
Priced Learning

Sanjay Jain ?1, Junqi Ma2, and Frank Stephan ??3

1 School of Computing, National University of Singapore, Singapore 117417.
Email: sanjay@comp.nus.edu.sg

2 School of Computing, National University of Singapore, Singapore 117417.
Email: ma.junqi@nus.edu.sg

3 Department of Mathematics and Department of Computer Science, National
University of Singapore,

Singapore 119076. Email: fstephan@comp.nus.edu.sg

Abstract. In iterative learning the memory of the learner can only be
updated when the hypothesis changes; this results in only finitely many
updates of memory during the overall learning history. Priced learning
relaxes this constraint on the update of memory by imposing some price
on the updates of the memory – depending on the current datum – and
requiring that the overall sum of the costs incurred has to be finite.
There are priced-learnable classes which are not iteratively learnable.
The current work introduces the basic definitions and results for priced
learning. This work also introduces various variants of priced learning.

1 Introduction

Learning from positive data in Gold’s model [6] has the following basic scenario:
Given a class of r.e. languages and an unknown language L from this class,
the learner observes an infinite list containing all and only the elements of L.
The order and multiplicity of the elements of L in the list may be arbitrary.
As the learner is observing the members of the list, it outputs a sequence of
hypotheses about what the input language might be. For learning the language,
this sequence of hypotheses is required to converge to a grammar for L (for every
input list of elements of L as above).

In general, in the above learning process, the learner can memorise all data
observed so far and do comprehensive calculations without restrictions to the
memory amount and usage. Several approaches have been formalised in order
to restrict the amount of memory used. One of them is the strict separation
between short-term and long-term memory where, whenever a datum is read,
some computations are done in an unlimited short-term memory and then the
data for the next round of learning is archived in a size-constrained long-term
memory [4, 7]. The other approaches to limit the memory usage do not count
bits and bytes, but rather allow only fixed number of elements of the input to be
memorized. In such models, if the learner does not update its memory/hypothesis

? Supported in part by NUS grant numbers R146-000-181-112 and C252-000-087-001.
?? Supported in part by NUS grant number R146-000-181-112.

on a receipt of a datum, then at later stages it is not able to know whether the
corresponding datum was observed or not. In its most restrictive form, this type
of learning is called incremental or iterative learning [3, 8, 13]. An iterative learner
can memorise data only when it revises the hypothesis and not at any other point
of time; thus it can, through the overall learning history, only finitely often revise
its long-term memory. This restriction is quite severe and, for example, the class
consisting of the set {1, 2, . . .} and all sets of the form {0, 1, . . . , x}, where x is a
natural number, is not iteratively learnable. To see this, note that if the learner
first sees data from the infinite set {1, 2, . . .}, then, after some time, the learner
will need to converge to a grammar for {1, 2, . . .}. Thereafter the learner cannot
archive any data, in particular it cannot archive the maximum datum x seen so
far. If later the datum 0 shows up, the learner knows that the input set must be
of the form {0, 1, . . . , x}; however, the learner can no longer recover the exact
value of x from its memory.

The idea of priced learning is to relax the severe constraints placed on it-
erative learning. In priced learning, a price is charged for each update of the
memory and it is required that during the learning process, the overall costs
incurred is finite. In the case that this price charged is always the same constant
c for each memory update, the corresponding notion would be exactly that of
iterative learning. However, by allowing the price to depend on the datum x read
when the memory is updated, one can give discounts for various types of data
and permit, under certain circumstances, to update the memory infinitely often
during the learning process. This concept of priced learning, however, still does
not permit, in general, to do every possible update of the memory. Priced learn-
ing is therefore between the two extremes of iterative learning and the original
unrestricted model of learning by Gold where the memory could be updated as
often as desired. For the priced learning model PricedfEx introduced in this
paper, the costs incurred are guided by a price function f which is a parameter
of the learning criterion. A PricedfEx-learner incurs, at every update of the
memory on input datum x, the cost 1/(f(x) + 1) (where f is a recursive func-
tion). We refer the reader to Section 3 for the formal definitions. On reading
a datum x, the learner has to decide whether it wants to update the memory
so that on one hand, all important information are preserved in the long term
memory and, on the other hand, the overall price of these updates does not go
to infinity.

The present work investigates when, for different price functions f and g,
PricedfEx-learnability implies PricedgEx-learnability. This depends on the
existence of sets S such that

∑
x∈S

1
f(x)+1 is finite but

∑
x∈S

1
g(x)+1 is infinite

(see Theorem 9 and Theorem 11). Theorem 15 gives a characterisation of classes
which are PricedfEx-learnable for some recursive function f : these are exactly
the classes which are learnable by a set-driven learner. Here a set-driven learner
[9] is a learner whose output conjecture depends only on the set of elements it
has observed in the input and not on their order or amount of repetitions.

