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Abstract. Suppose we are given a set W of logical structures, or possible worlds, a set
of logical formulas called possible data and a logical formula ϕ. We then consider the
classification problem of determining in the limit and almost always correctly whether
a possible world M satisfies ϕ, from a complete enumeration of the possible data that
are true in M. One interpretation of almost always correctly is that the classification
might be wrong on a set of possible worlds of measure 0, with respect to some natural
probability distribution over the set of possible worlds. Another interpretation is that
the classifier is only required to classify a set W′ of possible worlds of measure 1,
without having to produce any claim in the limit on the truth of ϕ for the members
of the complement of W′ in W. We compare these notions with absolute classification
of W with respect to a formula that is almost always equivalent to ϕ in W, hence
investigate whether the set of possible worlds on which the classification is correct is
definable. We mainly work with the probability distribution that corresponds to the
standard measure on the Cantor space, but we also consider an alternative probability
distribution proposed by Solomonoff and contrast it with the former. Finally, in the
spirit of the kind of computations considered in Logic programming, we address the
issue of computing almost correctly in the limit witnesses to leading existentially
quantified variables in existential formulas.

1 Introduction

Paradigms of inductive inference are often highly idealized, even for those that impose very tight
restrictions on the learning scenario. There might be constraints on how data are presented to
a learner, or on the resources that are made available to a learner, or on the criterion that for-
malizes what is meant by ‘learning.’ Still learning paradigms are often ‘merciless’ when it comes
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to qualifying a learner as successful. They expect a successful learner to be correct with respect
to all possible realities (languages in the numerical setting, structures in the logical setting)
of the paradigm. This is certainly an extreme demand, that can be the object of theoretical
investigation, but that would not be imposed in most practical contexts. Agents or processes
are nor expected to be infallible. Allowing the learning process to succeed with respect to al-

most all realities—intuitively, successfully learning with probability 1—appears as a reasonable
requirement that deserves to be investigated.

Probabilistic elements have already been considered in inductive inference, but they relate more
to the learning process than to the class of languages learnt by a machine (sample references
are [7, 9, 13, 14, 17]). For example, learning functions in the limit with probability 1/n turns out
to be equivalent to having n nonprobabilistic learners such that at least one of them succeeds
[14, 17]. Furthermore, most concepts have a break-even point at some probability c < 1 in the
sense that whenever such concepts are learnable with probability c, they are already learnable
by a deterministic machine [1]. Meyer [12] showed that exact monotonic and exact conservative
learning with any probability c < 1 is more powerful than deterministic learning; still in case
c = 1, the probabilistic and deterministic variants are again the same. In [8], the notions of
effective measure and category are used to discuss the relative sizes of inferable sets and their
complements.

An example for a setting in inductive inference where learning with probability 1 is more powerful
than deterministic learning is the following. Assign to each set A to be learnt the distribution pA

with pA(x) = 2−1−x for x ∈ A, pA(x) = 0 for x /∈ A and pA(#) =
∑

x/∈A 2−1−x. Then any class
of sets that is learnable from informant is also learnable from text with probability 1, provided
that for every member A of the class, the elements of a text for A are drawn with probability
pA. As some classes are learnable from informant but not from text, these classes witness that
learning from almost all texts is more powerful than learning from all texts.

The main reason why probabilistic elements are restricted to the learning process and not to
the class of realities being considered is that in a countable domain, ‘almost all objects’ would
normally mean ‘cofinitely many objects’ and finite exceptions can often be handled by suitably
patching the machine. Therefore it is much more appropriate to consider classification where one
deals with a continuum of possible realities which can be identified with the Cantor-Space. Then
‘almost all’ can be interpreted in two major ways: ‘of second category’ as defined in topology, or
‘of measure 1’ as defined in measure theory.

Classification was already implicitly considered by recursion theorists when they investigated
computation in the limit relative to an oracle, which subsumes classification [15]. Ben-David [3]
characterized classification in the limit in topological terms. Subsequent work then established
a connection between classification on one side and logic on the other side [2, 10]. In [11] the
relationship between classification and topology was brought one step further, by casting the
classification in a logical setting that considered arbitrary sets of data, each set determining a
particular topology and arbitrary sets of structures. Of particular importance in [11] are (usually
axiomatized) classes of structures consisting of Henkin structures only, where every individual of
the domain is denoted by a term in the underlying language. The set of atomic sentences (that
is, closed atomic formulas) true in such structures uniquely determines the structure and can be
identified with a point in the Cantor space. A probability distribution can then be defined on the
set of structures which represent the possible realities, that generalizes the classical probability
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distribution on the Cantor space. Still it is legitimate to consider alternative probability distri-
butions on the set of possible realities. This paper will explore one such alternative. It is also
natural to examine what can be derived from the assumption that the set of possible realities is
equipped with an arbitrary probability distribution — we will provide one such general result.

The setting chosen for this paper is a particular instance of the logical framework investigated
in [11]. It conceives of a logical paradigm as a vocabulary V, a set W of structures over V,
or possible worlds, and a set D of closed formulas over V, or possible data. Important cases
of possible data are obtained by taking for D the set of atomic sentences or the set of basic
sentences (atomic sentences or their negations). Both choices determine counterparts to the
numerical notions of text and informant, in the form of enumerations of all possible data that
are true in an underlying possible world M, yielding an environment for M. Given a formula ϕ,
we consider the task of determining in the limit, from an environment for a possible world M,
whether M satisfies ϕ. In other words, the task is to classify a possible world as a member of one
of two classes: the class of structures that satisfy ϕ and the class of structures that don’t. But we
allow the classification to fail on a set of environments for a small set of possible worlds—either
of first category or of measure 0.

It is natural to distinguish between failing to converge to some answer and misclassifying. In the
case of misclassification with respect to ϕ, an interesting question is whether perfect classification
of W is achieved on the basis of another formula ψ, whose set of models in W is equal to the
set of models of ϕ up to a set of measure 0. Whether the failure to classify correctly is due
to nonconvergence or to genuine misclassification, we only measure on which class of possible
worlds M a correct classification is achieved from all environments for M. We do not assume
that the possible data are generated following some underlying probability distribution, nor do
we impose any condition on the speed of convergence. In other words, we remain in the realm of
inductive inference and our use of probabilities is essentially different to their role in the PAC
framework.

We now proceed as follows. In Section 2 we introduce the basic notions, that we apply to the
classification task in Sections 3 to 7. More precisely, Section 3 is based on arbitrary measures
whereas from Section 4 to Section 6, we focus on the measure that corresponds to the usual
measure on the Cantor space. In Section 7, we show that we get a different picture if the
measure proposed by Solomonoff [16] is used instead. In Section 8 we get back to the measure on
the Cantor space and particularize the framework to ϕ being of the form ∃xψ(x), with the aim
of not only classifying ϕ, but of computing in the limit a witness to the existentially quantified
variable x. Provided that W is axiomatizable by a logic program, this corresponds to ‘error
tolerant’ computations in Logic programming, where ψ is assumed to be quantifier free or to
only contain bounded quantifiers [20]. When ψ is universal, and also with some assumptions on
W, this corresponds to ‘error tolerant’ computations in Limiting resolution [6]. We conclude in
Section 9.

