
Extremes in the Degrees of Inferability

Lance Fortnow∗

Univ. of Chicago

William Gasarch†

Univ. of Maryland

Sanjay Jain‡

Nat. U. of Sing.

Efim Kinber§

Univ. of Latvia

Martin Kummer¶

Univ. Karlsruhe

Stuart Kurtz‖

Univ. of Chicago

Mark Pleszkoch∗∗

IBM Corporation

Theodore Slaman††

Univ. of Chicago

Robert Solovay‡‡

Univ. of California

Frank Stephan ∗∗∗

Univ. Karlsruhe

∗Department of Computer Science, University of Chicago, Chicago, ILL 60637. Sup-
ported in part by NSF grant CCR 90-09936 (fortnow@cs.uchicago.edu).

†Dept. of C.S. and Inst. for Adv. Stud., Univ. of MD., College Park, MD 20742.
Supp. in part by NSF grants CCR-8803641 and CCR-9020079 (gasarch@cs.umd.edu).

‡Institute of Systems Science, National University of Singapore, Heng Mui Keng Ter-
race, Kent Ridge, Singapore 0511, Republic of Singapore, (sanjay@iss.nus.sg).

§Inst. of Math and C.S., Univ. of Latvia, Raiņa bulvāris 29 (kinber@mii.lu.lv).
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1 Introduction

Most theories of learning (e.g., [Gol67, Val84]) have dealt with learning a
function f by observing the behavior of f . This roughly models learning
from data. In the last few years theories have been developed that allow
the learner to ask questions about the function (e.g., [Ang88, GS92]). This
roughly models learning from a helpful teacher.

In this paper we consider the scenario where the learner can ask a fellow
student questions. Note that the other student does not know anything more
about the function f than the learner; however, she might still be helpful.
Less whimsically, we wish to investigate how information, not necessarily
related to the function being learned, may still help in the learning of that
function.

We will consider several recursion-theoretic models of learning. In these
models the learner, while trying to infer a recursive function f , is able to both
observe increasing portions of the graph of f and query an oracle A. The
power of the learner, measured as its ability to learn collections of functions,
depends on both the learning model and the oracle A.

In this paper we examine extremes: Which oracles add no power to the
learner? Which oracles allow the learner to infer the set of all recursive
functions? Kummer and Stephan [KS93b] have investigated structural issues.
For several models they show exactly when oracle A is weaker (in terms of
learning sets of recursive functions) than oracle B.

Some of the results in this paper were announced in [GP89] and [CDF+92].

2 Definitions and Notation

2.1 Standard Definitions

Notation 2.1 We denote the natural numbers by N = {0, 1, 2, . . .}. We
denote subsets of N by capital letters (usually A or B) and elements of N
by small letters (usually n,m).

Notation 2.2 Throughout this paper M0,M1, . . . is a standard list of all
Turing machines, M

()
0 ,M

()
1 , . . . is a standard list of all oracle Turing machines,

ϕ0, ϕ1, . . . is the acceptable programming system, obtained by letting ϕe be
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the partial recursive function computed by Me. The domain of ϕe is denoted
We.

Notation 2.3 Let Me,s be the machine that, on input x, runs Me(x) for
s steps, outputs Me(x) if the computation has halted within s steps, and
diverges otherwise. Let ϕe,s be the partial function computed by Me,s. Let
We,s = {0, . . . , s} ∩ dom(ϕe,s). Let Φ0,Φ1, . . . be the Blum complexity mea-
sure defined by the number of steps the Turing machine takes. (Using Turing
machine steps as a measure of complexity is not crucial. We could have used
any acceptable programming system and any Blum measure. We use Turing
machines and runtimes so we can speak of ‘running a machine for s steps’.)

Our definition of high and low differ slightly from that in [Soa87], so we
state our definition.

Notation 2.4 A′ is the halting problem relative toA, that is, {e : MA
e (e) halts }.

A is high if ∅′′ ≤T A
′. A is high2 if ∅′′′ ≤T A

′′. A is low if A′ ≤T K.

Notation 2.5 Let σ, τ be strings over an alphabet Σ. |σ| denotes the length
of σ. σ � τ means that σ is a prefix of τ . We think of σ as being a map
from {0, 1, . . . , |σ| − 1} to Σ. If a ∈ N then we use σaω to denote the total
function whose characteristic string has initial segment σ and then consists
of all a’s.

Notation 2.6 Let σ ∈ {0, 1}∗ and M () be an oracle Turing machine. Mσ is
the Turing machine that attempts to simulate M () by answering questions
as though σ were an initial segment of the oracle. If ever a query is made
that is bigger than |σ| − 1, then the computation diverges. Any divergent
computation that results from running Mσ(x) is denoted by Mσ(x) ↑.

Notation 2.7 A ↾ x denotes A ∩ {0, 1, . . . , x}. If A is r.e. then As denote
the first s elements in some fixed recursive enumeration.
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Notation 2.8 (
∞

∃x) means ‘for an infinite number of x.’ (
∞

∀x) means ‘for all
but a finite number of x;’ equivalently, ‘for almost all x.’

Notation 2.9 If f and g are two functions then f =∗ g means that (
∞

∀
x)[f(x) = g(x)]. If a is a constant then λx[a] denotes the constant function

that always outputs a. The expression f =∗ λx[a] means that (
∞

∀x)[f(x) = a].

Remaining recursion-theoretic notation is from [Soa87].

2.2 Definitions from Inductive Inference

We consider the learnability of collections of recursive functions. We are
especially interested in situations that render the entire collection of recursive
functions learnable by a single machine.

Notation 2.10 We denote the set of all recursive functions by REC.

The following definitions are from [CS83].

Definition 2.11 An inductive inference machine (IIM) M is a total Turing
machine. We interpret M to be trying to learn a recursive function f by
viewing M as taking as input the values f(0), f(1), . . . (one value at a time)
and producing output (from time to time) in the form of a program intended
to compute f . If almost all the programs are the same, and compute f ,
then we say that M EX-identifies f . If almost all the programs compute
f , but are not necessarily the same, then M BC-identifies f . Formally, M
computes a total function from N∗ (finite sequences of natural numbers) to
N. The input is an initial segment of the function to be inferred, and the
output is the current guess as to the index of that function. The indices
output by IIMs are relative to the acceptable programming system {ϕi}

∞
i=0

specified in Notation 2.2.

Convention 2.12 If the output of an IIM is 0 then we interpret this as
meaning ‘no guess at this time’. Formally an IIM M takes as input elements
of the form 〈σ1, . . . , σn〉 or 〈f(0), . . . , f(n)〉, but we denote M(〈σ1, . . . , σn〉)
by M(σ1, . . . , σn), and M(〈f(0), . . . , f(n)〉) by M(f(0), . . . , f(n)).
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Definition 2.13 Let S ⊆ REC. Then S ∈ EX (BC) if there exists an IIM
M such that for all f ∈ S, M EX-identifies f (BC-identifies f).

Note 2.14 If we did not require IIMs to be total, then the class EX would
not change. If M is a (not necessarily total) Turing machine that we want
to use as an IIM then we define M ′ to simulate M as follows. To compute
M ′(f(0), . . . , f(n)) find the largest i ≤ n (if it exists) such thatM(f(0), . . . , f(i))
halts within n2 steps, and output the answer produced; if no such i exists
then output 0. Clearly M ′ EX-identifies all the functions that M did. These
remarks also apply to BC. (The choice of time bound is not important.)

Example 2.15 Let S1 = {f : ϕf(17) = f} and S2 = {f : f =∗ λx[0]}. Note
that S1 ∈ EX and S2 ∈ EX. Techniques of the Blums [BB75], or Case and
Smith [CS83], can be used to show that S1 ∪ S2 /∈ EX. Hence, REC /∈ EX.

We consider using (categorical) oracle Turing machines instead of (total)
Turing machines.

Definition 2.16 An oracle Turing machine M () is categorically total if, for
every X, MX is total. Note that if M () is categorical then, given σ and x,
one can test if Mσ(x) ↑ recursively.

Definition 2.17 An oracle inductive inference machine (OIIM) M () is a
categorically total Turing machine. We interpret MA to be trying to learn a
recursive function f similar to our interpretation of an IIM M trying to learn
a recursive function f . We define MA EX[A]-identifies f (BC[A]-identifies
f) similar to our definition of M EX-identifies f (BC-identifies f).

Definition 2.18 Let S be a set of recursive functions. S ∈ EX[A] (BC[A])
is defined similar to S ∈ EX (BC).
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Note 2.19 If we did not require OIIMs to be categorically total, then the
classes EX[A] would not change. If M () is a (not necessarily categorical)
Turing machine that we want to use as an OIIM then we define M ′A to
simulate MA as follows. To compute M ′A(f(0), . . . , f(n)), find the largest
i ≤ n (if it exists) such that MA(f(0), . . . , f(i)) halts within n2 steps, and
output the answer produced; if no such i exists then output 0. Clearly M ′A

EX[A]-identifies all the functions that MA did. These remarks also apply to
BC[A]. (The choice of time bound is not important.)

Note that in the definition of EX[A] (and the other classes) we are infer-
ring indices for recursive functions, not indices for recursive-in-A functions.

Example 2.20 REC ∈ EX[K] via the following well-known inference pro-
cedure (introduced in [Gol67]). Upon seeing initial segment σ, output the
least e such that for every x ∈ dom(σ)[ϕe(x) ↓= σ(x)]. Note that even after
the correct index is found infinitely many queries to K are made to keep
verifying that the index is correct.

Note 2.21 Using REC ∈ EX[K] we can give an easy proof of a theorem of
Harrington. Define BC∗ as follows: S ∈ BC∗ if there exists an IIM M such
that, for all f ∈ S, when f is fed into M almost all the programs output
compute functions that are equal to f almost everywhere. Harrington showed
(see [CS83]) that REC ∈ BC∗. We give an alternate proof. Let M () be the
OIIM such that MK infers REC. Let N be the IIM that operates as follows:
ϕN(σ)(s) = ϕMKs (σ)(s). It is easy to show that N BC∗-infers REC.

Example 2.22 Let

S = {f : f(0) ∈ A′ ∧ ϕf(1) = f} ∪ {f : f(0) /∈ A′ ∧ f =∗ λx[0]}.

Note that S ∈ EX[A] by using an A-approximation to A′, which exists by
the Limit Lemma (see [Soa87, p. 57]).

Definition 2.23 Let S be a set of recursive functions. S ∈ EX[A∗] if there
exists an OIIM M () such that (1) S is EX[A]-identified by MA, and (2) for
every f ∈ S, during the inference of f by MA, only finitely many queries to
A are made. BC[A∗] is defined similarly.
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Example 2.24 Note that REC ∈ EX[TOT∗] by asking if a machine is
total before considering it. Also note that the proof of REC ∈ EX[K]
uses an OIIM MK that makes infinitely many queries to K; we later show
(Theorem 5.7) that REC /∈ EX[K∗].

Definition 2.25 Let S be a set of recursive functions. S ∈ EX[A[m]] if
there exists an OIIM M () such that (1) S is EX[A]-identified by MA, and
(2) for every f ∈ S, during the inference of f by MA, at most m queries to
A are made. BC[A[m]] is defined similarly.

Example 2.26 Let

T1 = {f : (∃i ≤ 63)[(f(0), . . . , f(i) ∈ A)∧(f(i+1), . . . , f(63) /∈ A)∧(ϕf(i) = f)}.

It is easy to see that T1 ∈ EX[A[64]]. Using binary search one can obtain
T1 ∈ EX[A[6]]. (Actually T1 ∈ EX since |T1| is finite.)

Let

T2 = {f : (∃i)[(f(0), f(1), . . . , f(i) ∈ A) ∧ (f(i+ 1) /∈ A) ∧ (ϕf(i) = f)}.

It is easy to see that T2 ∈ EX[A∗].
Let

T3 = {f : f(0) ∈ A ∧ ϕf(1) = f} ∪ {f : f(0) /∈ A ∧ f =∗ λx[0]}.

It is easy to see that T3 ∈ EX[A[1]].

Definition 2.27 A ≤i B if EX[A] ⊆ EX[B] (the ‘i’ stands for ‘inference’).
A ≡i B if EX[A] = EX[B]. An EX-degree is an equivalence class under
≡i. A ≤∗

i B if EX[A∗] ⊆ EX[B∗]. A ≡∗
i B if EX[A∗] = EX[B∗]. An

EX∗-degree is an equivalence class under ≡∗
i . The BC-degrees and BC∗-

degrees are defined similarly. More generally, these definitions would make
sense for any of the classes usually studied in inductive inference. These
degree structures are spoken of informally as the degrees of inferability.
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Definition 2.28 An EX-degree is trivial if for every A in that degree,
EX[A] = EX. An EX-degree is omniscient if for every A in that degree
REC ∈ EX[A]. The notions trivial and omniscient can be defined for other
types of degrees of inferability.

Notation 2.29 Let σ ∈ N∗, A ⊆ N, f be a function, and M () be an OIIM.
σ � f means that σ is an initial segment of f . MA(σ) is a guess for an index
for f ; note that MA(σ) does not have access to f(|σ|). We will often try to
diagonalize by looking at ϕMA(σ)(|σ|).

We will need the notion of team inference while investigating EX and
BC degrees of inferability. We will study degrees of inferability relative to
team inference itself in Section 6.1

Definition 2.30 Let a, b be such that 1 ≤ a ≤ b. A set of recursive functions
S is in [a, b]EX (concept from [Smi82], notation from [PS88]) if there exist
b IIMs M1,M2,. . ., Mb such that, for every f ∈ S, there exist i1, . . . , ia,
1 ≤ i1 < · · · < ia ≤ b, such that Mi1, . . . ,Mia all EX-infer f . If a = 1
then in the literature this is referred to as inferring S by a team of b IIMs.
[a, b]BC is defined similarly.

Convention 2.31 In this paper when the notation [a, b]EX is used it is
assumed that 1 ≤ a ≤ b.

We will need the following construct.

Definition 2.32 If I is a finite set of indices for Turing machines then the
partial recursive function AM(I) is computed as follows: on input x run,
for every e ∈ I, ϕe(x) (dovetail over all e ∈ I). Whichever one halts first
(if any), output its answer. The ‘AM ’ stands for amalgamation. We write
AM(i1, . . . , in) instead of the (formally correct) AM({i1, . . . , in}).
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3 Technical Summary

We examine when a degree of inferability can be trivial, and when it can be
omniscient. We then extend these questions to other notions of inferability.
This paper, together with [AB91, JS, KS93b], describes all that is known for
these questions. All results listed are in this paper unless otherwise noted.
A more comprehensive summary is in Section 7.

Notation 3.1 G(A) stands for the condition that either A is recursive, or
A ≤T K and is in a 1-generic Turing degree.

1) When are EX-degrees (and variations) trivial?

a) If EX[A] = EX then A is low.

b) EX[A] = EX iff G(A). (The backwards direction is in this paper.
The forward direction was first shown in [SS91] and is quite diffi-
cult. An easier proof appears in [KS93b]. ) This supersedes item
a), but a) has an easy proof.

c) EX[A∗] = EX iff A ≤T K.

d) (∀m)[EX[A[m]] = EX iff A ≤T K].

2) When are BC-degrees (and variations) trivial?

a) If BC[A] = BC then A is low.

b) BC[A] = BC iff G(A). (The backwards direction is in this paper.
The forward direction can be obtained by a modification of the
proof of a similar result for EX which is in [SS91], or directly in
[KS93b].) This supersedes item a), but a) has an easy proof.

c) BC[A∗] = BC iff A ≤T K.

d) (∀m)[BC[A[m]] = BC iff A ≤T K].

