
ON THE LIMITATIONS OF LOCALLY ROBUST

POSITIVE REDUCTIONS
∗

LANE A. HEMACHANDRA†

Department of Computer Science

University of Rochester

Rochester, NY 14627, USA

SANJAY JAIN‡

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716, USA

ABSTRACT

Polynomial-time positive reductions, as introduced by Selman, are by definition
globally robust — they are positive with respect to all oracles. This paper studies
the extent to which the theory of positive reductions remains intact when their
global robustness assumption is removed. We note that two-sided locally robust
positive reductions — reductions that are positive with respect to the oracle to which
the reduction is made — are sufficient to retain all crucial properties of globally
robust positive reductions. In contrast, we prove absolute and relativized results
showing that one-sided local robustness fails to preserve fundamental properties of
positive reductions, such as the downward closure of NP.

Keywords : Structural complexity theory; Polynomial-time reductions; Complexity
classes.

1 Introduction

In this paper we study the relative powers of different positive reducibilities. In-

formally, a reduction is positive if converting some “no” answers to “yes” does not

cause a previously accepted string to be rejected.

Selman, in his influential paper [19], defines and considers the properties of poly-

nomial-time positive reductions. His positive reductions are by definition globally

∗Some of these results were announced at the 9th Conference on Foundations of Software
Technology and Theoretical Computer Science, Bangalore, India, 1989.

†Supported in part by the National Science Foundation under grant CCR-8809174/CCR-
8996198 and Presidential Young Investigator Award CCR-8957604.

‡Supported in part by the National Science Foundation under grant CCR-8320136. Work done
in part while at the University of Rochester.

1

robust in the positivity.

An oracle machine, or a set of oracle machines, is said to robustly have a property

P if it has property P for all oracles [16, 10]; this notion is related to two important

early papers by Book, Long and Selman [6, 7], which give several careful analyses

of properties that hold for all oracles versus properties that hold relative to a fixed

oracle. Research on the power of robustness [16, 3, 14, 20, 10] suggests that global

robustness is a strong restriction. For example, it is known that if two nondetermin-

istic machines N1 and N2 are robustly complementary — that is, complementary

for every oracle — then for all oracles A, L(NA
1) ∈ PA⊕NP [10]. This, and the

desire to broaden the domain of application of Selman’s techniques, motivate us to

relax the global robustness restriction.

Accordingly, we introduce three notions of locally robust polynomial-time posi-

tive reductions. We show that the Turing versions of these reducibilities differ. How-

ever, our ability to distinguish among the truth-table versions of these reducibilities

depends on the structure of NP . In particular, we show that if P=NP then these

polynomial-time locally robust truth-table reducibilities are the same. However, if

there exist uniformly log∗-sparse tally sets in NP−P then the reducibilities differ.

We study the extent to which the theory of positive reductions, as studied by

Selman, remains intact for locally robust reductions. We prove results identifying

the crucial properties of positive reductions required to obtain the results of [19].

One reason for introducing new reducibilities is that it is more likely that a set A

reduces to B by locally positive reductions than by globally positive reductions.

Our results thus enrich the domain in which Selman’s techniques can be applied.

2 Notations

Let N denote the set of natural numbers. Σ is an alphabet set, usually {0, 1}. A lan-

guage is a subset of Σ∗. ∅ denotes the empty set. M0, M1, . . . denotes some standard

enumeration of polynomial-time deterministic Turing machines. N1, N2, . . . denotes

some standard enumeration of polynomial-time nondeterministic Turing machines.

We assume that the running time of machine Mi (Ni) is bounded by determinis-

tic (nondeterministic) time ni + i. P denotes the class of all languages accepted

by some polynomial-time deterministic Turing machine [12]. NP denotes the class

of languages accepted by some polynomial-time nondeterministic Turing machine.

coNP denotes the class of languages whose complement is in NP [12]. L(M) de-

notes the language accepted by the machine M . E and NE denote respectively the

2

class of languages accepted by exponential time deterministic and nondeterministic

Turing machines; that is, E =
⋃

c>0 DTIME[2cn] and NE =
⋃

c>0 NTIME[2cn].

L(MA) denotes the language accepted by the oracle machine M with oracle A [12].

A ≤T B means there exists a machine M such that A = L(MB). ≤P
T de-

notes polynomial-time Turing reduction. ≤P
tt and ≤P

m similarly denote polynomial-

time truth-table and many-one reductions. Pr(A) denotes the class of languages

r-reducible to A in polynomial time (see [5]). A tally language is a subset of 1∗. A

denotes the complement of A, i.e., Σ∗ − A. χA denotes the characteristic function

of A. We sometimes denote a string x of length n by x1x2 · · ·xn, where xi is the

i-th character of x. |x| denotes the length of x. A≤n denotes the set of strings in A

with length at most n.

3 Polynomial-time Positive Reducibilities

In this section we review Selman’s notion of positive reducibility, which by definition

is globally robust, and we introduce the notion of locally robust positive reducibility.

Positive reducibility was first studied for polynomial-time truth-table reductions

in [15]. Selman, in [19], extended the definition to Turing reductions. We first give

the definition of globally positive reducibility due to Selman.a

Definition 3.1 [19, 18] A query machine M is globally positive if (∀x)(∀A, B)[x ∈

L(MB) ⇒ x ∈ L(MA∪B)].

Intuitively, a machine M is positive if converting some “no” answers to “yes”

answers does not make the machine reject a previously accepted string. Moreover,

this property holds for all oracles given to the machine (hence the term globally

positive). Positive reducibility can now be defined using these globally positive

machines.

Definition 3.2 [19, 18] A ≤P
pos C if A ≤T C by some polynomial-time, globally

positive Turing machine M .

The conditions placed here on positive Turing reductions are analogous to those

in the definition of positive truth-table reductions in [15], which defined globally

positive truth-table reductions.

aThis reducibility is simply referred to as “positive” in [19]. However, we shall refer to it

throughout this paper as “globally positive” in order to distinguish it from the locally positive

reducibilities we define.