2 Absolute and probabilistic classification

Let a class X be given. The class of finite sequences of members of X, including the empty
sequence (), is represented by X?. The length of σ ∈ X? is denoted lt(σ). The class of sequences
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of members of X of length ω is represented by Xω. Given a member σ of X? and a member τ
of either X? or Xω, we write σ ⊂ τ to denote that σ is a strict initial segment of τ .

Given a nonempty vocabulary V , that is, a set of (possibly nullary) predicate and function
symbols, we shall consider both first-order formulas over V and monadic second-order formulas

over V , built from the symbols in V , equality, the usual Boolean operators, first-order variables
and quantifiers over those, and in the case of monadic second-order formulas, unary predicate
variables and quantifiers over those. A first-order sentence over V refers to a closed first-order
formula over V . The same convention applies to monadic second-order sentences over V . We
adopt the following conventions.

– We use V to denote a vocabulary containing at least a constant 0, a unary function symbol
s and a unary predicate symbol P , possibly enriched with either the binary function symbol
+ or with the binary function symbols + and ∗. Given n ∈ N, we denote by n the term
obtained from 0 by n applications of s (hence n+ 1 = s(n) for all n ∈ N). We say that V is
standard if V consists of 0, s and P only.

– We use L to denote a language equal either to the set of first-order sentences over V or to
the set of monadic second-order sentences over V.

– We use D to denote an infinite set of first-order sentences over V, referred to as possible data.
– We use W to denote a set of structures over V, referred to as possible worlds, all of whose

individuals interpret a unique closed term of the form n, n ∈ N. When V contains +, we
assume that the interpretation of + in all members of W is given by the standard interpre-
tation of + in N. When V contains ∗, we assume that the interpretation of ∗ in all members
of W is given by the standard interpretation of ∗ in N. We assume that for every subset X
of N, there exists a unique M ∈ W with {n ∈ N : M |= P (n)} = X.

We say term for term over V and sentence for member of L. Given T ⊆ L, ModW(T ) represents
the set of models of T in W. Given ϕ ∈ L, we write ModW(ϕ) for ModW({ϕ}). We will also use
the following terminology.

Definition 1. Given D ⊆ L and a possible world M, we define the D-diagram of M as the set
of all members of D that are true in M.

Note that by convention, every subset of D = {P (n) : n ∈ N} is the D-diagram of some possible
world. We use environment to refer to an enumeration of the D-diagram of a member of W.

Definition 2. Given a possible world M, an environment for M is any member e of (D ∪ {]})ω

such that for all ϕ ∈ D, ϕ occurs in e iff ϕ is true in M.

The D-diagram of a possible world M can be empty, in which case M will have a unique
environment, namely the ω-sequence ]]]]] . . ., with the intended meaning of the symbol ] being
“no datum provided.” We denote by µ a measure on W such that for all ϕ ∈ L, µ(ModW(ϕ))
is measurable. Of particular importance is the (unique) measure on W that is directly derived
from the standard measure on the Cantor space. More precisely, put D = {P (n) : n ∈ N}. The
D-diagram of a possible world can then be identified with a point in the Cantor space. The next
definition makes the relationship explicit. It uses the relationship to define the standard measure
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on W, as well as the topological notions of sets of first and second category. Recall that a subset
of a topological space X is of first category if it is of the form

⋃
n∈N

Bn where for all n ∈ N and
for all nonempty open sets O, O contains a nonempty open set that is disjoint from Bn; a subset
of X is of second category if it is not of first category.

Definition 3. Given a possible world M, the standard informant for M is the (unique) member
e of {0, 1}ω such that for all n ∈ N, e(n) = 1 iff M |= P (n).

– We say that µ is standard iff for all subsets W of W, the following holds. Let S be the set of
standard informants of the members of W . Then µ(W ) is defined iff S is Lebesgue measurable
in the Cantor space. Moreover, if µ(W ) is defined then it is equal to the measure of S in the
Cantor space.

– Let a set W of possible worlds be given. Let S be the set of standard informants of the
members of W . If S is of first, respectively, second, category in the Cantor space then we say
that W is of first, respectively, second, category.

Note that in case D = {P (n),¬P (n) : n ∈ N}, an environment for M can be identified with the
standard informant for M.

Definition 4. Two sentences ϕ and ψ are said to be almost equivalent iff µ(ModW(ϕ ↔ ¬ψ))
is null.

Given σ ∈ (D ∪ {]})?, cnt(σ) denotes the set of members of D that occur in σ. The proofs of
many propositions will make use of the next technical definition.

Definition 5. We say that a member σ of (L ∪ {]})? is consistent in W just in case there exists
a member M of W such that M |= cnt(σ).

The classification task will be performed by a classifier, defined next.

Definition 6. Given a set D of sentences, a D-classifier is a partial function from (D ∪ {]})?

into {0, 1}. We say classifier for D-classifier.

The following pair of definitions capture the absolute notion of classification.

Definition 7. Let a classifier f and a subset W′ of W be given.

Given a subset W of W, we say that f classifies W′ in the limit following W just in case for all
M ∈ W′ and environments e for M:

– M ∈W iff {σ ∈ (D ∪ {]})? : σ ⊂ e and f(σ) = 1} is cofinite;
– M /∈W iff {σ ∈ (D ∪ {]})? : σ ⊂ e and f(σ) = 0} is cofinite.

Given a sentence ϕ, we say that f classifies W′ in the limit following ϕ iff f classifies W′ in the
limit following ModW(ϕ).
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Definition 8. Given ϕ ∈ L and W′ ⊆ W, we say that W′ is classifiable, respectively, computably

classifiable, in the limit following ϕ iff some classifier, respectively, computable classifier, classifies
W′ in the limit following ϕ.

We are interested in classifiers that classify all possible worlds, but misclassify a subset of W of
measure 0, as captured in the next pair of definitions.

Definition 9. Let a classifier f and a sentence ϕ be given. We say that f classifies W in the

limit following ϕ almost everywhere iff there exists a subset W of W such that:

– µ(ModW(ϕ)4W ) is null;
– f classifies W in the limit following W .

Definition 10. Given ϕ ∈ L, we say that W is classifiable, respectively, computably classifiable,
in the limit following ϕ almost everywhere iff some classifier, respectively, computable classifier,
classifies W in the limit following ϕ almost everywhere.

3 General measures

We start with the simple observation that in measure-theoretic terms, misclassification of a small
set of possible worlds implies absolute classification of almost all possible worlds:

Property 11. Let a sentence ϕ be such that W is classifiable in the limit following ϕ almost

everywhere. Then there exists a subset W′ of W with µ(W′) = 1 that is classifiable in the limit

following ϕ.

The well-known relationships between classification in the limit and Σ2 sentences has a counter-
part in the probabilistic setting being investigated.

Proposition 12. Suppose that D is closed under negation. Let a sentence

ϕ = Q1x1Q2x2 . . . Qnxnψ(x1, . . . , xn)

be given, such that for any closed terms t1, . . . , tn, ψ(t1, . . . , tn) is a finite Boolean combination

of members of D. Then there exists a subset W′ of W with µ(W′) = 1 such that W′ is computably

classifiable in the limit following ϕ.

