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Abstract

Identification of grammars (r. e. indices) for recursively enumerable languages from positive data

by algorithmic devices is a well studied problem in learning theory. The present paper considers

identification of r. e. languages by machines that have access to membership oracles for noncomputable

sets. It is shown that for any set A there exists another set B such that the collections of r. e. languages

that can be identified by machines with access to a membership oracle for B is strictly larger than the

collections of r. e. languages that can be identified by machines with access to a membership oracle for

A. In other words, there is no maximal inference degree for language identification.

Keywords: Machine learning, inductive inference, methodology of science, recursion theory

1 Introduction

A model for a subject learning a concept could be described thus. At any given time, the subject receives

some finite data about the concept. Based on this data, the subject conjectures a hypothesis about the

concept. Availability of more data may cause the subject to revise its hypotheses. The subject is said

to learn the concept just in case the sequence of hypotheses conjectured by the subject converges to a

fixed hypothesis and this final hypothesis is a correct representation of the concept. This is essentially

the theme of Gold’s [9] identification in the limit when the subject is an algorithmic device.

Identification of programs for computable functions from their graphs and identification of grammars

(r. e. indices) for recursively enumerable languages from positive data are two extensively studied problems

in the above framework. Lately, with a view to gain a deeper insight into the process of identification, there

has been considerable interest in investigating identification by devices that have access to membership

oracles for noncomputable sets [1, 8, 7]. This study has mainly concentrated on identification of functions;

a representative result being that there exists a single machine with access to an oracle for the halting

set that identifies every computable function [1].
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The present paper investigates identification of recursively enumerable languages from positive data

by machines with access to membership oracles for noncomputable sets. It is shown that for this problem,

there is no maximal inference degree in the sense that for every set A there exists another set B such

that the collections of r. e. languages that can be identified by machines with access to a membership

oracle for B is strictly larger than the collections of r. e. languages that can be identified by machines

with access to a membership oracle for A. Similar results are shown about more general identification

criteria, namely vacillatory language identification and behaviorally correct language identification.

We now proceed formally. In Section 2 and Section 3, we introduce the notation and definitions,

respectively. Section 4 contains the results.

2 Notation

Recursion-theoretic concepts not explained below are treated in [16]. N is the set of natural numbers,

{0, 1, 2, . . .}; N+ is the set of positive integers, {1, 2, 3, . . .}. The symbols a, b, i, j, m, n, s, t, x, and y,

with or without decorations (decorations are subscripts, superscripts and the like), range over natural

numbers unless otherwise specified. ⊆,⊂, denote subset, proper subset, respectively. ∈ denotes ‘element

of.’ ∅ denotes the empty set. A, B, C, D, S range over sets of natural numbers; we usually reserve D

to denote finite sets. We denote the cardinality of the set S by card(S). A∆B denotes the symmetric

difference of A and B, i.e. (A − B) ∪ (B − A). The symbol ∗ denotes ‘finite but unbounded’ such that

(∀n)[n < ∗ < ∞]. For a ∈ N ∪ {∗}, we say that A =a B iff card(A∆B) ≤ a. Thus, A =∗ B means

that card(A∆B) is finite. max( ),min( ) denote the maximum and minimum of a set, respectively. By

convention max(∅) = 0 and min(∅) = ∞.

For a partial recursive function η, domain(η) denotes the domain of η. ↓ denotes defined. ↑ denotes

undefined.

L, with or without decorations, ranges over recursively enumerable (r.e.) subsets of N . E denotes the

class of all r.e. languages. L, with or without decorations, ranges over subsets of E . ϕ denotes a standard

acceptable programming system (also referred to as standard acceptable numbering) [15, 16]. ϕi denotes

the partial recursive function computed by the ith program in the standard acceptable programming

system ϕ. Φ denotes an arbitrary fixed Blum complexity measure [3, 10] for the ϕ-system. Wi denotes

the domain of ϕi. Wi is, then, the r.e. set/language (⊆ N) accepted by ϕ-program i. We also think of

the r.e. index i for Wi as a grammar for accepting Wi. Wi,s denotes the set {x ≤ s | Φi(x) ≤ s}.

