
Invertible Classes

Sanjay Jain,1 ⋆ Jochen Nessel2 ⋆⋆ and Frank Stephan3 ⋆ ⋆ ⋆

1 School of Computing, National University of Singapore, Republic of Singapore, Email: sanjay@comp.nus.edu.sg
2 College of Business Administration for Managers, Ho Chi Minh City, Vietnam, Email: ibea@gmx.de

3 Department of Mathematics and School of Computing, National University of Singapore, Republic of Singapore,
Email: fstephan@comp.nus.edu.sg

Abstract. This paper considers when one can invert general recursive operators
which map a class of functions F to F . In this regard, we study four different notions
of inversion. We additionally consider enumeration of operators which cover all general
recursive operators which map F to F in the sense that for every general recursive
operator Ψ mapping F to F , there is a general recursive operator in the enumerated
sequence which behaves the same way as Ψ on F . Three different possible types of
enumeration are studied.

1 Introduction

To invert a function or an operator is quite important in many applications and has been widely
studied in mathematics. Typical examples from the more applied world are the following ones:

– Cryptography. Often the encryption algorithms are known, like the widely used “blowfish”
algorithm [11] and we can intercept the encoded message, but can we get the message that
resulted in the code?

– Chemical analysis. Many chemical processes are known. Assume we have the result of a
chemical reaction. Can we find the ingredients that were used?

– Customer modeling. There are very good models of human motivation; cf. [8] for example.
We can observe customer behaviour. But why did the customer actually buy or not buy
the product? Where did he learn about the product and what advertisement measures were
effective?

More precisely, in these scenarios, the process or operator which transforms the input to the
output is known. Furthermore, the output can be accessed. But the input is unknown and
should be reconstructed:

? → Process → Output.

So we know the process and can observe the output, but the question is whether we can recover
the input. In the case that there are several inputs which the process translates to the same

⋆ Supported in part by NUS grant number R252–000–127–112.
⋆⋆ Funded by the Centrum für internationale Migration und Entwicklung (CIM), Frankfurt, Germany.

⋆ ⋆ ⋆ Supported in part by NUS grant number R252–000–212–112.

1

observed output, it is impossible to say which of them caused the output; therefore we just want
to recover one of the possible inputs.

In this paper we consider inversion of operators. Operators map functions to functions.
Though operators are at a different level than functions, it would be interesting to consider when
one can invert operators. Another way to look at operators could be for mapping real numbers
to real numbers, where a real number (between 0 and 1) can be represeted as a function from
the set of natural numbers to {0, 1}. Operators have been used in various fields, for example
in recursion theory [12], functions over real numbers, in computational learning theory [3] and
so on.

It may not be reasonable to consider all inputs and outputs, but only those which fit into a
special context. For example, often one consders the class of linear time computable, or poly-
nomial time computable, or polynomial space computable functions. Thus, we fix a class F of
such functions. It is required that F contains only total functions and that all input and output
of the operator are from this class. In other words, we consider mainly F -preserving recursive
operators Φ, which map every f ∈ F to a total function in F . In this paper Φ will mostly be
general recursive, that is, map every total function to a total one, but in some special cases we
investigate also F -preserving operators which are not general recursive.

Following the above mentioned scenario, we are interested in studying when an F -preserving
general recursive operator Φ can be inverted. That is, given Φ(f) as input, for f ∈ F , when can
we find a g such that Φ(g) = Φ(f), via some computable mechanism? As the class F might often
be computationally very difficult to hit, we do not require that g belongs to F . Furthermore,
given Φ(f), possible methods for finding such a g usually work via trial and error. Therefore we
would mostly be using limit-recursive operators as methods for inverting Φ.

In Section 3 we study four different notions of inversion which form a hierarchy. In the
following, let Φ be an F -preserving general recursive operator and Ψ = lims Ψs be a limit-
recursive operator (as defined in Section 2 below) to invert Φ:

– Ψ weakly inverts Φ iff, for all f ∈ F , there exists a g such that Φ(f) = Φ(g) and for all x,
lims Ψs(Φ(f))(x) = g(x);

– Ψ bounded weakly inverts Φ iff Ψ weakly inverts Φ and for all f ∈ F , Ψ(Φ(f)) ≤T Φ(f);

– Ψ inverts Φ iff Ψ weakly inverts Φ and there are, for every f ∈ F , only finitely many pairs
(x, s) such that Ψs(Φ(f))(x) 6= Ψ(Φ(f))(x);

– Ψ strongly inverts Φ iff Ψ inverts Φ and Ψ0 is a general recursive operator.

In the formal Definition 4 (b) below, “strongly inverts” is defined equivalently but in slightly
different form. Note that in the case of weakly inverting a function, the requirement Ψ(Φ(f)) ≤T

Φ(f) is not automatically guaranteed as Ψ is a limiting process — it is indeed a restriction.
The motivation for the requirement is the following: it is a natural constraint to say that one
can compute the original input function from the observed output function; however one may
not be able to perform these computations uniformly for all functions in the range of Φ and
therefore may need a limit-recursive process to invert the data of the observed output. A class
F is called invertible (weakly invertible, strongly invertible, bounded weakly invertible), if one

2

can invert (weakly invert, strongly invert, bounded weakly invert) every F -preserving general
recursive operator.

In this paper we will show that above notions of invertibility form a strict hierarchy. Theo-
rem 5 shows that R is not weakly invertible. Proposition 6 shows that every subclass of {0, 1}∞

is weakly invertible. However, Example 7 shows that the class of binary functions is weakly in-
vertible but not bounded weakly invertible. Theorem 8 extends the result to the class of recursive
binary functions. Example 14 gives a class which is bounded weakly invertible but not invertible.
Example 12 gives a class which is invertible but not strongly invertible. Examples 10 and 11 show
that strong invertibility is not trivial by giving interesting infinite classes of recursive functions
which are strongly invertible. In Proposition 16 we show that every recursively enumerable class
is strongly invertible.

The question of whether an operator is invertible also depends on the variety of operators
that are available. Therefore one might ask how difficult an enumeration has to be so that all
possible restrictions of mappings from F to F , which can be done by general recursive operators,
also occur in this enumeration. We call this notion coverability and study it in Section 4.

– An enumeration Φ0, Φ1, . . . weakly covers F , iff, for every F -preserving general recursive
operator Φ, there is an e such that Φe is general recursive and Φe, restricted to domain F , is
the same as Φ.

– An enumeration Φ0, Φ1, . . . covers F , iff it weakly covers F and every Φe is total on F .
– An enumeration Φ0, Φ1, . . . strongly covers F , iff it weakly covers F and every Φe is general

recursive.

F is (weakly, strongly) coverable, if some recursive enumeration of recursive operators (weakly,
strongly) covers F . Note that the recursive enumeration of all recursive operators trivially weakly
covers every class F .

Example 22 shows that there is a class which is coverable but not strongly coverable. Cover-
able classes of recursive functions are quite restrictive: every coverable class of recursive functions
is contained in a recursively enumerable class of recursive functions. Example 19 gives a class
of binary functions which is strongly coverable, but not bounded weakly invertible. Remark 20
extends this to general classes of functions which are strongly coverable but not weakly invertible.

Proposition 21 shows that there are even simple classes like {0e1∞ : e ∈ N} which are not
coverable. On the other hand, Example 23 shows that any class of functions which recursively
approximates a 1-generic set below the halting problem is coverable. Even though not every
recursively enumerable class is coverable, Proposition 24 shows that every recursively enumerable
class is covered by some K ′-recursive enumeration of recursive operators.

In Section 5 we pay special attention to the class of periodic functions, Fper. Let Φ0, Φ1, . . .
be an acceptable numbering of all recursive operators. Corollary 28 shows that the set

{e : Φe is Fper-preserving}

is Π0
3 -complete.

In Section 6 we consider variants of the notion of inverting. We consider situations such as:
what happens if Φ is not general recursive? given an enumeration of operators, is it possible to

3

invert all of the F -preserving operators in this list on at least some of the functions in their
range?

2 Basic Notation

In this section, some basic notation and definitions are introduced. Notation not explained here
is standard and follows the textbooks of Odifreddi [9] and Soare [12].

Let N denote the set {0, 1, 2, . . .} of natural numbers. We often identify function f (with
domain N) with the infinite string f(0)f(1) . . .; similarly, a finite string σ can be identified with
the finite function η, which is defined on x < |σ|, such that σ = η(0)η(1) . . . η(x − 1). Let
ϕ0, ϕ1, . . . be an acceptable numbering of all partial-recursive unary functions and We be the
domain of ϕe. We,s denotes the set of all x < s for which ϕe(x) halts within s steps. K denotes the
halting problem, {e : e ∈ We}. A

′ denotes the halting problem relative to A, that is {e : e ∈WA
e }

(where WA
e is the set accepted by the e-th oracle Turing Machine using the oracle A).