Further results are based on whether a class can be learnt when the price
functions are from a natural class C of price functions, irrespective of which price

function from the class is actually chosen. Here, one may allow the learner to be
chosen depending on the price function, uniformly or non-uniformly based on the
program for the price function, or may even require it to be the same learner for
all the price functions from the class C. Section 6 onwards explore such questions.
Let MF = {f : f is recursive and unbounded and ∀x [f(x) ≤ f(x + 1)]} and
FF = {f : f is recursive and ∀y [card(f−1(y)) is finite]}. Note that MF is a
proper subset of FF. It is shown in Theorem 17 that there exists a class of
languages which can be Pricedf -learnt for every f ∈ FF, but which cannot
be iteratively learnt. On the other hand, Theorem 18 shows advantages of price
function being from MF compared to it being from FF. Results in Section 7
deal with the question of when and what kind of uniformity constraints can be
placed on learners which learn a class with respect to a price function from a
class of price functions such as MF or FF. Due to space constraints, some proofs
are omitted.

2 Notations and Preliminaries

Any unexplained recursion theoretic notation is from Rogers’ book [11]. The
symbol N denotes the set of natural numbers {0, 1, 2, . . .}. Subsets of natural
numbers are referred to as languages. We let ∅,⊆,⊂,⊇ and⊃ respectively denote
empty set, subset, proper subset, superset and proper superset. Cardinality of a
set S is denoted by card(S). The maximum and minimum of a set S are denoted
by max(S) and min(S), respectively, where max(∅) = 0 and min(∅) =∞.

Let 〈·, ·〉 denote a recursive pairing function which is a bijection from N×N
to N. Without loss of generality, we assume that pairing function is monotonic in
both its arguments; in particular 〈0, 0〉 = 0. The pairing function can be extended
to pairing of n-tuples by using 〈x1, x2, . . . , xn〉 = 〈x1, 〈x2, . . . , xn〉〉. We define
projection functions π1, π2 as π1(〈x1, x2〉) = x1 and π2(〈x1, x2〉) = x2. Similarly,
let πni (〈x1, x2, . . . , xn〉) = xi. For a set L, let cyl(L) = {〈x, i〉 : x ∈ L, i ∈ N}.

By ϕ we denote a fixed acceptable programming system for the partial com-
putable functions mapping N to N [11]. By ϕi we denote the partial function
computed by the i-th program in the ϕ-system. Thus, i is also called a pro-
gram/index for ϕi. Let R denote the class of all total recursive functions. For
any partial function η, we let η(x)↓ denote that η(x) is defined and η(x)↑ de-
note that η(x) is undefined. By Φ we denote an arbitrary fixed Blum complexity
measure [2] for the ϕ-system. Let

ϕi,s(x) =

{
ϕi(x), if x < s and Φi(x) < s;
↑, otherwise.

Let Wi = domain(ϕi). Wi can be considered as the language accepted by the
i-the ϕ-program ϕi. We also say that i is a grammar/index for Wi. Thus,
W0,W1, . . ., is an acceptable programming system for recursively enumerable
languages. The symbol E denotes the set of all recursively enumerable (r.e.) lan-
guages. The symbol L ranges over E ; the symbol L ranges over subsets of E . By
L, we denote the complement of L, that is L = N − L. By L(x) we denote the

value of the characteristic function of L at x; that is, L(x) = 1 if x ∈ L and
L(x) = 0 if x 6∈ L. By Wi,s we denote the set {x < s : Φi(x) < s}.

3 Models of Learning

We now present some concepts from language learning theory. A text is a map-
ping from N to N∪{#}. The content of a text T , denoted content(T) is the set of
natural numbers in the range of T , that is, {T (m) : m ∈ N}− {#}. We say that
T is a text for L if content(T) = L. Intuitively, # can be considered as pauses
in the presentation of data to a learner. We let T with or without decorations
range over texts. T [n] denotes the initial segment of a text T with length n, that
is, T (0), T (1), . . . , T (n− 1).

Initial segments of texts are called finite sequences (or just sequences). We
let σ and τ , with or without decorations, range over finite sequences. We let
content(σ) denote the set of natural numbers in the range of σ. Let SEQ denote
the set of all finite sequences. We assume some fixed computable ordering of
members SEQ (so that we can talk about the least sequence, etc.). We let |σ|
denote the length of σ. We let Λ denote the empty sequence and σ[n] denote
the initial segment of σ of length n (where σ[n] = σ, if n ≥ |σ|). Let σ�τ denote
the concatenation of two finite sequence σ and τ . Similarly, let σ�T denote the
concatenation of finite sequence σ and text T . For x ∈ N∪{#}, we let σ�x denote
the concatenation of σ with the finite sequence containing just one element x.
Let σ � T and σ � τ denote that σ is an initial segment of T and τ respectively.

Definition 1 (Based on Gold [6]).

(a) A learner M is a (possibly partial) recursive mapping from (N∪{?})× (N∪
{#}) to (N∪{?})×(N∪{?}). A learner has initial memory mem0 and initial
hypothesis hyp0.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis

hyp0 is given. Let memM,T
0 = mem0 and hypM,T

0 = hyp0. For k ≥ 0,

let (memM,T
k+1 , hyp

M,T
k+1) = M(memM,T

k , T (k)). Extend the definition of M to

initial segments of texts by letting M(T [k]) = (memM,T
k , hypM,T

k).