FIN denotes the set of all non-empty finite sets. We do not include the empty set in our definition of

FIN to facilitate the presentation of our proof of Theorem 1. Note that an effective canonical indexing

for FIN can be easily obtained. For n ∈ N , ΣC
n and ΠC

n denote the nth level of the Kleene hierarchy

relativized with respect to C [16]. 〈i, j〉 stands for an arbitrary computable one to one encoding of all

pairs of natural numbers onto N [16].

The quantifiers ‘
∞

∀ ’ and ‘
∞

∃ ’ mean ‘for all but finitely many’ and ‘there exist infinitely many’, respec-

tively.
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3 Preliminaries

In this section, we briefly adopt notions and results from the recursion-theoretic machine learning litera-

ture to learning with oracles. We first introduce a notion that facilitates discussion about elements of a

language being fed to a learning machine.

A finite sequence is a mapping from {x | x < a}, for some a ∈ N , into (N ∪ {#}). We let σ and

τ , with or without decorations, range over finite sequences. The content of a finite sequence σ, denoted

content(σ), is the set of natural numbers in the range of σ. Intuitively, #’s represent pauses in the

presentation of data. The length of σ, denoted |σ|, is the number of elements in the domain of σ. σ ⊆ τ

means that σ is an initial sequence of τ . SEQ denotes the set of all finite sequences.

An oracular learning machine is an algorithmic device which has access to a membership oracle and

which computes a mapping from SEQ into N . Without loss of generality, we assume our oracle learning

machines to be total with respect to any oracle. We let M, with or without decorations, range over

oracular learning machines. MA(σ) denotes the hypothesis conjectured by machine M with access to a

membership oracle for A on input σ.

A text T for a language L is a mapping from N into (N ∪ {#}) such that L is the set of natural

numbers in the range of T . The content of a text T , denoted content(T ), is the set of natural numbers in

the range of T . We let T , with or without decorations, range over texts. T (n) denotes the nth element of

text T . T [n] denotes the finite initial sequence of T with length n. Hence, domain(T [n]) = {x | x < n}.

The reader should note that T [n] does not include T (n). σ ⊆ T means that σ is an initial sequence of T .

We now describe three distinct criteria for successful identification of languages from texts.

3.1 Explanatory Language Identification

Suppose M is an oracular learning machine and T is a text. Let A ⊆ N . MA(T )↓ (read: MA(T )

converges) ⇐⇒ (∃i)(
∞

∀ n)[MA(T [n]) = i]. If MA(T )↓, then MA(T ) is defined to be the unique i such

that (
∞

∀ n)[MA(T [n]) = i]; otherwise we say that MA(T ) diverges (written: MA(T )↑).

Definition 1 Let A ⊆ N . Let a ∈ N ∪ {∗}.

1. M OATxtExa-identifies L (written: L ∈ OATxtExa(M)) ⇐⇒

(∀ texts T for L)[MA(T )↓ ∧ WMA(T ) =a L].

2. OATxtExa = {L ⊆ E | (∃M)[L ⊆ OATxtExa(M)]}.

If A is recursive then OATxtExa is the same class as the class TxtExa defined in the literature [6].

OATxtEx0 is usually written OATxtEx.

3.2 Vacillatory Language Identification

We now extend the notion of oracular identification to vacillatory learning [4, 13]. Intuitively, according

to this criteria of success, instead of converging to a single index for the language, the machine converges
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to a finite set of indices, all of which are correct.

We first introduce the notion of an oracular learning machine finitely converging on a text. Let M be

an oracular learning machine and T be a text. Let A ⊆ N . MA(T ) finitely-converges (written: MA(T )⇓)

⇐⇒ {MA(σ) | σ ⊂ T} is finite, otherwise we say that MA(T ) finitely-diverges (written: MA(T )⇑). If

MA(T )⇓, then MA(T ) is defined as P , where P = {i | (
∞

∃ σ ⊂ T )[MA(σ) = i]}.