Definition 1. Given a function f or a string σ of length at least n, f [n] and σ[n] denote the first
n elements of f and σ, respectively. Furthermore, λ denotes the empty string which coincides
with f [0] and σ[0] for all functions f and strings σ.

Remark 2. For several examples, an effective version of Ramsey’s Theorem is needed. In par-
ticular the following notion is used. An A-recursive 2-colouring is an A-recursive function R with
the domain {(x, y) : x < y} and range {false, true}. The members of the range are called the
colours. A set E is 2-r-cohesive relative to A iff, for all A-recursive 2-colourings R, there are an
e ∈ E and a colour u such that for all x, y ∈ E with e < x < y, R(x, y) = u. One can generalize
Ramsey’s Theorem and show that, for every A and infinite B, B has an infinite subset which is
2-r-cohesive relative to A. Hummel and Jockusch [4] give an overview on 2-r-cohesive sets and
generalize these notions with respect to the involved parameters.

As the main goal is to translate total functions into total functions, one can define recursive
operators by the easiest approach and view them as oracle Turing machines following certain
restrictions. Odifreddi [9, Section II.3] provides more information on recursive operators and
introduces more variants of this model.

Definition 3. [12]
(a) A recursive operator Φ is an oracle Turing machine which takes functions as an oracle.

So Φ(f)(x) is the value of the function computed by Φ at x with oracle f .
Without loss of generality, Φ(f [s])(x) is defined and y iff Φ(f)(x) = y, x < s, the computation

converges in less than s steps and the computation queries f only below s. Otherwise Φ(f [s])(x)
is undefined.

(b) Φ is a general recursive operator iff Φ(f), defined as x 7→ Φ(f)(x), is total for every total
function f .

(c) A limit-recursive operator Ψ is given by a recursive sequence Ψ0, Ψ1, . . . of recursive op-
erators. For any total function f , one says that Ψ(f) is defined and equal to g iff (1) for all s,

4

Ψs(f) is defined and (2) for all x there is an s such that for all t > s, Ψt(f)(x) = g(x). If such a
g does not exist, then Ψ(f) is undefined.

Note that there are acceptable enumerations of all recursive operators and of all limit-recursive
operators. The latter is given by an acceptable two-dimensional enumeration Ψe,s of recursive
operators such that Ψe(f)(x) is defined to be y iff there is an s such that, for all t > s, the
operator Ψe,t(f)(x) converges to y.

3 Inverting Operators

The mathematical model is taken from inductive inference which is the recursion-theoretic model
of learning theory. In the following let F denote the class of functions under consideration. Given
a general recursive operator Φ, there are several degrees of inversion.

Definition 4. (a) A general recursive operator Φ is called F-preserving iff it maps every function
from F to F .

(b) Ψ strongly inverts Φ iff Ψ is a general recursive operator and, for every f ∈ F , there exists
a g such that g is a finite variant of Ψ(Φ(f)) and Φ(g) = Φ(f).

(c) Ψ inverts Φ iff Ψ is a limit-recursive operator such that, for every f ∈ F and for all x ∈ N,
the limit g(x) = lims Ψs(Φ(f))(x) exists, Φ(g) = Φ(f) and there are only finitely many pairs
(x, s) with Ψs(Φ(f))(x) 6= g(x).

(d) Ψ weakly inverts Φ iff Ψ is a limit-recursive operator such that, for every f ∈ F and for
all x ∈ N, the limit g(x) = lims Ψs(Φ(f))(x) exists and Φ(f) = Φ(g).

(e) Ψ bounded weakly inverts Φ iff Ψ is a limit-recursive operator such that, for every f ∈ F
and for all x ∈ N, the limit g(x) = lims Ψs(Φ(f))(x) exists, Φ(f) = Φ(g) and g ≤T Φ(f).

(f) The class F is called invertible, strongly invertible, weakly invertible or bounded weakly
invertible iff, for every F -preserving general recursive operator Φ, there is a Ψ such that Ψ inverts,
strongly inverts, weakly inverts or bounded weakly inverts Φ, respectively.

Although the notion of weakly invertible has a certain interest on its own right, it is a limiting
process where it is no longer possible to get g from Φ(f) by any effective means. Somehow, it
might be natural also to consider the case where such a translation of Φ(f) into g at least exists,
although it is not applied by Ψ . This additional requirement that g ≤T Φ(f) is then considered
in (e).

Note that strongly invertible implies invertible as follows. Suppose F is given and Ψ strongly
inverts Φ. The new operator inverting Φ is given by taking as the s-th approximation the first
finite variant gs, in some standard enumeration of the finite variants of Ψ(Φ(f)), found for which
Φ(gs)[s] = Φ(f)[s]. For f ∈ F , Ψ(Φ(f)) is a finite variant of some g with Φ(g) = Φ(f) and thus
the gs converge to this g or some other finite variant with the same property.

The implication from invertible to bounded weakly invertible comes from the following ar-
gument. Whenever Ψ converges to g on input Φ(f) according to (c), then g = Ψs(Φ(f)) for large
enough s. Since Ψs is a recursive operator for every s, g ≤T Φ(f).

5

The implication from bounded weakly invertible to weakly invertible is obvious since just
one requirement on the process to get g from Φ(f) is dropped.

Theorem 5. The class R of all recursive functions is not weakly invertible.

Proof. Define an operator Φ by the equation

Φ(f) =

{

(f(0))∞ if ∀s [|Wf(0),f(s)| ≥ s] or ∀s [|Wf(0),s| ≤ f(1)];
(f(0))s(f(0) + 1)∞ if s is the least positive number

for which the first case fails.

For every e there is a recursive f with Φ(f) = e∞. In the case that We is finite, such an f is
e|We|0

∞; in the case that We is infinite, such an f can be obtained by letting f(x) = min({s :
|We,s| ≥ x}).

On the other hand, if We is finite, then only functions f with f(0) = e ∧ f(1) ≥ |We| are
mapped to e∞. Thus, if Ψ inverts Φ on e∞ in the limit, then the function F (e) = lims Ψs(e

∞)(1)
is K-recursive and satisfies F (e) ≥ |We| whenever We is finite. It follows that {e : We is
finite} = {e : |We| ≤ F (e)} where the first set is Σ0

2-complete and the second is K-recursive, a
contradiction. Therefore R is not weakly invertible. ⊓⊔

Above result used the fact that the function e 7→ |We| restricted to the domain of all e, where
We is finite, is not dominated by any K-recursive function. So, although all involved functions
are recursive, their initial growth from f(0) to f(1) cannot be captured even by a K-recursive
function. One might ask what happens if growth-conditions cannot be exploited because all
functions involved are bounded. The next result implies that every such class is weakly invertible.
The following proposition is based on Kreisel’s work [6] and is a uniform version of [9, Proposition
V.5.31] relativized to Φ(f).

Proposition 6 (Based on Kreisel [6]). For every constant c, the class {0, 1, . . . , c}∞ is weakly
invertible.

Proof. Let Φ be a general recursive operator and f ∈ {0, 1, . . . , c}∞. The set

T (Φ(f)) = {σ ∈ {0, 1, . . . , c}∗ : ∀x ≤ |σ| [if Φ(σ)(x) is defined then Φ(σ)(x) = f(x)]}

forms an f -recursive tree. Now one can define a limit-recursive operator Ψ such that the function
g, given by g(x) = lims Ψs(Φ(f))(x), is in {0, 1, . . . , c}∞, and is an infinite branch of T (Φ(f)),
that is, satisfies Φ(g) = Φ(f). This is done by choosing Ψs(Φ(f))(x) be τ(x) for the lexicographic
least string τ ∈ {0, 1, . . . , c}x+s which is in T (Φ(f)). ⊓⊔

In the following, it is proven that the notions strongly invertible, invertible, bounded weakly
invertible and weakly invertible form a strict hierarchy. The classes separating the levels of this
hierarchy are subclasses of {0, 1}∞.

Example 7. The class {0, 1}∞ is weakly invertible but not bounded weakly invertible.

6

Proof. {0, 1}∞ is weakly invertible by Proposition 6. We now show that {0, 1}∞ is not bounded
weakly invertible. Let the partial-recursive function ψ be defined as

ψ(e) =







0 if ϕe(e)↓≥ 1;
1 if ϕe(e)↓= 0;
↑ if ϕe(e)↑.