3

Definition 3.3 [15] A ≤P
ptt C if A ≤T C by some polynomial-time, globally positive

machine M , and there is a polynomial-time computable function f : {0, 1}∗ →

{c, 0, 1, }∗ such that M on input x makes queries only from the list f(x) (here c acts

as a separator of elements of the list). M above can be equivalently represented by

a polynomial-time evaluator e such that for all oracles C, e(x, χC(y1), χC(y2), . . .) =

MC(x), where y1, y2, . . . are the elements in the list f(x).b

Definition 3.4 [15] A ≤P
pbtt C if A ≤T C by some polynomial-time, globally

positive machine M , and a polynomial-time computable function f : {0, 1}∗ →

{c, 0, 1, }∗ such that M on input x makes queries only from the list f(x). Moreover

the number of elements in the list f(x) is bounded by some constant independent

of x. M above can be equivalently represented by a polynomial-time evaluator e

such that for all oracles C, e(x, χC(y1), χC(y2), . . .) = MC(x), where y1, y2, . . . are

the elements in the list f(x).

The above definitions require global robustness; given any oracle A, L(MA)

must never decrease when A is increased in any way. Note that all ≤P
m reductions

are globally positive. However, global robustness is a strong restriction on Turing

transducers. Machines exhibiting global robustness are known, in other contexts,

to be weak [3, 20, 10].

A more moderate definition of “positive” might require a reduction to be robust

only with respect to the particular set to which the reduction is being made. We

introduce three notions of locally robust positive reductions. In these definitions

we require the machine to be robust only with respect to the oracle to which the

reduction is made.

Definition 3.5 A query machine M is locally right positive with respect to B if

(∀x)(∀A)[x ∈ L(MB) ⇒ x ∈ L(MA∪B)].

Intuitively, M is locally right robust with respect to B if converting some “no”

answers from the oracle B to “yes” answers does not make the machine reject

a previously accepted string. Left robustness is just the other side of the above

definition.

Definition 3.6 A query machine M is locally left positive with respect to B if

(∀x)(∀A)[x ∈ L(MB−A) ⇒ x ∈ L(MB)] (or equivalently (∀x)(∀A)[x 6∈ L(MB) ⇒

x 6∈ L(MB−A)]).

bIn [15] the first argument of e is α(x), however without loss of generality we can take this to

be x and let e do the (polynomial-time) computation required to obtain α.

4

Definition 3.7 A query machine M is locally right-left positive with respect to B

if M is both right and left positive with respect to B.

Locally robust reductions can now be defined with respect to reductions involv-

ing locally robust machines.

Definition 3.8 A ≤P
rpos B if A ≤T B by some polynomial-time machine that is

locally right positive with respect to B.

Definition 3.9 A ≤P
lpos B if A ≤T B by some polynomial-time machine that is

locally left positive with respect to B.

Definition 3.10 A ≤P
rlpos B if A ≤T B by some polynomial-time machine that is

locally right-left positive with respect to B.

≤P
rlptt,≤

P
rptt,≤

P
lptt,≤

P
rlpbtt,≤

P
rpbtt and ≤P

lpbtt reductions can be defined similarly.

4 Relationships between Different Polynomial-

time Positive Reducibilities

In this section, we compare the relative power of different polynomial-time positive

reducibilities. Clearly:

Proposition 4.1 A ≤P
s B ⇒ A ≤P

rls B ⇒ [A ≤P
rs B

∧
A ≤P

ls B], where s is in

{pos, ptt, pbtt}.

We first consider the elementary properties of the reductions. The following

proposition is easy to prove.

Proposition 4.2

1. A ≤P
pos B and B ≤P

pos C ⇒ A ≤P
pos C.

2. A ≤P
rpos B and B ≤P

rpos C ⇒ A ≤P
rpos C.

3. A ≤P
lpos B and B ≤P

lpos C ⇒ A ≤P
lpos C.

4. A ≤P
rlpos B and B ≤P

rlpos C ⇒ A ≤P
rlpos C.

Results similar to those of Proposition 4.2 can also be proved for bounded truth-

table and truth-table reductions.

Proposition 4.3 A ≤P
lpos B ⇒ A ≤P

rpos B.

5

Proof Let A ≤P
lpos B via M . Let M1 be such that MC

1 (x) = 1 iff MC(x) = 0.

Clearly x ∈ L(MB
1) ⇔ x 6∈ L(MB). Thus M1 reduces A to B. If C ⊇ B and x ∈ A

(and thus C ⊆ B and x 6∈ A) then x 6∈ L(MC), since M is locally left positive, and

thus x ∈ L(MC
1). So M1 is locally right positive. 2

A similar proof can be used for ≤P
pos,≤

P
rpos,≤

P
rlpos,≤

P
ptt,≤

P
lptt,≤

P
rptt,≤

P
rlptt, yield-

ing the following result.

Proposition 4.4

1. A ≤P
rpos B ⇒ A ≤P

lpos B.

2. A ≤P
rlpos B ⇒ A ≤P

rlpos B.

3. (implicit in [19]) A ≤P
pos B ⇒ A ≤P

pos B.

4. A ≤P
lptt B ⇒ A ≤P

rptt B.

5. A ≤P
rptt B ⇒ A ≤P

lptt B.

6. A ≤P
rlptt B ⇒ A ≤P

rlptt B.

7. ([15], Proposition 3.1(v)) A ≤P
ptt B ⇒ A ≤P

ptt B.

We now consider the relative power of different locally robust positive reductions.

Selman showed that globally robust positive Turing reductions are more powerful

than truth-table reductions.

Theorem 4.5 [19] There exist recursive sets A and B such that A ≤P
pos B but

A 6≤P
tt B.

Also, it is easy to see as a corollary of previous work on disjunctive reductions

that (i) there exist recursive sets A and B such that A ≤P
ptt B but A 6≤P

btt B, and

(ii) there exist recursive sets A and B such that A ≤P
pbtt B but A 6≤P

m B [15].