Definition 2 Let A ⊆ N . Let b ∈ N+ ∪ {∗}. Let a ∈ N ∪ {∗}.

1. M OATxtFexa
b -identifies L (written: L ∈ OATxtFexa

b (M)) ⇐⇒

(∀ texts T for L)(∃P | card(P ) ≤ b ∧ (∀i ∈ P )[Wi =a L])[MA(T )⇓ ∧ MA(T ) = P ].

2. OATxtFexa
b = {L | (∃M)[L ⊆ OATxtFexa

b (M)]}.

If A is recursive then OATxtFexa
b is the same class as the class TxtFexa

b defined in the literature

[13, 4].

3.3 Behaviorally Correct Language Identification

We extend the notion of oracular identification to TxtBca-identification [6, 14, 13].

Definition 3 Let A ⊆ N . Let a ∈ N ∪ {∗}.

1. M OATxtBca-identifies L (written: L ∈ OATxtBca(M)) ⇐⇒

(∀ texts T for L)(
∞

∀ n)[WMA(T [n]) =a L].

2. OATxtBca = {L | (∃M)[L ⊆ OATxtBca(M)]}.

4 Results

4.1 OATxtExa-identification

The following lemma is a relativization of a central result about TxtExa-identification [2, 12].

Lemma 1 Let a ∈ N ∪ {∗}. Let A ⊆ N . If M OATxtExa-identifies L, then there exists a σ such that

1. content(σ) ⊆ L,

2. WMA(σ) =a L, and

3. (∀τ | σ ⊆ τ ∧ content(τ) ⊆ L)[MA(σ) = MA(τ)].

σ is referred to as an OATxtExa-locking sequence for M on L.

Theorem 1 Let a ∈ N . Consider a sequence of sets, A0, A1, A2, . . .. Consider the set, B = {〈i, x〉 | x ∈

Ai ∧ i ∈ N}. Let C be such that {i | Ai is finite } 6∈ ΣC
2 . Then there exists a class of languages L such

that L ∈ OBTxtEx − OCTxtExa.
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Proof. Consider the following languages and classes of languages:

For i ∈ N, S ⊆ N , let

Li,S denote {〈i, x〉 | x ∈ S}

For i ∈ N , let

Li =

{

{Li,N}, if Ai is finite;

{Li,D | D ∈ FIN}, otherwise.

Then, let

L =
⋃

i∈N

Li.

Note that according to our definition FIN consists of all the finite sets except the empty set. We

leave out empty set for ease of writing the proof of Claim 1 below. For D ∈ FIN, let Gi,D denote a

grammar for Li,D such that Gi,D can be found effectively from i and D. Let Gi,N denote a grammar for

Li,N .

Now the theorem follows from Claims 1 and 2 below.

Claim 1 L ∈ OBTxtEx.

Proof. We construct a machine M that OBTxtEx-identifies L. Suppose T is a text for L ∈ L. Then,

M, on seeing the initial sequence T [x], will make use of a number of functions to issue its hypothesis

MB(T [x]). Each of these functions will either be recursive or recursive in B.

It is clear that elements of L are of the form 〈i, n〉 for some fixed i; if Ai is finite then n ranges over

N , else n ranges over some finite set. We refer to i as the key of L. Formally,

key(T [x]) = min({x} ∪ {j | (∃y)[〈j, y〉 ∈ content(T [x])]}).

We now define three functions g1, g2, and g3.

g1(T [x]) = card({y ≤ x | 〈key(T [x]), y〉 ∈ B})

g2(T [x]) = card(content(T [x]))

The information provided by g1 and g2 is collected in the following function g3. If L is Li,N , then

g3(T [x]) is 0 for all but finintely many x. If L is finite, then g3(T [x]) is 1 for all but finitely many x.

Clearly, g3 is recursive in B.

g3(T [x]) =

{

1, if g1(T [x]) ≥ g2(T [x]);

0, otherwise.

It is easy to verify that the following two statements summarize the properties of g1, g2, and g3.