Proof. Assume that D is closed under negation. Let a sentence ϕ be of the form

Q1x1Q2x2 . . . Qnxnψ(x1, . . . , xn)

where n ∈ N, Q1, Q2, . . . , Qn are either existential or universal quantifiers, and ψ(t1, . . . , tn) is a
finite Boolean combination of D for all closed terms t1, t2, . . . , tn. Let τ0, τ1, . . . be an enumeration
of all closed terms. Remember that µ is chosen in such a way that ModW(ϕ) is measurable.
Moreover, by the choice of W, the set of models in W of a closed formula of the form ∃xχ(x)
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is equal to the set of models in W of
∨
{χ(n) : n ∈ N}; also the set of models in W of a closed

formula of the form ∀xχ(x) is equal to the set of models in W of
∧
{χ(n) : n ∈ N}. We infer

that for all d ∈ N, there exists nd, id1, . . . , i
d
n ∈ N with the following property. For all d ∈ N and

m ≤ n, let ϕd
m denote

Q1j1 < id1Q2j2 < id2 . . . Qmjm < idmQm+1xm+1 . . . Qnxnψ(τj1, . . . , τjm
, xm+1, . . . , xn).

Then for all d ∈ N and m < n, µ(ModW(ϕd
m)∆ModW(ϕd

m+1)) < 2−d/n. Note that for all d ∈ N,
ϕd

0 = ϕ and µ(ModW(ϕd
0)∆ModW(ϕd

n)) < 2−d.

Let a classifier f be defined as follows. First modify ϕ0
n such that ϕ0

n is not satisfiable in W,
in order to avoid that f be undefined on some input. Let σ ∈ (D ∪ {]})? be given. Let d ∈
{0, 1, . . . , |σ|} be greatest such that it can be decided from the data seen so far whether these
data are consistent with ϕd

n in W: this can be done for at least those d ∈ N such that for all
j1 < i1, j2 < i2, . . . , jn < in and for all θ ∈ D that occur in ψ(τj1, τj2 , . . . , τjn

) either θ or ¬θ is
one of the data seen so far. Thus d is monotonically increasing and unbounded in the number
of received data. Let W′ be the set of all possible worlds in which the interpretation of ϕd

0 is
equal to the interpretation of ϕd

n for almost all d. As ModW(ϕd
0) and ModW(ϕd

n) differ by a set of
measure 2−d at most, W ′ has measure 1. Moreover, f classifies W ′ following ϕ, which completes
the proof of the proposition.

4 Failing to classify versus misclassifying

In this section, as well as in Sections 5, 6 and 8, we assume that µ is standard, as defined in
Definition 3.

The first use of the standard measure is to show that the converse of Property 11 does not
necessarily hold. Indeed, a classifier that correctly classifies a subset W′ of W of measure 1 might
be forced to diverge on some environments for some members of W \ W′. The next proposition
shows that this might indeed happen.

Proposition 13. Suppose that V is enriched with + only, L is the set of first-order sentences

and D = {P (n),¬P (n) : n ∈ N}. Then there exists a sentence ϕ with the following properties.

– There exists a subset W′ of W with µ(W′) = 1 such that W′ is computably classifiable in the

limit following ϕ.

– W is not classifiable in the limit following ϕ almost everywhere.

Proof. Write x ≤ y for ∃z(x+ z = y) and x < y for x ≤ y ∧ x 6= y. Define

– a formula ψ(x) whose meaning is that P (y) holds for all y strictly between x
2

and x;
– a sentence ϕ whose meaning is that ψ(x) holds for finitely many x’s only, and the maximum
x such that ψ(x) holds is even.

Formally,
ψ(x) ≡ ∀y((x < y + y ∧ y < x) → P (y)) and

ϕ ≡ ∃x(ψ(x+ x) ∧ ∀y(ψ(y) → y ≤ x+ x)).
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Note that for all possible worlds M, the reduct of M to {0, s,+, <} is isomorphic to N with
the standard interpretation of 0, s, + and <. Also note that for all M,N ∈ W that agree on
all members of D, N |= ϕ iff M |= ϕ. Let a computable classifier f be defined as follows. Let a
member σ of (D ∪ {]})? be given. Let n ∈ N be maximal such that for all m < n, either P (m) or
¬P (m) occurs in σ, and all models of cnt(σ)∩{P (m),¬P (m) : m < n} in W are models of ψ(n).
Put f(σ) = 1 if n is even; put f(σ) = 0 otherwise. Let W be the set of all M ∈ W for which
there exists infinitely many n ∈ N with M |= ψ(n). For all n ≥ 2, the set of models of ψ(n) in W

is of measure bounded by 2−(n

2
−1), hence the set Wn of models of ∃x(x ≥ n∧ψ(x)) converges to

0 when n converges to infinity. Since W ⊆Wn for all n ≥ 2, it follows that µ(W ) = 0. Moreover,
it is immediately verified that

– for all M ∈ ModW(ϕ) and environments e for M, f outputs 1 in response to cofinitely many
finite initial segments of e;

– for all M ∈ ModW(¬ϕ) \W and environments e for M, f outputs 0 in response to cofinitely
many finite initial segments of e.

This shows that W \W is computably classifiable in the limit following ϕ.

Let a classifier g be given. Suppose for a contradiction that g classifies W in the limit following
some subset W ′ of W with µ(ModW(ϕ)4W ′) = 0. Note that for all σ ∈ D? that are consistent
in W, neither µ(ModW(cnt(σ) ∪ {ϕ})) nor µ(ModW(cnt(σ) ∪ {¬ϕ})) is equal to 0. Hence, there
are extensions σ1, σ2 ∈ D? of σ such that cnt(σ1) and cnt(σ2) are consistent in W, g(σ1) = 1 and
g(σ2) = 0. Using this observation, it is easy to construct an environment e for a member of W

such that for every a ∈ {0, 1} there are infinitely many initial segments of e on which g outputs
a. Contradiction.

Considering only computable classification, as opposed to noncomputable classification, a sim-
ilar result to Proposition 13 can be established using Peano arithmetics instead of Presburger
arithmetics.

Proposition 14. Suppose that V is enriched with both + and ∗, L is the set of first-order

sentences and D = {P (n),¬P (n) : n ∈ N}. Then there exists a sentence ϕ with the following

properties.

– There exists a subset W′ of W with µ(W′) = 1 that is computably classifiable in the limit

following ϕ.

– W is not computably classifiable in the limit following ϕ almost everywhere.

– W is classifiable in the limit following ϕ.