Note that ψ is partial-recursive but has no total recursive extension, as the definition makes
ψ inconsistent with all total recursive functions. Let ψs denote the finite part of ψ which is
computed within s steps. Now define

Φ(f)(s) =
{

0 if ψs and f are consistent;
1 otherwise.

This operator maps all total extensions of ψ to 0∞ while it maps all recursive functions to
{0k1∞ : k ∈ N}. So some functions are mapped to 0∞ but none of them is recursive relative to
0∞. Thus, the condition g ≤T Φ(f) from Definition 4 (e) cannot be satisfied. ⊓⊔

This result was of course induced by the fact that the class contains nonrecursive functions. So
one could ask whether there is a class containing only recursive functions which is not bounded
weakly invertible. The following example shows that this is indeed true.

Theorem 8. The class R0,1 consisting of all {0, 1}-valued recursive functions is not bounded
weakly invertible.

Proof. As in Example 7, let ψ be a partial-recursive {0, 1}-valued function without total recur-
sive extension and ψs be the finite part of it computed in time s. Similarly, let ξK a corresponding
partial K-recursive {0, 1}-valued function without a total K-recursive extension. The function
ξK has a {0, 1}-valued recursive approximation ξ0, ξ1, . . . so that, for all e in the domain of ξK ,
lims ξs(e) = ξK(e). For e ∈ N and a ∈ {0, 1}, define a function θe,a as follows:

θe,a(x) =



















0 if x < e;
1 if x = e or x = e+ 1;
a if x = e+ 2;
ψs(x) if x > e+ 2 and s is the first t > x found such that

either ψt(x) is defined or ξt(e) = a.

Here, in the fourth case, θe,a(x) is undefined if either s is never found because the corresponding
t does not exist or ψs(x) is undefined. Now define Φ as follows:

Φ(f) =



















0∞ if f = 0∞;
0e101∞ if f extends 0e10;
0e10∞ if f extends θe,0 or θe,1;
0e10s+11∞ if f extends 0e11 but one finds

in s steps that the previous case fails.

7

It is easy to verify that Φ is general recursive. For every e there is a ∈ {0, 1} such that ξs(e) = a
for infinitely many s. For such a, let he,a be defined such that he,a[e+3] = 0e11a and, for x > e+2,
one does the following: One finds the first s ≥ x such that ξs(e) = a; if ψs(x) is defined, then
he,a(x) = ψs(x), else he,a(x) = 0. Every total he,a is a total and recursive extension of θe,a and
for every e, either he,0 or he,1 is total.

Now assume by way of contradiction that Ψ = lims Ψs bounded weakly inverts Φ. Then
Ψ(0e10∞) converges to a function ge and ge extends θe,ge(e+2) (as Φ only maps extensions of θe,0

or θe,1 to 0e10∞). The function e 7→ ge(e + 2) = lims Ψs(0
e10∞)(e + 2) is K-recursive. As ξK

has no K-recursive total extension, there is an e such that ξK(e) is defined and different from
ge(e+2). Also, there is an s such that ξt(e) = ξK(e) for all t ≥ s. As a consequence, by definition
of θe,ge(e+2), for all x ≥ s in the domain of ψ, ge(x) = θe,ge(e+2)(x) = ψ(x). Thus, ge is a finite
variant of an extension of ψ. This contradicts the fact that ψ has no recursive extension. Thus,
Ψ cannot exist and R0,1 is not bounded weakly invertible. ⊓⊔

Note that, instead of R0,1, one could already use the class consisting of all functions 0e10∞,
0e101∞ and he,a whenever the latter is total. The resulting class is finitely learnable, that is, there
is a learner which outputs void hypotheses until it has seen enough data and outputs exactly one
correct hypothesis from then on. Finite learning is one of the most restrictive learning criteria,
but it still does not guarantee weak invertibility.

This contrasts with Proposition 16 below which says that all recursively enumerable classes
are strongly invertible. The next section deals with recursively enumerable classes explicitly, but
before that some further examples of invertible classes are presented.

Example 9. Every class {f} consisting of only one function is strongly invertible. The reason
is that every {f}-preserving Φ maps f to itself and so one can take Ψ as the identity.

One might ask whether this comes from the small cardinality of given class. It does not, as
the following example of a similar class with cardinality 2ℵ0 shows. The construction of a tree
with the properties postulated in this example is well-known [9, Exercise V.2.18 (b)] and thus
omitted.

Example 10. There is a recursive tree T ⊆ {0, 1}∗, with uncountably many infinite branches,
such that the class F of all its infinite branches satisfies the following statement: any two dis-
tinct members of F have incomparable Turing degrees. This class F is uncountable and strongly
invertible.

Proof. As any two infinite branches of T are Turing incomparable, no infinite branch is recursive.
Thus, if Φ is F -preserving, then, for every infinite branch f of T , Φ(f) = f . Thus, one can choose
Ψ to be the operator which maps every function to itself. Note that all recursive infinite trees
T ⊆ {0, 1}∗, without recursive infinite branches, have uncountably many infinite branches [9,
Proposition V.5.27]. ⊓⊔

Note that the same Ψ works for all F -preserving Φ. Furthermore, the given example consists of
infinite branches of a recursive tree, so Φ and Ψ can even detect eventually whenever their input
is not from F . The next example consists only of recursive functions but has a similar flavour.

8

Example 11. Let e0, e1, . . . be an infinite sequence of minimal indices of total functions such
that {e0, e1, . . .} is 2-r-cohesive relative to K ′. Such a set exists by Remark 2. The class F =
{ϕen

: n ∈ N} is strongly invertible.

Proof. Given F and Φ, one defines R as a {false, true}-valued colouring by

R(i, j) ⇔ (ϕi and ϕj are total) ∧ ((Φ(ϕi) = ϕj) ∨ (Φ(ϕj) = ϕi)).

Note that R ≤T K ′ as one can use the oracle K ′ for deciding whether ϕi, ϕj are total, whether
Φ(ϕi) = ϕj and whether Φ(ϕj) = ϕi. By Remark 2 there is a number k and a colour u such that
for all i, j with k < i < j, R(ei, ej) = u. If u = true, then R(ek+1, en) = true for all n > k. As
Φ(ϕek+1

) takes only one value, one can conclude that Φ(ϕen
) = ϕek+1

for almost all n. If u = false,
then R(em, en) does not hold whenever k < m < n.

Thus, in both cases, for all n > k + 1, either Φ(ϕen
) = ϕen

or Φ(ϕen
) ∈ {ϕe0

, ϕe1
, . . . , ϕek+1

}
or ϕen

= Φ(ϕek+1
). So there is a finite set G ⊆ F such that every function in Φ(F) is either the

image of itself or in Φ(G). As G is finite, there is a finite set D giving the indices of the functions
in G. Thus, one can define a strongly inverting operator Ψ as follows:

Ψ(g)(x) =

{

g(x), if no member d of D satisfies Φ(ϕd)[x] = g[x];
ϕd(x), if d is the least member of D such that Φ(ϕd)[x] = g[x].

It is easy to verify that Ψ strongly inverts Φ. ⊓⊔

Example 12. Let Φ0, Φ1, . . . be an enumeration of all recursive operators and let G be the index
set of the e where Φe is general recursive. Furthermore, let F = {2n +

∑

m<n 2m ·G(m)} be a set
of numbers coding initial parts of G by its binary digits. Let {e0, e1, . . .} be a subset of F which is
2-r-cohesive relative to K ′. Let F contain, for every k, the functions 0ek101∞, 0ek10∞ and θek

,
where, for any e, x, θe(x) is defined as follows.

One chooses θe such that θe[e+2] = 0e11. For x ≥ e+2, let a < e be such that x ≡ a modulo
e. If 2a+1 ≥ e then θe(x) = 0. Otherwise determine the a+1-st least significant bit of e. If this
bit is 0 then θe(x) = 0 again. Otherwise

θe(x) =







0 if Φa(0
e10∞)(x)↓> 0;

1 if Φa(0
e10∞)(x)↓= 0;

↑ otherwise.

Note that the function θe is total for e ∈ F . The class F is invertible but not strongly invertible.

Proof. Given F and Φ, there is a k such that for all n,m > k and all a, b, a′, b′ ∈ {0, 1},

(a) if f extends 0en1ab, then Φ(f) extends 0em1 only if m = n;
(b) if f extends 0en1ab and f ′ extends 0em1ab and Φ(f) extends 0en1a′b′ and Φ(f ′) extends

0em1a′′b′′, then a′ = a′′ and b′ = b′′.