1. Ai is finite ⇐⇒ L = Li,N ⇐⇒ (
∞

∀ x)[g2(T [x]) > g1(T [x])] ⇐⇒ (
∞

∀ x)[g3(T [x]) = 0].
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2. Ai is infinite ⇐⇒ L = Li,D for some D ∈ FIN ⇐⇒ (
∞

∀ x)[g1(T [x]) ≥ g2(T [x])] ⇐⇒

(
∞

∀ x)[g3(T [x]) = 1].

Now, let M be defined as follows:

MB(T [x]) =

{

Gkey(T [x]),N , if g3(T [x]) = 0 ;

Gkey(T [x]),D, if g3(T [x]) = 1 ∧ D = {x | 〈key(T [x]), x〉 ∈ content(T [x])}.

It is easy to verify that M indeed OBTxtEx-identifies L. 2

Claim 2 L 6∈ OCTxtExa.

Proof. Suppose by way of contradiction L ∈ OCTxtExa. Then, we show that the set {i | Ai is finite

} ∈ ΣC
2 . Suppose M OCTxtExa-identifies L.

Let i ∈ N . Recall that Li = {Li,N} if Ai is finite. Thus, by Lemma 1, there is an OCTxtExa-locking

sequence for M on Li,N if Ai is finite. On the other hand, if Ai is infinite, then for every σ such that

content(σ) ⊆ Li,N , there exist infinitely many L ∈ Li such that L 6=a WM(σ). Thus we have,

Ai is finite ⇐⇒ (∃σ | content(σ) ⊆ Li,N )(∀τ | σ ⊆ τ ∧ content(τ) ⊆ Li,N )[MC(σ) = MC(τ)].

Thus, {i | Ai is finite } ∈ ΣC
2 . A contradiction. 2

(Theorem 1)

We would like to note that the above theorem can be extended to show that there exists a class of

languages L′ such that L′ ∈ OBTxtEx − OCTxtEx∗. A proof can be worked out on the lines of the

above proof by taking L′ to be a cylindrification of L. We leave details to the reader.

The following Corollary is essentially a restatement of Osherson, Stob and Weinstein’s result that

E cannot be TxtEx∗-identified by even noncomputable learning machines [12]. Osherson, Stob, and

Weinstein’s proof follows from their observation that Blum and Blum’s [2] locking sequence construction

also holds for noncomputable devices.

Corollary 1 (∀A)[E 6∈ OATxtEx∗].

The following Corollary says that there doesn’t exist a maximal inference degree for TxtExa-identification.

Corollary 2 Let a ∈ N ∪ {∗}. (∀A)(∃B)[OATxtExa ⊂ OBTxtExa].

Kummer and Stephan [11] have recently refined our result.

4.2 OATxtFexa
b -identification

We now show that an analog of Theorem 1 holds for OATxtFexa
b -identification. As in the case of

Theorem 1, we only give a proof of the cases where a ∈ N ; the a = ∗ case can similarly be obtained by

considering a cylindrification of class used in the proof of other cases. But first, we present the following

lemma, which is a relativization of a result about TxtFexa
b -identification [13, 4].
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Lemma 2 Let A ⊆ N . Let a ∈ N ∪ {∗}. Let b ∈ N+ ∪ {∗}. If M OATxtFexa
b -identifies L, then there

exists a σ ∈ SEQ and D ∈ FIN such that

1. content(σ) ⊆ L,

2. card(D) ≤ b ∧ (∀i ∈ D)[Wi =a L], and

3. (∀τ | σ ⊆ τ ∧ content(τ) ⊆ L)[MA(τ) ∈ D].

Theorem 2 Let a ∈ N . Consider a sequence of sets, A0, A1, A2, . . .. Consider the set, B = {〈i, x〉 | x ∈

Ai ∧ i ∈ N}. Let C be such that {i | Ai is finite } 6∈ ΣC
2 . Then there exists a class of languages L such

that L ∈ OBTxtEx − OCTxtFexa
∗
.

Proof. Consider the collection of languages L from the proof of Theorem 1. We only need to show that

L 6∈ OCTxtFexa
∗
.