3) When are EX-degrees (and variations) omniscient?

a) REC ∈ EX[A] iff A is high (proven in [AB91]). Also see [KS93b]).

b) REC ∈ EX[A∗] iff ∅′′ ≤T A⊕K.
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c) (∀m)(∀A)[REC /∈ EX[A[m]]].

4) When are BC-degrees (and variations) omniscient?

a) If A is r.e. then REC ∈ BC[A] iff A is high.

b) There exists a low set A such that REC ∈ BC[A].

c) For all X there exists A such that X ≤T A
′′ and REC /∈ BC[A].

d) REC ∈ BC[A∗] iff ∅′′ ≤T A⊕K.

e) (∀m)(∀A)[REC /∈ BC[A[m]]].

5) Other notions of inference. For most other degrees of inference, those
that are variations on EX[A] (EX[A∗], BC[A], BC[A∗]) act very much
like EX[A] (EX[A∗], BC[A], BC[A∗]). There are two notable ex-
ceptions. (1) PEX is the set of all S ⊆ REC such that S can be
inferred by a machine that outputs only indices for total functions.
The PEX-degrees and PEX∗-degrees seem to behave in a manner
quite different from the EX-degrees and EX∗-degrees. (2) If the num-
ber of mindchanges that an OIIM can make is bounded, the resulting
inference-degrees behave exactly like the Turing-degrees, which is not
at all similar to the EX-degrees. See Section 6 for definitions of other
notions of inference, and the table in Section 7 for a summary of results.

It is open to determine when REC ∈ BC[A]. Our results suggest that
there is no nice characterization of such A.

The sections of this paper are organized as follows.
1. Introduction
2. Definitions and Notation

2.1. Standard Definitions
2.2. Definitions from Inductive Inference

3. Technical Summary
4. When are Degrees Trivial?

4.1 EX[A[m]], BC[A[m]], EX[A∗], and BC[A∗]
4.2 EX[A] and BC[A]

5. When are Degrees Omniscient?
5.1 EX[A[m]] and BC[A[m]]
5.2 EX[A∗] and BC[A∗]
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5.3 EX[A] and BC[A]
5.3.1 The r.e. case
5.3.2 A Low A such that REC ∈ BC[A]
5.3.3 Arbitrary High Double Jump is Not Enough

6. Other Notions of Inference
6.1 [a, b]EX– Teams of Machines

6.1.1 ∗-Triviality
6.1.2 Triviality
6.1.3 ∗-Omniscience
6.1.4 Omniscience for [a, b]EX
6.1.5 Omniscience for [a, b]BC

6.2 EXn, EX∗, BCn, BC∗– Allowing Errors
6.3 EXn– Bounding Mind Changes
6.4 PEX– Guesses are total
6.5 Combinations

7. Conclusions and Open Problems
8. Acknowledgments

4 When are Degrees Trivial?

Slaman and Solovay proved the following theorem (see [KS93b] for an easier
proof). We state it here so we can refer to it.

Theorem 4.1 ([SS91]) If EX = EX[A] then G(A).

We will need the following concepts from the theory of bounded queries.
They were introduced in [BGGO93]. We use them in Sections 4.1 and 6.3.

Definition 4.2 FA
k is the function with domain Nk and range {0, 1}k defined

by
FA
k (x1, . . . , xk) = χA(x1) · · ·χA(xk).

We will need to code the output of FA
k as a natural number.

Definition 4.3 Let NUM denote the function from {0, 1}∗ to N that maps
τ to the number it represents in binary (formally τ maps to

∑
τ(i)=1 2|τ |−i−1).

Note that NUM(τ1) = 2NUM(τ) + 1 and NUM(τ0) = 2NUM(τ).
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Clearly FA
k can be computed with k queries to A. In [BGGO93] it was

shown that for all k,A,X, Y the following holds: if FA
2k can be computed

with k queries to X and arbitrary queries to Y then A ≤T Y . The following
proposition is equivalent to this statement. (The proof of the proposition,
and the equivalence, are in [BGGO93].)

Convention 4.4 Throughout this section we take W0,W1, . . . to be an enu-
meration of all r.e. subsets of {0, 1}∗, instead of r.e. subsets of N.

Definition 4.5 A function f is m-enumerable-in-Y if there exists a recursive
function h such that for all x, |Wh(x)| ≤ m and f(x) ∈Wh(x).

Proposition 4.6 If FA
m(x1, . . . , xm) is m-enumerable-in-Y then A ≤T Y .

Note 4.7 Much more is known about bounded queries. We state two results,
one of which we will refer to in later notes.

i. Kummer[Kum92] showed that Proposition 4.6 hold if FA
m(x1, . . . , xm)

is replaced by the function #A
m(x1, . . . , xm) = |{i : xi ∈ A}|.

ii. Kummer and Stephan [KS93a] have shown that for any nonrecursive
set A there is a function TREEA

k that can be computed with k queries
to A that cannot be computed with k − 1 queries to any set. This
will be used in two places (Notes 4.16 and 6.35) to slightly improve our
results.

4.1 EX[A[m]], BC[A[m]], EX[A∗], and BC[A∗]

Kinber [Kin90] showed that there exists a setA such that, for all i, EX[A[i]] ⊂
EX[A[i+1]]. It was later shown (see [GJPS91]) that, for all i, EX[FIN [i]] ⊂
EX[FIN [i+ 1]].

We show that EX[A∗] = EX iff A ≤T K. Hence when A ≤T K we
have EX = EX[A[1]] = EX[A[2]] = · · · = EX[A∗]. The question arises
as to when and how query hierarchies can collapse. The following theorem
answers virtually all questions that could be asked.

12



Theorem 4.8 The following are equivalent.

i. A ≤T K.

ii. (∃n)[EX[A[n]] = EX[A[n+ 1]]].

iii. (∀n)[EX[A[n]] = EX[A[n+ 1]]].

iv. EX = EX[A∗].

v. (∃n)[BC[A[n]] = BC[A[n+ 1]]].

vi. (∀n)[BC[A[n]] = BC[A[n+ 1]]].

vii. BC = BC[A∗].

We prove this after establishing several lemmas.

Lemma 4.9 If A ≤T K, then EX[A∗] = EX and BC[A∗] = BC.

Proof:
Let A ≤T K and let S be EX[A∗]-identified via MA. We show S ∈ EX.
Since A ≤T K, by the Limit Lemma (see [Soa87, p. 57]), there exists

a recursive function h(x, s) such that A(x) = lims→∞ h(x, s). Let As =
{0, . . . , s} ∩ {x : h(x, s) = 1}.

We define an IIM M ′ that infers S. On input σ, M ′ outputs MA|σ|(σ).
We show that if f ∈ S then M ′ infers f . Let f ∈ S. Let x0, . . . , xm be

the set of all queries that MA makes while inferring f . Let n be the least
number such that (∀i ≤ m)(∀s ≥ n)[xi ∈ A iff xi ∈ As]. It is easy to see that
(∀σ � f)[|σ| ≥ n⇒M ′(σ) = MA(σ)]. Hence M ′ infers f .

The proof for BC is similar.

Note 4.10 The proof of Lemma 4.9 can be easily modified to show that, for
all B, EX[(B⊕K)∗] = EX[B∗] and BC[(B⊕K)∗] = BC[B∗]. We will use
this later in Lemma 5.6 to help prove Theorem 5.8. It can be further modified
to show that [a, b]EX[(B ⊕K)∗] = [a, b]EX[B∗] and [a, b]BC[(B ⊕K)∗] =
[a, b]BC[B∗]. We will use this later in Lemma 6.5 to help prove Theorem 6.6

13



The next lemma we prove about EX[A[m]] (and BC[A[m]]) gives another
way of dealing with these classes. It will be useful in proving Lemma 4.13.
We will also use it later to prove Theorem 5.2.

Lemma 4.11 For allm,A, EX[A[m]] ⊆ [1, 2m]EX and BC[A[m]] ⊆ [1, 2m]BC.

Proof:
We show EX[A[m]] ⊆ [1, 2m]EX. Let S ∈ EX[A[m]] via MA. We define

2m IIMs as follows: for every string σ ∈ {0, 1}m, let M(−;σ) be the IIM that
simulates MA by answering the ith query with the ith bit of σ. If more than m
queries are made, then M(−;σ) outputs 0 thereafter. For every f ∈ S, there
exists a τ ∈ {0, 1}∗, |τ | ≤ m, such that τ contains all the correct answers to
queries asked by MA while inferring f . Let σ be such that |σ| = m and τ is
a prefix of σ. It is easy to see that f is inferred by M(−;σ).

The proof for BC[A[m]] ⊆ [1, 2m]BC is similar.

Definition 4.12 Let SAm be the set of recursive functions f such that the
following holds.

i. There exist a, b, x1, . . . , xm, d such that f(0) = 〈a, b, x1, . . . , xm〉 and
d = a+ (b×NUM(FA

m(x1, . . . , xm))).

ii. There exists e such that

(a) if d is as in part i then for almost all k, f(〈d, k〉) = e, and

(b) for all x ≥ 1, f(x) = ϕe(x).

If f ∈ SAm then f codes an index for a function that is identical to f
except at 0. However, knowledge of A is needed to know where in f to look
for this index.

Lemma 4.13 The following are true for all A,m, n.

i. SAm ∈ EX[A[m]].

ii. SAm ∈ EX[A[n]] ⇒ SAm+1 ∈ EX[A[n+ 1]].

iii. (∃m′)[SAm′ /∈ EX[A[m]]] ⇒ (EX[A[m]] ⊂ EX[A[m+ 1]]).
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iv. EX[A[m]] = EX[A[m+ 1]] ⇒ (∀m′)[SAm′ ∈ EX[A[m]] ⊆ [1, 2m]EX].

v. BC[A[m]] = BC[A[m+ 1]] ⇒ (∀m′)[SAm′ ∈ BC[A[m]] ⊆ [1, 2m]BC].

Proof:

i. We infer SAm as follows. Upon seeing f(0) = 〈a, b, x1, . . . , xm〉 we ask the m
queries ‘xi ∈ A?’ (1 ≤ i ≤ m) and compute d = a+(b×NUM(FA

m(x1, . . . , xm))).
Henceforth, whenever f(〈d, k〉) = e is observed output s(e) where s is the
total recursive function defined by

ϕs(e)(x) =
{
f(0) if x = 0;
ϕe(x) otherwise.

By the definition of SAm almost all guesses will be the same and will be indices
for f .

ii. Assume SAm ∈ EX[A[n]] via MA. We infer SAm+1 with n + 1 queries to
A as follows. Upon seeing f(0) = 〈a, b, x1, . . . , xm+1〉 query ‘xm+1 ∈ A?’ If
YES then feed the graph of the following function into MA.

h(x) =
{
〈a+ b, 2b, x1, . . . , xm〉 if x = 0;
f(x) otherwise.

Note that h ∈ SAm (this uses part ii.b of the definition of SAm, and NUM(τ1) =
2NUM(τ) + 1). Hence MA will correctly infer h and make only n queries.
Whenever MA outputs index e we output s(e) where s is the total recursive
function defined by

ϕs(e)(x) =
{
f(0) if x = 0;
ϕe(x) otherwise.

Since MA correctly infers h our process correctly infers f . Since the only
queries made are ‘xm+1 ∈ A?’ and the ≤ n queries in the inference of h by
MA, a total of ≤ n+ 1 queries to A are made.

If the answer to ‘xm+1 ∈ A?’ had been NO then use the function

h(x) =
{
〈a, 2b, x1, . . . , xm〉 if x = 0;
f(x) otherwise

and proceed as above.
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iii. Assume there exists m′ such that SAm′ /∈ EX[A[m]]. By i, SAm ∈
EX[A[m]]. Hence there exists m′′ such that SAm′′ ∈ EX[A[m]] but SAm′′+1 /∈
EX[A[m]]. By ii, SAm′′+1 ∈ EX[A[m + 1]]. Hence SAm′′+1 ∈ EX[A[m + 1]] −
EX[A[m]] so EX[A[m]] ⊂ EX[A[m+ 1]].

iv. If EX[A[m]] = EX[A[m + 1]] then, by iii, for all m′, SAm′ ∈ EX[A[m]].
By Lemma 4.11, EX[A[m]] ⊆ [1, 2m]EX. Hence, for allm′, SAm′ ∈ [1, 2m]EX.

v. The proofs of i, ii, iii, iv hold for BC by replacing EX by BC.

Lemma 4.14 If SAm ∈ [1,m]BC then A ≤T K.

Proof:
Throughout this proof ‘infer’ means ‘BC-infer’.
Assume SAm ∈ [1,m]BC via M1, . . . ,Mm. We use M1, . . . ,Mm to show

that FA
m is m-enumerable-in-K. By Proposition 4.6 this will imply A ≤T K.

On input x1, . . . , xm we try to construct recursive functions {fτ}τ∈{0,1}m

(which depend on x1, . . . , xm) such that, for all τ , fτ is not inferred by any
of M1, . . . ,Mm. We will fail—one of the fτ will be partial. This failure
will yield information about A. Using oracle K we will find τ such that
fτ is partial. We will then enumerate τ as a possibility for FA

m(x1, . . . , xm).
Using information about fτ we will construct a new set of functions that may
yield another possibility for FA

m(x1, . . . , xm). This process may be repeated;
however, at most m possibilities will be enumerated.

ENUMERATION

i. P := {0, 1}m, J := {1, . . . ,m}, and g := {(0, 〈0, 1, x1, . . . , xm〉)}.
(P stands for possibilities for FA

m(x1, . . . , xm).) We construct {fτ}τ∈P
to diagonalize against all IIMs in {Mj}j∈J . The function g will be a
subfunction of every fτ . In the future this will guarantee that fτ is not
inferred by any IIM in {Mj}j∈{1,...,m}−J .)

ii. Compute indices for the functions in {fτ}τ∈P described below.

CONSTRUCTION OF fτ

(a) Stage 0: Let e be an index for fτ (obtained via the recursion
theorem). Let

f0
τ = g ∪ {(〈NUM(τ), k〉, e) : 〈NUM(τ), k〉 /∈ dom(g)}.
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(This step needs an index for dom(g). During the first execution
of step ii this is trivial. In later executions the index will come
from the last execution of step iii.c.)

(b) Stage s + 1: If there is no j ∈ J such that j ≡ s (mod m) then
go to stage s + 2. If there is such a j then look for σ ∈ N∗, t ∈
N, b ∈ {0, 1} such that σ is consistent with f sτ , |σ| /∈ dom(f sτ ), and
ϕMj(σ)(|σ|) ↓6= b. If such are found then set

f s+1
τ := f sτ ∪ {(x, σ(x)) : x ∈ dom(σ)} ∪ {(|σ|, b)}.

END OF CONSTRUCTION

iii. Using oracle K search for τ ∈ P , j ∈ J , such that fτ is partial and
during the stage where fτ could not be extended the construction was
working with machine Mj. (This search will terminate the first time
step iii is executed but need not terminate in a later execution.) If such
τ, j are found then do the following.

(a) Enumerate τ (τ is a possibility for FA
m(x1, . . . , xm)).

(b) P := P−{τ}, J := J−{j}, g := fτ . (Note that all total extensions
of g are not inferred by Mj. Inductively, all total extensions of g
are not inferred by any IIM in {Mj}j∈{1,...,m}−J , and g is undefined
on almost all elements in {〈NUM(τ), k〉 : τ ∈ P, k ∈ N}.

(c) Using oracle K find the index for a machine that decides dom(g).
This is easy since g is the union of a finite function with the current
fτ . (This index is needed in the next execution of step ii.)

(d) If J = ∅ then halt, else go to step ii.

END OF ENUMERATION
Initially |J | = m. Whenever a possibility is enumerated, an element is

taken from J ; hence at most m possibilities are enumerated. We show that
FA
m(x1, . . . , xm) is one of them.