Intuitively, memM,T
k is considered as the memory of the learner after having

seen data T [k] and hypM,T
k is considered as the hypothesis of the learner

after having seen data T [k]. Without loss of generality we assume that the
memory is revised whenever the hypothesis is revised. Sometimes, we just
say M(T [k]) = hypM,T

k , where the memory of the learner is implicit.
(c) We say that M converges on a text T to a hypothesis hyp if the sequence

hypM,T
0 , hypM,T

1 , hypM,T
2 , . . . converges syntactically to hyp.

(d) We say that M Ex-learns a language L on text T if M is defined on all
initial segments of the text T and M converges on T to a hypothesis hyp
such that Whyp = L.

(e) We say that M Ex-learns a language L (written: L ∈ Ex(M)), if M Ex-
learns L from each text T for L.

(f) We say that M Ex-learns a class L of languages (written: L ⊆ Ex(M)) iff
M Ex-learns each L ∈ L.

(g) Ex = {L : ∃M [L ⊆ Ex(M)]}.

We say that M changes its mind (hypothesis, conjecture) at T [n+1], if hypM,T
n 6=

hypM,T
n+1 . We say that M changes its memory at T [n+1], if memM,T

n 6= memM,T
n+1

or hypM,T
n 6= hypM,T

n+1 ; that is, a learner cannot bring down the costs of mind
changes by only changing the hypothesis and not doing adequate bookkeeping in
the memory. Blum and Blum [1] gave a useful lemma for learnability of languages
by learners based on topological considerations.

Definition 2 (Fulk [5]). Suppose M(σ) = (mem, hyp). Sequence σ is said to
be a stabilising sequence for M on a language L if

(i) content(σ) ⊆ L and
(ii) for all τ such that σ ⊆ τ and content(τ) ⊆ L, M(τ) = (·, hyp). That is, M

does not change its hypothesis beyond σ on any text T for L.

Definition 3 (Blum and Blum [1]). A sequence σ is said to be a locking
sequence for M on a language L if

(i) σ is a stabilising sequence for M on L and
(ii) Whyp = L, where M(σ) = (mem, hyp).

Lemma 4 (Blum and Blum [1]). Suppose M Ex-learns L. Then the following
statements hold:

(i) There exists a locking sequence for M on L;
(ii) Every stabilising sequence for M on L is a locking sequence for M on L.

A lemma similar to above can be shown for all of the criteria of learning consid-
ered in this paper.

For some of the results in this paper it is useful to consider set-driven learning,
where the output of the learner depends just on the set of inputs seen.

Definition 5 (Osherson, Stob and Weinstein [9]).

(a) A learner M is said to be set-driven iff for all σ, τ , if content(σ) = content(τ),
and M(σ) = (mem, hyp), then M(τ) = (mem′, hyp), for some memory
mem′. That is, the hypothesis of the learner depends just on the content
of the input and not on the exact order or the number of repetitions of the
elements presented.

(b) SD = {L : ∃M [M is set-driven and L ⊆ Ex(M)]}.

A related notion of rearrangement independence, where the learner is able to
base its conjectures on the content and length of the input was considered by
[12]. We now consider iterative learning.

Definition 6 (Based on Wexler and Culicover [13] and Wiehagen [14]).

(a) A learner M is said to be iterative if for any text T , memM,T
k = hypM,T

k

(where it is possible that both are undefined).
(b) M ItEx-learns a language L (class of languages L) iff M is iterative and M

Ex-learns L (class of languages L).
(c) ItEx = {L : ∃M [M is iterative and L ⊆ Ex(M)]}.

It can be shown that iterative learning is restrictive: ItEx ⊂ Ex (see [14]).
There are several other variations of iterative learning considered in the litera-

ture where the memory is constrained in some way. For example, a learner M has
k-bounded example memory [8, 10] iff for all texts T and n, memM,T

n represents

a set of size at most k, where memM,T
0 = ∅ and memM,T

n+1 ⊆ memM,T
n ∪ {T (n)}.

As iterative learning (and most of its variations considered until now) put
severe constraints on what can be memorised by a learner, we consider a variation
where we allow the memory of grow arbitrarily large. However, there is a cost
associated with each change of memory: if the learner changes its memory (or
hypothesis) after seeing datum x, then it is charged some cost f(x). Now the
learner is said to identify the input language (for any given text) iff besides Ex-
learning the language, the total cost charged to the learner on the input text is
finite. Formally, this is defined as follows.

A price function is a recursive function mapping N ∪ {#} to N.

Definition 7. Suppose f is a price function and C is a class of price functions.

(a) M PricedfEx-learns a language L (written: L ∈ PricedfEx(M)) iff M
Ex-learns L and for all texts T for L,

∑
n:M(T [n+1])6=M(T [n])

1
f(T (n))+1 <∞.

(b) PricedfEx = {L : ∃M [L ⊆ PricedfEx(M)]}.
(c) PricedCEx = {L : ∀f ∈ C [L ∈ PricedfEx]}.

Note that in the above definition M(T [n]) is taken as the pair (memM,T
n , hypM,T

n).
For a learner M and price function g, costM,g(σ) is defined as follows. Let
S = {m < |σ| : M makes a memory change or a mind change at σ[m+ 1]}. Let
costM,g(σ) =

∑
m∈S 1/(g(σ(m)) + 1) and costM,g(T) = supσ�T costM,g(σ).