9

The above properties (a) and (b) are proven by considering the following K ′-recursive colouring
R00, R01, R11, S00, S01, S11. For these definitions, let f e

01 = 0e101∞, f e
00 = 0e100∞, f e

11 = θe. Let

Rab(i, j) ⇔ (f i
ab and f j

ab are total) ∧ ((Φ(f i
ab) extends 0j1) ∨ (Φ(f j

ab) extends 0i1)).

Sab(i, j) ⇔ (f i
ab and f j

ab are total) ∧

((Φ(f i
ab)(i+ 1) = Φ(f j

ab)(j + 1)) and (Φ(f i
ab)(i+ 2) = Φ(f j

ab)(j + 2)).

It is easy to see that Rab and Sab can be computed relative to oracle K ′. Thus, as {e0, e1, . . .} is
2-r-cohesive relative to K ′, there is a number k such that the following two conditions (c) and
(d) hold; keep this number k fixed from now on.

(c) Rab(ei, ej) = false for j > i > k (and thus, for j > k, Φ(f
ej

ab) extends 0ej1 or Φ(f
ej

ab)
extends 0er1, for some r ≤ k). This immediately gives (a) above.

Here note that Rab(ei, ej) = true for all i, j such that j > i > k leads to a contradiction. This
is so because, Rab(ek+1, ej) = true for all j > k + 1 implies

(*) Φ(f j
ab) extends 0k+11 for all but finitely many j,

as Φ(fk+1
ab) can take at most one value. Similarly, Rab(ek+2, ej) = true for all j > k + 2 implies

(**) Φ(f j
ab) extends 0k+21 for all but finitely many j.

However (*) and (**) lead to a contradiction.
(d) Sab(ei, ej) is true for all j > i > k (since Sab(ei, ej) cannot be false for all large enough i, j

— otherwise for all large enough i, j, Φ(f i
ab)(i+1) 6= Φ(f j

ab)(j+1) or Φ(f i
ab)(i+2) 6= Φ(f j

ab)(j+2),
which is impossible as there are only finitely many possibilities for Φ(f i

ab)(i+1) and Φ(f i
ab)(i+2)).

This immediately gives (b) above.
Now we continue with the proof. The indices of 0en10∞, 0en101∞ and θen

can be computed
from en.

An operator Ψ to invert Φ can work as follows: It first determines the en, a, b of the prefix
0en1ab of the function to be inverted. Note that Ψ knows en without knowing the index n of it.
If en ≤ ek, the inversion can be handled as in Example 11. If en > ek, then Ψ can conclude from
a finite table, which of the three functions 0en10∞, 0en101∞ or θen

is mapped by Φ to the input
function — Ψ can then invert the input.

Note that this algorithm is sensitive to the fact that the input function is Φ(f), for some
f ∈ F , and might be undefined on prefixes of other functions. Thus the resulting operator Ψ
may not be general recursive. So it might only witness that F is invertible.

To see that F is not strongly invertible, consider the operator Φ as follows. Φ maps 0∞

to itself. For all e, Φ maps all functions beginning with 0e10 to 0e101∞. For all e, Φ maps all
functions beginning with 0e11 to the following: if the function is consistent with θe, then it is
mapped to 0e10∞; otherwise it is mapped 0e10s+11∞, where s is the number of steps needed to
detect the inconsistency.

So 0e10∞ is only the image of total extensions of θe, which of course is the function θe itself
in the case that θe is total. Now, if Φe is a general recursive operator and en > 2e+1 then one has
that the functions Φe(0

en10∞) and θen
differ at infinitely many places, although θen

is the only

10

function with Φ(θen
) = 0en10∞. Thus, no general recursive operator strongly inverts Φ and F is

not strongly invertible. ⊓⊔

For the separation of bounded weakly invertible from invertible, the following result of Kaufmann
[5, Theorem 5.2.2] is crucial, which is formulated such that it fits conveniently into the setting of
the present work; the proof is nevertheless almost the same as by Kaufmann and thus omitted.
The original result of Kaufmann applies to the constructed tree indices of the e + 1 partial-
recursive functions x 7→ Ψe′,x(0

e10∞)(x) with e′ ∈ {0, 1, . . . , e} instead of invoking them directly.
However, a set of those indices could easily be generated from the parameter e and so Kaufmann’s
proof directly transfers to the current application.

Proposition 13 (Kaufmann [5]). Let Ψ0, Ψ1, . . . be an acceptable numbering of all limit-
recursive operators such that Ψe = lims Ψe,s. Then there is a uniformly recursive family T0, T1, . . .
of trees such that for every e the following holds:

– each Te is a subset of 0e11{0, 1}∗ ∪ {λ, 0, 00, . . . , 0e, 0e1}.
– for each e, n, |Te ∩ {0, 1}n| ≤ e+ 2, that is, Te has bounded width;
– for each e and each infinite branch A of Te and each e′ ≤ e, there are infinitely many x such

that either Ψe′,x(0
e10∞)(x) is undefined or different from A(x).

Furthermore, each Te has at least one infinite branch and all its infinite branches are recursive.

Using this result, one can now construct the separating class.

Example 14. Let Te be as defined in Proposition 13. Let {e0, e1, . . .} be a set which is uniformly
2-r-cohesive relative to K ′ and satisfies, for every n and every m ≥ n, ϕK′

n (em) < em+1. Let
Ψ0, Ψ1, . . . be a recursive enumeration of all limit-recursive operators. Now let F contain the
functions 0en10∞, 0en101∞ and the left-most infinite branch θen

of Ten
for all n. The class F is

bounded weakly invertible but not invertible.

Proof. The argumentation that F is bounded weakly invertible is parallel to the argumentation
of the corresponding class being invertible in Example 12. Here note that θe is computable from
e using the oracle K. Thus, a limit-recursive operator can compute θe.

To see that F is not invertible, consider the general recursive operator Φ with Φ(f) being
determined by the following case distinction:

Φ(f) =



















0∞ if f = 0∞;
0e101∞ if f extends 0e10;
0e10∞ if f extends 0e11 and f on Te;
0e10s1∞ if f extends 0e11 and

s is the least number with f [s] /∈ Te.

It is easy to see that Φ is F -preserving. Furthermore, Φ(θen
) = 0en10∞ for all n. Assume now

by way of contradiction that Ψe inverts Φ and n > e. Then, by the third condition listed in
Proposition 13, the function gen

given by x 7→ Ψe,x(0
en10∞)(x) differs from all infinite branches

11

of Ten
at infinitely many places. But for almost all s, the functions Ψe,s(0

en10∞) are the same,
thus their limit is a finite variant of gen

and not an infinite branch of Ten
. As Φ maps only the

infinite branches of Ten
to 0en10∞, no finite variant of gen

is mapped to 0en10∞ and Ψe does not
invert Φ in contradiction to the assumption. ⊓⊔

4 Enumerating Operators and Functions

It is quite natural to deal with classes where there is an indexing for all the functions involved.
Such classes are known as “indexed families”, “uniformly recursive classes” or “recursively enu-
merable classes” where the enumeration is now an enumeration of the involved functions and
not of the elements of a set.

Definition 15. A class F is recursively enumerable iff there is a total recursive function e, x 7→
fe(x) in two variables such that F equals the set of functions obtained by fixing the input e:
F = {f0, f1, . . .}.

Such classes are quite easy to invert as one may define Ψ as follows. Given a general recursive
operator Φ, Ψ(Φ(f))(x) = fe(x), for the least e such that either e = x or Φ(fe)(y) = Φ(f)(y) for
all y ≤ x. It is well-known that such an algorithm of “learning by enumeration” gives a general
recursive operator which makes only finitely many errors.

Proposition 16. Every recursively enumerable class of functions is strongly invertible.

The question whether an operator can be inverted also depends on the variety of operators
available. Therefore, one might ask how difficult an enumeration has to be so that all possible
restrictions of mappings from F to F occur. This is formalized in the following definition.

Definition 17. (a) An enumeration Φ0, Φ1, . . . of recursive operators weakly covers F iff, for
every F -preserving general recursive operator Ψ , there is an e with Φe being general recursive
and ∀f ∈ F [Φe(f) = Ψ(f)].

(b) An enumeration Φ0, Φ1, . . . of recursive operators covers F iff it weakly covers F and
every Φe(f) is total for every f ∈ F . Furthermore, F is coverable iff some recursive enumeration
of recursive operators covers F .

(c) An enumeration Φ0, Φ1, . . . of recursive operators strongly covers F iff it weakly covers
F and every Φe is a general recursive operator. Furthermore, F is strongly coverable iff some
recursive enumeration of recursive operators strongly covers F .

