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Abstract

The present paper motivates the study of mind change complexity for learning min-
imal models of length-bounded logic programs. It establishes ordinal mind change
complexity bounds for learnability of these classes both from positive facts and from
positive and negative facts.

Building on Angluin’s notion of finite thickness and Wright’s work on finite elas-
ticity, Shinohara defined the property of bounded finite thickness to give a sufficient
condition for learnability of indexed families of computable languages from positive
data. This paper shows that an effective version of Shinohara’s notion of bounded
finite thickness gives sufficient conditions for learnability with ordinal mind change
bound, both in the context of learnability from positive data and for learnability
from complete (both positive and negative) data.

Let ω be a notation for the first limit ordinal. Then, it is shown that if a language
defining framework yields a uniformly decidable family of languages and has effective
bounded finite thickness, then for each natural number m > 0, the class of languages
defined by formal systems of length ≤ m:

• is identifiable in the limit from positive data with a mind change bound of ωm;

• is identifiable in the limit from both positive and negative data with an ordinal
mind change bound of ω ×m.

The above sufficient conditions are employed to give an ordinal mind change
bound for learnability of minimal models of various classes of length-bounded Prolog
programs, including Shapiro’s linear programs, Arimura and Shinohara’s depth-
bounded linearly-covering programs, and Krishna Rao’s depth-bounded linearly-
moded programs. It is also noted that the bound for learning from positive data is
tight for the example classes considered.
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1 Motivation and Introduction

Machine learning in the context of first-order logic and its subclasses can be
traced back to the work of Plotkin [Plo71] and Shapiro [Sha81]. In recent years,
this work has evolved into the very active field of Inductive Logic Program-
ming (ILP). Numerous practical systems have been built to demonstrate the
feasibility of learning logic programs as descriptions of complex concepts. The
utility of these systems has been demonstrated in many domains including
drug design, protein secondary structure prediction, and finite element mesh
design (see Muggleton and DeRaedt [MDR94], Lavrac and Dzeroski [LD94],
Bergadano and Gunetti [BG96], and Nienhuys-Cheng and de Wolf [NCdW97]
for a survey of this field).

Together with practical developments, there has also been some interest in
deriving learnability theorems for ILP. Several results in the PAC setting have
been established; we refer the reader to Dzeroski, Muggleton, and Russell
[DMR92a] [DMR92b], Cohen [Coh95a,Coh95b,Coh95c], De Raedt and Dze-
roski [DRD94], Haussler [Hau89], Frisch and Page [FP91], Yamamoto [Yam93],
Kietz [Kie93], and Maass and Turán [MT96].

Insights about which classes of logic programs are suitable as hypothesis spaces
from the learnability perspective are likely to be very useful to ILP. Unfor-
tunately, the few positive results that have been demonstrated in the PAC
setting are for very restricted classes of logic programs. Hence, it is useful to
consider more general models to analyze learnability of logic programs. 1 In
the present paper, we develop tools to investigate identifiability in the limit
with “mind change bounds” of minimal models of logic programs.

The first identification in the limit result about learnability of logic programs
is due to Shapiro [Sha81]. He showed that the class of h-easy models is iden-
tifiable in the limit from both positive and negative facts. Adapting the work
on learnability of subclasses of elementary formal systems 2 , Shinohara [Shi91]

1 The learnability analysis of ILP in the learning by query model is able to overcome
some of the restrictive nature of the PAC model by allowing the learner queries to
an oracle. For examples of such analysis, see Khardon [Kha98] and Krishna-Rao
and Sattar [KRS98].
2 Arikawa [Ari70] adapted Smullyan’s [Smu61] elementary formal systems (EFS)
for investigation of formal languages. Later, Arikawa et al. [ASY92] showed that
EFS can be viewed as a logic programming language over strings. Recently, various
subclasses of EFS have been investigated in the context of learnability (e.g., see
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showed that the class of minimal models of linear Prolog programs consist-
ing of at most m clauses is identifiable in the limit from only positive facts.
Unfortunately, linear logic programs are very restricted as they do not even
allow local variables (i.e., each variable in the body must appear in the head).
Arimura and Shinohara [AS94] introduced a class of linearly-covering logic
programs that allows local variables in a restricted sense. They showed that
the class of minimal models of linearly-covering Prolog programs consisting of
at most m clauses of bounded body length is identifiable in the limit from only
positive facts. Krishna Rao [KR96] noted that the class of linearly-covering
programs is very restrictive as it did not even include the standard programs
for reverse, merge, split, partition, quick-sort, and merge-sort. He pro-
posed the class of linearly-moded programs that included all these standard
programs and showed the class of minimal models of such programs consisting
of at most m clauses of bounded body length to be identifiable in the limit
from positive facts.

While the above results are positive, it may be argued that the model is too
general as the number of mind changes allowed is unbounded. Some authors
have considered a polynomial time bound on the update of hypotheses in the
identification in the limit setting. However, this restriction may not be very
meaningful if the number of mind changes (and consequently the number of
updates) is unbounded. Recently, a number of approaches for modeling mind
change bounds have been proposed [FS93,JS97,AJS97,Amb95,SSV97,AFS96].
The present paper employs constructive ordinals as mind change counters to
model the mind change complexity of learning classes of logic programs in
identification in the limit setting. We illustrate this notion in the context of
identification in the limit of languages from positive data.