Though locally robust positive reductions are in general more flexible than glob-

ally robust positive reductions, the following theorem shows that local robustness

does not add extra power for the special case of positive bounded truth-table reduc-

tions.

Theorem 4.6 For all A, Ppbtt(A) = Prpbtt(A) = Plpbtt(A).

Proof Let B ≤P
rpbtt A via M . Let f(x) be the polynomial-time computable

list such that M , on input x, makes queries only from the list f(x). Let e be the

evaluator equivalent to M (as in the definition of ≤P
pbtt reduction). Recall that this

means that the size of list f(x) is bounded by some constant c and e is positive with

respect to A. Thus if f(x) = x1, x2, . . . , xc, χA(xi) = bi and e(x, b1, . . . , bc) = 1,

6

then converting some of bi from 0 to 1 does not make e evaluate to 0. To make a

globally robust reduction from B to A we need to convert this e to e′ that is positive

with respect to all oracles. We do this by converting some evaluation of e from 1

to 0.

Let e′(x, b1, . . . , bc) = 1 iff (∀d1, . . . , dc, bj = 1 ⇒ dj = 1) [e(x, d1, . . . , dc) = 1].

(For example: if c = 2, e(x, 0, 0) = 1, e(x, 0, 1) = 1, e(x, 1, 0) = 0 and e(x, 1, 1) = 1

then we replace e by e′, where e′(x, 0, 0) = 0, e′(0, 1) = 1, e′(x, 1, 0) = 0 and

e′(x, 1, 1) = 1.) This makes e′ globally positive, and does not effect the reduction

from B to A (since e was right positive with respect to A). Thus, f and e′ form a

positive bounded truth-table reduction from B to A. A similar proof can be used

to show that Plpbtt(A) = Ppbtt(A). 2

For unbounded truth-table reductions, the distinction between different posi-

tive reducibilities depends on the structure of NP , as shown by the following two

theorems.

Theorem 4.7 If P=NP , then for all A, Pptt(A) = Prlptt(A) = Prptt(A) = Plptt(A).

Theorem 4.8 Let g(0) = 1, g(n + 1) = 2g(n), n > 0. If there exist tally sets in
⋃

c>0 NTIME[gc(n)] −
⋃

c>0 DTIME[gc(n)] then there is a recursive set A such

that Prptt(A) − Plptt(A) 6= ∅ and Plptt(A) − Prptt(A) 6= ∅.

Proof (of Theorem 4.7) We prove that Prptt(A) = Pptt(A). The proof for

Plptt(A) = Pptt(A) is similar. Prlptt(A) = Pptt(A) follows from Proposition 4.1.

Let B ≤P
rptt A via M . Let f(x) be the polynomial-time computable list such

that M , on input x, makes queries only from the list f(x). Let e be the evaluator

equivalent to M (as in the definition of ≤P
ptt reduction). We now proceed as in

Theorem 4.6. Let e′(x, b1, b2, . . . , bp(n)) = 1 iff [(∀d1, . . . , dp(n), bj = 1 ⇒ dj = 1)

[e(x, d1, . . . , dp(n)) = 1]]. Note that e′ can be calculated in polynomial time if

P=NP . Clearly, f and e′ witness that B ≤P
ptt A. 2

Proof (of Theorem 4.8) We only prove that (∃A)[Prptt(A)−Plptt(A) 6= ∅]. The

proof can be easily modified to show that [(∃A)[Prptt(A)−Plptt(A) 6= ∅
∧

Plptt(A)−

Prptt(A) 6= ∅]].

Let N be a polynomial-time nondeterministic machine accepting a tally lan-

guage L ⊆ {1g(k) : k ∈ N} that is not in P (the existence of such a machine

7

follows from the assumption that there exist tally sets in
⋃

c>0 NTIME[gc(n)] −
⋃

c>0 DTIME[gc(n)], by the techniques of [11]c).

Without loss of generality, let all certificates of x ∈ L be of length |x|j + j and,

without loss of generality, 0|x|
j+j is never such a certificate. Let r be the polynomial-

time predicate associated with N and L, i.e., r(x, y) = 1 iff y is a certificate for x.

Let e(x, y1, . . . , ynj+j) = 1 − r(x, y), where y = y1 · · · ynj+j . Let plus(a, j) be the

string j greater than a in standard lexicographical order; e.g., plus(1010, 3) = 1101.

Let c be the separation character from the definition of f (see Definitions 3.3 and

3.4). Let f(x) = plus(x, 1) c plus(x, 2) c . . . c plus(x, |x|j + j). Clearly, functions f

and e are computable in polynomial time.

A will be defined so that e is locally right positive. Also all strings not of the

form x, plus(x, 1), plus(x, 2) , . . . , plus(x, |x|j + j), where x ∈ {1g(k) : k ∈ N},

are not in A. χA(plus(x, 1)) · · ·χA(plus(x, |x|j + j)) will be 0|x|
j+j if x 6∈ L, and

otherwise will be a certificate of the fact that x ∈ L. Let Ri be the requirement

that Mi : L 6≤P
lptt A, that is, Mi does not ≤P

lptt reduce L to A. Below, As denotes

the strings of A determined before stage s. Go to stage 0.

Stage s

1. Let x be the least element in {1g(k) : k ∈ N} not considered until this stage.

2. Let i be the least requirement not satisfied until now.

3. Let ei, fi be the evaluator and set calculator (as in the definition of positive

truth-table reducibility) for the truth-table reducer Mi.

4. If x 6∈ L then let As+1 = As.

5. Else If (∃z)[z is a certificate for x and ei(x, χD(z)(q1), χD(z)(q2), . . .) = 1],

where fi(x) = q1cq2 · · · and D(z) = As

⋃
{plus(x, l) : zl = 1}, then let y be

the least such certificate z. Set As+1 = As

⋃
{plus(x, l) : yl = 1}. (Note that

here Ri is satisfied.)