Proof. Let (φi)i∈N denote an acceptable indexing of the unary partial recursive functions from
N into {0, 1}. Given i, x ∈ N, let χ(i, x) be a formula which expresses that φi(x) is undefined
and let ξ(i, x) be a formula which expresses that φi(x) is defined and equal to 0. Consider the
sentence ϕ defined as

∃i∃x[i < x ∧ P (x) ∧ P (i) ∧ ∀y(y < i→ ¬P (y)) ∧

(χ(i, x) ∨ (ξ(i, x) ↔ P (x))) ∧ ∀y(y < x→ ¬(χ(i, y) ∨ (ξ(i, y) ↔ P (y))))].
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So ϕ states that there are i, x ∈ N such that i < x, i = min{n ∈ N : P (n)}, P (x) and
x = min{n ∈ N : φi(n) is undefined or φi(n) = 0 ∧ P (n) or φi(n) = 1 ∧ ¬P (n)}. Let a
computable classifier f have the following properties. If cnt(σ) contains no formula of the form
P (n) then f(σ) = 0. Otherwise let i be the least number such that P (i) ∈ cnt(σ). Let x be the
least number such that either x ≥ |σ| or φi(x) does not converge in |σ| steps or φi(x) converges
in |σ| steps to a value different from P (x). Output 1 if P (x) ∈ cnt(σ) and output 0 otherwise.
Let M ∈ W be such that there exists a least i ∈ N such that M |= P (i). Let e be an environment
for M. If φi is not total or if φi is total and the interpretation of P in M disagrees with φi, then
f converges on e to 1 if M |= ϕ, and to 0 otherwise. This proves that a subset of W′ of measure
1 is computably classifiable in the limit following ϕ.

Now, suppose for a contradiction that a (partial) computable function f classifies W following ϕ
almost everywhere. By the recursion theorem [15] there is an i such that φi is the function whose
graph is constructed by the following finite extension method. Given a member σ of {0, 1}?,
let σ̂ be the sequence obtained from σ by replacing σ(n) by P (n) if σ(n) = 1 and by ¬P (n)
otherwise, for all natural numbers n smaller than the length of σ. Let σ0 = 0i1. Let σj+1 be
the first extension of σj found such that f(σ̂j+1) 6= f(σ̂j). As f converges on all environments,
there exists j ∈ N such that σj+1 is undefined, implying that φi =

⋃
k≤j σk = σj. Let n be the

first number where σj(n) and thus φi(n) is undefined. Then f has to incorrectly converge on all
environments for any possible world M in which the interpretation of P (m) is fixed for all m < n
and M |= P (n), or on all environments for any possible world M in which the interpretation of
P (m) is fixed for all m < n and M |= ¬P (n). This shows that f does not classify W in the limit
following ϕ almost everywhere.

Finally let a noncomputable classifier f have the following properties. If cnt(σ) contains no
formula of the form P (n) then f(σ) = 0. Otherwise let i be the least number such that P (i)
belongs to cnt(σ). If there exists x > i such that

– P (x) ∈ cnt(σ),
– for all n < x, either P (n) or ¬P (n) occurs in σ,
– x is the least n ∈ N such that either φi(n) is undefined or φi(n) is defined but disagrees with

which of P (n) or ¬P (n) occurs in cnt(σ),

then f(σ) = 1; otherwise f(σ) = 0. Obviously, f classifies W in the limit following ϕ.

5 Definability versus nondefinability of misclassified sets

The next fundamental result shows that a classifier which uses ϕ to partition the set of possible
worlds might have to misclassify a subset of W that is not only of measure 0, but also necessarily
not definable. Hence almost correct classification using ϕ is not equivalent to absolute classifi-
cation with respect to a partition of the possible worlds given by a formula almost equivalent
to ϕ. It is worth noting that the next proposition uses a set of possible data that is neither
{P (n) : n ∈ N} nor {P (n),¬P (n) : n ∈ N}, henceforth exploiting the generality and flexibility
allowed by the parameter D.
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Proposition 15. Assume that V is standard and L is the set of first-order sentences. For some

choice of D, there exists ϕ ∈ L such that:

– W is computably classifiable in the limit following ϕ almost everywhere;

– W is not classifiable in the limit following any sentence that is almost equivalent to ϕ.

Proof. Let B be the subset of N whose characteristic function can be represented as the con-
catenation of all strings of even length, in lexicographic order and in increasing length. Hence
the characteristic function of B can be represented by the ω-sequence:

00 01 10 11 0000 0001 0010 . . . 1111 000000 000001 000010 . . .

Put D = {P (n) : n ∈ B} ∪ {¬P (n) : n /∈ B}. As all closed members of L are finite boolean
combinations of sentences of the form P (n) and ∀x(P (sk1(x))∨. . .∨P (skr(x))), B is not definable
in L (this property is key to the proof of the proposition). Another essential property of B used
in the proof is that

(†) for every τ ∈ {0, 1}? there are infinitely many even numbers x such that for all
y < lt(τ), τ(y) = B(x+ y).

Let ϕ be a sentence such that for all models M of ϕ in W, the interpretation of ϕ in M

contains {P (2m) : m ≤ n} ∪ {P (2n+ 1)} for some n ∈ N (in other words, ϕ expresses that
the characteristic function of P is lexicographically greater than the characteristic function of
2N = {0, 2, 4, ...}). Formally,

ϕ ≡ P (0) ∧ ∃x(P (x) ∧ P (s(x)) ∧ ∀y < x (P (y) ↔ ¬P (s(y)))).

We first define a computable classifier f which classifies W following ϕ almost everywhere; in
other words, f converges on all environments for all members of W, but f ’s conjectures can be
false in the limit on some environments for a set of possible worlds of measure 0. The classifier f
outputs 0 until it is presented with a datum P (n) for an odd n ∈ N or datum ¬P (n) for an even
n ∈ N. Then f takes this n as a parameter and computes from now on for any stage s the set
Rs consisting of all m ∈ {0, 1, . . . , n}∩B such that P (m) has appeared in the first s elements of
the input and all members m of {0, 1, . . . , n} \B such that ¬P (m) has not appeared in the first
s elements of the input. Note that when s is large enough, the restriction of the characteristic
function of Rs to {0, 1, . . . , n} is equal to the restriction of the characteristic function of the
interpretation of P in the possible world one of whose environments is fed to f . Let f conjecture
in the limit the value 0 if the characteristic function of Rs is lexicographically smaller than
the characteristic function of 2N, and 1 if the characteristic function of 2N is lexicographically
smaller than the characteristic function of Rs. Clearly, f has the desired properties.

Now let ψ be a member of L (that is, a first-order sentence over V), and assume for a contradiction
that a classifier g classifies W in the limit following ψ. Let M be the (unique) possible world
such that {n ∈ N : M |= P (n)} = 2N. Then there exists a locking sequence [4] for g, namely,
a finite initial segment σ of D? such that M is a model of cnt(σ) and for all τ ∈ D?, if τ
extends σ and M |= cnt(τ) then g(τ) is defined and equal to g(σ). Since ψ contains only finitely
many occurrences of 0, s and variables, there exists k ∈ N such that for all σ ∈ {0, 1}?, for all
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e ∈ {0, 1}ω, for all N,N′ ∈ W and for all n, n′ ≥ k, if the characteristic functions of P in N and
N

′ are σ(01)ne and σ(01)n′

e, respectively, then N |= ψ iff N
′ |= ψ. Hence there exists k ∈ N such

that:

– for all n ∈ N, if either P (n) or ¬P (n) occurs in σ then n < 2k;
– for all members τ0, τ1, . . . of {0, 1}? of even length and for all N,N′ ∈ W, if the characteristic

functions of P in N and N
′ are both of the form (01)k(01)∗τ0(01)k(01)∗τ1(01)k(01)∗τ2 . . . then

N |= ψ iff N
′ |= ψ.