Here costM,g(σ) (costM,g(T)) is called the cost of M on input σ (input T) with
respect to the cost function g.

Let pricef (S) =
∑
x∈S

1
f(x)+1 . Intuitively, pricef (S) denotes the cost with

respect to the price function f if a mind change is made by the learner exactly
once with respect to each member of S.

Let M0,M1, . . . denote a recursive enumeration of all the learning machines.

Definition 8. Suppose C ⊆ R. EffPricedCEx = {L : ∃f ∈ R∀i ∈ N [if ϕi ∈ C
then Mf(i) Pricedϕi

Ex-learns L]}.

4 General Cost Functions

The theorems in this section explore when PricedfEx ⊆ PricedgEx. Theo-
rem 9 shows when L ∈ PricedfEx implies L ∈ PricedgEx, and Theorem 11
shows when such an implication does not hold.

Theorem 9. Suppose f and g are price functions for which no set S satisfies:
pricef (S) is finite and priceg(S) is infinite. Then, PricedfEx ⊆ PricedgEx.

Proposition 10. Let S be an infinite r.e. set, g be a price function such that
priceg(S) is infinite. Then, L = {S −{x} : x ∈ S −min(S)} is not PricedgEx-
learnable.

Proof. Suppose by way of contradiction that M PricedgEx-learns L.

Suppose there are distinct x, y ∈ S−{min(S)} such that for some σ satisfying
{x, y} ⊆ content(σ) ⊆ S, M did not change its memory and hypothesis whenever
it received x, y in the input σ. Let T be a text for S−{x, y}. Let σ′ be obtained
from σ by deleting the occurrences of x and σ′′ be obtained from σ by deleting
the occurrences of y. Now, M converges to the same hypothesis on both σ′�T and
σ′′�T , however σ′�T and σ′′�T are respectively texts for two different languages
S − {x} and S − {y} in L. Thus, M does not PricedgEx-learn at least one of
these languages.

On the other hand, if such distinct x, y and corresponding σ as above do not
exist, then on any text T for a language L ∈ L, the cost incurred by M on T is
infinite. Thus, M does not PricedgEx-learn L. ut

Theorem 11. Suppose f and g are price functions such that there exists a set S
satisfying that pricef (S) is finite but priceg(S) is infinite. Then PricedfEx 6⊆
PricedgEx.

Proof. Suppose there is a set S such that pricef (S) is finite and priceg(S) is
infinite. Then, for each c, there exists a set Sc such that pricef (Sc) < 1/(c+ 1)
and priceg(Sc) = ∞. Such sets can be found by considering tails of the sum
of the members in S. Hence one can, by effective search, find disjoint finite sets
S̃0, S̃1, . . . such that pricef (S̃c) < 1/(c+1) and priceg(S̃c) ≥ 1. To see this, define

S̃c by induction as the first finite set found (in some ordering of finite sets) such
that pricef (S̃c) < 1/(w + 1) and priceg(S̃c) ≥ 1, where w > c + max({f(x) :

x ∈
⋃
c′<c S̃c′}); note that the constraint on w implies that S̃c ∩ (

⋃
c′<c S̃c′) = ∅.

Now let S̃ be the union of all sets S̃2k for k ∈ N. The set S̃ is an r.e. set.

One can let L = {S̃−{x} : x ∈ S̃}. It is easy to see that L ∈ PricedfEx, as
on any input text T for L ∈ L, the learner can memorise all data seen, and, in
the limit, output a grammar for S̃−{x}, where x is the minimal element, if any,
in S̃ − content(T). Note that such a learner makes a memory / mind change on
any x at most once.

By Proposition 10, L 6∈ PricedgEx. The theorem follows. ut

Theorem 9 and Theorem 11 imply that PricedfEx = ItEx iff pricef (S) is infi-
nite for every infinite subset S of N. Theorem 11 can be generalised to find classes
which have one learner working with all price functions which permit to learn
this class. These classes can be chosen such that they are priced learnable for
some but not all price functions and hence they do not coincide with iteratively
learnable classes.

Theorem 12. Given any price function f , there is a class Cf and a learner M
such that for all price functions g, the following conditions are equivalent:

– PricedfEx ⊆ PricedgEx;
– M PricedgEx-learns Cf ;
– There is no set S such that pricef (S) is finite but priceg(S) is infinite.

5 Priced Learning and Set-Drivenness

In this section we show that classes which are PricedfEx-learnable with respect
to some price function f are learnable by a set-driven learner and vice versa,
classes which are set-driven-learnable are PricedgEx-learnable with respect to
some price function g. To this end we first give a modification of the definition
of stabilising/locking sequences with respect to a cost function.

Definition 13. A sequence σ is a g-cost-stabilising sequence (g-cost-locking se-
quence) for M on L, if the following conditions hold:

(a) σ is a stabilising sequence (locking sequence) for M on L and
(b) for all τ such that σ � τ and content(τ) ⊆ L, costM,g(τ) ≤ costM,g(σ) + 1.

The following can be proved in a way similar to locking sequence lemma in [1].

Lemma 14 (Based on Blum and Blum [1]). If M PricedgEx-learns L
then there exists a g-cost-locking sequence for M on L; Furthermore, all g-cost-
stabilising sequences for M on L are g-cost-locking sequences for M on L.