6. Else Let As+1 = As

⋃
{plus(x, l) : yl = 1}, where y is the least certificate

for x. (Note that besides the explicit satisfaction of Ri in step 5, Ri may be

implicitly satisfied due to steps 4 and 6.)

end stage s

cThough recent work by Allender [1] has corrected parts of [11], the techniques of [11] as used

here are correct.

8

It is clear that L ≤P
rptt A via the functions f and e. This is because when

x ∈ L, then e(x, y) = 1 for any length |x|i + i string y; so even if A has some

strings added — and the “address” χA(plus(x, 1)) · · ·χA(plus(x, |x|i + i)) = 0|x|
i+i

thus has some zeros corrupted to ones — e(x, corrupted address) will nonetheless

accept.

Now consider the following cases:

Case 1: All requirements are satisfied.

In this case, clearly, L 6≤P
lptt A.

Case 2: Ri is the least requirement not satisfied.

In this case we show that L ∈ P . Let n be so large that 2n/10 > ni + i, and all

the smaller requirements have been satisfied before stage s, n > g(s). Clearly, when

m ∈ {g(k) : k ∈ N}, then A≤m−1 can be determined in time polynomial in m (by

just going through all possible certificates). Now for x ∈ {1g(k) : k ∈ N},|x| > n, we

have x 6∈ L ⇒ ei(x, χA≤|x|−1(q1), χA≤|x|−1(q2), . . .) = 1 (since A≤|x|−1 = A≤|x|j+j

due to step 4 of the construction, and Mi reduces L to A). And similarly, we have

x ∈ L ⇒ ei(x, χA≤|x|−1(q1), χA≤|x|−1(q2), . . .) = 0 (since A≤|x|−1 ⊆ A and L ≤P
lptt A

via Mi). This gives us a polynomial-time decision procedure for L, contradicting

the assumption.

Thus all requirements are satisfied. 2

Note that the above proof can also be used to distinguish between ≤P
rptt and

≤P
lpos reductions, under the same assumption.

We now consider the relationship between various positive Turing reducibilities.

Theorem 4.9 (∃A)[Prpos(A) − Plpos(A) 6= ∅
∧

Plpos(A) − Prpos(A) 6= ∅].

Corollary 4.10 (∃A)[Prpos(A) − Prlpos(A) 6= ∅
∧

Plpos(A) − Prlpos(A) 6= ∅].

Proof Let g(0) = 1, g(n + 1) = 2g(n). Consider the following languages:

LA = {1n : n = g(k) for some even k
∧

1nb0b1b2 · · · bn−1 ∈ A where bj =

χA(0n+j)}.

L′
A = {1n : n = g(k) for some odd k

∧
1nb0b1b2 · · · bn−1 ∈ A where bj =

χA(0n+j)}.

To ensure that LA ≤P
rpos A, it suffices to construct A so that for all n of

the form g(2k), we have [[1nb0b1 · · · bn−1 ∈ A]
∧

[(∀j)[bj = 1 ⇒ dj = 1]]]

⇒ [1nd0d1 · · · dn−1 ∈ A], where bj = χA(0n+j). Thus an oracle machine MB

that accepts 1n iff n = g(k) for some even k and 1na0a1 · · · an−1 ∈ B, where

ai = χB(0n+i) witnesses that LA ≤P
rpos A.

9

Similarly, L′
A ≤P

lpos A is ensured if for all n of the form g(2k + 1), for bj =

χA(0n+j), [[1nb0b1 · · · bn−1 6∈ A]
∧

(∀j)[bj = 0 ⇒ dj = 0]] ⇒ [1nd0d1 · · · dn−1 6∈ A].

We now construct A in stages. A will satisfy the conditions above so that

LA ≤P
rpos A and L′

A ≤P
lpos A.

At stage s we decide the membership in A of strings of length g(s), . . . , g(s+1)−1.

We always assume that strings not of the form 0g(k)+i, i < g(k) or 1g(k){0, 1}g(k),

are not in A (without explicitly mentioning it below).

Let R2i be the requirement that Mi : LA 6≤P
lpos A, that is, Mi does not ≤P

lpos

reduce LA to A. Let R2i+1 be the requirement that Mi : L′
A 6≤P

rpos A, that is, Mi

does not ≤P
rpos reduce L′

A to A. Note that if all the requirements are satisfied then

LA 6≤P
lpos A and L′

A 6≤P
rpos A. Below, As denotes the strings of A determined before

stage s. Go to stage 0.

Stage 2s

1. Let R2i be the least unsatisfied even requirement.

2. Let n = g(2s).

3. If 2n/10 ≤ ni + i then exclude from A all strings of length l, g(2s) ≤ l <

g(2s + 1).

4. Else If MA
i (1n) rejects when all new questions x (i.e., those not decided in

A2s) are answered by the rule “If x is of the form 1n{0, 1}n then YES; If x

is of the form 0n+j then NO,” then let A2s+1 be such that all strings of the

form 1n{0, 1}n ∈ A2s+1 and all other strings of length l, g(2s) ≤ l < g(2s + 1)

not in A2s+1. (Note that in this case R2i is satisfied.)

5. Else

• Let S be the set of questions of the form 1n{0, 1}n asked in the compu-

tation by Mi in step 4 above.

• For all x ∈ S, let x ∈ A.

• If x is of the form 1n{0, 1}n and x 6∈ S then let x 6∈ A.

• Let y be a question of the form 1n{0, 1}n not asked by Mi (there exists

such a y).

• Let 0n+j ∈ A ⇔ yn+j+1 = 1 for j < n.

10

• (Note that on this A, Mi either accepts incorrectly or rejects. In the

latter case, since A ⊇ A2s

⋃
S on which Mi accepts, Mi is not a ≤P

lpos

reduction. Either way, R2i is satisfied.)

end stage 2s

Stage 2s + 1 is similar:

Stage 2s + 1

1. Let R2i+1 be the least unsatisfied odd requirement.

2. Let n = g(2s + 1).

3. If 2n/10 ≤ ni + i then exclude from A all strings of length l, g(2s + 1) ≤ l <

g(2s + 2).