TxtEx denotes the collection of language classes that can be identified in the
limit from positive data. An obvious approach to bounding the number of mind
changes is to require that the learning machine makes no more than a constant
number of mind changes. This approach of employing natural numbers as mind
change bounds was first considered by Bārzdiņš and Podnieks [BP73] (see also
Case and Smith [CS83]). For each natural number m, TxtExm denotes the
set of language classes that can be identified in the limit from positive data
with no more than m mind changes. However, a constant mind change bound
has several drawbacks:

• it places the same bound on each language in the class irrespective of its
“complexity”;
• it does not take into account scenarios in which a learner, after examining an

element of the language, is in a position to issue a bound on the number of
mind changes (i.e., the learner computes and updates mind change bounds

Shinohara [Shi91,Shi94]).
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based on the incoming data).

To model situations where a mind change bound can be derived from data
and updated as more data becomes available, constructive ordinals have been
employed as mind change counters by Freivalds and Smith [FS93], and by Jain
and Sharma [JS97]. We describe this notion next.

TxtExα denotes the set of language classes that can be identified in the limit
from positive data with an ordinal mind change bound α. We illustrate the
interpretation of this notion with a few examples. Let ω denote a notation
for the least limit ordinal. Then a mind change bound of α ≺ ω is the earlier
notion of mind change identification where the bound is a natural number.
For α = ω, TxtExω denotes learnable classes for which there exists a machine
which, by the time it has made its first mind change, has also announced an
upper bound on the number of mind changes it will make before the onset of
successful convergence. Angluin’s [Ang80b,Ang80a] class of pattern languages
is a member of TxtExω. Proceeding on, the class TxtExω×2 contains classes
for which there is a learning machine that, as above, announces an upper
bound on the number of mind changes, but reserves the right to revise its
upper bound once. In TxtExω×3, the machine reserves the right to revise
its upper bound twice, and in TxtExω×3+1, the machine can make upto one
extra mind change before it conjectures an upper bound (which it is allowed
to revise twice). TxtExω2 contains classes for which the machine announces
an upper bound on the number of times it may revise its conjectured upper
bound on the number of mind changes, and so on.

The notion of ordinal mind change bound has been employed to give learnabil-
ity results for unions of pattern languages and subclasses of elementary formal
systems (see [JS97,AJS97]). In the present paper, we generalize these results
to establish a sufficient condition for learnability with ordinal mind change
bounds and apply the results to obtain mind change bounds for learning sub-
classes of length-bounded logic programs. We discuss this sufficient condition
briefly.

Let U be a recursively enumerable set of objects. A language is any subset of
U ; a typical variable for languages is L. Let R be a recursively enumerable
set of rules (these could be productions in the context of formal languages
or clauses in the context of logic programs). A finite subset of R is referred
to as a formal system; a typical variable for formal systems is Γ. Let Lang

be a mapping from the set of formal systems to languages. For technical con-
venience, we assume that Lang(∅) = ∅. We call the triple 〈U,R,Lang〉 a
language defining framework. In the sequel, we only consider those language
defining frameworks for which the class {Lang(Γ) | Γ is a finite subset of
R} is a uniformly decidable family of computable languages. Furthermore, we
suppose that a decision procedure for Lang(Γ) can be found effectively from
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Γ.

A semantic mapping from formal systems to languages is monotonic just in
case Γ ⊂ Γ′ implies Lang(Γ) ⊆ Lang(Γ′). A formal system Γ is said to be
reduced with respect to a finite X ⊆ U just in case X is contained in Lang(Γ)
but not in any language defined by a proper subset of Γ. We assume, without
loss of generality for this paper, that for all finite sets X ⊆ U , there exists a
finite Γ ⊆ R, such that X ⊆ Lang(Γ).

Building on Angluin’s [Ang80b] work on finite thickness and Wright’s [Wri89]
work on finite elasticity, Shinohara [Shi91] defined a language defining frame-
work to have bounded finite thickness just in case

(a) it is monotonic and
(b) for each finite X ⊆ U and for each natural number m > 0, the set of

languages defined by formal systems that
(i) are reduced with respect to X and
(ii) that are of cardinality ≤ m,

is finite. He showed that if a language defining framework has bounded finite
thickness, then for each m > 0, the class of languages definable by formal
systems of cardinality ≤ m is identifiable in the limit from positive data.

The present paper places a further requirement on Shinohara’s notion of
bounded finite thickness to derive sufficient conditions for learnability with
mind change bounds. A language defining framework is said to have effective
bounded finite thickness just in case the set of formal systems that are reduced
with respect to X in the definition of bounded finite thickness can be obtained
effectively in X. We show that the notion of effective bounded finite thickness
gives an ordinal mind change bound for both learnability from positive data
and for learnability from positive and negative data. In particular, we establish
that if a language defining framework has effective bounded finite thickness,
then for each natural number m > 0, the class of languages defined by formal
systems of cardinality ≤ m:

• is identifiable in the limit from positive data with an ordinal mind change
bound of ωm;
• is identifiable in the limit from both positive and negative data with an

ordinal mind change bound of ω ×m.