Assume, by way of contradiction, that τ0 = FA
m(x1, . . . , xm) is never enu-

merated. Hence throughout the enumeration τ0 ∈ P . There are two cases.

Case 1: Fewer than m possibilities are enumerated. Hence there is some
iteration where step iii begins but never terminates. Let P, J, g, {fτ}τ∈P
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denote the values of these variables during this iteration. Since step iii never
terminates the functions {fτ}τ∈P are total. Since τ0 ∈ P , fτ0 is constructed
and is total. Since FA

m(x1, . . . , xm) = τ0, by stage 0 of the construction
fτ0 ∈ SAm. Since g is a subfunction of fτ0 none of the IIMs in {Mj}j∈{1,...,m}−J

infers fτ0 . By the construction none of the IIMs in {Mj}j∈J infers fτ0. Hence
none of M1, . . . ,Mm infers fτ0 . This contradicts that SAm ∈ [1,m]BC via
M1, . . . ,Mm.

Case 2: Exactly m possibilities are enumerated. Hence the enumeration
halts with τ0 ∈ P . The value of g at the end of the enumeration is such
that any extension of g is not inferred by any of M1, . . . ,Mm. Since τ0 ∈ P ,
g is undefined on almost all elements of {〈NUM(τ0), k〉 : k ∈ N}. By the
recursion theorem there exists e such that the following function has index
e.

g′(x) =





g(x) if x ∈ dom(g);
e if x /∈ dom(g) and x = 〈NUM(τ0), k〉;
0 otherwise.

Since g′(0) = 〈0, 1, x1, . . . , xm〉, F
A
m(x1, . . . , xm) = NUM(τ0), and for almost

all k, g′(〈NUM(τ0), k〉) = e, which is an index for g′, g′ ∈ SAm. Since g′ is
an extension of g, g′ is not inferred by any of M1, . . . ,Mm. This contradicts
that SAm ∈ [1,m]BC via M1, . . . ,Mm.

Proof: (of Theorem 4.8.)
By Lemma 4.9 i ⇒ iv and i ⇒ vii. Clearly iv ⇒ iii ⇒ ii, and vii ⇒

vi⇒ v. We need only show ii⇒ i and v ⇒ i.
ii ⇒ i: Assume (∃n)[EX[A[n]] = EX[A[n + 1]]. By Lemma 4.13.iv, for

all m′, SAm′ ∈ [1, 2n]EX. In particular SA2n ∈ [1, 2n]EX ⊆ [1, 2n]BC. By
Lemma 4.14 with m = 2n we obtain A ≤T K.

The proof for v ⇒ i is similar but uses Lemma 4.13.v.

From Lemma 4.14 we can obtain a result of Smith [Smi82]. This is not a
new proof since we used his techniques.

Corollary 4.15 REC /∈ [1,m]BC.

Proof:
Let A be such that A 6≤T K. By Lemma 4.14 SA1 /∈ [1,m]BC. Hence

REC /∈ [1,m]BC.
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Note 4.16 Part of Theorem 4.8 can be restated as A 6≤T K ⇒ EX[A[n]] ⊂
EX[A[n+1]]. Using Note 4.7.ii, and using TREEA

n instead of FA
n , the proof

of Theorem 4.8 can be modified to obtain A 6≤T K ⇒ (∀B)[EX[A[n+ 1]] 6⊆
EX[B[n]]].

4.2 EX[A] and BC[A]

We show (1) if EX[A] = EX or BC[A] = BC then A is low, and (2) if
A ≤T K and A ≡T G where G is 1-generic then EX[A] = EX and BC[A] =
BC. Slaman and Solovay [SS91] (see also [KS93b]) have shown (3) EX[A] =
EX ⇒ G(A) (see Notation 3.1 for what G(A) means). A modification of
their proof (or a direct proof from [KS93b] ) yields (4) BC[A] = BC ⇒ G(A).
Although (1) is superseded by (3),(4) we include the proof of (1) since it is
much simpler than the proof of (3),(4).

Theorem 4.17 If EX = EX[A] or BC = BC[A], then A is low.

Proof:
Assume EX = EX[A]. Consider the set SA

′

1 from Definition 4.12. Note
that SA

′

1 ∈ EX[A] (use the Limit Lemma [Soa87, p. 57] to approximate A′).
Since EX[A] = EX we have SA

′

1 ∈ EX ⊆ BC. By Lemma 4.14 A′ ≤T K.
The proof for BC = BC[A] is similar.

We now show that there exist nonrecursive sets A such that EX[A] =
EX. By Lemma 4.9 if A ≤T K then EX[A∗] = EX and BC[A∗] = BC.
Hence, we seek a set A ≤T K such that EX[A] = EX[A∗]. It turns out
that 1-generic sets suffice. This is not surprising since 1-generic sets force
statements to be true with only finite information.

We include a definition of genericity for completeness. For more informa-
tion on genericity see [Joc80].

Definition 4.18 A set G is i-generic if for every Σi set W (of elements of
{0, 1}∗) either

(∃σ � G)[σ ∈ W ], in which case we say that G meets W , or

(∃σ � G)[(∀τ � σ)[τ /∈W ]], in which case we say G strongly avoids W .

Lemma 4.19 If A ≡T G where G is 1-generic, then EX[A∗] = EX[A].
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Proof:
Let S ∈ EX[A]. Since A ≡T G, S ∈ EX[G]. Assume S ∈ EX[G] via

MG. We describe an EX[G∗] inference procedure for S. We describe it as a
machine that requests values of f (rather than receiving them) and outputs
an infinite stream of guesses for indices. This is clearly equivalent to the
usual definition of an OIIM.

INFERENCE-ALGORITHM
To infer f ∈ S, we do the following. Initialize i to 0.

1) Compute e = MG(f(0), . . . , f(i)). Let σ denote the shortest initial
segment of G of length greater than i which contains all the bits used
in the computation.

2) Dovetail the following two procedures.

a) Search for j ≥ i and τ ∈ {0, 1}∗ such that Mστ(f(0), . . . , f(j)) ↓6=
e. If such a j, τ are found then set i to i+ 1 and go to step 1

b) Continue to output e as the guess for an index for f .

END of INFERENCE-ALGORITHM

Each pass through steps 1,2 with a new value of i is called an iteration.
We first show that if an iteration never terminates then the index e output

in step 2.b is an index for f . Since step 2.a never finds a j, τ , and every
τ is tried (including those that are initial segments of G), we must have
(∀j ≥ i)[MG(f(0), . . . , f(j)) = e]. Hence, e must be an index for f .

We now show that there is an iteration that never terminates. Let e0, i0 ∈
N, σ ∈ {0, 1}∗, and W ⊆ {0, 1}∗ be such that the following hold.

• (∀j ≥ i0)[M
G(f(0), . . . , f(j)) = e0].

• σ is the initial segment ofG used in the computation ofMG(f(0), . . . , f(i0)).

• W = {στ ∈ {0, 1}∗ : (∃j ≥ i0)[M
στ(f(0), . . . , f(j)) 6= e0]}.

Since MG infers f , the values of e0, i0, and σ exist. Since f is recursive, W
is r.e. Assume, by way of contradiction, that every iteration of the inference
procedure above terminates. Then every initial segment ofG can be extended
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to meet W (use that the length of σ is chosen greater than i during iteration
i). Hence, G cannot strongly avoid W . Since G is 1-generic, G must meet W ;
hence, there is an initial segment of G in W . This contradicts the definition
of e0, i0.

Hence we have that S ∈ EX[G∗]. Since A ≡T G, S ∈ EX[A∗].

We now prove a similar lemma for BC.

Lemma 4.20 If A ≡T G where G is a 1-generic set, then BC[A] = BC[A∗].

Proof:
Let S ∈ BC[A]. Since A ≡T G, S ∈ BC[G]. Assume S ∈ BC[G] via

MG. We describe a BC[G∗] inference procedure for S. We use the same
convention for describing OIIMs as in Lemma 4.19.

INFERENCE-ALGORITHM
To infer f ∈ S, we do the following. Initialize i to 0.

1) Compute e = MG(f(0), . . . , f(i)). Let σ � G be the shortest initial
segment of G of length greater than i that contains answers to all
queries made. Let I be the singleton set just containing e.

2) Dovetail the following two procedures.

a) Search for j ≥ i, τ ∈ {0, 1}∗, e′, s, x ∈ N such that we have
e′ = Mστ(f(0), f(1), . . . , f(j)) and ϕe′,s(x) ↓6= f(x). If such a
j, τ, e′, s, x are found then set i to i+ 1 and go to step 1.

b) Let τ0, τ1, τ2, . . . be the set of all strings that extend σ. Let
m0,m1,m2, . . . be the set of all numbers ≥ i.

For k := 0 to ∞ let k = 〈i, j〉 and do the following:

i) Compute ei,j = M τi(f(0), . . . , f(mj)) (if a number that is not
in dom(τi) is queried then set ei,j to an index for the empty
function).

ii) Let I be I ∪ {ei,j}. Output AM(I) as a conjecture for what
f does. (See Definition 2.32 for the definition of AM .)

END of INFERENCE-ALGORITHM
Every pass through steps 1,2 with a new value of i is called an iteration.
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We first show that if an iteration never terminates then the algorithm
BC-infers f . Assume that some iteration never terminates. Since MG infers
f , sometime during the non-terminating iteration, an ei,j is produced that
is the correct index for f . We claim that once that index enters I, AM(I)
will always compute f correctly. If it does not then some other index in I
is converging and disagreeing with f . But if this happens then the iteration
will terminate by part 2a.

We now show that there is an iteration that never terminates. Let i0 ∈ N,
σ ∈ {0, 1}∗ be such that the following hold:

• (∀j ≥ i0)[ϕMG(f(0),...,f(j)) = f ].

• σ is the initial segment ofG used in the computation ofMG(f(0), . . . , f(i0)).

• W = {στ ∈ {0, 1}∗ : (∃j ≥ i0)(∃s, x)[ϕMστ (f(0),...,f(j)),s(x) ↓6= f(x)]}.

From this point on the proof is similar to that of Lemma 4.19.

Theorem 4.21 If G(A) then EX[A] = EX and BC[A] = BC.

Proof:
If A is recursive then clearly EX[A] = EX and BC[A] = BC. Otherwise,

by G(A), there exists a 1-generic set G such that A ≡T G ≤T K.
By Lemmas 4.19 and 4.20, EX[A∗] = EX[A] and BC[A∗] = BC[A].

Since A ≤T K, by Lemma 4.9, EX[A∗] = EX and BC[A∗] = BC. Hence,
EX[A] = EX[A∗] = EX and BC[A] = BC[A∗] = BC.

5 When are Degrees Omniscient?

Adleman and Blum completely characterized the EX-omniscient sets (see
also [KS93b]). We state their result so we can refer to it later.

Theorem 5.1 (Theorem 7 of [AB91]) REC ∈ EX[A] iff A is high.
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5.1 EX[A[m]] and BC[A[m]]

Theorem 5.2 For all m,A, REC /∈ BC[A[m]] and REC /∈ EX[A[m]].

Proof:
By Lemma 4.11, for any oracle A, BC[A[m]] ⊆ [1, 2m]BC. By Corol-

lary 4.15 (or [Smi82]) REC /∈ [1, 2m]BC. Hence, REC /∈ BC[A[m]]. Since
EX[A[m]] ⊆ BC[A[m]], REC /∈ EX[A[m]].

5.2 EX[A∗] and BC[A∗]

In this subsection we solve the problem of exactly when REC ∈ EX[A∗] and
exactly when REC ∈ BC[A∗].

We use the following lemmas. The first was proven by Jockusch, the
second is the (relativized) Friedberg Completeness Criterion, and the third
is an easy relativization of Lemma 4.9.

Lemma 5.3 ([Joc72], Theorem 9) For any A the following are equiva-
lent.

i. There exists h ≤T A such that REC = {ϕh(i)}i∈N.

ii. ∅′′ ≤T A⊕K.

Lemma 5.4 (See [Soa87], p. 97) The following are true.

i. If K ≤T Z then there exists G such that G′ ≡T Z. Moreover, G can be
taken to be 1-generic (and in particular G′ ≡T G⊕K ≡T Z).

ii. Let j ≥ 1. If ∅(j) ≤T Z then there exists G such that ∅(j−1) ≤T G and
G′ ≡T Z. Moreover, G can be taken to be j-generic (and in particular
G′ ≡T G⊕ ∅(j) ≡T Z).

Lemma 5.5 If A ≤T B
′, then EX[A∗] ⊆ EX[B] and BC[A∗] ⊆ BC[B].

Lemma 5.6 For any A there is a 1-generic G such that BC[G∗] = BC[G] =
BC[A∗] and G′ ≡T G⊕K ≡T A⊕K.
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Proof:
By applying Lemma 5.4.i to Z = A ⊕ K we obtain a 1-generic set G

such that G′ ≡T G ⊕ K ≡T A ⊕ K. Since G is 1-generic, by Lemma 4.20,
BC[G∗] = BC[G]. Since A ≤T G

′, by Lemma 5.5, BC[A∗] ⊆ BC[G] =
BC[G∗]. Since G ≤T A⊕K, BC[G∗] ⊆ BC[(A⊕K)∗] ⊆ BC[A∗] (the last
inclusion is obtained by Note 4.10). Hence BC[G∗] = BC[G] = BC[A∗] as
desired.

Theorem 5.7 REC ∈ EX[A∗] iff ∅′′ ≤T A⊕K.

Proof:
(⇒): Assume REC ∈ EX[A∗]. By Lemma 5.4, applied to A ⊕ K,

there is a set B such that B′ ≡T A ⊕ K. Since A ≤T B′, by Lemma 5.5
EX[A∗] ⊆ EX[B], so REC ∈ EX[B]. By Theorem 5.1 B is high, hence
∅′′ ≤T B

′ ≡T A⊕K.
(⇐): Assume ∅′′ ≤T A ⊕ K. By Lemma 5.3 there exists h ≤T A such

that REC = {ϕh(i)}i∈N. We define an OIIM (that uses oracle A) as follows:
Upon receiving the first s input values of f , output h(i) for the smallest i
such that ϕh(i) agrees with f on the given values. Clearly, for any input
f ∈ REC the machine computes h only on finitely many arguments, which
requires only finitely many queries to A. Thus REC ∈ EX[A∗].

Theorem 5.8 REC ∈ BC[A∗] iff ∅′′ ≤T A⊕K.

Proof:
By Theorem 5.7 ∅′′ ≤T A⊕K implies REC ∈ EX[A∗] ⊆ BC[A∗]. Hence

we need only prove the other direction.
Assume REC ∈ BC[A∗]. Then by Lemma 5.6, there is a 1-generic set

G such that G′ ≡T G ⊕ K ≡T A ⊕ K and BC[G∗] = BC[A∗]. Since
REC ∈ BC[A∗], REC ∈ BC[G∗]. Let REC ∈ BC[G∗] via MG.

We will show that G is high by constructing a G-recursive function g that
dominates all recursive functions. After we show that G is high we will have
∅′′ ≤T G′ ≡T G ⊕K ≡T A ⊕K, as desired. (We will not be using the fact
that G is 1-generic.)