4. Else If MA
i (1n) accepts when all new questions x (i.e., those not decided in

A2s) are answered by the rule “If x is of the form 1n{0, 1}n then NO; If x

is of the form 0n+j then YES,” then let A2s+1 be such that all strings of the

form 1n{0, 1}n 6∈ A2s+2 and all strings of the form 0n+j , j < n, in A2s+2.

(Note that in this case R2i+1 is satisfied.)

5. Else

• Let S be the set of questions of the form 1n{0, 1}n asked in the above

computation by Mi.

• For all x ∈ S, let x 6∈ A.

• If x is of the form 1n{0, 1}n and x 6∈ S then let x ∈ A.

• Let y be a question of the form 1n{0, 1}n not asked by Mi (there exists

such a y).

• Let 0n+j ∈ A ⇔ yn+j+1 = 1 for j < n.

• (Note that on this A, either Mi rejects incorrectly, or Mi accepts. In the

latter case, since A ⊆ A2s

⋃
{0n+j : j < n}

⋃
{1nz : |z| = n, z 6∈ S} on

which Mi rejects, Mi is not a ≤P
rpos reduction. In either case, R2i+1 is

satisfied.)

end stage 2s + 1

Let MB(1n) = 1 iff n = g(2k) for some k and 1nb0b1 · · · bn−1 ∈ B, where bj = 1

iff 0n+j ∈ B. Clearly, LA ≤P
rpos A via M (since 1n is placed in LA only in step 4

11

in which case all strings of the form 1nz, |z| = n, are also placed in A). Similarly

L′
A ≤P

lpos A. We claim that LA 6≤P
lpos A. Suppose by way of contradiction that

LA ≤P
lpos A via Mi. Also let Mi be the least such machine. Then for sufficiently

large s in stage 2s, 2n/10 > ni + i and all smaller even requirements have been

satisfied. Thus at this stage by construction Mi will be fooled. Thus no such

machine can exist. It can be similarly shown that L′
A 6≤P

rpos A. This proves the

theorem. 2

Theorem 4.11 (∃A)[Prpos(A)
⋂

Plpos(A) 6= Prlpos(A)].

Proof Let g(0) = 1, g(n + 1) = 2g(n). Consider the following languages:

LA = {1n : n = g(k) for some k
∧

1nb0b1b2 · · · bn−1 ∈ A where bj = χA(0n+j)}.

L′
A = {1n : n = g(k) for some k

∧
12nb0b1b2 · · · bn−1 ∈ A where bj =

χA(02n+j)}.

To ensure that LA ≤P
rpos A it suffices to construct A so that for all n of the form

g(k), for bj = χA(0n+j), we have [[1nb0b1 · · · bn−1 ∈ A]
∧

(∀j)[bj = 1 ⇒ dj = 1]]

⇒ [1nd0d1 · · · dn−1 ∈ A]. Thus LA ≤P
rpos A is witnessed by an oracle machine MB

that accepts 1n iff (1) n = g(k) for some k and (2) 1na0a1 · · · an−1 ∈ B, where

ai = χB(0n+i). Similarly, to ensure that L′
A ≤P

lpos A, it suffices to construct A so

that for all n of the form g(k), we have [[12nb0b1 · · · bn−1 6∈ A]
∧

(∀j)[bj = 0 ⇒

dj = 0]] ⇒ [12nd0d1 · · · dn−1 6∈ A], where bj = χA(02n+j). Thus L′
A ≤P

lpos A is

witnessed by an oracle machine MB that accepts 1n iff (1) n = g(k) for some k

and (2) 12na0a1 · · · an−1 ∈ B, where ai = χB(02n+i) . We will also ensure that

LA = L′
A. Thus LA ∈ Prpos(A)

⋂
Plpos(A). We will also ensure that no machine

Mi witnesses that LA ≤P
rlpos A.

We now construct A in stages. A will satisfy the conditions above so that

LA ≤P
rpos A, LA ≤P

lpos A and LA 6≤rlpos A.

At stage s we decide the membership in A of strings of lengths g(s), . . . , g(s+1)−

1. We always assume that strings not of the forms (1) 0g(k)+i, i < 2g(k), or

(2) 1g(k){0, 1}g(k), or (3) 12g(k){0, 1}g(k) are not in A (without explicitly mentioning

it below).

Let Ri be the requirement that Mi : LA 6≤P
rlpos A — that is, Mi does not ≤P

rlpos

reduce LA to A. Note that if all the requirements are satisfied then LA 6≤P
rlpos A.

Below, As denotes the strings of A determined before stage s. Go to stage 0.

Stage s

1. Let Ri be the least unsatisfied requirement.

12

2. Let n = g(s).

3. If 2n/100 ≤ ni+i then exclude from A all strings of length l, g(s) ≤ l < g(s+1).

4. Else If M
As∪{1n{0,1}n}∪{0n+j :n/2≤j<n}∪{02n+j :n/2≤j<n}
i (1n) rejects then let

y ∈ 12n0n/2{0, 1}n/2 be a string such that y is not queried in the above com-

putation. Let As+1 = As∪{1n{0, 1}n}∪{0n+j : n/2 ≤ j < n}∪{y}∪{02n+j :

y2n+j+1 = 1}.

(Note that in this case Mi is fooled since

M
As∪{1n{0,1}n}∪{0n+j :n/2≤j<n}∪{02n+j :n/2≤j<n}∪{y}
i (1n) rejects and 1n ∈ LA

and As+1 ⊆

As ∪ {1n{0, 1}n} ∪ {0n+j : n/2 ≤ j < n} ∪ {02n+j : n/2 ≤ j < n} ∪ {y}.)

5. Else (M
As∪{1n{0,1}n}∪{0n+j :n/2≤j<n}∪{02n+j :n/2≤j<n}
i (1n) accepts). Let y ∈

1n{0, 1}n/21n/2 be a string such that y is not queried in the above computa-

tion. Let As+1 = [As∪{1n{0, 1}n}∪{02n+j : n/2 ≤ j < n}∪{0n+j : yn+j+1 =

1}] − {y}.