Note that every class is weakly covered by an acceptable numbering of all recursive operators.
Clearly, {f} is strongly coverable since an enumeration only needs to contain the identity oper-
ator in order to cover {f}. When considering classes of recursive functions, coverable classes are
restricted to be contained in enumerable ones.

Theorem 18. Every coverable class of recursive functions is a subclass of a recursively enumer-
able class of recursive functions.

12

Proof. Let F contain only recursive functions, f ∈ F and Φ0, Φ1, . . . be an enumeration covering
F . Now, for every g ∈ F , there is an operator Φe which maps every function to g and thus
Φe(f) = g. So F ⊆ {Φe(f) : e ∈ N} and the function e, x 7→ Φe(f)(x) is total and recursive in
both inputs. So F is a subclass of {Φe(f) : e ∈ N}, a recursively enumerable class of recursive
functions. ⊓⊔

As a consequence, one has that every coverable class of recursive functions is also strongly invert-
ible. One might therefore ask whether every strongly coverable class is also strongly invertible.
This is unfortunately not the case.

Example 19. Let ψ be a partial-recursive {0, 1}-valued function without recursive total exten-
sion and f be a (nonrecursive) total extension of ψ. The class {0∞, 1∞, f} is strongly coverable
but not bounded weakly invertible.

Proof. One just has to find an enumeration of general recursive operators which covers each of
the finitely many possibilities how an operator can map the 3 functions inside this class. So the
class is strongly coverable. It is not bounded weakly invertible as one might consider any operator
which satisfies that Φ(0∞) = Φ(1∞) = 1∞, Φ(f) = 0∞ and Φ(g) 6= 0∞ for any recursive g. The
proof of Example 7 essentially describes how to construct such a Φ. Then, one can conclude, as
in Example 7, that Φ is not bounded weakly invertible as Φ(f) is recursive, but the inverting
algorithm cannot find any recursive g with Φ(f) = Φ(g), as such a g does not exist. ⊓⊔

Remark 20. A similar result can also be obtained for unbounded functions. It is well-known
that there is a recursive tree T ⊆ {0, 1, . . .}∗ which has infinite branches but no hyperarithmetic
ones — this fact is for example mentioned by Marek, Nerode and Remmel [7]. This tree T has,
in particular, no infinite branch which is limit-recursive. One can select an infinite branch f of
this tree T and then show, by an argument similar to the one used in the proof of Example 19,
that {0∞, 1∞, f} is strongly coverable but not weakly invertible.

Most recursively enumerable classes are not coverable. Examples for noncoverable classes are
the class of all primitive recursive functions, the class of all characteristic functions of regular
languages and {0e1∞ : e ∈ N}. These examples have in common that they have an infinite finitely
learnable subclass; namely the third example. Here a class F is said to be finitely learnable [1, 2]
iff there is a general recursive operator mapping every function f ∈ F to a function of the form
0∗e∞ such that e > 0 ∧ ϕe = f . The next proposition provides a formal proof for the fact that
such classes are not coverable.

Proposition 21. If F is recursively enumerable and F has an infinite finitely learnable subclass
then F is not coverable.

Proof. Consider an enumerationΘ0, Θ1, . . . of recursive operators which are total on all functions
in F . It is shown that this enumeration does not cover F . This is done following a distinction
of two cases.

Case 1. There is a constant c such that the set {f [c] : f ∈ F} is infinite. Then there is a
recursive sequence fn of functions in F such that

13

– fn[c] 6= fm[c] for all pairwise distinct n,m;
– {fn[c] : n ∈ N} is recursive.

Now define

Φ(g) =







f0 if there is an n such that fn[c] = g[c]
and Θn(fn)[c] 6= f0[c];

f1 otherwise.

It is easy to see that Θn(fn) 6= Φ(fn) for all n. Furthermore, Φ is a general recursive operator.
So Φ is not covered by the enumeration Θ0, Θ1, . . . from above.

Case 2. For every constant c the set {f [c] : f ∈ F} is finite. Furthermore, there is an infinite
r.e. set of functions in F which is finitely learnable; the reason is that if the learner converges
on some input σ, it can pick some member of F which extends σ. Now one can select from
this r.e. set of functions a recursive sequence of pairs fn, gn ∈ F of pairwise distinct functions
such that fn[n] = gn[n]. As {fn, gn : n ∈ N} is finitely learnable, there is a strictly increasing
recursive function h such that fn, gn are learned after inspecting the first h(n) function values.
Hence fn[h(n)], gn[h(n)] is not a prefix of any other function in the set {fn, gn : n ∈ N}. Now
one defines a general recursive operator Φ such that

Φ(u) =

{

fn if u[h(n)] = fn[h(n)] and Θn(fn)[h(n)] 6= fn[h(n)];
gn if u[h(n)] = fn[h(n)] and Θn(fn)[h(n)] = fn[h(n)];
u otherwise.

This operator Φ is general recursive: in the case that there is no m ≤ n with u[h(m)] = fm[h(m)]
it knows that Φ(u)[n] = u[n]. It can be seen, as in Case 1 above, that Φ is F -preserving and not
covered by the enumeration Θ0, Θ1, . . . from above. ⊓⊔

Example 22. Let Φ0, Φ1, . . . be an acceptable enumeration of recursive operators and let h be a
strictly increasing function which grows so fast that Φe(f [h(n)])(x) is defined whenever e, x ≤ n,
f ∈ {0, 1, 2}∞ and Φe is a general recursive operator. Let H be the range of h. Then the class

F = {f : ∀x [(x /∈ H ⇒ f(x) = 0) ∧ (x ∈ H ⇒ f(x) ∈ {1, 2})]}

is coverable but not strongly coverable.

Proof. For any function f define hf (n) = max({x : |{y < x : f(y) 6= 0}| ≤ n}), that is, hf (n) is
the n+1-st position x where f(x) is different from 0. The function hf is partial-recursive relative
to the oracle f and total iff f is different from 0 infinitely often.

For showing that the class F is coverable, one defines an enumeration Ψ0, Ψ1, . . . covering F
from the given enumeration Φ0, Φ1, . . . as follows.

To compute Ψe(f)(x), one searches for the first s for which either Φe(f [s])(x) is defined or
s = hf (x+ e+ 1) and then defines that

Ψe(f)(x) =







Φe(f [s])(x) if s is found and Φe(f [s])(x) is defined;
0 if s is found and Φe(f [s])(x) is undefined;
↑ if s is not found.

14

Thus, Ψe(f) is total whenever either Φe(f) is total or f(x) 6= 0 for infinitely many x. In particular,
Ψe(f) is total for all e ∈ N and f ∈ F .

If Φe is a general recursive operator then Ψe is also general recursive. This is because Φe(f)
is total for every function f . For f ∈ F , hf (e + x + 1) = h(e + x + 1) and by the choice of h,
Φe(f [h(e + x + 1)])(x) is defined. It follows that Ψe(f)(x) = Φe(f)(x). So the operators Ψe, Φe

have the same behaviour on F . Thus, Ψ0, Ψ1, . . . covers F .
For every r.e. set A of general recursive operators, there exists a recursive set E of indices

such that (1) every operator in A equals to some Φe with e ∈ E and (2) all Φe with e ∈ E are
general recursive. Now one defines a function h′(n) to be the least number t such that Φe(f [t])(x)
is defined for all x ≤ n, for all e ≤ n with e ∈ E and for all f ∈ {0, 1, 2}∞. As all Φe with e ∈ E
are general recursive, h′ is a recursive function. Furthermore h′(n) ≤ h(n) for all n. Now one
defines

Θ(f)(x) =

{

0 if x 6= hf (n) for all n ≤ x;
1 if [x = hf (e) for some e ∈ E with e ≤ x] and [Φe(f [h′(x+ e+ 1)])(x)↓ 6= 1];
2 otherwise.

First, the operator Θ is general recursive as h′ is a total function and all other tests apply to
bounded search. Second, for every e ∈ E and f ∈ F ,

Θ(f)(h(e)) =
{

2 if Φe(f)(h(e)) = 1;
1 otherwise.

Thus, Θ(f) 6= Φe(f) and Θ differs on F from every Φe with e ∈ E. Third, Θ is F -preserving
since, whenever f ∈ F , Θ(f)(x) = 0 for x /∈ H and Θ(f)(x) ∈ {1, 2} for x ∈ H. Thus, Θ is
an F -preserving general recursive operator different on F from all Φe with e ∈ E. So F is not
strongly coverable. ⊓⊔
Recall that by the Schoenfield’s limit lemma [9, Proposition IV.1.17] every set F ≤T K has an
approximation. Here an approximation of F is a sequence of recursive functions f0, f1, . . . such
that (a) m,x 7→ fm(x) is a recursive two-place function and (b) for every x, there is an n such
that, for all m > n, fm(x) = F (x).