It is known from the theory of randomness that the characteristic function of any Martin-Löf
random set coincides with the characteristic function of 2N on infinitely many even places for at
least 2k consecutive bits. Furthermore, the measure of all random sets starting with (01)k equals
2−2k. Fix a random set R whose characteristic function extends (01)k. Thus we can choose some
members τ0, τ1, . . . of {0, 1}? of even length such that the characteristic function of R is of the
form

(01)kτ0(01)kτ1(01)kτ2 . . .

Using (†) above, there exist a0, a1, . . . ∈ N such that the set R′ whose characteristic function is
(01)k+a0τ0(01)k+a1τ1(01)k+a2τ2 . . . satisfies the following property. Given n ∈ N, put

xn =
∑

i≤n

(2k + ai) +
∑

i<n

lt(τi).

For all n ∈ N and y < lt(τn), if y is odd and τn(y) = 1 then B(xn + y) = 0, whereas if y is even
and τn(y) = 0 then B(xn + y) = 1. Let N, respectively N

′, be the (unique) possible world such
that the characteristic function of the interpretation of P in N, respectively N

′, is isomorphic
to the characteristic function of R, respectively R′. Note that all members of D that are true in
N

′ are also true in M. Moreover, σ is a finite initial segment of some environment for N
′. As a

consequence, g converges in the limit to g(σ) on all environments for N
′ that extend σ. But since

both N and N
′ agree on ψ and g is assumed to classify W in the limit following ψ, g converges in

the limit to g(σ) on all environments for N that extend σ. It follows that all random sequences
extending (01)k are classified as g(σ). Furthermore, the measure of all extensions of (01)k which
are classified as g(σ) is 2−2k. On the other hand, those extensions of (01)k which are identified
with models of ϕ in W have measure 2−2k/3. Therefore ϕ and ψ differ on a class of possible
worlds of positive measure. Contradiction.

Proposition 15 cannot be generalized to arbitrary paradigms. This can be proven by using results
from automata theory, more precisely Büchi automata, which are at the heart of the proof that
monadic second order logic with one successor is decidable. Recall that a subset of {0, 1}ω (or
ω-language) is Büchi recognizable if there exists a finite nondeterministic automaton A with a
set F of accepting states such that for all w ∈ {0, 1}ω, e belongs to S iff there exists a run of A
on w that goes infinitely often through an accepting state. The next result plays a crucial role
in the proof of Proposition 19 below.

Lemma 16. [5, Theorem 3.1] S ⊆ {0, 1}ω
is Büchi recognizable iff it is the disjoint union of:
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– a sparse set (of measure 0);
– finitely many sets of the form R ? Y where R is a prefix free regular language and Y is an

ω-language of measure 0;
– finitely many sets R0 ? Y0, . . . , Rn ? Yn where for all i ≤ n, Ri is a regular language and Yi is

an ω-language of measure 1.

The class of Büchi recognizable subsets of {0, 1}ω is closed under complements. Hence given a
Büchi recognizable member S of {0, 1}ω, we can apply the previous lemma to S and denote
R0∪ . . .∪Rn by A, and apply the previous lemma to S and denote R0∪ . . .∪Rn by B, to obtain
the next corollary.

Corollary 17. Let a subset S of {0, 1}ω
be Büchi recognizable. Then there are regular and prefix

free subsets A and B of {0, 1}?
such that:

– µ(A ? {0, 1}ω ∪B ? {0, 1}ω) = 1;
– A ? {0, 1}ω

and B ? {0, 1}ω
are disjoint;

– µ(A ? {0, 1}ω 4 S) = 0.

Definition 18. Let a subset S of {0, 1}ω be Büchi recognizable. Choose regular and prefix
free A,B ⊆ {0, 1}? that satisfy the three conditions expressed in Corollary 17. Let R+

S denote
A ? {0, 1}ω and R−

S denote B ? {0, 1}ω.

Proposition 19. Suppose that V is standard, L is the set of monadic second-order sentences

and D = {P (n),¬P (n) : n ∈ N}. For all ϕ ∈ L, W is computably classifiable in the limit

following some sentence that is almost equivalent to ϕ.

Proof. Let a sentence ϕ be given. Let S be the set of standard informants for the models of ϕ
in W. By the choice of L, S is Büchi recognizable. Note that R+

S is of the form C ? {0, 1}ω for a
prefix-free subset C of {0, 1}?. Thus one can easily construct a computable classifier f such that,
for all standard informants (identified with environments) for some possible world, the following
holds: if e ∈ R+

S then f converges to 1 on e; if e /∈ R+
S then f converges to 0 on e. Let W be the

set of all possible worlds whose standard informants belong to R+
S . Using [5, Theorem 3.1] again,

we infer that W is the set of models of some member ψ of L. Moreover, it follows immediately
from the definition of R+

S that µ(ModW(ϕ)4W ) = 0, hence ψ is almost equivalent to ϕ. Since
W is classifiable in the limit following ψ, we are done.

Corollary 17 has other applications. In the following, Proposition 13 is strenghend under some
modified conditions. One considers classification from positive data only. Furthermore, one uses
a different language and a different set of possible worlds.

Proposition 20. Suppose that V is standard, L is the set of monadic second-order sentences

and D = {P (n) : n ∈ N}.

1. There exists a subset W′ of W with µ(W′) = 1 such that for all sentences ψ, W′ is computably

classifiable in the limit following ψ.
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2. There is a sentence ϕ such that W is not classifiable almost everywhere in the limit follow-

ing ϕ.

Proof. Let a sentence ψ be given. Let S be the set of standard informants for the models of
ψ in W. Recall the definition of R+

S and R−
S from Definition 18. Since R+

S ∪ R−
S is of the form

C?{0, 1}ω for a prefix-free subset C of {0, 1}?, there exists a computable {P (n),¬P (n) : n ∈ N}-
classifier f such that for all standard informants e for some possible world the following holds: if
e ∈ R+

S then f converges to 1 on e; if e ∈ R−
S then f converges to 0 on e. Let W+, respectively,

W−, be the set of all possible worlds M whose standard informants belong to R+
S , respectively,

R−
S . It follows immediately from the definitions of R+

S and R−
S that both µ(ModW(ψ)4W+)

and µ(ModW(¬ψ)4W−) are null. Hence µ(W+ ∪W−) = 1 and W+ ∪W− is classifiable in the
limit following ψ almost everywhere. Since the number of sentences is countable, part 1. of the
proposition follows immediately.

For part 2., define ϕ as ∃x∀y(y < s(s(x)) → (P (y) ↔ x 6= y)). Suppose for a contradiction that
a classifier f classifies W almost everywhere in the limit following ϕ. Since f converges (possibly
to 1) on all environments for the possible world whose D-diagram is {P (n) : n ∈ N}, we can
choose a member σ of D? such that for all τ ∈ D? that extend σ, f(τ) = f(σ). Let a ∈ N be
greater than all members of cnt(σ). Put

W1 = ModW(P (0) ∧ . . . ∧ P (a) ∧ ¬P (a+ 1) ∧ P (a+ 2)) and
W2 = ModW(P (0) ∧ . . . ∧ P (a) ∧ ¬P (a+ 1) ∧ ¬P (a+ 2)).