(Note that in this case Mi is fooled since

M
[As∪{1n{0,1}n}∪{0n+j :n/2≤j<n}∪{02n+j :n/2≤j<n}]−{y}
i (1n) accepts, 1n 6∈ LA

and As+1 ⊇

[As ∪ {1n{0, 1}n} ∪ {0n+j : n/2 ≤ j < n} ∪ {02n+j : n/2 ≤ j < n}] − {y}.)

end stage s

Clearly, LA ≤P
rpos A (since 1n is placed in LA only in step 4 in which case all

strings of the form 1nz, |z| = n, are also placed in A). Similarly LA ≤P
lpos A. We

claim that LA 6≤P
rlpos A. Suppose by way of contradiction that LA ≤P

rlpos A via

machine Mi, and, without loss of generality, let Mi be the least machine witnessing

the reduction. Then for sufficiently large s in stage s, 2n/100 > ni + i and all smaller

even requirements have been satisfied. Thus at this stage by construction Mi will

be fooled. Thus no such machine can exist. 2

Whether ≤P
pos and ≤P

rlpos are different is at present an open problem.

5 Basic Properties of Reductions

In this section we consider some of the basic properties of positive reductions in NP .

Selman, in [19], showed that NP is closed downward under globally robust positive

Turing reductions. We show that, though Selman’s techniques suffice to prove that

NP is closed downwards under two of the locally robust reductions, the remaining

13

locally robust reduction fails to leave NP closed downwards in some relativized

worlds. As a corollary, we note that rpos and lpos reductions do not share the

complementation property of globally robust positive reductions (Proposition 4.4,

part 3).

Theorem 5.1 NP is closed downward under ≤P
lpos reductions.

Corollary 5.2

1. coNP is closed downward under ≤P
rpos reductions.

2. NP and coNP are closed downward under ≤P
rlpos reductions.

3. [19] NP and coNP are closed downward under ≤P
pos reductions.

Proof Let A ≤P
lpos B, B ∈ NP . We give an NP algorithm for A. Let

A ≤P
lpos B via M .

On input x

Simulate M , guessing answers for each question asked.

Verify the answers guessed YES.

Accept iff M accepts.

If x ∈ A, then there exists a sequence of right guesses by which the above

algorithm accepts.

We now consider the case in which x 6∈ A. Clearly the guessed oracle for which

the above algorithm simulates M is a subset of B. Since x 6∈ MB , x 6∈ MC for

all C ⊆ B (since M is locally left positive with respect to B). Thus the above

algorithm does not accept x. 2

However the proof does not work for right positive reductions. We give a rela-

tivized world in which NP is not closed downward under locally right robust positive

reductions.

Theorem 5.3 There is a recursive oracle B such that NPB is not closed downward

under ≤P
rpos reductions. That is, there are recursive sets A, B and C such that

C ≤P
rpos A, A ∈ NPB and C 6∈ NPB .

Proof This proof is similar to the proof of Theorem 4.9. Let g(0) =

1, g(n+1) = 2g(n). We will define sets A and B. Let A = {x : (∃y)|y| = |x|, xy ∈ B}.

Clearly A ∈ NPB . Let LA = {1n : n = g(k) for some k and 1nb0b1 · · · bn−1 ∈ A

where bj = 1 ⇔ 0n+j ∈ A}. If [1nb0b1 · · · bn−1 ∈ A
∧

(∀j)[bj = 1 ⇒ dj = 1]] ⇒

[1nd0d1 · · · dn−1 ∈ A], where bj = 1 ⇔ 0n+j ∈ A, then LA ≤P
rpos A (via machine M

14

with which oracle D accepts 1n iff n = g(k) for some k and 1na0a1 · · · an−1 ∈ D,

where ai = χD(0n+i)). We will construct B so that A satisfies the above property.

In addition we will ensure that LA 6∈ NPB . Taking C = LA proves the theorem.

Let Ri be the requirement that L(NB
i) 6= LA. A will contain strings of the

form 1nz, |z| = n, and 0n+i, i < n, where n = g(k) for some k (this thus restricts

some elements to be out of B; we assume that such elements are not in B without

explicitly mentioning so). At stage s we decide the membership of strings of length

l, g(s) ≤ l < g(s + 1) in A (and strings of length l, 2g(s) ≤ l < 2g(s + 1) in B).

Below Bs denotes the strings of B determined before stage s. Go to stage 0.

Stage s

1. Let Ri be the least unsatisfied requirement.

2. Let n = g(s).

3. If 2n/10 ≤ ni + i then exclude from A all strings of length l, n ≤ l < 2n.

4. Else If N
Bs

⋃
{02(n+j):n>j≥n/2}

⋃
{1nz02n:|z|=n,z≥0n/21n/2}

i (1n) rejects then let

Bs+1 = Bs

⋃
{02(n+j) : n > j ≥ n/2}

⋃
{1nz02n : |z| = n, z ≥ 0n/21n/2}.

(Note that in this case we have already fooled Ni, since 1n ∈ LA − L(NB
i).)

5. Else

• Fix an accepting path of

N
Bs

⋃
{02(n+j):n>j≥n/2}

⋃
{1nz02n:|z|=n,z≥0n/21n/2}

i running on input 1n.

• Let S be the set of questions asked by Ni that are in {0(n+j)w : |w| =

n + j}
⋃
{1nz02n : |z| = n, z ≥ 0n/21n/2}.

• Let y, |y| = n, y ∈ {0, 1}n/21n/2 be such that 1ny02n 6∈ S (clearly, such a

y exists).

• Let sn+j be a string of length n + j such that 0(n+j)sn+j 6∈ S.

• Let Bs+1 = Bs

⋃
{w : w ∈ {02(n+j) : n > j ≥ n/2}

⋃
{1nz02n : |z| =

n, z ≥ 0n/21n/2 and 1nz02n ∈ S}}
⋃
{0(n+j)sn+j : yj+1 = 1}.