We employ the above results to give mind change bounds for the following
classes of Prolog programs:

(a) Shapiro’s linear logic programs (similar result can be shown for the class
of hereditary logic programs [MSS91,MSS93] and reductive logic pro-
grams [KR96]);

5



(b) Krishna Rao’s linearly-moded logic programs with bounded body length
(similar result holds for Arimura and Shinohara’s linearly-covering logic
programs with bounded body length [AS94]).

In the sequel we proceed as follows. Section 2 introduces the preliminaries of
ordinal mind change identification. Section 3 establishes sufficient condition
for learnability with ordinal mind change bound for both positive data and
positive and negative data. In Section 4, we introduce preliminaries of logic
programming and apply the results from Section 3 to establish mind change
bounds for learnability of minimal models of various subclasses of length-
bounded Prolog programs.

2 Ordinal Mind Change Identification

N denotes the set of natural numbers, {0, 1, 2, . . .}. Any unexplained recursion
theoretic notation is from [Rog67]. Cardinality of a set S is denoted card(S).
The maximum and minimum of a set are represented by max(·) and min(·),
respectively. The symbols ⊆,⊇,⊂,⊃, and ∅ respectively stand for subset, su-
perset, proper subset, proper superset, and the emptyset. Λ denotes the empty
sequence.

Definition 1 A class of languages L = {Li | i ∈ N} is a uniformly decidable
family of computable languages just in case there exists a computable function
f such that for each i ∈ N and for each x ∈ U ,

f(i, x) =
{

1, if x ∈ Li,
0, otherwise.

As noted in the introduction, we only consider uniformly decidable families of
computable languages. In the next three definitions we introduce texts (posi-
tive data presentation), informants (positive and negative data presentation),
and learning machines.

Definition 2 [Gol67]

(a) A text T is a mapping from N into U ∪ {#}. (The symbol # models
pauses in data presentation.)

(b) content(T ) denotes the intersection of U and the range of T .
(c) A text T is for a language L iff L = content(T ).
(d) The initial sequence of text T of length n is denoted T [n].
(e) The set of all finite initial sequences of U and #’s is denoted SEQ. We

let σ and τ range over SEQ.
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Definition 3 [Gol67]

(a) An informant I is an infinite sequence over U ×{0, 1} such that for each
x ∈ U either (x, 1) or (x, 0) (but not both) appear in the sequence.

(b) I is an informant for L iff (x, 1) appears in I if x ∈ L and (x, 0) appears
in I if x 6∈ L.

(c) I[n] denotes the initial sequence of informant I with length n.
(d) content(I) = {(x, y) | (x, y) appears in sequence I}; content(I[n]) is

defined similarly.
(e) PosInfo(I[n]) = {x | (x, 1) ∈ content(I[n])}; NegInfo(I[n]) = {x | (x, 0) ∈

content(I[n])}.
(f) InfSEQ = {I[n] | I is an informant for some L ⊆ U}. We let σ and τ also

range over InfSEQ.

We let σ ⊆ τ denote “σ is an initial sequence of τ .”

Definition 4 Let F denote the set of all formal systems.

(a) A learning machine from texts (informants) is an algorithmic mapping
from SEQ (InfSEQ) into F∪{?}. A typical variable for learning machines
is M.

(b) M is said to converge on text T to Γ (written: M(T ) converges to Γ or
M(T )↓ = Γ) just in case for all but finitely many n, M(T [n]) = Γ. A
similar definition holds for informants.

A conjecture of “?” by a machine is interpreted as “no guess at this moment.”
This is useful to avoid biasing the number of mind changes of a machine. For
this paper, we assume, without loss of generality, that σ ⊆ τ and M(σ) 6=?
implies M(τ) 6=?.

We next introduce ordinals as models for mind change counters. We assume a
fixed notation system, O, and partial ordering of ordinal notations as used by,
for example, Kleene [Kle38,Rog67,Sac90]. �,≺,� and � on ordinal notations
below refer to the partial ordering of ordinal notations in this system. We do
not go into the details of the notation system used, but instead refer the reader
to [Kle38,Rog67,Sac90,CJS95,FS93]. In the sequel, we are somewhat informal
and use m ∈ N as notation for the corresponding ordinals. We let + and ×
also denote the addition and multiplication over ordinals.

Definition 5 F, an algorithmic mapping from SEQ (or InfSEQ) into ordinal
notations, is an ordinal mind change counter function just in case (∀σ ⊆
τ)[F(σ) � F(τ)].

Definition 6 [FS93,JS97] Let α be an ordinal notation.

(a) We say that M, with associated ordinal mind change counter function
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F, TxtExα-identifies a text T just in case the following three conditions
hold:
(i) M(T )↓ = Γ and Lang(Γ) = content(T ),
(ii) F(Λ) = α, and
(iii) (∀n)[? 6= M(T [n]) 6= M(T [n + 1])⇒ F(T [n]) � F(T [n + 1])].