Note that W1 ⊆ ModW(ϕ) and W2 ⊆ ModW(¬ϕ), and that both µ(W1) and µ(W2) are nonnull.
But by the choice of σ, for all M ∈W1 ∪W2 and for all environments e for M that extend σ, f
outputs f(σ) in response to every finite initial segment of e that extends σ. Contradiction.

6 Positive only versus positive and negative data

The next result shows that being allowed to misclassify a set of possible worlds of measure 0
when classifying from positive data does not always make up for non-access to negative data.

Proposition 21. Suppose that V is enriched with + only and L is the set of first-order sentences.

Then there exists ϕ ∈ L with the following properties.

– If D = {P (n),¬P (n) : n ∈ N} then W is computably classifiable in the limit following ϕ.

– If D = {P (n) : n ∈ N} then W is not classifiable in the limit following ϕ almost everywhere.

Proof. Define ϕ as ∃x∀y((x < y ∧ y < x + x + 3) → ¬P (y)). It is immediately verified that if
D = {P (n),¬P (n) : n ∈ N} then W is computably classifiable in the limit following ϕ (with at
most one mind change).

Now suppose that D = {P (n) : n ∈ N}. Trivially, µ(ModW(ϕ)) > 0. Moreover,

µ(ModW(ϕ)) ≤ Σn∈N2−n−2 = 2−1.
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For a contradiction, let a classifier f be such that f classifies W in the limit following ϕ almost
everywhere. For all σ ∈ D?, define Uσ as the set of all M ∈ ModW(¬ϕ) such that for all τ ∈ D?,
if τ extends σ and M |= cnt(τ) then f(τ) = 0. By the choice of f , for almost all models M of
¬ϕ in W, there exists σ ∈ D? with M ∈ Uσ. Since ModW(¬ϕ) > 0, we can choose σ ∈ D? with
µ(Uσ) > 0. Denote by a the maximal number in cnt(σ). Let U be the set of all M ∈ W with:

– M |= ¬P (a+ 1) ∧ . . . ∧ ¬P (a+ a+ 2);
– the D-diagram of M agrees with the D-diagram of some member of Uσ, except perhaps on

{P (a+ 1), . . . , P (a+ a+ 2)}.

Note that all members of ModW(U) are models of ϕ. Since µ(ModW(U)) is at least equal to
2−a−2µ(Uσ), µ(ModW(U)) is nonnull. Let M ∈ U be given. Since the D-diagram of M is included
in the D-diagram of some member of Uσ, we infer that for all environments e for the D-diagram
of M that extend σ, f outputs 0 in response to all finite initial segments of e that extend σ.
Contradiction.

Considering failing to classify a set of first category rather than misclassifying a set of measure
0, one can contrast Proposition 21 with the following.

Proposition 22. Let ϕ ∈ L be such that if D = {P (n),¬P (n) : n ∈ N} then W is classifiable,

respectively, computably classifiable, in the limit following ϕ. Assume that D = {P (n) : n ∈ N}.
Then there exists a subset W′ of W such that:

– W′ is of second category;

– W′ is classifiable, respectively, computably classifiable, in the limit following ϕ.

Proof. Assume that D = {P (n),¬P (n) : n ∈ N}. Consider a D-classifier f such that f classifies
W in the limit following ϕ. Without loss of generality we can assume that f is total and f depends
only on the content of the input and not on the order and number of repetitions of symbols. Let
S be the set of all members σ of D? such that f(τ) = f(σ) for all consistent τ ∈ D? that extend
σ. Note that if f is computable then S is a co-r.e. set. Let W′ be the set of possible worlds that
are models of cnt(σ) for some σ ∈ S. By the choice of f , for all σ ∈ D?, some member of S
extends σ. This implies immediately that W \W′ is of first category. Fix an enumeration (τi)i∈N

of D? \ S that in case f is computable, is itself computable.

Now assume that D = {P (n) : n ∈ N}. Define a classifier g as follows. Let σ ∈ (D ∪ {]})?

be given and let p denote the length of σ. Then g(σ) = f(τ) for the smallest member τ of
{P (n),¬P (n) : n ∈ N}? \{τ0, . . . , τp} such that for all n, (i) if P (n) occurs in τ then P (n) occurs
in σ, (ii) if ¬P (n) occurs in τ then P (n) does not occur in σ. Obviously, g is computable if f is
computable. Moreover, for all M ∈ W′ and environments e for M (with respect to the current
choice of D), some member τ of S satisfies

– {n ∈ N : P (n) ∈ cnt(τ)} ⊆ {n ∈ N : P (n) ∈ cnt(e)},
– {n ∈ N : ¬P (n) ∈ cnt(τ)} ∩ {n ∈ N : P (n) ∈ cnt(e)} = ∅.

Hence g converges on e to f(τ), for smallest such τ . This shows that g classifies W′ in the limit
following ϕ.
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7 Alternative measures

The aim of this section is to illustrate that results obtained from the canonical measure on the
Cantor space do not generalize to arbitrary measures. To this aim, we assume that µ is the
measure defined by Solomonoff [16], used to define the complexity of a string as the length of
the minimal program that generates it. It is an important notion (see [19]), hence properties of
this particular µ are interesting in their own right, not only in contrast to the measure on the
Cantor space. The key properties of µ are that:

– µ is a K-recursive function from {0, 1}? into the set of rational numbers;
– for all recursive members x of {0, 1}ω, µ(x) > 0.

Note that for every recursive measure µ′, there is a recursive member x of {0, 1}ω such that
µ′(x) = 0. Hence the Solomonoff measure is only K-recursive but not recursive.

The decidability property of monadic second-order logic immediately yields the following prop-
erty.

Property 23. Assume that V is standard and L is the set of monadic second-order sentences.

For all ϕ ∈ L, if ϕ has a model in W then µ(ModW(ϕ)) > 0.

This allows to contrast Solomonoff’s measure with the measure on the Cantor space:

Corollary 24. For all sentences ϕ, if W is classifiable in the limit following a sentence that is

almost everywhere equivalent to ϕ, then W is classifiable in the limit following ϕ.

Proof. By Property 23, for all sentences ϕ and ψ, ϕ and ψ are either logically equivalent or
µ(ModW(ϕ↔ ¬ψ)) > 0. The corollary follows immediately.

Another difference between both measures is given by the next proposition, whose proof relies
on another acceptance criterion by deterministic Rabin automata. The nondeterministic Büchi
automata used in the previous sections and the deterministic Rabin automata of the current
section actually accept the same class of languages, but for the purpose of the next result,
Rabin automata offer a better tool. Recall that a Rabin automaton A is a deterministic finite
automaton that replaces the set of accepting states by a set X of pairs whose members are sets
of states. A subset S of {0, 1}ω is then accepted by A iff for all e ∈ {0, 1}ω, e belongs to S iff
there exists (I, F ) ∈ X such that the unique run of A on e goes infinitely often through each
member of I and finitely often through the members of F .