First we define two functions independent of G. Second we use these
functions to construct a G-recursive function g. Third we prove that g dom-
inates all recursive functions. We split it up this way so that we can use the
functions constructed in the first part in both the second and third parts.
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First part: We define recursive functions ψ and T where ψ maps Σ∗ × N to
Σ∗, and T maps Σ∗ ×N to Pfin(N) (the set of finite subsets of N). We will
have

σ = ψ(σ, 0) � ψ(σ, 1) � · · ·
{D : D ⊆ {0, . . . , |σ|}} = T (σ, 0) ⊇ T (σ, 1) ⊇ · · ·

The idea is that we are (at first) looking for an extension τ of σ and a
subset D of {0, 1, . . . , |σ|} such that ϕMD(τ) is wrong on |τ | (or asks a question
> |σ|). The second parameter bounds how long we can search for such an
extension. ψ will be larger and larger extensions of σ; T will be a shrinking
collection of possible finite oracles. We try to make more and more of the
oracles in T yield incorrect guesses.

Let · denote the concatenation of strings. We define ψ and T inductively.
For the base case we define

ψ(σ, 0) = σ,
T (σ, 0) = {D : D ⊆ {0, . . . , |σ|}}.

Assume ψ(σ, t) and T (σ, t) have been defined. If there exists some D ∈
T (σ, t), some string τ with |τ | < t and some b ∈ {0, 1} such that

ϕMD(ψ(σ,t)·τ)(|ψ(σ, t) · τ |) ↓6= b within t steps
or MD(ψ(σ, t) · τ) queries some x > |σ|

then take the first such (D, τ, b) and let

ψ(σ, t+ 1) = ψ(σ, t) · τ · b,
T (σ, t+ 1) = T (σ, t) − {D}

else ψ, T remain unchanged (ψ(σ, t+ 1) = ψ(σ, t), T (σ, t+ 1) = T (σ, t)).

Note 5.9 There are at most 2|σ|+1 + 1 distinct values of ψ(σ, t). This is
because every time ψ(σ, t) changes a set is removed from T (σ, t), and there
are 2|σ|+1 elements in T (σ, 0).

Second part: There is a G-recursive function g given by:

ĝ(σ) = (µt > |σ|) [ G ↾ |σ| /∈ T (σ, t)]
g(n) = max|σ|≤n{ĝ(σ)}

25



Note 5.10 The intuition behind ĝ(σ) is that, given σ, and noting that
ψ(σ, 0) � ψ(σ, 1) · · ·, we are looking for the least t such that the extension
ψ(σ, t) might fool MG. In particular note that either MG(ψ(σ, ĝ(σ)) makes a
query larger than |σ| or ϕMG(ψ(σ,ĝ(σ))) is a function that does not have initial
segment ψ(σ, ĝ(σ)).

We show that ĝ is total (given this, clearly g is total and g ≤T G). Let
t1 be the least number > |σ| such that

(∀s ≥ t1)[ψ(σ, t1) = ψ(σ, s) and T (σ, t1) = T (σ, s)].

We claim G ↾ |σ| /∈ T (σ, t1), so ĝ(σ) ≤ t1 and exists. Assume, by way of
contradiction, that G ↾ |σ| ∈ T (σ, t1). Let t2 be the minimum number such
that t1 ≤ t2 and there exists t3 < t2 such that one of the following occurs.

i. The MG(ψ(σ, t2) · 0t3) computation never makes a query > |σ| and
ϕMG(ψ(σ,t2)·0t3)(|ψ(σ, t2) · 0

t3|) ↓6= 1 within t2 steps.

ii. MG(ψ(σ, t2) · 0
t3) queries some x > |σ|.

Such t2 exists since MG infers ψ(σ, t2) · 0
ω. The triple (G ↾ |σ|, 0t3 , 1) will be

noted as a candidate for (D, τ, b) when defining ψ(σ, t2 + 1). Hence ψ(σ, t2 +
1) 6= ψ(σ, t1). But this contradicts the choice of t1.
Third part: Assume, by way of contradiction, that g does not dominate all
recursive functions. Then there exists a recursive increasing h such that

(
∞

∃n)[g(n) < h(n)]. For given σ, let

h′(σ) = (µt ≥ |σ|) [ψ(σ, t) = ψ(σ, h(t)) ∧ t > |ψ(σ, t)| ].

h′ is total by Note 5.9. Clearly h′ is recursive. We define a sequence of strings
inductively. Let σ0 = 0, and let σn+1 = ψ(σn, h

′(σn)) · 0. Let f be defined as
the limit of the sequences. Note that f is recursive.

Note 5.11 The intuition behind f is as follows. f is the limit of the sequence
σ0 � σ1 · · ·. We are hoping to fool MG each time we extend σi to σi+1. That
is, we are hoping that, for each i, either MG(σi) makes queries larger than
|σi| or ϕMG(σi) is a function that does not have initial segment σi. If we could
use g instead of h this hope would be a reality; however, by using h, we are
at least guaranteed to fool MG infinitely often.
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Since f is recursive, f is BC[G∗]-inferred by MG. Therefore there is a
number m such that for all σ, σm � σ � f :

i. ϕMG(σ) = f .

ii. MG(σ) queries no element greater than |σm|.

Since (
∞

∃n)[g(n) < h(n)], there is some n > |σm+1| such that g(n) < h(n).
Let k be the greatest number such that |σk| ≤ n. We have

|σm| < |σk| ≤ n < |σk+1|.

Let t = h′(σk). By the definition of h′ we have ψ(σk, t) = ψ(σk, h(t)) and
t > |ψ(σk, t)|. By the definition of σk+1 we have σk+1 = ψ(σk, t) · 0, hence
n < |σk+1| = |ψ(σk, t)| + 1 ≤ t. Since h is increasing we know that h(n) ≤
h(t). We now have

ψ(σk, ĝ(σk)) � ψ(σk, g(n)) � ψ(σk, h(n)) � ψ(σk, h(t)) = ψ(σk, t) ≺ σk+1.

By the construction of ĝ, G ↾ |σk| /∈ T (σk, ĝ(σk)). Thus there is some string
σ, σk � σ ≺ σk+1, such that one of the following occurs.

• The MG(σ) computation makes no query > |σk| and ϕMG(σ)(|σ|) ↓6=
f(|σ|), which contradicts condition i.

• MG(σ) queries some x > |σk| > |σm|, which contradicts condition ii.

5.3 EX[A] and BC[A]

Adleman and Blum [AB91] showed that REC ∈ EX[A] iff A is high. It is
an open question as to when REC ∈ BC[A]. The rest of this subsection will
provide evidence that the question of when REC ∈ BC[A] does not have a
nice answer. We show (1) for A r.e., REC ∈ BC[A] iff A is high, (2) there
exists a low set A such that REC ∈ BC[A], and (3) the statement ‘if A
is high2 then REC ∈ BC[A]’ is false in a strong way: there are sets A of
arbitrarily high double jumps such that REC /∈ BC[A].
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5.3.1 The r.e. case

Notation 5.12 u(A; e, x, s) is the maximum element of the oracle thatMA
e,s(x)

queries. u is referred to as the use function. We will be dealing with a fixed
categorically total oracle Turing machine M (), so we leave out the index e
and the time s. The resulting notation is u(A;σ).

Note 5.13 If A is r.e. and As ↾ x = A ↾ x then for all t ≥ s At ↾ x = A ↾ x.
In particular if As ↾ u(A;σ) = A ↾ u(A;σ) then for all t ≥ s the computation
MAt(σ) is identical to that of MA(σ).

Definition 5.14 Let σ, τ ∈ {0, 1}∗. Then σ < τ means that either |σ| < |τ |,
or |σ| = |τ | and σ is lexicographically less than τ .

Theorem 5.15 Let A be r.e. REC ∈ BC[A] iff A is high.

Proof:
The reverse direction is easy: A high ⇒ REC ∈ EX[A] (by Theorem 5.1)

and EX[A] ⊆ BC[A] trivially.
For the forward direction, assume, by way of contradiction, that A is not

high (i.e., ∅′′ 6≤T A′) and REC ∈ BC[A] via MA. Since ∅′′ 6≤T A′, for all

g ≤T A, there exists a recursive h such that
∞

∃x[g(x) < h(x)] (see [Soa87,
p. 208]). We will define a particular g ≤T A and use the corresponding h to
build an f ∈ REC such that MA does not BC-infer f .

We try to imitate the standard construction of a recursive function that
is not BC-identified by a (non oracle) IIM. Since we have an OIIM, a direct
imitation is impossible. We can use an approximation to A, but we need that
the approximation is valid infinitely often. To help achieve this we define an
auxiliary function ĝ ≤T A from {0, 1}∗ to N. Intuitively ĝ(σ) tells us how
good an approximation to A we need to look at to find an extension σ′ � σ
such that ϕMA(σ′)(|σ

′|) ↓. This is useful in trying to build a function f not
inferred by MA since, as in the standard construction of a recursive function
not BC-identified, a convergence is a chance to diagonalize.

ALGORITHM for ĝ
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1) Input(σ).

2) Look for a σ′, s′ such that σ � σ′ and ϕMA(σ′),s′(|σ
′|) ↓.

3) Let s′′ = µs[(∀σ′′ ≤ σ′)[As ↾ u(A;σ′′) = A ↾ u(A;σ′′)]]. (By Note 5.13
(∀s ≥ s′′)[As ↾ u(A;σ′′) = A ↾ u(A;σ′′)].)

4) Output max{s′, s′′, |σ′|}.

END OF ALGORITHM
We show that ĝ is total by showing that, during step 2 of the execution

of the algorithm on input σ, an appropriate σ′ and s′ are found. Since MA

BC-identifies REC, MA BC-identifies the function σ0ω. Let σ⊳ be such
that σ � σ⊳ � σ0ω and MA(σ⊳) is an index for the function σ0ω. Since
ϕMA(σ⊳)(|σ

⊳|) ↓, there exists s⊳ such that ϕMA(σ⊳),s⊳(|σ⊳|) ↓. Since σ⊳, s⊳

satisfy the conditions for σ′, s′, some σ′, s′ will always be found.
Let g be defined by g(n) = max|σ|=n ĝ(σ). It is easy to see that g ≤T A

and g is total. Let h be a recursive function such that (
∞

∃n)[g(n) < h(n)].
We can take h to be increasing.

At the end of stage n of the construction we will have σn, an initial
segment of the function f . During stage n + 1 we will want to extend σn
to some σ+, in the hope of making ϕMA(σ+)(|σ

+|) 6= f(|σ+|). In the search
for such an extension we can only use an approximation to A. If we are
considering using σ+ for our extension, we will use the approximationAh(|σ+|).

In the construction below the term ‘least’ when applied to strings is rel-
ative to the ordering of Definition 5.14.

CONSTRUCTION

Stage 0: σ0 = λ (the empty string).

Stage n+1: Look for the least σ+ such that there exist b, t with σn � σ+,
|σ+| ≤ t, b ∈ {0, 1}, and ϕMAt(σ+),t(|σ

+|) ↓6= b, where t = h(|σ+|). Let
σn+1 = σ+b.

END OF CONSTRUCTION
We show that every stage terminates, hence for all n, σn exists. Thus

the function f =
⋃
n σn is total recursive. We then show that MA does not

BC-infer f .
1) Every stage terminates. We need to show that the search in stage

n + 1 terminates. Let l be minimal such that l ≥ |σn| and g(l) < h(l).
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Let σ = σn0
l−|σn|. By the definition of g, there are σ′, s′ such that σ � σ′,

ϕMA(σ′),s′(|σ
′|) ↓, and Ag(l) ↾ u(A;σ′) = A ↾ u(A;σ′). As h(|σ′|) ≥ h(l) > g(l)

it follows that σ+ := σ′ and b := 1 . ϕMA(σ′),s′(|σ
′|) satisfy the condition in

stage n+ 1. By Note 5.13, Ah(|σ′|) ↾ u(A;σ′) = A ↾ u(A;σ′).
2)MA does not infer f : Suppose that l, n and σ+ satisfy the following con-

ditions: |σn| ≤ l < |σn+1|, σn+1 = σ+b, g(l) < h(l). Then ϕMA(σ+)(|σ
+|) 6=

f(|σ+|), as we will now show: Let σ denote the initial segment of σ+ of
length l, and let σ′ be the string found in step 2 of the computation of ĝ(σ).
Note that ĝ(σ) ≤ g(l) < h(l) ≤ h(|σ+|). Since σ+ is chosen to be the least
extension that works, σ+ ≤ σ′. By Note 5.13, (∀t ≥ ĝ(σ))[At ↾ u(A;σ+) =
A ↾ u(A;σ+)]. It follows that ϕMA(σ+)(|σ

+|) 6= b = f(|σ+|).
As there are infinitely many l as above, we get thatMA does not BC-infer

f .

Corollary 5.16 The following statement is false: if A is high2 then REC ∈
BC[A].

Proof:
Let A be r.e. and high2 but not high (such an A exists— see [Soa87,

p. 140]). By Theorem 5.15 REC /∈ BC[A].

5.3.2 A Low A such that REC ∈ BC[A]

In this section we show that there is a low set A such that REC ∈ BC[A].

Definition 5.17 Let f and g be partial functions. f is compatible with g iff
(∀x ∈ dom(f) ∩ dom(g))[f(x) = g(x)]. f is incompatible with g otherwise.
f extends g (g ⊆ f), iff f is compatible with g and dom(g) ⊆ dom(f).

Theorem 5.18 There is a low set A such that REC ∈ BC[A].

Proof:
We will obtain a low set A and present an A-recursive algorithm that

BC[A]-infers REC. The idea behind the algorithm is that, at stage s,
we will amalgamate some subset of (modified versions of) the functions
{ϕc(s), ϕc(s)+1, . . . , ϕs}. We control c(s). We think of ϕc(s) as being correct
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(or at least not in contradiction to f) and hence we only use partial recursive
functions that seem to be compatible with it. We may also change our value
of c(s) if either a guess made a while back based on this value is seen to
contradict f , or if some function ϕj that is seen to be extended by f seems

to not be extended by ϕc(s). Both of these conditions are seen as evidence
that the current value of c(s) leads to guesses that are incorrect. In either
case we increment c(s) by one.

The problem is how to get information about what seems to be an exten-
sion. In order to make it possible to know that two functions are compatible
we deal with functions that are modified. Let u(j, a) be the total recursive
function such that

ϕu(j,a)(x) =
{
ϕj(x) if (∃s)[ϕj,s(x) ↓ and a /∈ Ks+x];
↑ otherwise.

If a /∈ K then ϕu(j,a) = ϕj. If a ∈ K and s is the least number such
that a ∈ Ks then dom(ϕu(j,a)) ⊆ {0, . . . , s− 1}, ϕu(j,a) ⊆ ϕj,s, and ϕu(j,a) can
be completely determined; hence in this case testing whether (say) ϕi is an
extension of ϕu(j,a) is an r.e. procedure.

Definition 5.19 Let a, i, j ∈ N. If there exist x, s such that ϕi,s(x) ↓6=
ϕu(j,a),s(x) ↓ then ϕi is seen to be incompatible with ϕu(j,a). If there exist s, t
such that a ∈ Ks and ϕi,t is an extension of ϕu(j,a) (which can be completely
determined) then ϕi is seen to be an extension of ϕu(j,a). Note that it is not
possible for both of these to occur, though it is possible for neither to occur.

We now present a partial recursive function whose intention (not always
achieved) is to tell whether ϕi is an extension of ϕu(j,a) or if ϕi is incompatible
with ϕu(j,a).

γ(i, j, a) =





EXT if ϕi is seen to be an extension of ϕu(j,a);
INCOMP if ϕi is seen to be incompatible with ϕu(j,a);
↑ otherwise.

Note that the following hold.

i. γ(i, j, a) = INCOMP iff ϕi is incompatible with ϕu(j,a).

ii. γ(i, j, a) = EXT implies ϕi is compatible with ϕu(j,a).
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iii. If a ∈ K and γ(i, j, a) 6= EXT then ϕi does not extend ϕu(j,a).