(b) M, with associated ordinal mind change counter function F, TxtExα-
identifies L (written: L ∈ TxtExα(M,F)) just in case M, with associated
ordinal mind change counter function F, TxtExα-identifies each text for
L.

(c) TxtExα = {L | (∃M,F)[L ⊆ TxtExα(M,F)]}.

Definition 7 [FS93,AJS97] Let α be an ordinal notation.

(a) We say that M, with associated ordinal mind change counter function F,
InfExα-identifies an informant I just in case the following three condi-
tions hold:
(i) M(I)↓ = Γ and Lang(Γ) = PosInfo(I),
(ii) F(Λ) = α, and
(iii) (∀n)[? 6= M(I[n]) 6= M(I[n + 1])⇒ F(I[n]) � F(I[n + 1])].

(b) M, with associated ordinal mind change counter function F, InfExα-
identifies L (written: L ∈ InfExα(M,F)) just in case M, with associated
ordinal mind change counter function F, InfExα-identifies each informant
for L.

(c) InfExα = {L | (∃M,F)[L ⊆ InfExα(M,F)]}.

We refer the reader to Ambainis [Amb95] for a discussion on how the learn-
ability classes depend on the choice of the ordinal notation.

3 Conditions for learnability with mind change bound

We now formally define what it means for a language defining framework to
have the property of effective bounded finite thickness. Recall that a semantic
mapping Lang is monotonic just in case for any two formal systems Γ and
Γ′, Γ ⊆ Γ′ ⇒ Lang(Γ) ⊆ Lang(Γ′). Also, recall from the introduction that
we only consider language defining frameworks that yield uniformly decidable
families of computable languages.

Definition 8 Let 〈U,R,Lang〉 be a language defining framework such that
Lang is monotonic. For any X ⊆ U , let

GenX
def
= {Γ | Γ ⊆ R ∧ card(Γ) <∞ ∧ X ⊆ Lang(Γ)},

MinX
def
= {Γ ∈ GenX | (∀Γ

′ ∈ GenX)[Γ′ 6⊂ Γ]},
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and
Minm

X

def
= {Γ ∈ MinX | card(Γ) ≤ m}.

〈U,R,Lang〉 is said to have effective m-bounded finite thickness just in case
for all finite X ⊆ U , Minm

X is finite and can be obtained effectively in X (i.e.,
there are functions, recursive in X, for enumerating Minm

X , and for finding
cardinality of Minm

X).

〈U,R,Lang〉 is said to have effective bounded finite thickness just in case it
has effective m-bounded finite thickness for each m ∈ N .

Note that MinX =
⋃

m Minm
X . Also, if 〈U,R,Lang〉 has effective (m + 1)-

bounded finite thickness, then it has effective m-bounded finite thickness.

Proposition 9 Suppose X ⊆ X ′ ⊆ U , such that MinX′ is nonempty. Then,
MinX is not empty, and for every Γ′ ∈ MinX′ , there exists a Γ ∈ MinX such
that Γ ⊆ Γ′.

Proof. Suppose Γ′ ∈ MinX′ . Then clearly, X ⊆ X ′ ⊆ Lang(Γ′). Since Γ′

is finite, there exists a finite subset Γ of Γ′ such that X ⊆ Lang(Γ), but
X 6⊆ Lang(Γ′′) for any Γ′′ ⊂ Γ. It follows that Γ ∈ MinX .

Proposition 10 Suppose X ⊆ U , such that MinX is nonempty. Then, for
any Γ ∈ MinX , there exists a finite X ′ ⊆ X such that Γ ∈ MinX′.

Proof. Proposition is trivial for finite X. So let X be infinite. Let Γ ∈
MinX . Let x0, x1, . . . be a listing of elements of X. Let Si = {Γ′ | Γ′ ⊆ Γ ∧
{x0, . . . , xi} ⊆ Lang(Γ′)}. Note that each Si is nonempty (since Γ belongs to
every Si). Moreover, Si ⊇ Si+1. Thus, limi→∞ Si converges to a set S. Now,
for every Γ′ ∈ S, X ⊆ Lang(Γ′) (by definition of Si). Thus, S = {Γ} (since
Γ ∈ MinX).

Let i be such that S = Si. Hence, it follows that {x0, . . . , xi} ⊆ X ⊆ Lang(Γ),
and for all Γ′ ⊂ Γ, {x0, . . . , xi} 6⊆ Lang(Γ′) (by definition of Si). It follows
that Γ ∈ Min{x0,...,xi}.

3.1 Learnability from positive data

We now show that if a language defining framework has effective m-bounded
finite thickness then the class of languages defined by formal systems of car-
dinality ≤ m can be TxtExωm-identified. This result is a generalization of a
lemma from [JS97]. To state this result, we need some technical machinery
which we describe next.
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Definition 11 A search tree is a finite labeled rooted tree. We denote the
label of node, v, in search tree H by CH(v).

Intuitively, the labels on the nodes are formal systems. We next introduce a
partial order on search trees.