Proposition 25. Assume that V is standard and L is the set of monadic second-order sentences.

Let ϕ ∈ L be given. Then one of the following statements holds.

1. There exists n ∈ N such that W is classifiable in the limit with at most n mind changes

following φ or

2. there exists no W′ ⊆ W with µ(W′) = 1 such that W′ is computably classifiable in the limit

following ϕ.
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Proof. By the choice of L, there is a finite deterministic automaton A such that the set of
models of ϕ in W is identified with a subset S of {0, 1}ω such that for all e ∈ {0, 1}ω, e ∈ S iff
e is accepted by A. Let Q be the set of its reachable states. We distinguish between two cases,
that correspond to the two alternatives in the statement of the proposition.

Case 1. For all q ∈ Q and x, y ∈ {0, 1}ω such that A goes through q infinitely often on the run
of A on x and on the run of A on y, A accepts x iff A accepts y. For all q ∈ Q, put Acc(q) = 1
if there exists x ∈ {0, 1}ω such that A accepts x and A goes through q infinitely often on the
run of A on x; otherwise put Acc(q) = 0. Let f be the unique classifier such that for all σ ∈ D?,
f(σ) = Acc(q) for the state q reached by A when run on (the member of {0, 1}? identified with)
σ. For all members q, q′ of the same strongly connected component of A, Acc(q) = Acc(q ′). Since
Q is finite, the number of strongly connected components of A has to be an upper bound on the
number of mind changes that f can make when classifying W in the limit following any sentence.
Furthermore, for all x ∈ {0, 1}ω, there exists a finite initial segment σ of x such that A remains
in the same strong connected component C after σ has been processed. Obviously, there has to
be a member q of C such that A goes through q infinitely often when run on x. So f accepts x
iff Acc(q) = 1, which itself is equivalent to A accepting x. This shows that f correctly classifies
W in the limit following ϕ.

Case 2. There exists q ∈ Q and x, y ∈ {0, 1}ω such that A goes through q infinitely often on
the run of A on x and on the run of A on y, A accepts x and A rejects y. Notice that for all
x ∈ {0, 1}ω, whether A accepts or rejects x only depends on the set of states that are visited
infinitely often when A is run on x. It follows that there exist η, τ ∈ {0, 1}? such that for all
strings σ ∈ {0, 1}?:

– A is in state q after it has processed any of σ, ση and στ ;
– A accepts σηω and rejects στω.

Let a recursive classifier f be given. Then there exists an infinite sequence x = σ0σ1 . . . such
that A is in state q after σ0 has been processed and

σn+1 =

{
η if f(σ0σ1 . . . σn) = 0;
τ if f(σ0σ1 . . . σn) = 1.

Since f is computable, x is recursive, so µ({x}) > 0. Moreover, it is easy to verify that:

– if f converges on x to 0 then σn = η for cofinitely many n’s;
– if f converges on x to 1 then σn = τ for cofinitely many n’s.

This shows that there exists a subset W′ of W with µ(W′) > 0 such that f fails to classifies W′

in the limit following ϕ.

8 Learning witnesses

In this section, we go back to the standard measure on the Cantor space. We focus on classi-
fiability of existential sentences. By the choice of W, such a sentence, of the form ∃xψ(x), is
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true in a member M of W iff ψ(t) is true for some closed term t. It is then natural not only to
determine that ∃xψ(x) is true, but also to learn in the limit such a witness t. This amounts to
a computation in the limit that generalizes the type of computations done by Prolog systems.
We now formalize the concepts that have just been introduced.

Definition 26. A learner is a partial function from (D ∪ {]})? into the union of {0} with the
set of closed terms.

Definition 27. We say that a classifier g is associated with a learner f iff for all σ ∈ (D ∪ {]})?,
g(σ) is defined iff f(σ) is defined and g(σ) = 0 iff f(σ) = 0.

Definition 28. Let a learner f , a sentence of the form ∃xψ(x), and a subset W′ of W be given.

We say that f learns ∃xψ(x) in the limit in W′ just in case for all M ∈ W′ and environments e
for M, the following holds.

– If M |= ∃xψ(x) then there exists a closed term t such that M |= ψ(t) and the set of all
σ ∈ (D ∪ {]})? such that σ ⊂ e and f(σ) = t is cofinite.

– If M 6|= ∃xψ(x) then {σ ∈ (D ∪ {]})? : σ ⊂ e and f(σ) = 0} is cofinite.

Definition 29. Let a learner f and an existential sentence ϕ be given. We say that f learns ϕ
in the limit in W almost correctly just in case:

– the classifier associated with f classifies W in the limit following ϕ almost everywhere;
– there exists W′ ⊆ W with µ(W′) = 1 such that f learns ϕ in the limit in W′.

Definition 30. We say that an existential sentence ϕ is learnable, respectively, computably

learnable, in the limit in W almost correctly iff some learner, respectively, computable learner,
learns ϕ in the limit in W almost correctly.

Adapting the proof of Proposition 19, we obtain an important particular case where limiting
computation of witnesses for existentially quantified sentences is always possible:

Proposition 31. Suppose that V is standard, L is the set of monadic second-order sentences

and D is equal to {P (n),¬P (n) : n ∈ N}. Then for all existential sentences ϕ, ϕ is computably

learnable in the limit in W almost correctly.

Proof. Let a sentence of the form ∃xψ(x) be given. Let Z be the set of all e ∈ {0, 1}ω that
are identified with a model of ∃xψ(x) in W. Let Zn be the set of all e ∈ Z, for which n is the
minimal i such that ψ(i) holds. Recall the notation of R+

Z and R−
Z given in Definition 18. So

by Corollary 17, R+
Z and R−

Z are of respective form C+
Z ? {0, 1}ω and C−

Z ? {0, 1}ω for regular
prefix-free subsets C+

Z and C−
Z of {0, 1}?.

Let an extra unary predicate symbol Q be given and consider the following monadic second-order
sentence ξ over V ∪ {Q}:

∃x[ψ(x) ∧ Q(x) ∧ ∀y[y < x → [ ¬ψ(y) ∧ ¬Q(y)]]].
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Recall that < is definable in monadic second order logic. Intuitively, ξ expresses that both ψ
and Q are simultaneously true on some value; furthermore, x is the minimum of these values.

Recall that a standard structure M over V ∪ {Q} is a structure over V ∪ {Q} such that all of
its individuals interpret a closed term. Now identify a given standard structure M over V∪ {Q}
with the unique point e in the Cantor space such that:

– for all n ∈ N, M |= P (n) iff e(2n) = 1;
– for all n ∈ N, M |= Q(n) iff e(2n+ 1) = 1.