Suppose by way of contradiction, L ∈ OCTxtFexa
∗
. We show that {i | Ai is finite } ∈ ΣC

2 . Suppose

M OCTxtFexa
∗
-identifies L. Now, using Lemma 2 and proceeding as in the proof of Claim 2, we have, Ai

is finite ⇐⇒ (∃σ | content(σ) ⊆ Li,N )(∃ a finite set D)(∀τ | σ ⊆ τ ∧ content(τ) ⊆ Li,N )[MC(τ) ∈ D].

Thus, {i | Ai is finite } ∈ ΣC
2 . A contradiction.

As already stated, we leave it to the reader to extend the above result for the a = ∗ case. The

following corollary is essentially a restatement of Osherson, Stob and Weinstein’s result that E cannot be

TxtFex∗

∗
-identified by even noncomputable learning machines [12].

Corollary 3 (∀A)[E 6∈ OATxtFex∗

∗
].

The following corollary says that there doesn’t exist a maximal inference degree for TxtFexa
b -identification.

Corollary 4 Let a ∈ N ∪ {∗}. Let b ∈ N+ ∪ {∗}. (∀A)(∃B)[OATxtFexa
b ⊂ OBTxtFexa

b ].

4.3 OATxtBca-identification

We now show that a similar result also holds for behaviorally correct language identification. The following

lemma is a relativized version of a result about TxtBca-identification [13, 6].

Lemma 3 If M OATxtBca-identifies L, then there exists a σ such that

1. content(σ) ⊆ L,

2. WMA(σ) =a L, and

3. (∀τ | σ ⊆ τ ∧ content(τ) ⊆ L)[WMA(τ) =a L].

Theorem 3 Consider a sequence of sets, A0, A1, A2, . . .. Consider the set, B = {〈i, x〉 | x ∈ Ai ∧ i ∈

N}. Let C be such that {i | Ai is finite } 6∈ ΣC
3 . Then there exists a class of languages L such that

L ∈ OBTxtEx − OCTxtBc∗.
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Proof. Again, consider the collection of languages L from the proof of Theorem 1. We only need to

show that L 6∈ OCTxtBc∗.

Suppose by way of contradiction, L ∈ OCTxtBc∗. We then show that {i | Ai is finite } ∈ ΣC
3 .

Suppose M OCTxtBc∗-identifies L. Now, Ai is finite implies M OCTxtBc∗-identifies Li,N , which

implies (by Lemma 3) that

(∃σ | content(σ) ⊆ Li,N )(∀τ | σ ⊆ τ ∧ content(τ) ⊆ Li,N )[WMC(τ) =∗ Li,N ],

which in turn implies that

(∃σ | content(σ) ⊆ Li,N )(∀τ | σ ⊆ τ ∧ content(τ) ⊆ Li,N )[WMC(τ) is infinite].

Also,

(∃σ | content(σ) ⊆ Li,N )(∀τ | σ ⊆ τ ∧ content(τ) ⊆ Li,N )[WMC(τ) is infinite]

implies that M does not OCTxtBc∗-identify any Li,D such that content(σ) ⊆ Li,D, thereby implying

that Ai is finite.

Thus, we have,

Ai is finite ⇐⇒ (∃σ | content(σ) ⊆ Li,N )(∀τ | σ ⊆ τ ∧ content(τ) ⊆ Li,N )[WMC(τ) is infinite].

Now, it is easy to see that [WMC(τ) is infinite ] is ΠC
2 (since, [WMC(τ) is infinite ] ⇐⇒ (∀m)(∃n >

m)(∃t)[n ∈ WMC(τ),t]). Hence, {i | Ai is finite } ∈ ΣC
3 . A contradiction.

The following corollary is essentially a restatement of Osherson, Stob and Weinstein’s result that E

cannot be TxtBc∗-identified by even noncomputable learning machines [12].

Corollary 5 (∀A)[E 6∈ OATxtBc∗].

The following corollary says that there doesn’t exist a maximal inference degree for TxtBca-identification.

Corollary 6 Let a ∈ N ∪ {∗}. (∀A)(∃B)[OATxtBca ⊂ OBTxtBca].
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