Definition 12 Suppose H1 and H2 are two search trees. We say that H1 � H2

just in case the following properties are satisfied:

(A) the root of H1 has the same label as the root of H2;

(B) H1 is a labeled subgraph of H2; and

(C) all nodes of H1, except the leaves, have exactly the same children in both
H1 and H2.

Essentially, H1 � H2 means that H2 is obtained by attaching some (possibly
empty) trees to some of the leaves of the search tree H1. It is helpful to
formalize the notion of depth of a search tree as follows: the depth of the root
is 0; the depth of a child is 1 + the depth of the parent; and the depth of a
search tree is the depth of its deepest leaf.

Q, an algorithmic mapping from SEQ to search trees, is called an m-Explorer

iff the following properties are satisfied:

(A) σ ⊆ τ ⇒ Q(σ) � Q(τ);

(B) (∀σ)[depth(Q(σ)) ≤ m]; and

(C) for all T , Q(T )↓, i.e., (
∞

∀ n)[Q(T [n]) = Q(T [n + 1])].

(The reader should note that (C) is actually implied by (A) and (B); (C) has
been included to emphasize the point.)

We can now state the lemma from [JS97] that links the existence of an m-
Explorer to TxtExωm-identification.

Lemma 13 Suppose Q is an m-Explorer. Then there exists a machine M and
an associated ordinal mind change counter F such that the following properties
are satisfied:

(A) (∀ texts T )[M(T )↓];

(B) F(Λ) = ωm; and

(C) if there exists a node v in Q(T ) such that Lang(CQ(T )(v)) = content(T ),
then M, with associated mind change counter F, TxtExwm-identifies T .
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We now establish a theorem that bridges Lemma 13 with the notion of effective
bounded finite thickness and TxtExωm-identifiability.

Theorem 14 Suppose m > 0. Let 〈U,R,Lang〉 be a language defining frame-
work which has effective m-bounded finite thickness. Let

Lm def
= {Lang(Γ) | Γ ⊆ R ∧ card(Γ) ≤ m}.

Then Lm ∈ TxtExωm.

Proof. Fix m > 0, and assume the hypothesis. We construct an m-Explorer

Q as follows. Let T be a text. Let Q(Λ) be just a root with label ∅. Q(T [n+1])
is obtained from Q(T [n]) as follows. For each leaf v in Q(T [n]) with label Γ
such that depth(v) < m and content(T [n + 1]) 6⊆ Lang(Γ), do the following:

for each Γ′ ∈ Minm
content(T [n+1]), such that Γ ⊂ Γ′, add a child to v with label

Γ′.

It is easy to verify that Q is an m-Explorer. Also note that if node u is a parent
of node v in Q(T [n]), where label on node u is Γ and label on node v is Γ′,
then Γ ⊂ Γ′, and in particular card(Γ) < card(Γ′). Thus, label of a node at
depth d in Q(T [n]), must have cardinality at least d.

We now claim, inductively on n, that

(∀Γ ∈ Minm
content(T [n]))[Γ is a label of some leaf in Q(T [n])].

For n = 0, clearly, Minm(Λ) = {∅}, and ∅ is the label of the root (which is also
a leaf) of Q(Λ).

Suppose the induction hypothesis holds for n = k. We show that the induction
hypothesis holds for n = k + 1. Consider any element Γ of Minm

content(T [k+1]).
Let Γ′ ∈ Minm

content(T [k]) be such that Γ′ ⊆ Γ (by Proposition 9, there exists
such a Γ′). Now, either

(A) Γ′ = Γ is a leaf of both Q(T [k]) and Q(T [k + 1]) or

(B) Lang(Γ′) does not contain content(T [k + 1]), card(Γ′) < card(Γ) ≤ m,
and thus, in construction of Q(T [k + 1]), a node with label Γ would be added
to each leaf with label Γ′ in Q(T [k]) (there exists at least one such leaf by the
induction hypothesis).

Thus, induction hypothesis holds for n = k + 1. It thus follows by Proposi-
tion 10 that, for L ∈ Lm, for any text T for L, every Γ in Minm

L , is a leaf of
Q(T ). The theorem now follows from Lemma 13.
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Corollary 15 Let 〈U,R,Lang〉 be a language defining framework which has
effective bounded finite thickness. For each m > 0, let

Lm def
= {Lang(Γ) | Γ ⊆ R ∧ card(Γ) ≤ m}.

Then Lm ∈ TxtExωm.

The above theorem’s proof gives a new algorithm for learning the classes
discussed in Section 4. Previous learnability results for these classes relied on
Angluin’s algorithm [Ang80b]. It should be noted that the same technique
was used in [JS97] to show that language classes formed by taking union of
at most n pattern languages and language classes formed by using at most n

clauses of length bounded elementary formal systems [ASY92,Shi94] belong
to TxtExωn.

3.2 Learnability from positive and negative data

In this section we show that if a language defining framework has effective
bounded finite thickness then the class of languages defined by formal systems
of cardinality≤ m can be InfEx-identified with an ordinal mind change bound
of ω ×m. This result is a generalization of a result about unions of pattern
languages from [AJS97]. We first introduce some technical machinery.

