, k) ∈ A, then 〈m, jk+1〉 = ϕn(m, k + 1)
is defined. However, A contains at most m + 1 indices of the form 〈m, j〉, thus there exists
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k ≤ m such that 〈m, jk+1〉 ∈ B − A. At this point, using same argument as above, we can
see monotonicity of M is violated, a contradiction. Hence {L0, L1, L2, . . .} contains only finitely
many infinite languages.

The following example shows that the condition is a necessary, but not sufficient condition for
prescribed monotonic learnability.

Example 21. Let {L0, L1, L2, . . .} contain all sets with one or two elements plus perhaps other

non-empty sets. Then {L0, L1, L2, . . .} is not prescribed monotonically learnable.

Proof. We define an indexed family hypothesis space {H0, H1, H2, . . .} as follows:

H〈i,j〉 =















Lj, if j < i and |Lj ∩ {0, 1, . . . , i}| ≥ 2;
{j, i}, if j < i and |Lj ∩ {0, 1, . . . , i}| < 2;
{i}, if j ≥ i and j /∈ S;
{i, j + t + 1}, if j ≥ i and j ∈ St+1 − St.

The class {L0, L1, L2, . . .} is not monotonically learnable with respect to {H0, H1, H2, . . .} as
shown below. Suppose M learns {L0, L1, L2, . . .} monotonically with respect to {H0, H1, H2, . . .},
then for all i ∈ N, on the text i∞, M must output an index of the form 〈i, j〉 with j ≥ i. Let
〈i, ni〉 be the first such index. If for all i ∈ N, H〈i,ni〉 = {i}, then ni 6∈ S, and thus {n0, n1, . . .} is
an infinite r.e. subset of S, a contradiction. Hence for some i ∈ N, ni ∈ S and H〈i,ni〉 = {i, t + 1}
for some t ≥ i. Suppose, M(it1) = 〈i, ni〉 and for some t2 > t1, M(it2) = 〈i, j〉, where j ≥ i
and j /∈ S, then we can extend it2 to a text it2(t + 1)∞ for {i, t + 1}. On this text M does not
monotonically learn {i, t + 1} because for t1, t2 with t1 < t2, HM(it1) ∩ {i, t + 1} = {i, t + 1} 6⊆
HM(it2) ∩ {i, t + 1} = {i}.

Theorem 22. (a) There exists a class {L0, L1, L2, . . .} which is class-preserving-uniformly strong-

monotonically learnable but not prescribed monotonically learnable.

(b) There exists a class {L0, L1, L2, . . .} which is prescribed monotonically learnable but not class-

preserving-uniformly monotonically learnable.

(c) Every prescribed strong-monotonically learnable class is also class-preserving-uniformly strong-

monotonically learnable.

Proof. (a) Consider the class {L0, L1, L2, . . .} with Li = {〈i, j〉 : j ∈ N}. This is easily seen
to be class-preserving-uniformly finitely (and thus strong-monotonically) learnable. However as
{L0, L1, L2, . . .} contains infinitely many infinite-coinfinite languages, by Theorem 20, it is not
prescribed monotonically learnable.

(b) Consider the class consisting of the empty set and all singleton sets {x}. It is easily seen to be
prescribed monotonically learnable. Using an argument similar to the proof of Theorem 16 (b),
we can see that {L0, L1, L2, . . .} is not class-preserving-uniformly monotonically learnable.

(c) Any prescribed strong-monotonically learnable class is finite, and a finite class is easily seen
to be class-preserving-uniformly strong-monotonically learnable.
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Remark 23. A class is dual strong-monotonically learnable iff there is a learner such that every
subsequent hypothesis is for a subset of the previous one. A class is dual monotonically learnable
iff there is a learner such that for every set L in the class, if the learner outputs Hj after Hi on
input text for L, then it holds that Hi ∪ L ⊇ Hj ∪ L.

One can obtain results similar to those for strong-monotonic and monotonic learning. How-
ever, there is one difference: Dual strong-monotonically learnable classes have to be inclusion-
free, that is, there are no sets Li, Lj in the class with Li ⊂ Lj. Hence there is a close connec-
tion between finite learning and dual strong-monotonic learning: A class is exactly dual strong-
monotonically learnable iff it is exactly finitely learnable [14]; a class is class-preservingly dual
strong-monotonically learnable iff it is class-preservingly finitely learnable [14]; a class is pre-
scribed dual strong-monotonically learnable iff it is finite and inclusion-free; no class is uniformly
dual strong-monotonically learnable. But there is a difference for class-comprising learning as
there is a class which is class-comprisingly dual strong-monotonically learnable but not finitely
learnable [14]. The class of all sets {x, x+1, x+2, . . .} is uniformly dual monotonically learnable.
Any class which is uniformly dual monotonically learnable contains only cofinite sets. If a class
is prescribed dual monotonically learnable then it contains only finitely many coinfinite sets.
Every prescribed dual strong-monotonically learnable class is also class-preserving-uniformly
dual strong-monotonically learnable. There is a class which is class-preserving-uniformly dual
strong-monotonically learnable but not prescribed dual monotonically learnable; this class con-
sists of all singleton sets {x}. There is a class which is prescribed dual monotonically learn-
able but not class-preservingly-uniformly dual monotonically learnable; this class consists of the
empty set, the set of even numbers and all sets of the form {0, 2, 4, . . . , 2x} ∪ {2x + 2, 2x + 3,
2x + 4, . . .}.
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