• (Note that in this case 1n ∈ L(NB
i) − LA.)

end stage s

Clearly, LA ≤P
rpos A. If all requirements are satisfied then clearly LA 6∈ NPB .

So assume that Ri is the least requirement not satisfied. Let s be so large that

2n/10 > ni + i, and all requirements less that i are satisfied by stage s. Then by

15

construction Ri will be satisfied at stage s. Thus all the requirements are satisfied.

2

Though A ≤P
pos B ⇒ A ≤P

pos B (Proposition 4.4), the analog of this result fails

for rpos and lpos reductions, as an immediate corollary of Theorems 5.1 and 5.3

and Corollary 5.2.

Corollary 5.4

1. There exist recursive oracles A and B such that A ≤P
rpos B but A 6≤P

rpos B.

2. There exist recursive oracles A and B such that A ≤P
lpos B but A 6≤P

lpos B.

6 P-Selectivity and Positive Reductions

Selman, in [17], introduced the notion of P-selectivity. Intuitively, A is P-selective

if, given two strings x and y, a polynomial-time function can determine which of x

or y is more “likely” to be an element of A.

Definition 6.1 [17] A is P-selective if there exists a polynomial-time computable

function f such that:

1. (∀x, y)f(x, y) ∈ {x, y}, and

2. x ∈ A ∨ y ∈ A ⇒ f(x, y) ∈ A.

Selman [19] showed that if A ≤P
pos A and A is P-selective then A is in P .

Selman’s proof can be easily seen to generalize to the following:

Theorem 6.2 A ∈ P if and only if A ≤P
rlpos A, and A is P-selective.

We leave it as an open problem whether ≤P
rpos or ≤P

lpos reducibility suffices to

obtain the above theorem. Below, we show that weak P -selectivity does not suffice.

Ko [13] generalized Selman’s notion of P-selectivity.

Definition 6.3 [13] A preorder R on Σ∗ is partially polynomial-time computable

if there is a polynomial-time computable function f such that:

1. f(x, y) = f(y, x) = x if xRy but not yRx,

2. f(x, y) = f(y, x) ∈ {x, y} if xRy and yRx, and

3. f(x, y) = # otherwise.

Let xSy if and only if xRy and yRx. Let R′ be an induced ordering on Σ∗/S,

i.e., xR′y iff xRy, where x denotes the equivalence class of x under the relation S.

16

Definition 6.4 [13] A partial ordering R is p-linear if, for all n, the set Σn =

{x : |x| ≤ n} can be decomposed into at most p(n) many pairwise disjoint sets

B1, . . . , Bm, m ≤ p(n), for some polynomial p such that:

1. If x and y are in the same set Bi then xRy ∨ yRx, and

2. if x and y are in two different sets then neither xRy nor yRx.

Definition 6.5 [13] A is weakly P-selective if and only if there is a partially

polynomial-time computable preorder R with the induced equivalence relation S

and partial ordering R′ such that:

1. R′ is p-linear, and

2. for all n, An = {x ∈ A : |x| ≤ n} is the union of initial segments of R′ chains

in Σn.

In contrast to Theorem 6.2 we show that:

Theorem 6.6 There exists recursive oracle Q and a recursive set A such that A is

weakly P Q-selective, A ≤P
pos A but A 6∈ P Q.

Proof We will define A and Q in the following. Q will act as a weak P-selector

for A. Thus A will be trivially weakly P Q-selective.

Let g(0) = 1, g(n + 1) = 8g(n). A and Q will be such that:

1. A ⊆ S where S = [{1g(n) : n ∈ N} ∪ {1g(n)0k : n ∈ N ∧ 0 < k ≤ 2g(n)} ∪

{14g(n)y : n ∈ N ∧ |y| = 1 + g(n)}].

2. 1g(n)02k+1 ∈ A ⇔ 1g(n)02k+2 6∈ A, for k < g(n).

3. for |y| = g(n), 14g(n)y1 ∈ A ⇔ 14g(n)y0 6∈ A.

4. 1g(n) ∈ A ⇔ 14g(n)y1 ∈ A where

y = χA(1g(n)02)χA(1g(n)04) · · ·χA(1g(n)02g(n)).

For partial ordering R we have

1. Bn = {x : |x| = n} (for Bi in the definition of p-linear partial ordering).

2. 〈x, y〉 ∈ Q if and only if |x| = |y| and xRy.

Clearly, A ≤P
pos A and A is weakly P Q-selective.

The following construction diagonalizes to ensure that every P Q machine fails

to accept A. Assume, without loss of generality, that MQ
i queries only strings of

17

the form 〈x, y〉 such that |x| = |y|, x ∈ S and y ∈ S. At stage s we determine the

membership in A for all strings of length l, g(s) ≤ l < g(s + 1). We also define Q

on all pairs of strings of length between g(s) and g(s + 1). We explicitly give the

membership in A only for strings in S. Also we define the relation R only for strings

in S that are of the same length. A and R on other values can be predetermined

using (1) and (5) above.

Let Ri be the requirement that L(MQ
i) 6= A. Go to stage 0.

Stage s

1. Let x = 1g(s).

2. Let i be the least requirement not satisfied until now. Let n = g(s).

3. If ni + i ≥ 8n/10 then let 1n 6∈ A, 1n02k ∈ A, k ≤ n, and 14ny1 6∈ A for all

y, |y| = n. Define Q in some way consistent with A.

4. Else run M i on 1n, answering all questions 〈z, y〉 in the following way: “If

5g(s) + 1 = |z| = |y|, then let z = uc, y = wr; r, c ∈ {0, 1}; Put u0, w0 ∈ A

and u1, w1 6∈ A; Answer the question in a way consistent with the previous

answers and A as determined so far.”

5. Let y be such that neither 14ny0 nor 14ny1 has appeared in any query until

now. Let χA(1n02)χA(1n04) · · ·χA(1n02n) = y.