By the Low Basis Theorem (see [Soa87, p. 109]) there is a low set A
such that γ can be extended to an A-recursive total function g with range
{EXT, INCOMP}. We relabel the outputs so that they are now {COMP, INCOMP}
(Fact 5.20 will make clear why we relabel it as such). This is the desired set
A. We will use A as an oracle to compute g, which will yield information
about functions being compatible.

We will use the following easily verified facts about g. They all clarify in
what ways we can use g to test whether ϕi is compatible with ϕu(j,a).

Fact 5.20 The following hold.

i. If g(i, j, a) = INCOMP then γ(i, j, a) 6= EXT , which does not yield
any information. If in addition a ∈ K then ϕi does not extend ϕu(j,a).

ii. If g(i, j, a) = COMP then γ(i, j, a) 6= INCOMP hence ϕu(j,a) and ϕi
are compatible.

iii. Let i, j1, . . . , jn, a1, . . . , an ∈ N. Assume that g(i, j1, a1) = g(i, j2, a2) =
· · · = g(i, jn, an) = COMP . Then ϕAM(u(j1,a1),...,u(jn,an)) is compatible
with ϕi. In particular, if ϕi is total, then ϕAM(u(j1,a1),...,u(jn,an)) ⊆ ϕi.

iv. Let i, j1, . . . , jn, a, a1, . . . , an ∈ N. Assume ϕi is total and a /∈ K. Then
ϕAM(u(i,a),u(j1,a1),...,u(jn,an)) is total.

INFERENCE-ALGORITHM M
To infer f ∈ REC, initialize c(0) = 0. For all stages s and input fs =
(f(0), . . . , f(s)) do the following three steps:

1) Let I(s) be

{u(j, a) : c(s) ≤ j ≤ s and a ≤ s and g(c(s), j, a) = COMP}.

2) Output M(fs) := AM(I(s)). Note that by Fact 5.20.iii ϕM(fs) is com-
patible with ϕc(s).

3) If one of the following conditions holds, then let c(s+1) = c(s)+1 else
c(s+ 1) = c(s).
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(a) (∃s′ < s)[c(s′) = c(s) and ϕM(fs′ ),s
is incompatible with fs]. Note

that if ϕc(s) is total then, by Fact 5.20.iii, ϕM(fs′ )
⊆ ϕc(s); and

since ϕM(fs′ )
is incompatible with f , ϕc(s) is incompatible with f .

(b) (∃j, a, t ≤ s)[a ∈ Kt and ϕu(j,a),t ⊆ fs∧g(c(s), j, a) = INCOMP ].
By Fact 5.20.i ϕc(s) is not an extension of ϕu(j,a), hence ϕc(s) is not
an extension of fs.

END of INFERENCE-ALGORITHM

For a given recursive f there is a least index i such that ϕi = f .

Claim 1 (∀s)[c(s) ≤ i].
Assume there is a stage s0 such that c(s0) = i. By steps 1 and 2 of the

inference-algorithm, for all s ≥ s0 such that c(s) = i, ϕM(fs) is compatible
with ϕi = f . We show that for all s ≥ s0 conditions (a) and (b) of step 3
are not satisfied at stage s. If (a) is satisfied then f is incompatible with
ϕi = f , a contradiction. If (b) is satisfied then ϕi is not an extension of fs;
since ϕi = f this is a contradiction.

Therefore, c(s) converges to some limit k ≤ i. Say, c(s) = k for all s ≥ s0.

Claim 2 ϕM(fs) = f for almost all stages s.
Since c(s + 1) = c(s) for all stages s > s0, conditions (a) and (b) are

never satisfied. Hence for almost all stages ϕM(fs) is compatible with f . It

suffices to show that (
∞

∀s)[ϕM(fs) is total]. We achieve this by showing that

(∃a /∈ K)(
∞

∀ s)[u(i, a) ∈ I(s)] and use that ϕi is total, and Fact 5.20.iv.
Assume, by way of contradiction, that no such a exists. Note this implies
the following.

i. (∀a /∈ K)[g(k, i, a) = INCOMP ] (else (∃a /∈ K)(
∞

∀s)[u(i, a) ∈ I(s)]).

ii. (∀a ∈ K)[g(k, i, a) = COMP ] (else condition (b) would occur and c(s)
would change).

Together these items yield K ≤T A, which contradicts A being low. Hence
such an a exists.

Corollary 5.21 There is a low ω-r.e. set A such that REC ∈ BC[A]. (For
a definition of ω-r.e. see [EHK81].)
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Proof:
A careful examination of the proof of the low basis theorem reveals that

the low set produced is ω-r.e. Hence the low set constructed in Theorem 5.18
is ω-r.e.

Corollary 5.22 There is a set A of hyperimmune-free degree such that REC ∈
BC[A]. (For a definition of hyperimmune-free see [Soa87].)

Proof:
Every infinite recursive tree has a hyperimmune-free branch (see [Soa87,

p. 109, 5.15]). If this is used instead of the Low Basis Theorem in the
proof of Theorem 5.18 then one obtains a hyperimmune-free set A such that
REC ∈ BC[A].

5.3.3 Arbitrary High Double Jump is not Enough

The following theorem was originally proven directly in [CDF+92]. We
present a simpler proof based on Theorem 5.8.

Theorem 5.23 For any X there exists a G such that X ≤T G
′′ and REC /∈

BC[G].

Proof:
By Lemma 5.4.ii there exists a set Y such that K ≤T Y and X ⊕ ∅′′ ≡T

Y ′ ≡T Y ⊕ ∅′′. By Lemma 5.4.i there is a 1-generic set G such that G′ ≡T

G ⊕K ≡T Y . So X ≤T X ⊕ ∅′′ ≡T G′′. Assume now that REC ∈ BC[G].
Then by Lemma 4.20 REC ∈ BC[G∗]. This implies, by Theorem 5.8, that
∅′′ ≤T G ⊕ K and Y ≡T G⊕K ≡T Y ⊕ ∅′′ ≡T Y

′, a contradiction. Thus
REC /∈ BC[G].

6 Other Notions of inference

In this section we explore other notions of inference. In each subsection
we define a notion of inference (e.g. EXn); the corresponding notions of
inference-with-an-oracle (e.g. EXn[A]) are obtained in a manner similar to
the definition of EX[A], and hence are omitted.
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6.1 [a, b]EX and [a, b]BC– Teams of Machines

The reader is referred to Definition 2.30 for a definition of [a, b]EX and
[a, b]BC. As an example, the set S1 ∪ S2 from Example 2.15 is in [1, 2]EX.

We show the following.

a) [a, b]EX[A∗] = [a, b]EX iff [a, b]BC[A∗] = [a, b]BC iff A ≤T K.

b) [a, b]EX[A] = [a, b]EX iff [a, b]BC[A] = [a, b]BC iff G(A).

c) REC ∈ [a, b]EX[A∗] iff REC ∈ [a, b]BC[A∗] iff ∅′′ ≤T A⊕K.

d) REC ∈ [a, b]EX[A] iff ∅′′ ≤T A
′.

e) The question of when REC ∈ [a, b]BC[A] seems similar to that of when
REC ∈ BC[A].

Note 6.1 Pitt and Smith [PS88] showed that [a, b]EX = [1, ⌈ b
a
⌉]EX and

[a, b]BC = [1, ⌈ b
a
⌉]BC. Their proofs relativize. We state and proof our

results in terms of [a, b]EX[A] ([a, b]BC[A], etc.). The proofs in this paper
would be no easier if done for [1, c]EX[A] ([1, c]BC[A], etc.).

6.1.1 ∗-Triviality

Theorem 6.2 [a, b]EX[A∗] = [a, b]EX iff [a, b]BC[A∗] = [a, b]BC iff A ≤T K.

Proof:
Assume A ≤T K. Let S ∈ [a, b]EX[A∗] ([a, b]BC[A∗]) via MA

1 , . . . ,M
A
b .

By Lemma 4.8, for each MA
i there exists an IIM Ni that EX-infers (BC-

infers) the same set that MA
i did. It is easy to see that S ∈ [a, b]EX (S ∈

[a, b]BC) via N1, . . . , Nb.
Assume [a, b]BC[A∗] = [a, b]BC. Let SAb be from Definition 4.12 with

m = b. Note that SAb ∈ [a, b]BC[A∗] = [a, b]BC ⊆ [1, b]BC. By Lemma 4.14
A ≤T K. The same proof works for [a, b]EX[A∗].
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6.1.2 Triviality

Theorem 6.3 [a, b]EX[A] = [a, b]EX iff [a, b]BC[A] = [a, b]BC iff G(A).

Proof:
Assume G(A). Let S ∈ [a, b]EX[A] ([a, b]BC[A]) via MA

1 , . . . ,M
A
b . By

Theorem 4.21, for each MA
i , there exists an IIM Ni that EX-infers (BC-

infers) the same set of functions as MA
i . Clearly S ∈ [a, b]EX BC) via

N1, . . . , Nb.
A modification of the proof of Theorem 4.1 (or see [KS93b]) yields

[a, b]EX[A] = [a, b]EX ⇒ G(A), and
[a, b]BC[A] = [a, b]BC ⇒ G(A)

6.1.3 ∗-Omniscience

In this section we show that REC ∈ [a, b]EX[A∗] iff REC ∈ [a, b]BC[A∗]
iff ∅′′ ≤T A ⊕ K. We will need to use results from Section 6.1.4; however
those results do not depend on these. The proof for EX is an easy corol-
lary of Corollary 6.21. The proof for BC is a modification of the proof of
Theorem 5.8.

Theorem 6.4 REC ∈ [a, b]EX[A∗] iff ∅′′ ≤T A⊕K.

Proof:
Assume REC ∈ [a, b]EX[A∗]. By Lemma 5.4 applied to A⊕K there is

a set B such that B′ ≡T A⊕K; and by Lemma 5.5 REC ∈ [a, b]EX[B]. By
Corollary 6.21 B is high and therefore ∅′′ ≤T A ⊕ K. The other direction
follows from Theorem 5.7.

Lemma 6.5 For any A there is a 1-generic G such that [a, b]BC[G∗] =
[a, b]BC[G] = [a, b]BC[A∗] and G′ ≡T G⊕K ≡T A⊕K.
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Proof:
By applying Lemma 5.4.i to Z = A⊕K we obtain a 1-generic set G such

that G′ ≡T G⊕K ≡T A⊕K. Since G is 1-generic, by an easy modification
of the proof of Lemma 4.20, [a, b]BC[G∗] = [a, b]BC[G]. Since A ≤T G

′, by
an easy modification of the proof of Lemma 5.5,

[a, b]BC[A∗] ⊆ [a, b]BC[G] = [a, b]BC[G∗].

Since G ≤T A⊕K,

[a, b]BC[G∗] ⊆ [a, b]BC[(A⊕K)∗] ⊆ [a, b]BC[A∗]

(the last inclusion is obtained by Note 4.10). Hence

[a, b]BC[G∗] = [a, b]BC[G] = [a, b]BC[A∗]

as desired.

Theorem 6.6 REC ∈ [1, n]BC[A∗] iff ∅′′ ≤T A⊕K.

Proof:
Clearly ∅′′ ≤T A⊕K implies REC ∈ EX[A∗] ⊆ [1, n]BC[A∗].
We prove the converse by induction on n. For n = 1 this is Theorem 5.8.

Assume the inductive hypothesis to be true for n− 1.
Assume REC ∈ [1, n]BC[A∗]. By Lemma 6.5, there is a 1-generic set G

such that G′ ≡T G ⊕ K ≡T A ⊕ K and [1, n]BC[G∗] = [1, n]BC[A∗] (we
will not be using the fact that it is 1-generic). Since REC ∈ [1, n]BC[A∗],
REC ∈ [1, n]BC[G∗]. Let REC ∈ [1, n]BC[G∗] via MG

1 , . . . ,M
G
n .

There are two cases. In the first one we obtain REC ∈ [1, n− 1]BC[G∗];
we can then use the induction hypothesis and the nature of G to obtain
∅′′ ≤T G⊕K ≡T A⊕K. In the second one we show that G is high by con-
structing a G-recursive function g that dominates all recursive functions.
Once G is high we have ∅′′ ≤T G

′ ≡T G⊕K ≡T A⊕K, as desired. This case
is similar to the proof of Theorem 5.8. (This case does not use the induction
hypothesis.)

Case 1: Assume there exist i, σ such that some MG
i does not BC-converge

on any recursive function f with σ � f . Then REC ∈ [1, n − 1]BC[G∗] by
reducing this problem to the task of inferring all recursive functions which
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begin with σ. By the induction hypothesis and the nature of G we have
∅′′ ≤T G⊕K ≡T A⊕K.

Case 2: Assume the negation, namely that for all i, σ there exists a recursive
function f such that σ � f and MG

i infers f . In particular, for every i, σ,
there is some σ′ ≻ σ such that MG

i (σ′) is the index of a total function. We
sketch a modification of the proof of Theorem 5.8 to show that ∅′′ ≤T G⊕K.
We describe how to modify the first, second, and third parts of the proof of
Theorem 5.8 to meet our needs.

In the first part the index of the machine is added to the definition of ψ,
which is intended to diagonalize all machines. For the base case we define

ψ(σ, 0) = σ,
T (σ, 0) = {(D, i) : D ⊆ {0, . . . , |σ|} ∧ i ∈ {1, . . . , n}}.

Assume ψ(σ, t) and T (σ, t) have been defined. If there exists some (D, i) ∈
T (σ, t), some string τ with |τ | < t and some b ∈ {0, 1} such that

ϕMD
i

(ψ(σ,t)·τ)(|ψ(σ, t) · τ |) ↓6= b within t steps

or MD
i (ψ(σ, t) · τ) queries some x > |σ|

then take the first such (D, i, τ, b) and let

ψ(σ, t+ 1) = ψ(σ, t) · τ · b,
T (σ, t+ 1) = T (σ, t) − {(D, i)}

else ψ, T remain unchanged.
The second part is adapted such that g is defined to wait until all machines

are diagonalized:

ĝ(σ) = (µt > |σ|)[∀i [ (G ↾ |σ|, i) /∈ T (σ, t)]]
g(n) = max|σ|≤n{ĝ(σ)}

The proof that g is total recursive in G is similar to that in Theorem 5.8.
In the third part, we show that g dominates all recursive functions. This

proof is similar to that in Theorem 5.8: we assume that g does not dominate
all recursive functions and, using this, construct a recursive f that is not in-
ferred by any MG

i , a contradiction to REC ∈ [1, n]BC[G∗] via MG
1 , . . . ,M

G
n .

Corollary 6.7 REC ∈ [a, b]BC[A∗] iff ∅′′ ≤T A⊕K.
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6.1.4 Omniscience For [a, b]EX[A]

In this section we show that REC ∈ [a, b]EX[A] iff ∅′′ ≤T A′ (by Theo-
rem 5.18 this is false for [a, b]BC[A]). The proof involves looking carefully
at how Adleman and Blum [AB91] proved that if REC ∈ EX[A] then A is
high.

Definition 6.8 REC0,1 denotes the recursive 0-1 valued functions. The
functions of finite support are the functions in REC0,1 which are almost
everywhere 0. We denote the set of all such functions by FS.

Definition 6.9 Let h ∈ REC. A total recursive function f is h-hard if, for

all ϕi that compute f , (
∞

∀x)[Φi(x) > h(x)]. (Any function that computes f
takes more time than h(x) almost always.)

Definition 6.10 Let h ∈ REC and g ∈ REC0,1. g is h-sparse if for all x,
if g(x) = 1 then g(x + 1) = · · · = g(x + 1 + h(x)) = 0. The function gpair

is defined by gpair(x) = (g(2x), g(2x + 1)). gpair is h-sparse if for all x, if
gpair(x) 6= (0, 0) then gpair(x+ 1) = · · · = gpair(x+ h(x)) = (0, 0).