Furthermore, note that for any finite set S contained in some set learned by M,
and any price function g one can check if σ is a g-cost-stabilising sequence for
M on S. This holds as the number of memory / mind changes of M on any text
extending σ for S will be at most max({g(x) + 1 : x ∈ S ∪{#}}) if σ is indeed a
g-cost-stabilising sequence for M on S. Thus, we can check if the tree of memory
/ mind changes for M on S is finite above σ.

Theorem 15.
⋃
g∈RPricedgEx = SD.

Proof. Suppose L ∈ SD as witnessed by M. Let g(x) = 1/2x. Let N(σ) =
(content(σ), hyp), where hyp is the hypothesis of M on input σ. Note that, as
M is set-driven, N can easily obtain the hypothesis of M on input σ, using its
memory content(σ), by running M on any τ such that content(τ) = content(σ).
It is easy to verify that N PricedgEx-learns L.

Now suppose L ∈ PricedgEx as witnessed by M. Then, consider the follow-
ing set-driven learner N. The aim of the set-driven learner N is to find the least
g-cost-stabilising sequence for M on the input language. N on input σ searches
for the least g-cost-stabilising sequence τ for M on content(σ), if any, of length
at most |content(σ)|. Note that one can check if such a stabilising sequence ex-
ists. Now, N(σ) = (content(σ), hyp), where hyp is the hypothesis of M on input
τ if a τ as above exists; otherwise hyp is a canonical grammar for content(σ).

For a finite language L ∈ L, whether there exists a g-cost-stabilising sequence
for M on L of length at most card(L) or not, the learner N will output a grammar
for L after it has received all the elements of L. Thus, N would Ex-learn L.

For an infinite language L ∈ L, there exists a g-cost-stabilising sequence for
M on L of finite length, and thus for large enough initial segment of any text
T for L, N will find the least g-cost-stabilising sequence τ . Then, N will output
the hypothesis of M on τ as its hypothesis. Thus, N would Ex-learn L.

As N defined above is set-driven, we have that L ∈ SD. ut

Theorem 9 and Theorem 11 along with SD = PricedgEx, for the g used in the
proof of Theorem 15, imply that PricedfEx = SD iff pricef (N) is finite.

6 Classes of Cost Functions

In this section we will consider priced learning when the price function might
be any of the functions in a class of price functions. In particular we look at the
classes of monotonic functions (MF) and finite-one functions (FF) which map
only finitely many inputs to the same output:

MF = {f ∈ R : ∀x [f(x) ≤ f(x+ 1)] and f is unbounded};
FF = {f ∈ R : ∀y [card(f−1(y)) is finite]}.

The following lemma is useful for proving some results in this paper. It shows
that if L is Ex-learnable, then the cylindrification of L is PricedFFEx-learnable.

Lemma 16. If L ∈ Ex and L′ = {cyl(L) : L ∈ L} then L′ ∈ EffPricedFFEx.

The next theorem gives a class L that can be PricedfEx-learnt with respect
to every price function f in FF, even though L is not iteratively learnable.
Moreover, the PricedfEx-learner can be obtained effectively from an index
for f .

Theorem 17. EffPricedFFEx 6⊆ ItEx.

Proof. The class L1 ∪ L2 with

L1 = {We : e = min(We) and ∀x [{2x, 2x+ 1} 6⊆We]} and

L2 = {L : card(L) <∞ and ∃x [{2x, 2x+ 1} ⊆ L]}

is Ex-learnable: The learner, on input σ, checks whether there is an x with
2x, 2x+ 1 ∈ content(σ). If so then the learner conjectures a canonical index for
content(σ) else the learner conjectures min(content(σ)). So, on a text T with
both 2x, 2x + 1 ∈ content(T), the learner converges to a canonical index of
content(T) whenever the latter is finite and thus the learner Ex-learns L2; on a
text T which contains at most one of 2x, 2x+ 1 for any x, the learner converges
to the minimum of content(T) and thus the learner Ex-learns L1. Let

L = {cyl(L) : L ∈ L1 ∪ L2}.

By Lemma 16, L ∈ EffPricedFFEx. Now it remains to show that L 6∈ ItEx.
Suppose by way of contradiction that M ItEx-learns L. Then by Kleene’s re-
cursion theorem there exists an e such that We is the set of all x for which 〈x, 0〉
occurs in some σs which are defined below. Here, initially, σ0 = 〈e, 0〉 and in
stage s below, σs+1 is constructed.

Stage s.
1. Search for an extension τ of σs satisfying the following conditions:

(i) M(σs) 6= M(τ);
(ii) for all x and i, if 〈2x, i〉 ∈ content(τ), then for all j, 〈2x +

1, j〉 6∈ content(τ);
(iii) for all i, for all x < e, 〈x, i〉 6∈ content(τ).

2. If and when such a τ is found, let σs+1 be an extension of τ satisfying
the following conditions:

(i) ∀x, i [[〈x, i〉 ∈ content(τ)]⇒ [∀j ≤ s [〈x, j〉 ∈ content(σs+1)]]];
(ii) ∀x, i [[〈x, i〉 ∈ content(σs+1)]⇒ [∃j [〈x, j〉 ∈ content(τ)]]].