Furthermore, F is 1-generic if for every r.e. set A of strings, either some prefix F [n] of F is
in A or there is an n such that A does not contain any extension of F [n] [10, Section XII.1].

Example 23. Let F be a 1-generic set below K. Let f0, f1, . . . be a sequence of recursive {0, 1}-
valued functions approximating the characteristic function of F . Then {f0, f1, . . .} is strongly
coverable.

Proof. Let Φ0, Φ1, . . . be an enumeration of those general recursive operators for which there
are finitely many pairwise incomparable strings σ0, σ1, . . . , σk and functions fa0

, fa1
, . . . , fak

such
that every function extending σℓ is mapped to faℓ

and every function not extending any σℓ is
mapped to itself.

It remains to show that this enumeration covers {f0, f1, . . .}. Given a general recursive op-
erator Φ, let A be the set of all binary σ such that Φ(σ) is inconsistent with σ. This set A is
recursively enumerable. There are two cases.

15

Case 1. Some prefix F [n] of F is in A. There are only finitely many functions which extend
Φ(F [n]). Furthermore, there are only finitely many m such that fm does not extend F [n]. Hence
{Φ(f0), Φ(f1), . . .} is a finite set. Since Φ is general recursive and all relevant inputs are binary
functions, there is a constant c such that, for every binary string σ ∈ {0, 1}c, Φ(σ) is consistent
with at most one function in {Φ(f0), Φ(f1), . . .}. It is easy to see that there is an operator Φe

with Φe(fℓ) = Φ(fℓ) for all ℓ, as this operator only depends on the values of the input function
below c.

Case 2. There is an n such that no extension of F [n] is in A. There is an index k such that
all fm with m > k extend F [n]. Then Φ(fm) = fm for all m > k. (Otherwise there would be a
prefix fm[y] of fm such that Φ(fm[y]) is inconsistent with fm[y], contradicting the choice of n.)
For the ℓ ≤ k there is a prefix σℓ of fℓ which is so large that no other function in {f0, f1, . . .}
extends σℓ. Then one chooses faℓ

= Φ(fℓ) for all ℓ ≤ k. Now there is a general recursive operator
Φe mapping all extensions of σℓ to faℓ

for ℓ = 0, 1, . . . , k and mapping all other functions to
themselves. It is easy to see that Φ and Φe coincide on {f0, f1, . . .}. Thus, Φ is covered by the
given list of operators. ⊓⊔

Although not every recursively enumerable class is coverable, the next result shows that it is
at least coverable relative to K ′. This relativized concept uses the notion of a K ′-recursive
enumeration of recursive operators. Here an enumeration Φ0, Φ1, . . . is K ′-recursive iff there is
a K ′-recursive function h and an acceptable numbering Γ0, Γ1, . . . of recursive operators with
Φe = Γh(e) for all e.

Proposition 24. If F is recursively enumerable then some K ′-recursive enumeration of recur-
sive operators covers F .

Proof. Let f0, f1, . . . be an enumeration of F and Γ0, Γ1, . . . be an acceptable numbering of
all recursive operators. Define a function h inductively as follows: h(e) is the least number e′,
greater than all h(e′′) with e′′ < e, such that

∀x, y [Γe′(fx)(y) is defined].

This predicate is a Π0
2 predicate as it is universally quantified over the Σ0

1 condition whether a
certain computation halts. Thus, the predicate can be evaluated with the oracleK ′. Furthermore,
it just selects the first index e′ after all indices h(e′′) with e′′ < e such that Γe′ is total on f0, f1, . . .
and therefore all general recursive operators plus some others are covered by the enumeration
Γh(0), Γh(1), ⊓⊔

Proposition 25. Let F = {f0, f1, . . .} be recursively enumerable and Φ0, Φ1, . . . be any recursive
enumeration weakly covering F . The set

E = {e : ∀f ∈ F [Φe(f) is total and Φe(f) ∈ F]}

of all recursive operators which preserve F is a Π0
3 -set.

16

Proof. Given the enumerations f0, f1, . . . of functions and Φ0, Φ1, . . . of recursive operators, the
set E is defined by the following Π0

3 -formula:

e ∈ E iff ∀n∀x∃k [Φe(fn[k])(x) is defined] and

∀n∃m∀k, x [if Φe(fn[k])(x) is defined then Φe(fn[k])(x) = fm(x)].

So this formula says that e is in E iff for every n the function Φe(fn) is total and there is an
index m such that Φe(fn) is consistent with fm. The totalness from the first condition and the
consistency from the second imply equality. ⊓⊔

Note that Φe(f), with e ∈ E, is only required to be total if f ∈ F , so some of the indices
e ∈ E might belong to operators which are not general recursive. As the problem whether Φe is
general recursive is Π1

1 -complete, one cannot check for an operator being general recursive with
a Π0

3 -condition. Nevertheless, whenever Φe is general recursive then e ∈ E iff Φe is F -preserving.

5 Periodic Functions

In this section our interest is to consider a special case of F . We restrict the class F to the class
of eventually periodic functions which oscillate, from some point on, with the same period. The
reason is that it is often useful to consider specific cases: for example, when considering mapping
real numbers to real numbers, one may consider the special case when rational numbers are
mapped to rational numbers. Indeed, the eventually periodic functions resemble much to the
rational numbers as they, if considered as mappings from positions to digits, are exactly the
eventually periodic real numbers.

From now on, “eventually” will be dropped from “eventually periodic” for the sake of sim-
plicity of the notation.

Definition 26. The class Fper is the union of all Fn with period n; that is, the union of the
classes defined by the condition f ∈ Fn iff ∀∞m [f(m+ n) = f(m)].

The class Fper is strongly invertible. Furthermore, it is not coverable as it contains an infinite
finitely learnable subclass, namely {0e1∞ : e ∈ N} (see Proposition 21). Indeed, one can even
code very difficult problems into any K ′-recursive enumeration of recursive operators covering
Fper and the following theorem shows that this class is not coverable.

Theorem 27. Given any K ′-recursive enumeration Φ0, Φ1, . . . of recursive operators covering
Fper, the set P = {e : Φe is Fper-preserving} is not recursively enumerable relative to K ′.

Proof. In the following, let F (e, x, s) be the first non-element of We,s which is greater than or
equal to x. Now define Ψe to be the general recursive operator which maps every function f
extending 0x but not 0x+1 to the function

0e10x10F (e,x,0)10F (e,x,1)10F (e,x,2)1 . . .

17

and 0∞ to 0e10∞. For every x the function Ψe(0
x10∞) is periodic iff there is a nonelement of We

greater than or equal to x.
Assume now by way of contradiction that there is a K ′-recursive enumeration Φ0, Φ1, . . . of

recursive operators covering Fper such that the corresponding set P is recursively enumerable
relative to K ′. Then, given e, one can find, using oracle K ′, an x such that one of the following
two conditions holds.

(1) x ∈ P and for all σ and y, if Φx(σ)(y) and Ψe(σ)(y) are both defined then they are equal;
(2) for all y ≥ x, y ∈We.

If We is coinfinite then the search terminates with an x satisfying the first condition since Ψe is
Fper-preserving and there is a general recursive operator Φx having the same behaviour on all
periodic functions as Ψe. In particular, Ψe(σ10∞) and Φx(σ10∞) must be the same functions and
thus the required consistency condition holds. On the other hand, the search obviously cannot
terminate according to (2).

If We is cofinite then Ψe maps some periodic function f (for example, f = 0r+110∞, where
r = max(We)) to a nonperiodic one. If x ∈ P , then Φx(f) is periodic and thus there is an n
and a y with Φx(f [n])(y) and Ψe(f [n])(y) are both defined and different. So the search cannot
terminate by condition (1), although it terminates by condition (2), with x being the least upper
bound of the finitely many nonelements of We.

So one gets that {e : We is coinfinite} is Turing reducible to K ′, a contradiction to the well-
known fact that this set is Π0

3 -complete [9]. ⊓⊔

The above proof produced the family of Ψe in a uniform manner, so in the case that Φ0, Φ1, . . .
is an acceptable numbering, one has a recursive function h with Φh(e) = Ψe. Thus, one can get
Π0

3 -completeness in this case.

Corollary 28. If Φ0, Φ1, . . . is an acceptable numbering of all recursive operators then the set
P = {e : Φe is Fper-preserving} is Π0

3 -complete.