Let Pos ⊆ U and Neg ⊆ U be two disjoint finite sets such that Pos 6= ∅. Then
let

Z
Pos,Neg
i

def
= {Γ ⊆ R | card(Γ) = i ∧ [Pos ⊆ Lang(Γ)] ∧ [Neg ⊆ U−Lang(Γ)]}.

The next lemma and corollary shed light on computation of Z
Pos,Neg
i .

Lemma 16 Suppose i ∈ N . Let 〈U,R,Lang〉 be a language defining frame-
work with effective (i+1)-bounded finite thickness. Let Pos 6= ∅ and Neg be two
disjoint finite subsets of U . Suppose (∀j ≤ i)[ZPos,Neg

j = ∅]. Then, Z
Pos,Neg
i+1 can

be computed effectively from Pos and Neg. (Note that Z
Pos,Neg
i+1 must be finite

in this case!)

Proof. Let Pos, Neg, and i be as given in the hypothesis of the lemma.

We claim that Z
Pos,Neg
i+1 ⊆ {Γ | Γ ∈ Mini+1

Pos}. To see this, suppose Γ ∈ Z
Pos,Neg
i+1 .

Clearly, Pos ⊆ Lang(Γ). Suppose there exists a Γ′ ⊂ Γ such that Pos ⊆
Lang(Γ′). Then, clearly, Lang(Γ′) ⊆ Lang(Γ). Thus, Neg∩Lang(Γ′) ⊆ Neg∩
Lang(Γ) = ∅. Thus, Γ′ ∈ Z

Pos,Neg

card(Γ′), a contradiction to the hypothesis of the

lemma. Thus, for all Γ′ ⊂ Γ, Pos 6⊆ Lang(Γ′). Thus, Γ ∈ Mini+1
Pos .

It follows that Z
Pos,Neg
i+1 = {Γ ∈ Mini+1

Pos | Neg ∩ Lang(Γ) = ∅}.
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Since Mini+1
Pos is obtainable effectively from Pos, it follows that Z

Pos,Neg
i+1 is ob-

tainable effectively from Pos and Neg.

Corollary 17 Suppose m > 0, m ∈ N . Let 〈U,R,Lang〉 be a language defin-
ing framework with effective m-bounded finite thickness. Let Pos 6= ∅ and Neg

be two disjoint finite subsets of U . Then, effectively from Pos, Neg one can
determine i = min({i | ZPos,Neg

j 6= ∅} ∪ {m + 1}), and corrsponding Z
Pos,Neg
i

(which must be finite).

Proof. Note that Lang(∅) is empty. The corollary now follows by repeated
use of Lemma 16 until one finds an i such that Z

Pos,Neg
i 6= ∅ or discovers that

ZPos,Neg
m = ∅.

We now show our result for identification with ordinal mind change bound
from informants.

Theorem 18 Suppose m > 0. Let 〈U,R,Lang〉 be a language defining frame-
work with effective m-bounded finite thickness. Let

Lm def
= {Lang(Γ) | Γ ⊆ R ∧ card(Γ) ≤ m}.

Then Lm ∈ InfExω×m.

Proof. Fix m. Let I be an informant. Then for n ∈ N , M(I[n]) and F(I[n])
are defined as follows.

Let Pos = PosInfo(I[n]) and Neg = NegInfo(I[n]).

If Pos = ∅, then M(I[n]) =? and F(I[n]) = ω ×m.

If Pos 6= ∅, then let j = min({j ′ | ZPos,Neg
j′ 6= ∅} ∪ {m + 1}). Note that j (and

corresponding Z
Pos,Neg
j ) can be found effectively from I[n], using Corollary 17.

Now define M(I[n]) and F(I[n]) based on the following cases.

If j > m, then let M(I[n]) = M(I[n− 1]), and F(I[n]) = F(I[n− 1]).

If j ≤ m, then let M(I[n]) = Γ, where Γ is the lexicographically least el-
ement in Z

Pos,Neg
j , and let F(I[n]) = ω × k + `, where k = m − j, and

` = card(ZPos,Neg
j )− 1.

It is easy to verify that M,F witness that Lm ∈ InfExω×m.

Corollary 19 Let 〈U,R,Lang〉 be a language defining framework with effec-
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tive bounded finite thickness. For m > 0, let

Lm def
= {Lang(Γ) | Γ ⊆ R ∧ card(Γ) ≤ m}.

Then Lm ∈ InfExω×m.

4 Classes of logic programs

In this section, we describe the application of Theorem 14 (and of Theorem 18)
to certain classes of logic programs. These classes are known to have bounded
finite thickness. It turns out that the proof of bounded finite thickness can
easily be modified to show effective bounded finite thickness. However, for the
sake of completeness, we present the definitions and the results for two repre-
sentative classes. We first describe the preliminaries from logic programming;
the reader is referred to Lloyd [Llo87] for any unexplained notation.