3. Go to stage s+ 1.
End Stage s.

Now if there are infinitely many stages in the above construction, then T =⋃
s∈N σs is a text for cyl(We), where We ∈ L1. However, M makes infinitely

many mind changes on T . On the other hand if stage s starts but does not
finish, then, for y > max({x : 〈x, 0〉 ∈ content(σs)}), let Ly = {x : 〈x, 0〉 ∈
content(σs)} ∪ {2y, 2y + 1}. Then for all texts T extending σs for any cyl(Ly)
with y > max({x : 〈x, 0〉 ∈ content(σs)}), M(T) converges to M(σs), and thus
it fails to ItEx-learn L, as all such Ly belong to L2. ut

The next theorem shows that some class L can be PricedfEx-learnt with respect
to every price function in MF, but not with respect to some price function in FF.
Furthermore, the PricedfEx learner for f ∈ MF can be obtained effectively
from an index for f .

Theorem 18. EffPricedMFEx 6⊆ PricedFFEx.

Proof. Let F0, F1, . . . be an enumeration of disjoint finite sets such that for all
i, if ϕi is total, then for all x > i, there exists a y > ϕi(x) in Fx. Note that such
an enumeration can be easily constructed.

Let L0 =
⋃
x>0 Fx. For e ∈ N, let Le+1 =

⋃
x∈De∪{0} Fx. Let L = {Le : e ∈

N}.

Claim. L ∈ EffPricedMFEx.

Let h be a recursive function such that for all i, ϕh(i)(x) is the first z found in a
search such that ϕi(z) > 2x. Now, if ϕi ∈MF, then for all x > h(i), there exists
a y ∈ Fx such that y > ϕh(i)(x) and thus ϕi(y) > 2x.

Given an index i for a cost function g ∈MF, consider the following learner
M obtained effectively from i. Learner M will have a finite set as its memory.

Initially, M’s memory is ∅. Whenever M receives y ∈ Fx as input, it adds x
to the memory if x is not already in the memory and [x ≤ h(i) or g(y) > 2x];
otherwise the memory is unchanged. If the memory does not contain 0, then M
outputs a canonical grammar for L0. Otherwise it outputs a canonical grammar
for Le+1, where De = S − {0}, where S is the set in M’s memory. It is easy to
verify that for any text T , costM,g(T) is finite and M PricedgEx-learns L.

Claim. L 6∈ PricedFFEx.

To see this, let g be such that g(y) = x, for y ∈ Fx. Suppose by way of contra-
diction that M PricedgEx-learns L. Now, consider M’s behaviour on text for
L0, where the elements are presented to it in order of elements from F1, F2,
If for every x, M makes mind change on some input from Fx, then clearly the
cost is infinite. Otherwise, for some x, M did not make any mind change on the
above text when presented with elements from Fx. Now, if after elements of Fx,
M only gets elements from F0, then M cannot distinguish between the input
being Le or Le′ , where De = {1, 2, . . . , x} and De′ = {1, 2, . . . , x− 1}.

The above two claims prove the theorem. ut

The following theorem shows that some class of languages L can be learnt with
respect to every price function in FF, but one cannot effectively obtain a learner
for even monotonic price functions.

Theorem 19. PricedFFEx 6⊆ EffPricedMFEx.

Proof. We will define the class L in dependence of a set A ⊆ {〈x, r〉 : x ≥ 1, r ∈
N} to be constructed below by letting

Lm = {0} ∪A ∩ {〈x, r〉 : x ≤ m, r ∈ N};
L = {A} ∪ {Lm : m ∈ N}.

We will have the property that for all g ∈ FF, for all but finitely many x, there
exists an r such that 〈x, r〉 ∈ A and g(〈x, r〉) > 2x.

The above property allows for easy learning of L in the model PricedFFEx.
To see this, for g ∈ FF, let Rg be the set of finitely many x such that for all
r, g(〈x, r〉) ≤ 2x. Then, the PricedgEx-learner M is defined as follows. The
memory of M is a finite set. The memory memσ of M after having seen input
σ consists of the following elements: (i) 0 if 0 ∈ content(σ), (ii) all x ∈ Rg such
that for some r ∈ N, 〈x, r〉 ∈ content(σ), and (iii) all x ≥ 1 such that for some
r ∈ N, 〈x, r〉 ∈ content(σ) and g(〈x, r〉) > 2x. Furthermore, the hypothesis of the
learner M after having seen input σ is: (a) a canonical index for A if 0 6∈ memσ,
and (b) a canonical index for Lm, if 0 ∈ memσ and m = max(memσ). It is easy
to verify that M is a PricedgEx-learner for L.

We will now construct A. For this we will define functions hi,j along with
sets Bi,j , for j < 2i+1. The functions hi,j , if total, will be in MF. Bi,j will be
finite, but may change over time. Let Bti,j denote its value at time t, where we
will only start with Bi,j at time t ≥ i (so it is assumed to be empty before that).

Intuitively, aim of Bi,j and hi,j , j < 2i+1 is to make sure that ϕi does not
witness that L ∈ EffPricedMFEx.