Let S be the set of all e ∈ {0, 1}ω that are identified with a standard structure over V∪{Q} that
is a model of ξ. For all n ∈ N, let Sn be the set of all e ∈ S for which n is the least i ∈ N such
that ψ(i) holds in e. Recall the notation of R+

S and R−
S given in Definition 18. So by Corollary 17,

R+
S and R−

S are of respective form C+
S ? {0, 1}ω and C−

S ? {0, 1}ω for regular prefix-free subsets
C+

S and C−
S of {0, 1}?. Without loss of generality, we can assume that for all σ ∈ C+

S , there
exists i ∈ N such that 2i + 1 is smaller than the length of σ and σ(2i + 1) = 1. One can thus
divide C+

S into regular prefix free subsets C+
Sn

, where C+
Sn

consists of those sequences σ in C+
S

for which the minimal i such that σ(2i+ 1) = 1 is n. Given n ∈ N, note that Zn is same as (the
set of possible worlds identified with) the set of restrictions to V of the members of Sn. Now let
R+

Sn

= C+
Sn

?{0, 1}ω. Let C+
Zn

be the set of sequences of the form σ(0)σ(2)σ(4) . . . where σ ranges
over C+

Sn

. Let R+
Zn

= C+
Zn

? {0, 1}ω. Using Corollary 17, R+
Sn

differs from Sn on a set of measure

0. As the interpretation of Q(i) in all members of Sn is fixed for all i ≤ n, but arbitrary for all
i > n, µ(Sn) = 2−(n+1)µ(Zn). Thus, R+

Zn

differs from Zn on a set of measure 0. Using regularity
of C+

Sn

, it follows that C+
Zn

, n ∈ N, are regular sets (which could be made prefix free), which
intersect neither with each other nor with C−

Z . Moreover, one can effectively find elements of the
sets C−

Z and C+
Zn

, effectively from each n.

Now let a computable {P (n),¬P (n) : n ∈ N}-classifier f be defined as follows. Let a standard
informant e for some possible world (that is, standard structure over V, not V∪ {Q}!) be given.

– Suppose that e extends a member σ of C+
Zn

. Then, f outputs n in response to cofinitely many
finite initial segments of e.

– If e extends a member of C−
Z then f is constant and equal to 0 on e.

It follows that

– for all n ∈ N, f converges to n on almost every (standard environment identified with a)
member of R+

Zn

;
– f converges to 0 on almost every member of R−

Z .

Hence ∃xψ(x) is computably learnable in the limit in W almost correctly.

When investigating the connections between classifiability and learnability of sentences of the
form ∃xψ(x), it is reasonable to assume that W is classifiable in the limit following any of the
sentences ψ(n); otherwise one could obtain a separation by taking a sentence ξ such that W is
not almost everywhere classifiable in the limit following ξ and then consider

∃x ((x = 0 ∧ ¬ξ) ∨ (x = 1 ∧ ξ)).
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Furthermore, if W is classifiable in the limit following each of the formulas ∃xψ(x) and ψ(n)
with n ∈ N, then the parameter x is also learnable: an n ∈ N such that ψ(n) holds can be
found in the limit. Still computability might be lost, for example with ∃x (φx is total ∧φx(0) =
min{z : Pz} ∧ ∀y < x (φy 6= φx)). As this example can be formalized in full arithmetic, it is
natural to ask what happens if one only postulates that W is almost everywhere classifiable in
the limit following ∃xψ(x), keeping the other conditions as such. The next result shows that not
only computability, but also learnability can be lost.

Proposition 32. Suppose that V is enriched with + only, L is the set of first-order sentences

and D = {P (n),¬P (n) : n ∈ N}. Let ψ(x) be the formula

∀y∃u∃v∃w (x+ y + v = u ∧ u+ w = x+ x+ y + y ∧ P (u)).

Then:

– the set of models of ∃xψ(x) in W is of measure 1;

– for all n ∈ N, W is classifiable in the limit with at most 1 mind change following ψ(n);
– ∃xψ(x) is not almost correctly learnable in the limit in W.

Proof. The formula ψ(x) expresses that for every y ∈ N, there exists u ∈ N such that x+ y ≤
u ≤ 2x+2y and P (u) holds. By the law of large numbers, µ(ModW(∃xψ(x))) is equal to 1. Given
n ∈ N, a classifier that outputs 1, until it finds y ∈ N such that ¬P (n+ y), . . . ,¬P (2n+ 2y) all
appear in the data, at which point it outputs 0, classifies W in the limit with at most 1 mind
change following ψ(n). Suppose for a contradiction that a learner f learns ∃xψ(x) in the limit
in W almost correctly. It is then easy to construct a ⊆-increasing sequence (σn)n∈N of members
of D? such that:

– for all i ∈ N, σ2i is an initial segment of an environment for a model of ψ(n), for some n, and
f outputs n in response to σ2i;

– for all i ∈ N, σ2i+1 is an initial segment of an environment for a model of ¬∃xψ(x) and f
outputs 0 in response to σ2i+1;

–
⋃

i∈N
σi is an environment for a possible world.

Since the classifier associated with f does not converge on
⋃

i∈N
σi, it follows that f does not

learn ∃xψ(x) almost correctly in the limit in W.

A further question would be the following. Given a sentence ϕ such that W can be classified in
the limit following ϕ, is ϕ equivalent to a sentence of the form ∃xψ(x) such that W is classifiable
with a constant number of mind changes, following any sentence of the form ψ(n)? The answer
is yes for computable classification in full arithmetic since one can transform every learner into
a formula monitoring its behaviour and then quantify over a variable that represents the last
time when the classifier makes a wrong conjecture.

9 Conclusion

In this paper the relationship between classifying all possible worlds and classifying almost all
possible worlds has been investigated. The main results include the following. In the case of
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monadic second order logic with one successor, which is well known to be decidable thanks to its
connections with Büchi automata, one can classify W following a formula ϕ almost everywhere
from both positive and negative data. But with positive data only, convergence might fail on a
set of measure 0. For other choices of possible data, W might even be classifiable in the limit
following a given sentence ϕ almost everywhere, though no sentence differing from ϕ only on
a null set of worlds allows for absolute classification. With Presburger arithmetic, there is a
sentence ϕ such that some set of worlds of measure 1 can be classified in the limit following
ϕ, though no classifier which is correct on a set of measure 1 converges on all environments for
all possible worlds. The fact that these results depend crucially on the choice of measure as the
standard measure on the Cantor space has been emphasized by considering the measure proposed
by Solomonoff. Finally, some connections were made between classification and learning of an
essential parameter, namely, the value of the first quantified variable in an existential sentence. It
turns out that this can be achieved on a set of worlds of measure 1 in monadic second order logic
with one successor, demonstrating that Prolog style inferences are almost everywhere possible
in this case.
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5. J. Richard Büchi: On a Decision Method in Restricted Second Order Arithmetic. In Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of Science,
Stanford University Press, pp. 1–11 (1960).

6. Patrick Caldon and Eric Martin: Limiting Resolution: from Foundations to Implementation.
In B. Demoen, V. Lifschitz: Proceedings of the 20th International Conference on Logic
Programming, Springer-Verlag, LNCS 3132, pp. 149–164 (2004).

7. Robert P. Daley: Inductive Inference Hierarchies: Probabilistic vs. Pluralistic. Mathematical
Methods of Specification and Synthesis of Software Systems, LNCS 215, pp. 73–82 (1985).
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