Notation 6.11 Let S ⊆ REC0,1. The following conditions will be referred
to as C1, C2, C3 and C4.

C1) FS ⊆ S.

C2) (∀h ∈ REC)(∃g ∈ S)[g is h-sparse and h-hard].

C3) (∀h ∈ REC)(∃g ∈ S)[gpair is h-sparse and h-hard].

C4) (∀g ∈ REC0,1 − FS)(∃ĝ ∈ S)[

g(x) = 0 ⇒ ĝpair(x) = (0, 0), and
g(x) = 1 ⇒ ĝpair(x) ∈ {(0, 1), (1, 0)}

].

The following facts are easily verified.
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Fact 6.12 Let h be an increasing recursive function. Let g ∈ REC0,1.

i. If gpair is h(x)-sparse then g is 2h(⌊x
2
⌋)-sparse.

ii. If gpair is h(x)-hard then, if ϕi = g, (
∞

∀x)[Φi(2x) + Φi(2x+ 1) ≥ h(x)].

Lemma 6.13 Let S ⊆ REC0,1.

i. If S satisfies C1 and C3 then (S ∈ EX[A] ⇒ A is high).

ii. If S satisfies C4 then S satisfies C3.

iii. If S satisfies C1 and C4 then (S ∈ EX[A] ⇒ A is high).

Proof:

i) The proof of Theorem 5.1 shows that if S satisfies C1 and C2 then (S ∈
EX[A] ⇒ A is high). Our result can be obtained by modifying their proof:
replace “Φi(x)” by “Φi(2x) + Φi(2x+ 1)” and use Fact 6.12 (both parts).

ii) Let h ∈ REC. We can assume h is strictly increasing. By Lemma 2 of
[AB91] REC0,1 satisfies C2; hence there exists a function g ∈ REC0,1 that
is h-sparse and h-hard. We can assume g /∈ FS. (This assumption is valid
for the step-counting complexity measure but is not valid for some other
complexity measures.) Use this g and C4 to obtain ĝ ∈ S. It is easy to see
that ĝpair is h-sparse and h-hard.

iii) This follows from i and ii.

Definition 6.14 Given some string σ, let TABLE(σ) be an index of the
recursive function which outputs σ(x) for x < |σ| and 0 otherwise. The
coding should be such that if σ = τ0m then TABLE(σ) = TABLE(τ).

Lemma 6.15 If M () is an OIIM such that MA infers S, then there is an
OIIM N () such that NA infers S and converges on all functions in FS (but
NA does not necessarily infer FS).
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Proof:
The algorithm of MA is translated into that of NA as follows:

Input σ, let τ be the first |σ| − 1 bits of σ.
Calculate MA(σ), MA(τ) and NA(τ). There are four cases:

a) NA(τ) = TABLE(τ ′) for some τ ′ � τ and σ = τ ′0|σ|−|τ ′|

Then NA(σ) = TABLE(τ ′).

b) NA(τ) = TABLE(τ ′) for some τ ′ � τ and σ 6= τ ′0|σ|−|τ ′|

Then NA(σ) = MA(σ).

c) NA(τ) 6= TABLE(τ ′) for all τ ′ � τ and MA(τ) = MA(σ)
Then NA(σ) = MA(σ).

d) NA(τ) 6= TABLE(τ ′) for all τ ′ � τ and MA(τ) 6= MA(σ)
Then NA(σ) = TABLE(σ).

The informal idea of the algorithm is as follows. Whenever MA is about to
change its mind, rather than output that new guess, we output a function
of the form TABLE(σ). As soon as NA outputs a function of the form
TABLE(σ), in the next few stages it will continue to output this as long as
the function continues to look like σ0ω. When the function stops looking like
this we output what MA would output.

If f is inferred by MA then eventually MA stops changing its mind on f ,
so NA infers f . If f ∈ FS then NA has at most two mindchanges after the
last nonzero value of f ; therefore NA converges on any input from FS.

Note 6.16 We may assume ϕNA(σ) does not contradict σ within |σ| steps
since in this case the planned output can be replaced by TABLE(σ). So in
the case of convergence to some index i, the function ϕi coincides with the
inferred function f on its domain Wi.

Lemma 6.17 Assume REC0,1 ∈ [1, n]EX[A] via MA
1 , . . . ,M

A
n . Assume

that there exists i such that the set of functions inferred by MA
i does not

fulfill condition C4. Then REC0,1 ∈ [1, n− 1]EX[A].
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Proof:
Assume the set of functions inferred by MA

1 does not fulfill condition C4
because of g ∈ REC0,1 − FS. Let S be the set of all recursive functions ĝ
such that

g(x) = 0 ⇒ ĝpair(x) = (0, 0), and
g(x) = 1 ⇒ ĝpair(x) ∈ {(0, 1), (1, 0)}.

None of the functions in S are inferred by MA
1 ; hence S ∈ [1, n−1]EX[A]

via MA
2 , . . . ,M

A
n . We show that S ∈ [1, n − 1]EX[A] implies that REC ∈

[1, n− 1]EX[A]; we will then use the induction hypothesis.
Let x0, x1, . . . be the set of numbers where g takes value 1. Let f ∈

REC0,1. We define a function f+ such that f+ ∈ S and f+ contains infor-
mation about f . Let

f+(x) =





f(m) if x = 2xm
1 − f(m) if x = 2xm + 1
0 otherwise.

One can verify that f+ ∈ S. There is a total recursive function s satisfying
ϕs(i)(m) = ϕi(2xm) and the operator + transforming f to f+ is recursive.
Let NA

i (f) = s(MA
i (f+)). Clearly REC0,1 is [1, n− 1]EX[A]-identified via

NA
2 , . . . , N

A
n .

The following lemma is easy, hence the proof is omitted.

Lemma 6.18 For all A, REC ∈ EX[A] iff REC0,1 ∈ EX[A].

Theorem 6.19 REC ∈ [1, n]EX[A] iff A is high.

Proof:
If A is high then by Theorem 5.1 REC ∈ EX[A]. Hence REC ∈

[1, n]EX[A].
We prove that if REC0,1 ∈ [1, n]EX[A] then A is high, and then use

Lemma 6.18. We prove this by induction on n. If n = 1 then this is Theo-
rem 5.1. Assume that n ≥ 2 and that the theorem is true for n− 1.

Let REC0,1 ∈ [1, n]EX[A] via MA
1 , . . . ,M

A
n . By Lemma 6.15 we can

assume that each MA
i converges on all elements of FS. By Note 6.16 we can

also assume that ϕMA
i

(σ) does not contradict σ when run for ≤ |σ| steps. By

padding we can assume that (∀i 6= j)[range(MA
i ) ∩ range(MA

j ) = ∅].
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We define new machines N
()
1 , . . . , N

()
n such that REC0,1 ∈ [1, n]EX[A]

via NA
1 , . . . , N

A
n . The idea is that if, on input f ∈ REC0,1, exactly i of the

MA
1 , . . . ,M

A
n converge to programs that do not contradict f , then NA

i infers
f .

We need the following definition.

Definition 6.20 Let σ = σ1 · · · σk where σi ∈ {0, 1}. If MA(σ) = e then
the confidence MA(σ) has in e is the largest number m such that

MA(σ1 · · · σk−m) = MA(σ1 · · · σk−m+1) = · · · = MA(σ1 · · · σk).

ALGORITHM FOR NA
i .

i. Input(σ). Let s = |σ|.

ii. (∀j)[1 ≤ j ≤ n] compute ej = MA
j (σ). Let I = {ej : (∀x < |σ|)[ϕej ,s(x) ↓⇒

ϕej ,s(x) = σ(x)]}. If |I| < i then output 0 and halt.

iii. For all ej ∈ I compute cj, the confidence MA
j (σ) has in ej .

iv. Find cj1, . . . , cji , the i largest values of cj (if there is a tie then break it
arbitrarily).

v. Output AM(ej1 , . . . , eji). (See Definition 2.32 for the definition ofAM .)

END OF ALGORITHM
It is easy to see that, for all f ∈ REC0,1, if on input f exactly i of

MA
1 , . . . ,M

A
n converge to a program that does not contradict f , then NA

i

infers f (we need that all the machines have disjoint ranges). Hence REC0,1 ∈
[1, n]EX[A] via NA

1 , . . . , N
A
i . Since all the MA

i converge on all f ∈ FS we
have that NA

n infers FS.
Let S be the set of functions in REC0,1 which are inferred by NA

n . S
satisfies C1. If S satisfies C4 then by Lemma 6.13.iii, since S ∈ EX[A]
via NA

n , A is high. If S does not satisfy C4 then by Lemma 6.17 REC0,1 ∈
[1, n− 1]EX[A]; therefore, by the induction hypothesis A is high.

Corollary 6.21 REC ∈ [a, b]EX[A] iff A is high.

43



6.1.5 Omniscience For [a, b]BC[A]

The question of when REC ∈ [a, b]BC[A], much like the question of when
REC ∈ BC[A], does not appear to have a clean answer.

Theorem 6.22 The following are true.

i. For all high sets A, REC ∈ [a, b]BC[A].

ii. There exists a low set A such that REC ∈ [a, b]BC[A]

iii. For any X such that ∅′′ ≤T X there exists a set G such that X ≤T G
′′

and REC /∈ [a, b]BC[G].

iv. If A is r.e. then REC ∈ [a, b]BC[A] iff ∅′′ ≤T A
′.

Proof:

i) If A is high then, by Theorem 5.1, REC ∈ EX[A] ⊆ [a, b]BC[A].

ii) Let A be the low set constructed in Theorem 5.18. For this A, REC ∈
BC[A] ⊆ [a, b]BC[A].

iii) By Lemma 5.4.ii there is a set Y such that K ≤T Y and X⊕∅′′ ≡T Y
′ ≡T

Y ⊕∅′′. By Lemma 5.4.i there is a 1-generic set G such that G′ ≡T G⊕K ≡T

Y . So X ≤T X ⊕ ∅′′ ≡ G′′. Assume now that REC ∈ [a, b]BC[G]. Then
by an easy modification of the proof of Corollary 4.20 REC ∈ [a, b]BC[G∗].
This implies, by Corollary 6.7, that ∅′′ ≤T G ⊕ K and Y ≡T G ⊕ K ≡T

Y ⊕ ∅′′ ≡T Y
′, a contradiction. Thus REC /∈ [a, b]BC[G].

iv) This was proven by Kummer and Stephan [KS93b].

6.2 EXn, EX∗, BCn, and BC∗– Allowing errors

Definition 6.23 S ∈ EXn (S ∈ EX∗) if there exists an IIM M such that
for all f ∈ S, when M is run on initial segments of f , almost all the programs
output are the same, and the function computed by that program differs from
f on at most n numbers (on some finite set of numbers).

The definitions of BCn and BC∗ look similar to those of EXn and EX∗ but
are actually quite different.
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Definition 6.24 S ∈ BCn (S ∈ BC∗) if there exists an IIM M such that
for all f ∈ S, when M is run on initial segments of f , almost all the programs
output compute functions that differ from f on at most n numbers (on some
finite set of numbers).

Note 6.25 Assume S ∈ BCn via M and f ∈ S. If f is fed into M then
the programs output in the limit may compute different functions, differing
from f at different sets of n numbers. For S ∈ BC∗ the situation is worse
— the programs output in the limit may be computing different functions,
differing from f at different finite sets, perhaps even larger and larger finite
sets. In fact, BC∗-inference is so powerful that REC ∈ BC∗ (see Note 2.21
or see Harrington’s proof in [CS83]).

Note 6.26 Assume S ∈ EX∗ via IIM M . We can adjust the IIM M so
that if ϕe is the program output in the limit and x is a number such that
ϕe(x) 6= f(x) then ϕe(x) ↑. First, let u be the total recursive function defined
by

ϕu(e,〈a0,...,as〉)(x) =
{
ai if x = i ≤ s;
ϕe(x) otherwise.

We adjustM as follows. IfM(〈f(0), . . . , f(s)〉) = e, then compute, for all x ≤
s, the value ϕe,s(x). If none of them converge and differ from f then output e.
If any of them converge and differ from f then output u(e, 〈f(0), . . . , f(a)〉)
where a = max{i : i ≤ s and f(i) 6= ϕe,s(i) ↓}.

Definition 6.27 If f is a function then the cylindrification of f is the func-
tion f̃(〈x, y〉) = f(x). Let S ⊆ REC. The the cylindrification of S is
S̃ = {f̃ : f ∈ S}.

Fact 6.28 The following hold for all n,A.

i. If S̃ ∈ BCn[A] then S ∈ BC[A].

ii. If S̃ ∈ BCn[A∗] then S ∈ BC[A∗].

iii. If S̃ ∈ EX∗[A] then S ∈ EX[A].
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iv. If S̃ ∈ EX∗[A∗] then S ∈ EX[A∗].

v. For I ∈ {EX[A], EX[A∗], BC[A], BC[A∗]} , and for any S ⊆ REC,
S ∈ I ⇒ S̃ ∈ I. (This is obvious so its proof is omitted.)

vi. For any notion of inference I discussed in this paper, if REC ∈ I then
R̃EC ∈ I. (This follows from R̃EC ⊆ REC.)

Proof:

i) Let MA be a machine that BCn[A]-infers S̃. We BC[A]-infer S as follows.
Upon seeing initial segment σ of g ∈ S we construct an initial segment τ of
the corresponding f ∈ S̃ that is as long (and contiguous) as possible given σ.
Compute MA(τ) = e. Output the index of a function that does the following:
On input x compute ϕe(〈x, i〉) for i = 0, 1, . . . until n + 1 of them converge
and agree, and then output that value.

ii) The proof of i also works for BCn[A∗].

iii) Let MA be a machine that EX∗[A]-infers S̃. By Note 6.26 we can
assume that for all f ∈ S̃, when MA tries to infer f it produces (in the
limit) a program that only differs from f by diverging. We EX[A]-infer S
as follows. Upon seeing initial segment σ of g ∈ S we construct an initial
segment τ of the corresponding f ∈ S̃ that is as long (and contiguous) as
possible given σ. Compute MA(τ) = e. Output the index of a function that
does the following: On input x compute ϕe(〈x, i〉) for i = 0, 1, . . . until one
of them converges, and then output that value.

iv) The proof of iii also works for EX∗[A∗].

Recall that G(A) means that either A is recursive or A ≤T K and is in a
1-generic degree.

Theorem 6.29 The following hold for all n,A.

i. EXn[A] = EXn iff EX∗[A] = EX∗ iff G(A).

ii. EXn[A∗] = EXn iff EX∗[A∗] = EX∗ iff BCn[A∗] = BCn iff A ≤T K.

iii. REC ∈ EXn[A] iff REC ∈ EX∗[A] iff ∅′′ ≤T A
′.

iv. REC ∈ EXn[A∗] iff REC ∈ EX∗[A∗] iff REC ∈ BCn[A∗] iff ∅′′ ≤T A⊕K.
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v. REC ∈ BC[A] iff REC ∈ BCn[A].

vi. For all A, REC ∈ BC∗[A] = BC∗[A∗] = BC∗.

Proof:
The results about when EXn[A] and EX∗[A] are trivial and ∗-trivial, and

when BCn[A] is ∗-trivial, are obtained as follows. By a simple modification
of the proof of Lemmas 4.19 and 4.9 we have the following.

G(A) ⇒ (EXn[A] = EXn and EX∗[A] = EX∗).
A ≤T K ⇒ (EXn[A∗] = EXn and EX∗[A∗] = EX∗ and BCn[A∗] = BCn).