Let Xi,j , j < 2i+1, denote the 2i+1 different subsets of {0, 1, 2, . . . , i}.
In the definitions below, we assume some steps to be atomic so that there is

no interference between different parts. For ease of notation we will write ϕi(hi,j)
below rather than ϕi(index for hi,j).

Definition of A.
Stage s

Each stage s is supposed to be atomic.
1. Enumerate 〈s, 0〉 in A.
2. For each i < s,

2.1. Let x < s be least, if any, such that
x 6∈

⋃
j<i,k<2j+1 Bsj,k and

for all r such that 〈x, r〉 ∈ A enumerated up to now
[ϕi,s(〈x, r〉)↓ ≤ 2x or ϕi,s(〈x, r〉)↑].

2.2. If there is such an x as above and ∃r ≤ s [ϕi,s(〈x, r〉)↓ > 2x]
Then enumerate one such 〈x, r〉 in A.

End For
Go to stage s+ 1

End Stage s

Note that the construction of different hi,j is run in parallel (in dovetailing way,
along with procedure for A above) for all i ∈ N, j < 2i+1.

Definition of hi,j .
Let hi,j(0) = 1.
Initially σi,j = Λ.
Loop
0. Let σi,j be extension of previous σi,j so that it contains all of A

enumerated up to now.
(Above step is assumed to be atomic.)

1. Suppose hi,j has already been defined on inputs ≤ w up to now,
and the maximum value in the range of hi,j up to now is z.

2. Pick Bi,j of size z+ 2 containing elements > i+w, such that none
of the elements of Bi,j have been used in any Bi′,j′ at any earlier
point in the construction up to now and all the elements of Bi,j
are larger than any element enumerated by A up to now.
(We assume the above step to be atomic.)

3. Wait until for each y ∈ Bi,j ,
(i) 〈y, 0〉 is enumerated in A and

(ii) for each i′ ∈ Xi,j , a pair 〈y, r〉 is enumerated into A with
ϕi′(〈y, r〉) > 2y.

4. Extend hi,j monotonically (non-decreasing) so that hi,j(〈y, r〉) =
z+ 1, for each 〈y, r〉 ∈ A enumerated up to now such that y ∈ Bi,j .
(We assume above step to be atomic.)

5. Keep extending hi,j monotonically (non-decreasing), while search-
ing for an extension τ of σi,j such that
(i) content(τ) is contained in A, and
(ii) for each y ∈ Bi,j , there exists a 〈y, r〉 in content(τ) such that

Mϕi(hi,j) made a mind change/memory change when it received
〈y, r〉 as input.

6. If such an extension τ is found, update σi,j to τ and go to the next
iteration of the loop. If no extension as above is found, then this
iteration of the loop never ends.

End Loop

For each j and k < 2j+1, let Bi,j denote the eventual value of Bi,j (if this value
does not exist, then let Bi,j be ∅).

Now consider any i such that ϕi ∈ FF. Let Ci =
⋃
i′<i,j′<2i′+1 Bi′,j′ . Note

that for x 6∈ Ci, eventually some element of the form 〈x, r〉, with ϕi(〈x, r〉) > 2x

will be enumerated in A. Thus, we have that L ∈ PricedFFEx.
Now we show that L 6∈ EffPricedMFEx. Suppose by way of contradiction

that ϕi witnesses L ∈ EffPricedMFEx, that is, for all k, if ϕk ∈ MF, then
Mϕi(k) is a Pricedϕk

Ex-learner for L. Let j be such that Xi,j is the set of i′ ≤ i
satisfying for all y 6∈

⋃
i′′<i′,j′′<2i′′+1 Bi′′,j′′ , some 〈y, r〉 with ϕi′(〈y, r〉) > 2y

is enumerated in A. Now consider the construction of hi,j . Now consider the
following cases.

Case 1: Some iteration of the Loop for hi,j does not terminate.
In this case we have that Mϕi(hi,j) fails to Pricedhi,j

Ex learn L. To see
this let σi,j be as in the iteration of the loop (for hi,j) which starts but does
not terminate. Consider τ which extends σi,j , and contains elements exactly
from content(σi,j) ∪ (A ∩ {〈y, r〉 : y ∈ Bi,j}), where these 〈y, r〉 appear in τ in
increasing order of y. Then by step 5 not succeeding in the loop, there exists
a y ∈ Bi,j , for which Mϕi(hi,j) did not make a mind change/memory change
when receiving 〈y, r〉 as input, for all 〈y, r〉 ∈ A. Thus, we can fool the learner
Mϕi(hi,j) by giving 0 just after giving the elements 〈y, r〉 corresponding to the
y above, and then extending it using all elements from Ly−1. Then, the learner
Mϕi(hi,j) is not able to distinguish between input being Ly−1 or Ly.

Case 2: All iterations of the loop for hi,j terminate.
In this case consider the loop executions in which for each y ∈ Bi,j none of

the i′ ≤ i, i′ 6∈ Xi,j have a 〈y, r〉 ∈ A with ϕi′(〈y, r〉) > 2y. Note that all but
finitely many loop executions have this property. In each of such executions, the
construction would have found a mind change/memory change which costs in
total at least 1 to the learner (as in each iteration, size of Bi,j is z + 2, and the
cost of memory / mind change on 〈y, r〉, y ∈ Bi,j is 1

z+2).