Let Π, Σ,X be mutually disjoint sets such that Π and Σ are finite. Π is the
set of predicate symbols, Σ is the set of function symbols, and X is the set of
variables. The arity of a function or a predicate symbol p is denoted arity(p).
The set of terms constructed from the function symbols in Σ and variables in
X is denoted Terms(Σ,X ). Atoms(Π, Σ,X ) denotes the set of atoms formed
from predicate symbols in Π and terms in Terms(Σ,X ). The set of ground
atoms for a predicate symbol p, then is Atoms({p}, Σ, ∅); we denote this set
by B(p). The size of a term t, denoted |t|, is the number of symbols other than
punctuation symbols in t. The body length of a definite clause is the number
of literals in its body. The length of a logic program P , denoted Length(P ), is
just the number of clauses in P .

Following the treatment of [KR96], we take the least Herbrand model se-
mantics of logic programs as our monotonic semantic mapping in the present
paper. We will refer to the target predicate being learned by the symbol p. It
should be noted that the treatment can be generalized to take into account the
situation of multiple predicates in an obvious way. Then our language defining
frameworks will be of the form 〈B(p), LP,Mp〉, where LP is the class of Pro-
log clauses being considered and Mp denotes the semantic mapping such that
Mp(P ) is the set of all atoms of the target predicate p in the least Herbrand
model of P .

We next describe linear Prolog programs introduced by Shapiro [Sha81].

Definition 20 [Sha81] A definite clause p(t1, . . . , tn) ← q1(s11
, . . . , s1n1

), . . .,
qk(sk1

, . . . , sknk
) is called linear just in case for each i, 1 ≤ i ≤ k, |t1σ|+ · · ·+

|tnσ| ≥ |si1σ|+ · · ·+ |sini
σ| for any substitution σ. A logic program P is said

to be linear just in case each clause in P is linear.

14



Shinohara [Shi91] showed the following.

Theorem 21 [Shi91] The class of least Herbrand models of linear Prolog pro-
grams is a uniformly decidable family of computable languages.

Let LC denote the class of all linear clauses and Mp be a semantic mapping
such that Mp(P ) is the set of all atoms of the target predicate p in the least
Herbrand model of P . Then we have the following.

Theorem 22 The language defining framework 〈B(p), LC,Mp〉 has effective
bounded finite thickness.

Proof. Shinohara’s proof of 〈B(p), LC,Mp〉 having bounded finite thickness
can easily be modified to show that it is effective.

We note that a similar result can be shown for the class of hereditary logic
programs [MSS91,MSS93] and reductive logic programs [KR96].

As a consequence of the above theorem and the results in Section 3, for each
m ≥ 1, the class of languages Lm = {Mp(P ) | P ∈ LC ∧ Length(P ) ≤ m} is
a member of TxtExωm and of InfExω×m.

The above results were for classes of logic programs that did not allow lo-
cal variables. We now turn our attention to the mind change complexity of
learning classes of logic programs that allow local variables. We show that the
language defining frameworks associated with the class of linearly-covering
Prolog programs of Arimura and Shinohara and the class of linearly-moded
Prolog programs of Krishna Rao have effective bounded finite thickness if the
body length of the clauses is bounded. Since the class of linearly-covering
programs are subsumed by the class of linearly-moded programs, we show the
result for only the latter class. But, first we introduce some terminology about
parametric size of terms, and moded logic programs.

Let 〈 〉 denote an empty list.

Definition 23 The parametric size of a term t, denoted Psize(t), is defined
inductively as follows:

(a) if t is a variable x then Psize(t) is the linear expression x;
(b) if t is the empty list, then Psize(t) is 0;
(c) if t = f(t1, . . . , tn) and f ∈ Σ−{〈 〉}, then Psize(t) is the linear expression

1 + Psize(t1) + · · · + Psize(tn).

We usually denote a sequence of terms t1, . . . , tn by t. The parametric size of
a sequence of terms t1, . . . , tn is the sum Psize(t1) + · · · + Psize(tn).
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The definition of linearly-moded programs requires the notion of modes asso-
ciated with each argument in a predicate.

Definition 24 (a) A mode declaration for an n-ary predicate p is a mapping
from {1, . . . , n} to the set {+,−}. (b) Let md be a mode declaration for the
predicate p. Then the sets +(p) = {j | md(j) = +} and −(p) = {j | md(j) =
−} are the sets of input and output positions of p, respectively.

If each predicate in a logic program has a unique mode declaration, the pro-
gram is referred to as a moded program. In dealing with moded programs, it
is useful to group together the input and output arguments, i.e., p(s; t) is an
atom with input terms s and output terms t.

The definition of linearly-moded logic programs requires the following techni-
cal notion.

Definition 25 [KR96] Let P be a moded logic program and let I be a map-
ping from the set of predicates occurring in P to sets of input positions such
that I(p) ⊆ +(p) for each predicate p in P . Then for an atom A = p(s; t), the
following linear inequality is denoted LI(A, I).

Σi∈I(p)Psize(si) ≥ Σj∈−(p)Psize(tj).

We now define Krishna Rao’s notion of what it means for a logic program to
be linearly-moded.

Definition 26 [KR96]

(a) Let P be a moded logic program and let I be a mapping from the set of
predicates in P to the sets of input positions satisfying I(p) ⊆ +(p) for
each predicate p in P . P is said to be linearly-moded with respect to I if
each clause

p0(s0; t0)← p1(s1; t1), . . . , pk(sk; tk)

in P satisfies the following two conditions:
(i) LI(A1, I), . . . , LI(Aj−1, I) together imply Psize(s0) ≥ Psize(sj), for

each j ≥ 1, and
(ii) LI(A1, I), . . . , LI(Ak, I) together imply LI(A0, I),
where Aj is the atom pj(sj; tj) for each j ≥ 0.