If Ψ strongly inverts Φ, then Ψ produces a finite variant but not necessarily the correct output.
One might ask whether this is necessary. Indeed there are only very few classes where one can
avoid it. For example, if Ψ is permitted to be partial, then one can invert every general recursive
operator on the constant functions by Ψ outputting, on input x∞, the function y∞ for the first
y found such that Φ(y∞)(0) = x. Somehow, if one wants general recursive operators Ψ with this
property, one has to go to a sufficiently small subclass. In the case of Fper, there are recursive
operators Φ where every (even partial) Ψ inverting Φ makes finitely many errors.

Example 29. Let ψ be a partial recursive {0, 1}-valued function without recursive extension.
Then every recursive operator Ψ inverting the following general recursive operator Φ makes errors
on some inputs:

Φ(f) =



















0e10∞ if (f extends 0e10 or 0e11) and ψ(e) is undefined;
0e10∞ if f extends 0e1ψ(e) and ψ(e) is defined;
0e10s1∞ if f extends 0e1 but not 0e1ψ(e)

and ψ(e) halts after exactly s steps;
f otherwise.

18

If some Ψ would strongly invert Φ without errors then the recursive function e 7→ Ψ(0e10∞)(e+1)
would be a total extension of ψ in contradiction to its choice.

6 Other Notions of Inverting

It was already shown (see Theorem 5) that there is a single general recursive operator Φ such
that one cannot invert Φ on the class of all recursive functions. As recursive operators preserve
recursiveness, it is not very interesting to deal with arbitrary classes for negative results. We now
turn our attention to the following question: for every recursive operator Φ and every recursively
enumerable class F , is there an operator Ψ which inverts or at least weakly inverts Φ? The next
result shows that the technique of inverting by enumeration can be kept as long as the operator
to be inverted is total on the whole family F .

Theorem 30. If F is recursively enumerable and Φ is F-preserving, although not necessarily
general recursive, then there is a general recursive operator Ψ which strongly inverts Φ.

Proof. Let f0, f1, . . . be a recursively enumerable class and Φ a recursive operator such that
Φ(fn) is total for all n. Then define Ψ as follows: Ψ(f)(x) is fn(x) for the least n such that
Φ(fn[x − n]) is consistent with f . Ψ is general recursive as it terminates on all inputs to some
fn(x) with n ≤ x (as n = x would qualify). Furthermore, if n is the first index with Φ(fn) = f ,
then, for all sufficiently large x, every expression Φ(fm[x−m]), with m < n, is inconsistent with
f and thus Ψ(Φ(f))(x) = fn(x). ⊓⊔

This property is lost if one considers recursive operators which might be partial on functions
from the class.

Example 31. Let F = {0e10∞, 0e1∞ : e ∈ N}. Furthermore, let ξK be a partial K-recursive
{0, 1}-valued function without a total K-recursive extension together with the recursive approx-
imations ξ0, ξ1, . . . as defined in the proof of Theorem 8. One can assume, without loss of gen-
erality, that the approximation oscillates between 0 and 1 whenever ξK(e) is undefined. Now
one defines the following recursive operator Φ: Φ(0e1a∞) is the union of all 0e10s such that
ξs(e) = a. So if ξK(e) is undefined then both 0e10∞ and 0e1∞ are mapped to 0e10∞; on the
other hand if ξK(e)↓ = a, then Φ(0e1b∞) = 0e10∞ iff b = a. As a consequence, for any limit-
recursive operator Ψ (approximated by Ψ0, Ψ1, . . .), which weakly inverts Φ, lims Ψs(0

e10∞)(e+1)
would exist for all e and coincide with ξK(e) whenever ξK(e) is defined. Thus, the function
e 7→ lims Ψs(0

e10∞)(e+1) would be a total K-recursive extension of ξK which by choice does not
exist. Thus, no limit-recursive operator weakly inverts Φ.

Another topic is whether, given an enumeration Φ0, Φ1, . . . of recursive operators, one can find
an operator Ψ which inverts every F -consistent operator Φe on at least one function. In the case
that all Φe are total on F and F contains at least one recursive function f , this can be easily
achieved: for all functions g, one defines Ψ(g) = f . Then one uses that every F -preserving Φe

satisfies Φe(f) ∈ F and, hence, f is the inverse of some function g ∈ F . The next example shows

19

that this is no longer possible if F consists of several recursive functions and operators may fail
to map all functions in F to total ones.

Example 32. Let R be the class of all recursive functions. There is an enumeration Φ0, Φ1, . . .
of recursive operators which map at least one recursive function to a total one such that no
Ψ = lims Ψs weakly inverts the operator Φe on some total f ∈ Φe(R), given e and f as input.

Proof. To see this, one defines Φe(f)(x) = 0 iff

– either |We,x| ≤ f(0);
– or for all y ≤ x, y ≤ |We,f(y)|.

If these two conditions do not hold then Φe(f)(x) is undefined. Clearly 0∞ is the only function
in Φe(R). Now let F be the index-set of the finite sets. The functions fe given as

fe(x) = min({s : (e ∈ F ⇒ |We| ≤ s) ∧ (e /∈ F ⇒ x ≤ |We,s|)})

are all recursive, since one needs only to know the cardinality of We in order to compute fe(x)
for every x. It is easy to verify that Φe(fe) = 0∞ for all e.

But if there would be a limit-recursive Ψ = lims Ψs which weakly inverts all Φe using the
parameter e in the limit, then

e ∈ F ⇔ |We| ≤ lim
s→∞

Ψs(e, 0
∞)(0)

and F ≤T K in contradiction to the well-known fact that F is a Σ0
2-complete set. ⊓⊔

While partial operators might not be invertible, one can easily get the below uniform variant
of Proposition 16 (the proof is omitted). This proposition uses dense classes, where a class F is
called dense if it contains an extension of every initial segment over N. Note that, for a dense
set F and a general recursive operator Φ, it holds that whenever the range of Φ contains at least
k functions so does Φ(F).

Proposition 33. Let Φ0, Φ1, . . . be a recursive enumeration of all recursive operators and let
F be recursively enumerable and dense. Then there is a recursive enumeration Ψ0, Ψ1, . . . of
recursive operators with the following properties.

– If Φe is general recursive and F-preserving, then Ψe is general recursive and strongly inverts
Φe.

– If Φe is general recursive and its range at most countable, then the cardinality of the functions
Φe(f) such that Ψe strongly inverts Φe on Φe(f) is the same as the cardinality of the range
of Φe.

Proposition 33 depends on the fact that the index e of the operator is supplied. If this index is not
known, then there is an enumeration Φ0, Φ1, . . . of Fper-preserving general recursive operators,
all having at least two functions in the range, such that no Ψ inverts every operator Φe on at
least two functions.

20

Example 34. Let Φe(f) = 1∞, if f(0) = e and Φe(f) = 0∞, otherwise. Given any Ψ , choose e
such that e 6= Ψ(1∞)(0). Then Ψ does not invert the operator Φe on the function 1∞. Thus, Ψ
inverts Φe on at most one function, although the range of each Φe contains two functions.

Theorem 35. Let F = {f0, f1, . . .} be a recursively enumerable class. Then there is a Ψ which
inverts every general recursive operator Φ on infinitely many members of Φ(F), whenever Φ is
F-preserving and Φ(F) is infinite.

Proof. The construction of Ψ needs several auxiliary ingredients. The overall goal is to construct
sequences i0, i1, . . . and j0, j1, . . . of indices such that, for every general recursive operator Φ
which maps F to infinitely many functions, there are infinitely many k such that Φ(fik) = fjk

and Ψ(fjk
) = fik .

Let Φ0, Φ1, . . . be an acceptable numbering of all recursive operators. Now one partitions the
natural numbers in intervals I such that |I| > min(I) for each I in the partition. Let Ik denote
the interval which contains k. Thus, each member of an interval is also an index of it and the
indexing is not one-one. Furthermore, let e0, e1, . . . be a sequence of indices of operators such
that

– for all k, k′, if Ik = Ik′ then ek = ek′ ;
– for all e there are infinitely many k with ek = e.

The mapping k 7→ ik is a partial-recursive function such that, for any k, if Φek
is total on F and

|Φe(F)| ≥ |Ik| then the following holds:

– for all k′ ∈ Ik, ik′ is defined;
– for all different k′, k′′ ∈ Ik, there is an x for which Φek

(fik′
)(x), Φek

(fik′′
)(x) are defined and

different.

Note that the above partial-recursive function can easily be implemented by a standard search
and might also be defined for some e, where Φe is not total on F .