We show that

¬G(A) ⇒ (EXn[A] 6= EXn and EX∗[A] 6= EX∗).
A 6≤T K ⇒ (EXn[A∗] 6= EXn and EX∗[A∗] 6= EX∗ and BCn[A∗] 6= BCn).

If G(A) does not hold then by Theorem 4.1 there exists S ∈ EX[A] − EX.
By Fact 6.28 (parts iii and v) S̃ ∈ EX[A] − EX∗. Hence EX∗[A] 6= EX∗

and EXn[A] 6= EXn. The proof for A 6≤T K is similar.
The results about omniscience and ∗-omniscience (except those for BC∗)

are obtained as follows. By Theorems 5.1,5.7, and EX∗[A] ⊆ BC[A] ⊆
BCn[A] we have the following.

∅′′ ≤T A
′ ⇒ REC ∈ EX[A] ⊆ EXn[A] ⊆ EX∗[A].

∅′′ ≤T A⊕K ⇒ REC ∈ EX[A∗] ⊆ EXn[A∗] ⊆ EX∗[A∗] ⊆ BCn[A∗].
REC ∈ BC[A] ⇒ REC ∈ BCn[A].

By Fact 6.28 (parts i, ii, iii, iv, and vi) we have the following.

REC ∈ EX∗[A∗] ⇒ R̃EC ∈ EX∗[A∗] ⇒ REC ∈ EX[A∗] ⇒ ∅′′ ≤T A⊕K.

REC ∈ EX∗[A] ⇒ R̃EC ∈ EX∗[A] ⇒ REC ∈ EX[A] ⇒ ∅′′ ≤T A
′.

REC ∈ BCn[A∗] ⇒ R̃EC ∈ BCn[A∗] ⇒ REC ∈ BC[A∗] ⇒ ∅′′ ≤T A⊕K.

REC ∈ BCn[A] ⇒ R̃EC ∈ BCn[A] ⇒ REC ∈ BC[A].

By Note 2.21 (or see Harrington’s proof in [CS83]) REC ∈ BC∗. Hence,
for all A, REC ∈ BC∗ = BC∗[A∗] = BC∗[A].

It is open to determine, for which A, BCn[A] = BCn. By a modification
of the proof of Theorem 4.1 (or see [KS93b]) one can show that BCn[A] =
BCn ⇒ G(A). The difficulty in establishing the converse is that the proof of
Lemma 4.20 does not seem to apply to BCn.
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6.3 EXn– Bounding Mind Changes

Definition 6.30 S ∈ EXn if there exists an IIM M such that for all f ∈ S,
M EX-identifies f , and changes its guess about the function at most n times.
(Formally, we allow an IIM to guess 0 which means ‘no guess at this time’
and do not count the first real guess as a mindchange.)

Note 6.31 Let T1, T2 be the sets from Example 2.26. Clearly T1 ∈ EX0[A[64]].
Using binary search T1 ∈ EX0[A[6]]. (Actually T1 ∈ EX0 since |T1| is finite.)
Clearly T2 ∈ EX0[A∗].

We show that, for n ∈ N, both the EXn-degrees and the EXn∗-degrees
are identical to the Turing degrees. As corollaries we obtain that, for allA, (1)
EXn[A] = EXn iff A is recursive, (2) REC /∈ EXn[A], (3) EXn[A∗] = EXn

iff A is recursive, and (4) REC /∈ EXn[A∗].
We prove a lemma about when a certain set of functions can be in

[a, b]EX∗
m[B]. As a corollary we obtain information about how EXk and

EXm[B] compare. We will use the full strength of this lemma in Section 6.5.

Lemma 6.32 Let Sk = {0∗1∗ · · · (p− 1)∗pω : p ≤ k}.

i. If a(k + 1) ≤ b(m+ 1) then Sk ∈ [a, b]EXm

ii. If Sk ∈ [a, b]EX∗[B] via MB
1 , . . . ,M

B
b and (∀i 6= j)(∀σ, τ)[MB

i (σ) 6= MB
j (τ)]

(the machines can easily be modified to make this true) then there exists
σ ∈ 0∗1∗ · · · k∗ such that the total number of guesses made by the team
while being fed σ is at least a(k + 1).

iii. If Sk ∈ [a, b]EX∗
m[B] then a(k + 1) ≤ b(m+ 1).

Proof: We will assume throughout the proof that a divides b. The mod-
ifications needed for the case where a does not divide b are easy.

i) Assume that a(k + 1) ≤ b(m+ 1), so k ≤ b
a
m+ b

a
− 1. For 1 ≤ i ≤ b

a
let

Ti = {0∗1∗ · · · (p− 1)∗pω : (i− 1)m+ i− 1 ≤ p ≤ im+ i− 1}.

Clearly each Ti is in EXm and Sk ⊆
⋃b/a
i=1 Ti. Hence Sk ∈ [a, b]EXm by a

team of b machines which consist of b
a

groups of a machines each where the
ith group of machines are all EXm machines for Ti.
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ii) Let

W (σ) = {i : (∃τ ≺ σ)(∃J ⊆ {1, . . . , b}, |J | = a)(∀j ∈ J)[ϕMB
j

(τ) =∗ λx[i]]}.

We construct a sequence of strings as follows. Let σ−1 be the empty string.
Let s ≤ k − 1. Inductively assume σs ∈ 0∗1∗ · · · s∗. Let

is+1 = µi[s+ 1 ∈W (σs · (s+ 1)i)] (such i exists since σs(s+ 1)ω ∈ Sk)
σs+1 = σs · (s+ 1)is+1

Let σ = σk. When MB
1 , . . . ,M

B
b are fed σ we obtain a different indices for

functions that are =∗ λx[p] for every p, 0 ≤ p ≤ k. Hence we obtain at least
a(k + 1) different indices.

iii) Assume Sk ∈ [a, b]EX∗
m via MB

1 , . . . ,M
B
b . We may assume that, for all

σ, i, when MB
i is fed σ it makes ≤ m+ 1 guesses; hence the total number of

guesses made by the team while inferring any function is at most b(m + 1).
Let σ be obtained by applying part ii to MB

1 , . . . ,M
B
b . The function f = σkω

is in Sk. When MB
1 , . . . ,M

B
b tries to infer f there are at least a(k+1) guesses

generated. Hence a(k + 1) ≤ b(m+ 1).

Corollary 6.33 If EXk ⊆ EXm[B] then k ≤ m.

Proof:
By Lemma 6.32.i, with a = b = 1 and m = k, Sk ∈ EXk. By the

hypothesis Sk ∈ EXm[B]. By Lemma 6.32.iii we obtain k ≤ m.

The next lemma deals with the Turing degrees. It uses the material on
bounded queries discussed in Definitions 4.2, 4.3, and Propositions 4.6.

Lemma 6.34 If EX0[A[n+ 1]] ⊆ EXn[B] then A ≤T B.

Proof:
Let S be

{〈x1, . . . , xn+1〉σi
ω : i = NUM(FA

n+1(x1, . . . , xn+1)) and σ ∈ (N − {i})∗}.
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Clearly S ∈ EX0[A[n+ 1]]. Assume S ∈ EXn[B] via MB. We show that
FA
n+1 is (n+ 1)-enumerable-in-B. By Proposition 4.6 this shows A ≤T B.

The enumeration is achieved by trying to construct a function not inferred
by MB. While constructing it we find information about A that leads to
possibilities for FA

n+1(x1, . . . , xn+1).
Given x1, . . . , xn+1 we enumerate possibilities as follows.

ENUMERATION

Stage 0: Let σ be such that σ(0) = 〈x1, . . . , xn+1〉 and (∀i > 0)[σ(i) is
undefined]. We assume MB(σ) = 0 (not a real guess). Set P := {0, 1}n+1.
(P stands for Possibilities for FA

n+1(x1, . . . , xn+1).) Set CG = 0 (CG stands
for Current Guess).

Stage s+1: Search for τ ∈ P , N ∈ N, t ∈ N, b ∈ N such that the following
hold. (In what follows σ · NUM(τ)N denotes the concatenation of σ and
(NUM(τ))N .)

i. b /∈ range(σ) and b > 2n+1,

ii. MB(σ ·NUM(τ)N) 6= CG, and

iii. ϕMB(σ·NUM(τ)N ),t(|σ ·NUM(τ)N |) ↓6= b.

(We will later show that during stage s = 1 this search must terminate. For
stages s > 1 this search need not terminate.)

If such τ,N, t, b are found then do the following.

i. Set CG = MB(σ ·NUM(τ)N).

ii. Set σ := σ ·NUM(τ)N · b.

iii. Enumerate τ .

iv. P := P − {τ}

v. If s+ 1 = n+ 1 then halt, else go to stage s+ 2.

END OF ENUMERATION
If stage s ≥ 1 terminates, then when it does so we enumerate the sth

possibility, force the (s−1)th mindchange, and make the sth guess incorrect.
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Since we never allow the stage number to be n+2, at most n+1 possibilities
are enumerated. We show that one of them is τ = FA

n+1(x1, . . . , xn+1).
Assume, by way of contradiction, that τ is not enumerated. Let 〈x1, . . . , xn+1〉σ

be the finite function produced at the end of the enumeration. (Note that
whether or not stage n + 1 is reached a finite σ is constructed.) Let f =
〈x1, . . . , xn+1〉σ · (NUM(τ))ω and let i = NUM(τ). We show that f ∈ S.
Note that f(0) = 〈x1, . . . , xn+1〉 and f =∗ λx[i]. The elements in the range of
σ are either numbers b > 2n or numbers of the form NUM(τ ′) where τ ′ 6= τ .
Hence σ does not have i in its range. Therefore f ∈ S. Hence f is inferred
by MB. We obtain a contradiction by showing that MB does not infer f .
There are two cases.

Case 1: There exists a stage s that does not terminate. Let CG be as at
the beginning of stage s. By the actions taken at stage s− 1 either CG = 0
or (∃x)[ϕCG(x) 6= σ(x)]. In either case CG is not the index of any function
that has initial segment σ. Since stage s does not terminate and τ ∈ P ,
for every N ∈ N either MB(σ ·NUM(τ)N) = CG or ϕMB(σ·NUM(τ)N ) is not
total. Hence MB does not infer f .

Case 2: Stage n + 1 is reached and terminates. If MB tries to infer any
function that begins with σ then before MB has seen all of σ, MB has
already made n mindchanges. Let CG be as at the end of stage n+ 1. Note
that CG is the final guess that MB makes and that (∃x)[ϕCG(x) 6= σ(x)].
Hence MB cannot infer any function that begins with σ. In particular MB

cannot infer f .

Note 6.35 Using Note 4.7.ii Lemma 6.34 can be strengthened to show that
if EX0[A[n]] ⊆ EX2n−2[B] then A ≤T B. The result is optimal since there
exist nonrecursive sets A such that EX0[A[n]] ⊆ EX2n−1 (any nonrecursive
r.e. set A will suffice).

Theorem 6.36 EXm[A] ⊆ EXn[B] iff EXm[A∗] ⊆ EXn[B∗] iff m ≤ n and
A ≤T B.

Proof:
If EXm[A] ⊆ EXn[B] or EXm[A∗] ⊆ EXn[B∗], then EXm ⊆ EXn[B]

and EX0[A[n + 1]] ⊆ EXn[B]. By Lemma 6.33 m ≤ n, and by Lemma 6.34
A ≤T B.
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Clearly if m ≤ n and A ≤T B then EXm[A] ⊆ EXn[B] and EXm[A∗] ⊆
EXn[B∗].

Corollary 6.37 For all n,A the following hold.

i. EXn = EXn[A] iff A is recursive.

ii. EXn = EXn[A∗] iff A is recursive.

iii. REC /∈ EXn[A].

iv. REC /∈ EXn[A∗].

6.4 PEX– Guesses are total

Definition 6.38 S ∈ PEX if S ∈ EX via an IIM that, on any input,
outputs an index to a total function. S ∈ PEX[A] if S ∈ EX[A] via
MA such that, on any input, MA outputs a total function. Note that if
S ∈ PEX[A] via MA then (∀σ ∈ N∗)[ϕMA(σ) is total], but if A 6= B then
there could exist a σ such that ϕMB(σ) is not total.

Lemma 6.39 The following hold for all A.

i. PEX[A] = PEX[A∗].

ii. S ∈ PEX[A] iff there exists h ≤T A such that

S ⊆ {ϕh(i) : i ∈ N} ⊆ REC.

Proof:

i) Let S ∈ PEX[A]. Adjust the machine so that it never changes its mind
unless it sees a mistake (this is possible since all guesses are total). Such a
machine will only need to query the oracle a finite number of times.

ii) Let S ∈ PEX[A] via MA. Let code be a recursive bijection from N to
N∗. Let h(i) = MA(code(i)). Clearly

S ⊆ {ϕh(i) : i ∈ N} ⊆ REC.
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Let S ⊆ {ϕh(i) : i ∈ N} ⊆ REC where h ≤T A. S ∈ PEX[A] by a
machine which outputs h(i) where i is the smallest number such that ϕh(i) is
consistent with the input. Consistency can be checked since all the ϕh(i) are
total recursive.

Not much is known about when PEX[A] = PEX. The next theorem
shows that there are nonrecursive sets for which this occurs.

Theorem 6.40 If A ≤T K or A is in a hyperimmune-free degree then
PEX[A] = PEX.

Proof:
We show that PEX[K] = PEX: use an approximation to K and incor-

porate the approximation being used into the index so that if an answer is
ever discovered to be wrong then the function becomes a function that is al-
most always zero (we need to do this to make sure that the function output is
total). Since PEX[K] = PEX we have, for any A ≤T K, PEX[A] = PEX.

Let A be in a hyperimmune-free degree, let S ∈ PEX[A], and let h be as
in Lemma 6.39.ii. Recall that, since A is in a hyperimmune-free degree, for
every f ≤T A there is a recursive function g such that (∀x)[f(x) < g(x)].

Let f be defined by f(n) = max{Φh(i)(j) : 0 ≤ i, j ≤ n}. Since f ≤T A
there exists a recursive g such that (∀x)[f(x) < g(x)]. Let h′ be defined as
follows:

ϕh′(i)(j) =
{
ϕi(j) if Φi(j) ≤ g(i+ j);
0 otherwise.

Clearly {ϕh(i) : i ∈ N} ⊆ {ϕh′(i) : i ∈ N}, and hence S ∈ PEX.

Since the hyperimmune-free degrees and the degrees that are ≤T K are
very different from each other, yet both are PEX-trivial, we do not believe
there is a degree theoretic characterization of when PEX = PEX[A].

Theorem 6.41 REC ∈ PEX[A] iff ∅′′ ≤T A⊕K.

Proof:
If REC ∈ PEX[A] = PEX[A∗] = PEX[A∗] ⊆ EX[A∗], then by Theo-

rem 5.7 ∅′′ ≤T A⊕K.
If ∅′′ ≤T A ⊕K then by Lemma 5.3 there is a recursive function h such

that REC = {ϕh(i)}i∈N. By Lemma 6.39.ii REC ∈ PEX[A].
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6.5 Combinations

In this subsection we examine the effect of combining mindchanges, anoma-
lies, and teams. When the number of mindchanges is bounded the classes
behave like EXm, if not then they behave like EX (or BC).

The following six-part lemma, without oracles, was proven in [FSV89]).
The proofs with oracles are similar, hence they are omitted.

Lemma 6.42 Let i be any number.

i. [a, b]EXm[A] ⊆ EX2b(m+1)−2[A].

ii. EX(m+1)b[A] ⊆ [1, b]EXm[A].

iii. [a, b]EXm[A∗] ⊆ EX2b(m+1)−2[A∗].

iv. EX(m+1)b[A∗] ⊆ [1, b]EXm[A∗].

v. [a, b]EXm[A[i]] ⊆ EX2b(m+1)−2[A[i]].

vi. EX(m+1)b[A[i]] ⊆ [1, b]EXm[A[i]].