(b) A logic program P is said to be linearly-moded just in case it is linearly-
moded with respect to some mapping I.

We now introduce the language defining framework of linearly-moded clauses.
For k > 0, let LMCk denote the set of all linearly-moded clauses of body length
at most k. Then the language defining framework associated with linearly-
moded clauses is 〈B(p), LMCk,Mp〉.
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Theorem 27 [KR96] For k ≥ 1, the class of least Herbrand models of logic
programs with clauses in LMCk is an indexed family of recursive languages.

Theorem 28 For k ≥ 1, the language defining framework 〈B(p), LMCk,Mp〉
has effective bounded finite thickness.

Proof. Krishna Rao’s [KR96] proof of 〈B(p), LMCk,Mp〉 having bounded
finite thickness can easily be made effective.

As a consequence of the above theorem and the results in Section 3, for
each m ≥ 1, for each k ≥ 1, the class of languages Lm

k = {Mp(P ) | P ∈
LMCk ∧ Length(P ) ≤ m} is a member of TxtExωm and of InfExω×m. The
reader should note that the bound k on the body length of clauses is cru-
cial for the effective bounded thickness property. It can be shown that with-
out such a restriction the class of least Herbrand models of length-bounded
linearly-moded programs contains a superfinite subclass, thereby ruling out its
learnability from positive data. Krishna Rao [KR96] has shown that both the
classes of linear clauses and the class of linearly-covering clauses is included
in the class of linearly-moded clauses, but the classes of linear clauses and
linearly-covering clauses are incomparable to each other.

5 Some Final Remarks

A natural remaining question is whether the bounds of ωm and ω × m are
tight. It can be shown for the example classes in this paper that for identifi-
cation from positive data, the ordinal bound of ωm is tight. The reason being
that unions of upto m-pattern languages is contained in all these classes, but
cannot be identified in TxtExα, for α ≺ ωm [JS97]. For identification from
both positive and negative data, it is still open if the bound of ω×m is tight.
However, we can show an improvement on the bound ω × m under certain
conditions if a restricted version of the language equivalence problem is de-
cidable. In particular, we can show the following. Let a .− b denote a − b, if
a ≥ b, and 0 otherwise.

Theorem 29 Suppose m > 0. Let 〈U,R,Lang〉 be a language defining frame-
work with effective m-bounded finite thickness. Let

Lm def
= {Lang(Γ) | Γ ⊆ R ∧ card(Γ) ≤ m}.

Suppose q ≤ m, and the equivalence of Lang(Γ) and Lang(Γ′) is decidable
for card(Γ) = card(Γ′) ≤ q.
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Then Lm ∈ InfExω×(m−q)+(q
.
−1).

Proof. The proof of this theorem is on the same lines as that of Theorem 18.
We just modify that proof, when j ≤ q, to exploit the decidability of equiva-
lence of decision procedures.

Fix m. Let I be an informant. Then for n ∈ N , M(I[n]) and F(I[n]) are
defined as follows.

Let Pos = PosInfo(I[n]) and Neg = NegInfo(I[n]).

If Pos = ∅, then M(I[n]) =? and F(I[n]) = ω × (m− q) + (q .− 1).

If Pos 6= ∅, then let j = min({j ′ | ZPos,Neg
j′ 6= ∅} ∪ {m + 1}). Note that j (and

corresponding Z
Pos,Neg
j ) can be found effectively from I[n], using Corollary 17.

Now define M(I[n]) and F(I[n]) based on the following cases.

If j > m, then let M(I[n]) = M(I[n− 1]), and F(I[n]) = F(I[n− 1]).

If q < j ≤ m, then let M(I[n]) = Γ, where Γ is the lexicographically least
element in Z

Pos,Neg
j , and let F(I[n]) = ω × k + `, where k = m − j, and

` = card(ZPos,Neg
j )− 1.

If 0 < j ≤ q, and all decision procedures in Z
Pos,Neg
j are equivalent then

let M(I[n]) = the lexicographically least decision procedure in Z
Pos,Neg
j . Let

F (I[n]) = ω × (m− q) + (q − j).

If 0 < j ≤ q, and there exist nonequivalent decision procedures in Z
Pos,Neg
j ,

then let M(I[n]) = M(I[n− 1]), and F (I[n]) = F (I[n− 1]).

It is easy to verify that M,F witness that Lm ∈ InfExω×(m−q)+(q
.
−1).

Note that for pattern languages, it can be effectively tested whether
Lang(p) = Lang(p′) for patterns p and p′. This property was implicitly used
in [AJS97] to show that, PATTERNn+1, the language class formed by taking
union of at most n + 1 pattern languages, belongs to InfExω×n. It would be
interesting to determine whether the equivalence problem for logic program
classes discussed in Section 4 can be effectively solved for program length q

for various values of q.
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