The indices jk are found as limits of the following approximation jk,s: if ik is not yet defined at
stage s, then jk,s = 0; otherwise jk,s is the least ℓ such that either ℓ = s or fℓ extends Φek

(fik [s]).
This approximation is recursive and the jk,s converge to the least ℓ for which fℓ extends Φe(fik),
whenever such an ℓ exist. Note that jk,s ≤ jk,s+1, for all s, and lims jk,s = ∞, if no fℓ extends
Φe(fik).

The operator Ψ is given as the limit of Ψs, where Ψs(g)(x) is computed by the following
algorithm.

1. Let ℓ be the least number such that either fℓ[x+ s] = g[x+ s] or ℓ ≥ x+ s.
2. Let k be the least number such that either jk,x+s = ℓ or k ≥ x+ s.
3. If ik is defined at step x+ s, then Ψs(g)(x) = fik(x), else Ψs(g)(x) = 0.

It is easy to see that every Ψs is a general recursive operator. Furthermore, the algorithm is
uniform in s, so one can compute the value Ψs(g)(x) from the input s, x effectively.

Assume now that Φe is an F -preserving general recursive operator such that Φe(F) is infinite.
Then, for every k with ek = e, the index ik is defined as there are at least |Ik| functions in F

21

which are mapped to different images. Furthermore, as Φe is F -preserving, for such ik, fik are
mapped to some fjk

and the jk,s converge to jk.
Now select any interval I such that ek′ = e, for all k′ ∈ I. Note that the mapping k′ 7→ jk′ is

one-one on the domain I. Thus, there is an index k ∈ I such that jk 6= jk′, for all k′ < min(I).
Fix this k and let x+ s be so large that the following holds:

– fℓ[x+ s] 6= fjk
[x+ s] for all ℓ < jk;

– ik is defined at stage x+ s and jk,x+s = jk;
– jk′,x+s > jk, for all k′ < k, where jk′,0, jk′,1, . . . converges to a number larger than jk or to

infinity.

Then one can say the following about the algorithm to compute Ψs(fjk
)(x).

– the ℓ in the algorithm to compute Ψs(fjk
)(x) is jk;

– the parameter k from the algorithm has the same value as the k considered here;
– Ψs(fjk

)(x) = fik(x) as ik is already defined at stage x+ s.

Thus, every Ψs(fjk
) is a finite variant of fik and almost all Ψs(fjk

) are equal to fik . So Ψ inverts Φe

on fjk
to fik . The function fjk

selected in the interval I was not dealt with in smaller intervals Ik′

with ek′ = e. Thus, each such interval contributes a function on which Φe is inverted. Therefore
Φe is correctly inverted on infinitely many functions from Φe(F). ⊓⊔

In the previous proof, Ψ0 is a general recursive operator which strongly inverts every F -preserving
general recursive operator Φe, with |Φe(F)| = ∞, on infinitely many functions from its range.
This is not put into the formulation of the theorem, as in the case that the index e is unknown
to the inverting operator, the implication “strongly inverts ⇒ inverts” is no longer clear.

The next result states that, although one can invert infinitely many functions, it can be
impossible to invert uncountably many. Thus, only a tiny fraction of the image of the operator
can be inverted to its origin.

Proposition 36. There is a general recursive operator Φ such that the range of Φ is uncountable
but every limit-recursive Ψ weakly inverts Φ on at most countably many of the functions in the
range of Φ.

Proof. For a function f , let Of = {x : f(x) is odd}. Now one defines Φ as follows:

Φ(f)(x) =















1 if x ∈ Of and, for all e ≤ x,

either W
Of

e,f(y) has at least y elements for all y ∈ {e, e+ 1, . . . , x}

or W
Of
e,x has at most f(e) elements;

0 otherwise.

Note that Φ(f) has infinitely many 1s only if Φ(f) is the characteristic function of Of . It is easy
to see that the range of Φ is a subclass of {0, 1}∞.

On one hand, for every set O, there is a fast growing function f such that (the characteristic
function of) O is Φ(f). Indeed, f can be any function with f(x) being odd iff x ∈ O and f
growing so fast that for all e and all y ≥ e,

22

– if WO
e is finite then f(y) ≥ |WO

e |;
– if WO

e contains at least y elements so does WO
e,f(y).

Hence, the range of Φ is the full class {0, 1}∞. So the range is uncountable.
On the other hand, any limit-recursive Ψ can only invert Φ on characteristic function of finite

sets. To see this, assume by way of contradiction that there are O, f, Ψ such that O is infinite, Ψ
is limit-recursive, f = Ψ(O) and Φ(f) = O. Note that f has to grow so fast that f(e) ≥ |WO

e |,
whenever the latter cardinality is finite: otherwise Φ(f) has only finitely many 1s. Thus,

WO
e is finite ⇔ |WO

e | ≤ f(e).

Now one can use the oracle O′ to do the following: compute f(e) using Ψ(O), check whether
|WO

e | ≤ f(e) and conclude that WO
e is finite iff this test “|WO

e | ≤ f(e)?” turned out to be true.
This would show that {e : WO

e is finite} ≤T O′, a contradiction. As the class of {0, 1}-valued
functions with only finitely many 1s is countable, every limit-recursive operator can weakly invert
only countably many functions. ⊓⊔

7 Conclusion

In this paper we considered how and when general recursive operators can be inverted. The
research was motivated by the fact that in many situations in real life, one is interested in
finding what caused a certain result. We also introduced the notion of coverability, which allows
us to find and study simple representative enumerations of operators which satisfy some desired
properties.

The main results of the present paper might be summarized as follows: The four presented
notions of inversion, as well as the three notions of coverability, form a strict hierarchy. Further-
more, all of the given concepts are shown to contain non-trivial classes.

From a practical point of view, strong inversion is the most interesting type, since it allows us
to get a finite variant of the original input uniformly from Φ(f). Getting the exact input is much
harder, as shown at the end of Section 5 about periodic functions. It would be interesting to
further explore partial inversion, that is, we might not be able to invert an operator completely,
but on sufficiently many outputs. Another interesting topic might be the inversion in other
special cases similar to periodicity.

Although we have separated the above notions and given – as we hope – interesting examples,
there is more to learn about these concepts. One goal will be to find interesting sufficient and/or
necessary conditions for classes to be invertible or coverable. Again from the practical side, the
first candidates to look at would be strongly invertible and strongly coverable.

One may consider the generalization of inversion, where operators map F to G, where F and
G might be different. Then (F ,G) would be invertible if, for every general recursive operator Φ
mapping F to G, there exists a limit-recursive operator Ψ which maps Φ(f) to a g such that
Φ(f) = Φ(g), for all f ∈ F . For this paper, as our results mainly dealt with G = F , we decided
to keep the simpler version of the definition for notational ease.

23

8 Acknowledgement

We would like to thank John Case, Samuel Moelius and an anonymous referee for many detailed
and helpful comments.

References

1. Janis Bārzdiņš and Rūsiņš Freivalds. On the prediction of general recursive functions. Soviet
Mathematical Doklady, 13:1224–1228, 1972.

2. John Case and Carl H. Smith. Comparison of identification criteria for machine inductive
inference, Theoretical Computer Science, 25, 193–220, 1983.

3. E. Mark Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

4. Tamara J. Hummel and Carl G. Jockusch. Generalized Cohesiveness. The Journal of Sym-
bolic Logic, 64:489–516, 1999.

5. Susanne Kaufmann. Quantitative Aspekte in der Berechenbarkeitstheorie. Shaker Verlag,
Aachen, 1998.

6. Georg Kreisel. Note on arithmetical models for consistent formulae of the predicate calculus.
Fundamenta Mathematicae, 37:265-285, 1950.

7. Viktor W. Marek, Anil Nerode and Jeffrey B. Remmel. How complicated is the set of stable
models of a recursive logic program? Annals of Pure and Applied Logic, 56, 119–135, 1992.

8. Abraham H. Maslow. A Theory of Human Motivation, Psychological Review, 50, 370–396,
1943.

9. Piergiorgio Odifreddi. Classical Recursion Theory, Volume I. North-Holland, Amsterdam,
1989.

10. Piergiorgio Odifreddi. Classical Recursion Theory, Volume II. Elsevier, Amsterdam, 1999.
11. Bruce Schneier. The Blowfish Encryption Algorithm. Proceedings of the First Fast Soft-

ware Encryption Workshop. Springer Lecture Notes in Computer Science 809:191–204, 1994.
http://www.schneier.com/blowfish.html.

12. Robert I. Soare. Recursively Enumerable Sets and Degrees. Springer, Heidelberg, 1987.

24