Thus, Mϕi(hi,j) does not PricedMFEx-learn L. ut

7 Other Uniformity Criteria

In this section we consider some uniformity criteria for priced learning.

Definition 20. Suppose C ⊆ R.

(a) UniPricedCEx = {L : ∃M∀f ∈ C [M PricedfEx-learns L]}.
(b) EffBPricedCEx = {L : ∃g ∈ R∀i [if ϕi ∈ C then ∀b ≥ i [Mg(b) Pricedϕi

Ex-
learns L]]}.

(c) UniFPricedCEx = {L : ∃M [∀f ∈ C [card(L − PricedfEx(M)) is finite]
and M Ex-learns L]}.

Intuitively, for UniPricedCEx, the same learner M succeeds for all price func-
tions in C. For EffBPricedCEx-learning the learner can be obtained effectively
from a bound on the index for the price function.

For UniFPricedCEx-learning, the same learner M Ex-learns the class L
and for all price functions f in C, M PricedfEx-learns almost all the members
of the class L. Thus, the cost of learning can go infinite only for finitely many
languages in the class for each price function f ∈ C.

In addition we consider the case where the learner gets the cost function f as
input rather than via index for it. In ValPricedCEx learning of L, for all f ∈ C,
the same learner M PricedfEx-learn each member of L when, in each iteration,
instead of a single datum x the pair (x, f(x)) is presented to the learner in the
iteration, so that the learner knows how expensive it is to process a datum.

Theorem 21. (a) Let C be a class of price functions.
ValPricedCEx ⊆ EffPricedCEx ⊆ PricedCEx.

(b) EffPricedFFEx 6⊆ ValPricedMFEx.

Theorem 22. ValPricedFFEx 6⊆ EffBPricedMFEx.

Theorem 23. UniFPricedFFEx 6⊆ PricedMFEx.

Corollary 24. UniFPricedFFEx 6⊆ EffPricedMFEx ∪ValPricedMFEx.

Theorem 25. UniFPricedMFEx 6⊆ PricedFFEx ∪UniFPricedFFEx.

Theorem 26. ValPricedFFEx 6⊆ UniFPricedMFEx.

It is open whether UniPricedMFEx or UniPricedFFEx contain a class which
cannot be ItEx-learnt. Similarly, it is open whether EffBPricedMFEx or
EffBPricedFFEx contain a class which cannot be ItEx-learnt.

8 Conclusions

In this paper we considered a generalization of memory limited learning, called
priced learning, where the learner can update its memory based on any datum it
receives, but it has a cost 1

f(x)+1 associated with it, where f is the price function.

The learning is said to be successful if the overall cost in the learning process
is finite. We gave a characterization that the classes learnable as above with
respect to some cost function are exactly the classes learnable by a set-driven

learner. We also gave complete picture of when different price functions lead
to different learnable classes. In addition we considered when priced learning
is possible for all price functions from a class of functions, and when a learner
can be effectively found from an index for a price function. It is open at present
whether there exists a single learner which learns a non iteratively learnable class
from all price functions which are monotonically non-decreasing and unbounded.
Similar question is also open for the price functions having each number in the
range only finitely often. These questions are open even for the case when the
learner is given a bound on an index for the price function.

Acknowledgements: We thank the referees for several helpful comments.

References

1. Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive in-
ference. Information and Control, 28:125–155, 1975.

2. Manuel Blum. A machine independent theory of the complexity of recursive func-
tions. Journal of the Association of Computing Machinery, 14:322–336, 1967.

3. John Case, Sanjay Jain, Steffen Lange and Thomas Zeugmann. Incremental con-
cept learning for bounded data mining. Information and Computation, 152:74–110,
1999.

4. Rusins Freivalds, Efim Kinber and Carl H. Smith. On the impact of forgetting on
learning machines. Journal of the ACM, 42:1146–1168, 1995.

5. Mark Fulk. Prudence and other conditions on formal language learning. Informa-
tion and Computation, 85:1–11, 1990.

6. E. Mark Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

7. Efim Kinber and Frank Stephan. Language learning from texts: mind changes,
limited memory and monotonicity. Information and Computation, 123:224–241,
1995.

8. Steffen Lange and Thomas Zeugmann. Incremental learning from positive data.
Journal of Computer and System Sciences, 53:88–103, 1996.

9. Daniel Osherson, Michael Stob and Scott Weinstein. Learning strategies. Infor-
mation and Control, 53:32–51, 1982.

10. Daniel Osherson, Michael Stob and Scott Weinstein. Systems That Learn, An
Introduction to Learning Theory for Cognitive and Computer Scientists. Bradford
— The MIT Press, Cambridge, Massachusetts, 1986.

11. Hartley Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

12. Gisela Schäfer-Richter. Uber Eingabeabhängigkeit und Komplexität von Inferen-
zstrategien. Ph.D. Thesis, RWTH Aachen, 1984.

13. Kenneth Wexler and Peter W. Culicover. Formal Principles of Language Acquisi-
tion. Cambridge, Massachusetts, The MIT Press, 1980.

14. Rolf Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Elektronische Informationsverarbeitung und Kybernetik (EIK), 12:93–99, 1976.