The next fact is similar to Fact 6.28 and uses the set S̃ from Defini-
tion 6.27. The proof is similar to the proof of Fact 6.28, hence we omit
it

Fact 6.43 The following hold for all a, b,m, n,A.

i. If S̃ ∈ [a, b]BCn[A] then S ∈ [a, b]BC[A].

ii. If S̃ ∈ [a, b]BCn[A∗] then S ∈ [a, b]BC[A∗].

iii. If S̃ ∈ [a, b]EX∗[A] then S ∈ [a, b]EX[A].

iv. If S̃ ∈ [a, b]EX∗[A∗] then S ∈ [a, b]EX[A∗].

v. If S̃ ∈ [a, b]EXn
m[A] then S ∈ [a, b]EXm[A]. (The proof is similar to

that of Fact 6.28.i.)

vi. If S̃ ∈ [a, b]EXn
m[A∗] then S ∈ [a, b]EXm[A∗]. (The proof is similar to

that of Fact 6.28.ii.)
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vii. If I is any of [a, b]EXm[A], [a, b]EXm[A∗], [a, b]EXm[A[i]], [a, b]BC[A],
[a, b]BC[A∗], or [a, b]BC[A[i]], then for any S ⊆ REC, S ∈ I ⇒ S̃ ∈ I.

viii. For any notion of inference I discussed in this paper, if REC ∈ I then
R̃EC ∈ I.

Note 6.44 It is not the case that S̃ ∈ EX∗
m ⇒ S ∈ EXm. To see this take

S = {f : ϕf(0) =∗ f̃} where f̃ is the cylindrification of f (i.e., f̃(〈x, y〉) = x).

Clearly, S̃ ∈ EX∗
0 . One can show S 6∈ EX0 by a standard argument. Also

note that the proof that S̃ ∈ EX∗ ⇒ S ∈ EX needed the fact that we could
assume there were no convergent errors. The technique used to get rid of
convergent errors makes the number of mindchanges unbounded.

Theorem 6.45 The following hold for all a, b,m, n,A.

i. REC /∈ [a, b]EX∗
m[A] (hence REC /∈ [a, b]EXn

m[A], REC /∈ [a, b]EX∗
m[A∗],

and REC /∈ [a, b]EXn
m[A∗]).

ii. REC ∈ [a, b]EXn[A] iff REC ∈ [a, b]EX∗[A] iff REC ∈ [a, b]EX iff
∅′′ ≤T A

′.

iii. REC ∈ [a, b]EXn[A∗] iff REC ∈ [a, b]EX∗[A∗] iff REC ∈ [a, b]EX[A∗]
iff ∅′′ ≤T A⊕K.

iv. REC ∈ [a, b]BCn[A] iff REC ∈ [a, b]BC[A].

v. REC ∈ [a, b]BCn[A∗] iff ∅′′ ≤T A⊕K.

Proof:

i) This follows from Lemma 6.32.

ii) By Theorem 5.1 ∅′′ ≤T A
′ ⇒ REC ∈ EX[A] ⊆ [a, b]EXn[A] ⊆ [a, b]EX∗[A].

By Fact 6.43 (parts iii and viii)

REC ∈ [a, b]EXn[A] ⊆ [a, b]EX∗[A] ⇒ R̃EC ∈ [a, b]EX∗[A] ⇒ REC ∈ [a, b]EX[A].

By Theorem 6.19 we have ∅′′ ≤T A
′.
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iii) By Theorem 5.7 ∅′′ ≤T A ⊕ K ⇒ REC ∈ EX[A∗] ⊆ [a, b]EXn[A∗] ⊆
[a, b]EX∗[A∗]. By Fact 6.43 (parts iv and viii)

REC ∈ [a, b]EXn[A∗] ⊆ [a, b]EX∗[A∗] ⇒ R̃EC ∈ [a, b]EX∗[A∗] ⇒ REC ∈ [a, b]EX[A∗].

By Theorem 6.4 ∅′′ ≤T A⊕K.

iv) Clearly REC ∈ [a, b]BC[A] ⇒ REC ∈ [a, b]BCn[A]. By Fact 6.43 (parts
i and viii)

REC ∈ [a, b]BCn[A] ⇒ R̃EC ∈ [a, b]BCn[A] ⇒ REC ∈ [a, b]BC[A].

v) By Theorem 5.7 ∅′′ ≤T A ⊕ K ⇒ REC ∈ EX[A∗] ⊆ [a, b]BCn[A∗]. By
Fact 6.43 (parts ii and viii)

REC ∈ [a, b]BCn[A∗] ⇒ R̃EC ∈ [a, b]BCn[A∗] ⇒ REC ∈ [a, b]BC[A∗].

By Theorem 6.6 ∅′′ ≤T A⊕K.

Theorem 6.46 For all a, b, n,m,A the following hold.

i. [a, b]EXm[A] = [a, b]EXm iff [a, b]EXm[A∗] = [a, b]EXm iff A is recur-
sive.

ii. [a, b]EXn
m[A] = [a, b]EXn

m iff [a, b]EXn
m[A∗] = [a, b]EXn

m iff A is recur-
sive.

iii. [a, b]EXn[A] = [a, b]EXn iff [a, b]EX∗[A] = [a, b]EX∗ iff G(A).

iv. [a, b]EXn[A∗] = [a, b]EXn iff [a, b]EX∗[A∗] = [a, b]EX∗ iff [a, b]BCn[A∗] =
[a, b]BCn iff A ≤T K.

Proof:

i) Clearly if A is recursive then all the equalities hold. Assume [a, b]EXm[A∗] =
[a, b]EXm or [a, b]EXm[A] = [a, b]EXm. Clearly EX0[A[2b(m + 1) − 1]] ⊆
[a, b]EXm[A∗] = [a, b]EXm. By Lemma 6.42 we know [a, b]EXm[A∗] ⊆
EX2b(m+1)−2. Hence EX0[A[2b(m+ 1) − 1]] ⊆ EX2b(m+1)−2. By Lemma 6.34
A is recursive.

56



ii) Clearly if A is recursive then all the equalities hold. Assume A is not recur-
sive. By part i of this Theorem there exists S ∈ [a, b]EXm[A∗] − [a, b]EXm.
By Fact 6.43 (parts v and vii) S̃ ∈ [a, b]EXm[A∗] − [a, b]EXn

m. Hence
[a, b]EXn

m ⊂ [a, b]EXn
m[A], [a, b]EXn

m ⊂ [a, b]EXn
m[A∗].

iii and iv) By a simple modification of the proofs of Theorems 6.3 and 6.4
we have the following.

G(A) ⇒ ([a, b]EXn[A] = [a, b]EXn and [a, b]EX∗[A] = [a, b]EX∗).
A ≤T K ⇒ ([a, b]EXn[A∗] = [a, b]EXn and [a, b]EX∗[A∗] = [a, b]EX∗

and [a, b]BCn[A∗] = [a, b]BCn).

We show that

¬G(A) ⇒ ([a, b]EXn[A] 6= [a, b]EXn and [a, b]EX∗[A] 6= [a, b]EX∗).
A 6≤T K ⇒ ([a, b]EXn[A∗] 6= [a, b]EXn and [a, b]EX∗[A∗] 6= [a, b]EX∗

and [a, b]BCn[A∗] 6= [a, b]BCn).

If G(A) does not hold then by Theorem 6.3 there exists S ∈ [a, b]EX[A] −
[a, b]EX. By Fact 6.43 (parts iii, viii) S̃ ∈ [a, b]EX[A] − [a, b]EX∗. Hence
[a, b]EX∗[A] 6= [a, b]EX∗ and [a, b]EXn[A] 6= [a, b]EXn. The proof for
A 6≤T K is similar (using Theorem 6.2 and Fact 6.43 (parts ii, iii).

To prove results about when [a, b]EX∗
m[A] = [a, b]EX∗

m requires a different
technique than that used for [a, b]EXn

m.

Lemma 6.47 If [a, b]EXm[A[1]] ⊆ [a, b]EX∗
m then A is recursive.

Proof: We will assume throughout the proof that a divides b. The mod-
ifications needed for the case where a does not divide b are easy.

Let k = b
a
(m+ 1) − 1. Let

S = {e0∗1∗ · · · (p− 1)∗pω : e ∈ A⊕ A ∧ 0 ≤ p ≤ k}∪
{e0∗1∗ · · · (p− 1)∗pω : e /∈ A⊕ A ∧ 1 ≤ p ≤ k + 1}.

For 1 ≤ i ≤ b
a

let

Ti = {0∗1∗ · · · (p− 1)∗pω : (i− 1)m+ i− 1 ≤ p ≤ im+ i− 1}
T ′
i = {0∗1∗ · · · (p− 1)∗pω : (i− 1)m+ i ≤ p ≤ im+ i}
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Clearly for 1 ≤ i ≤ b
a

both Ti and T ′
i are in EXm. If f ∈ S then

f(0) ∈ A⊕ A ⇒ f ∈
⋃b/a
i=1 Ti,

f(0) /∈ A⊕ A ⇒ f ∈
⋃b/a
i=1 T

′
i .

S ∈ [a, b]EXm[A[1]] by a team of b machines which consist of b
a

groups
of a machines each where the ith group of machines are all machines that
do the following: first ask ‘f(0) ∈ A?’, and if YES then use an inference
machine for Ti, else use an inference machine for T ′

i .
Let S̃ be the cylindrification of S as in Definition 6.27. Let σ̃(〈x, y〉) =

σ(x) for x < |σ|, 〈x, y〉 < 〈|σ|, 0〉 and |σ̃| = 〈|σ|, 0〉.
Since S ∈ [a, b]EXm[A[1]], by Fact 6.43.vii S̃ ∈ [a, b]EXm[A[1]]. By the

hypothesis S̃ ∈ [a, b]EX∗
m. We assume S̃ ∈ [a, b]EX∗

m via M1, · · · ,Mb. We
can assume (∀i 6= j)(∀σ, τ)[Mi(σ) 6= Mj(τ)] and that no Mi ever generates
more than m+1 guesses. We show that A is recursive by showing that A⊕A
is r.e. Let N(σ̃) denote the total number of legal guesses (≤ b(m + 1)) that
are made by M1, . . . ,Mb on the initial segment σ̃. We claim

e ∈ A⊕ A iff (∃σ)[σ ∈ e0∗1∗ · · · k∗ ∧N(σ̃) = a(k + 1)].

Assume e ∈ A ⊕ A. Let Uk = {e0∗1∗ · · · (p − 1)∗pω : 0 ≤ p ≤ k}. Since
Uk ⊆ S we have Ũk ⊆ S̃, so Ũk is [a, b]EX∗

m-inferred by the team. By a
modification of the proof of Lemma 6.32.ii there exists σ ∈ e0∗ · · · k∗ such
that N(σ̃) = a(k + 1).

Assume there is a σ ∈ e0∗1∗2∗ · · · k∗ such that N(σ̃) = a(k+1) = b(m+1).
Then if σ̃ is fed to M1, . . . ,Mb there are b(m+1) guesses generated, hence all
b machines generate m+ 1 guesses. Therefore for all f̃ such that σ̃ � f̃ , for
all i, 1 ≤ i ≤ b, Mi(σ̃) is the final guess that Mi outputs when trying to infer
f̃ . Consider the cylindrification of V = {σki(k + 1)ω : i ∈ N}. For every
function f̃ ∈ Ṽ , we have σ̃ � f̃ . Also note that there are an infinite number
of functions in Ṽ that are =∗ inequivalent. Hence there exists f̃ ∈ Ṽ such
that f̃ is not EX∗-inferred by any of M1, . . . ,Mb. Hence f̃ /∈ S̃, so f /∈ S.
Since f ∈ V , f ∈ e0∗1∗ . . . k∗(k + 1)ω. Since f /∈ S we know that e /∈ A⊕A.

Corollary 6.48 If [a, b]EX∗
m[A] = [a, b]EX∗

m or [a, b]EX∗
m[A∗] = [a, b]EX∗

m

then A is recursive
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7 Conclusions and Open Problems

The table below tells, for several notions of inference, when a set A will
be trivial, ∗-trivial, omniscient, and ∗-omniscient (e.g., if the notion is EX
then the table tells, for which A, EX[A] = EX, EX[A∗] = EX, REC ∈
EX[A], and REC ∈ EX[A∗]). The entries that are unknown are marked
with subscripted U(A). If the same subscript is used in two places then we
know the entries are the same, though we do not know what they are. All
the results in the table are either from [SS91], [KS93b], [AB91], or this paper.

We have several open questions that we state as conjectures.

i. REC ∈ BC[A] iff REC ∈ [a, b]BC[A].

ii. BCn[A] = BCn iff G(A).

iii. [a, b]BCn[A] = [a, b]BCn iff BCn[A] = BC.

iv. If A is n-r.e. then REC ∈ BC[A] iff ∅′′ ≤T A
′. (Open for n ≥ 2.)

v. If A is n-r.e. then REC ∈ [a, b]BC[A] iff ∅′′ ≤T A
′. (Open for n ≥ 2.)

There have been may variations on EX and BC in the inductive infer-
ence literature. Questions about the inference degrees that these definitions
induce could be addressed. We discuss one such variation. Gasarch and
Smith [GS92] have defined inference classes that allow the machine to ask
questions about the function in a language L, denoted QEX[L], QBC[L],
QiEX[L], and QiBC[L] (where i bounds the number of alternations of quan-
tifiers allowed.) It would be of interest know (1) for which A does QEX[S,<
][A] = QEX[A] hold, and (2) for which A does REC ∈ QEX[S,<][A] hold?
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TRIV ∗-TRIV OMNI ∗-OMNI
PEX U1(A) U1(A) ∅′′ ≤T A⊕K ∅′′ ≤T A⊕K
EXm A ≡T ∅ A ≡T ∅ Never Never
EX G(A) A ≤T K ∅′′ ≤T A

′ ∅′′ ≤T A⊕K
EXn G(A) A ≤T K ∅′′ ≤T A

′ ∅′′ ≤T A⊕K
EX∗ G(A) A ≤T K ∅′′ ≤T A

′ ∅′′ ≤T A⊕K
BC G(A) A ≤T K U2(A) ∅′′ ≤T A⊕K
BCn U3(A) A ≤T K U2(A) ∅′′ ≤T A⊕K
BC∗ Always Always Always Always

[a, b]EXn
m A ≡T ∅ A ≡T ∅ Never Never

[a, b]EX∗
m A ≡T ∅ A ≡T ∅ Never Never

[a, b]EX G(A) A ≤T K ∅′′ ≤T A
′ ∅′′ ≤T A⊕K

[a, b]EXn G(A) A ≤T K ∅′′ ≤T A
′ ∅′′ ≤T A⊕K

[a, b]EX∗ G(A) A ≤T K ∅′′ ≤T A
′ ∅′′ ≤T A⊕K

[a, b]BC G(A) A ≤T K U5(A) ∅′′ ≤T A⊕K
[a, b]BCn U4(A) A ≤T K U5(A) ∅′′ ≤T A⊕K

G(A) means that either A is recursive or A ≤T K and A is in a 1-generic
degree. U4 and U5 may depend on the parameters a, b, n.

We know more than what is in the table:

i. If A ≤T K or A is in a hyperimmune-free degree then U1(A) holds.

ii. There are low sets A such that U2(A) and U5(A) hold.

iii. For all sets X there exists a set A such that X ≤T A′′ but neither
U2(A) nor U5(A) holds.

iv. If A is r.e. then U2(A) iff U4(A) iff ∅′′ ≤T A
′.

v. U3(A) implies U4(A), and U4(A) implies G(A).
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