6. Let 14ny1 ∈ A if and only if M is rejected in the above simulation.

7. (Note that Mi has been fooled in this stage.)

end stage s

Clearly, A ≤P
pos A. Also A is weak P Q-selective. Suppose by way of contradiction

that MQ
i = A. Also let Mi be the least such machine. Then for sufficiently large

s in stage s, 8n/10 > ni + i and all smaller requirements are satisfied. Thus at this

stage by construction Mi will be fooled. Thus no such machine can exist. 2

Selman [19] showed that if A ≤P
pos B (B 6= ∅, B 6= Σ∗) and B is P-selective, then

there exists an algorithm that runs in time polynomial in the number of queries in

the computation tree of the reducer and outputs a set I such that x ∈ A ⇔ I ⊆ B.

We observe that Selman’s proof holds even for ≤P
rlpos reductions.

Proposition 6.7 [implicit from the techniques of [19]] Let A ≤P
rlpos B via ma-

chine M , B 6= ∅, B 6= Σ∗. Let B be P-selective. Then there exists an algorithm that

18

runs in time polynomial in the length of the input x and the number of queries in

the computation tree of M on x, that outputs a set I such that x ∈ A ⇔ I ⊆ B.

Proof We restate Selman’s algorithm for completeness, modified for

≤P
rlpos reductions. Let f be a P-selector for B. Let f ′(x1, x2, . . . , xr) =

f(x1, f(x2, . . . , f(xr−1, xr), . . .)). Let a ∈ B and b 6∈ B.

On input x.

1. If M∅(x) accepts let I = {a}.

2. If MΣ∗

(x) rejects then I = {b}.

3. Else

Let Q = T = ∅

Repeat

I = T ;

Simulate M on x with oracle I.

Q = set of all queries asked in the above computation.

If M rejects then

begin

u = f ′(Q − I);

T = I ∪ {u}

end

Until T = I

Clearly, the above algorithm on input x outputs a set I such that x ∈ A ⇔ I ⊆ B

(by induction on the number of times the repeat loop is executed). Also since each

time the repeat loop is executed the cardinality of T increases at least by 1, the

number of times the repeat loop is executed is at most the number of queries in the

computation tree of M on input x. Also since each loop runs in time polynomial

in the length of x and the number of queries in the computation tree of M on x,

the whole algorithm runs in time polynomial in |x| and the number of queries in

computation tree of M on input x. 2

Corollary 6.8 If A ≤P
rlpos B, B 6= ∅, B 6= Σ∗ and B is P-selective then for some

polynomial p, A ≤m B by a function g computable in time 2p(|x|).

Proof Use the above algorithm to get I such that x ∈ A ⇔ I ⊆ B. Since B

is P-selective, we select an element from I that is most likely to be in B (say y).

Now x ∈ A ⇔ y ∈ B. 2

19

It is easy to convert a ≤P
rpos computation tree to a ≤P

rlpos computation tree in

exponential time. Thus we also have:

Corollary 6.9 If A ≤P
lpos B, B 6= ∅, B 6= Σ∗ and B is P-selective then for some

polynomial p, A ≤m B by a function g computable in time 2p(|x|).

Corollary 6.10 If A ≤P
rpos B, B 6= ∅, B 6= Σ∗ and B is P-selective then for some

polynomial p, A ≤m B by a function g computable in time 2p(|x|).

For rlptt reductions the number of queries in the computation tree is polynomial

in the length of the input; thus we have:

Corollary 6.11 If A ≤P
rlptt B, B 6= ∅, B 6= Σ∗ and B is P-selective then A ≤P

m B.

Corollary 6.12 If A is ≤P
rlptt self-reducible and A is P-selective then A is in P .

Proof From Corollary 6.11 we have A is ≤P
m self-reducible. Since any ≤P

m

self-reducible set is in P , A ∈ P . 2

Theorem 6.13 [19] For every tally language A there exist sets B and C such that:

1. B ≤P
ptt A ≤P

T B.

2. C ≤P
tt A ≤P

T C.

3. B ≤P
ptt C ≤P

tt B.

4. B is P-selective, and

5. C P-selective ⇒ C ∈ P .

As a corollary we obtain:

Corollary 6.14 Let A be a tally language not in P . Then there exist ≤P
T equivalent

sets B, C such that C ≤P
tt B but C 6≤P

rlptt B. Also B 6≤P
rlpos B.

Corollary 6.15 If E 6= NE then there exists sets B and C such that:

1. B ∈ NP − P ,

2. B ≤P
ptt C,

3. C ≤P
tt B,

4. C 6≤P
rlptt B, and

5. B 6≤P
rlpos B.

Proof This follows from the above theorem, since if E 6= NE then there are

tally sets in NP−P ([4, 8], see also [11]). 2

20

Corollary 6.16 If E 6= NE then there exists a ≤P
tt degree in NP that does not

consist of a single ≤P
rlpos degree.

Corollary 6.17 If E 6= NE then there exists a ≤P
rlptt degree in NP − P that

consists of a single ≤P
m degree.

Corollary 6.18 If E 6= NE
⋂

coNE then there exist sets B and C in NP such

that B ≤P
ptt C and C ≤P

tt B but C 6≤P
rlptt B.

7 Conclusions and Open Problems

In this paper we defined locally positive reductions as more moderate versions of

Selman’s (globally) positive reductions. We compared the different locally positive

polynomial-time Turing reductions and identified the properties required by positive

reductions to obtain the results of Selman — thus enriching the domain in which

his results are applicable and delimiting the boundaries of their application.

The two most interesting open problems that remain are (1) whether there

exist relativized worlds in which ≤P
rlpos and ≤P

pos are different, and (2) whether

Theorem 6.2 fails for ≤P
rpos or ≤P

lpos in some relativized world. Finally, we note

a recent application of our notion of locally robust positive reductions. “Helping”

is a notion of fault-tolerant computation acceleration (see [2, 14, 16]). Ko [14]

proves that UP ⊆ P1−help(UP), and asks whether equality holds. Recently, Cai,

Hemachandra, and Vyskoč [9] have shown that P1−help(UP) is exactly the class of

sets locally left positive reducible to UP , and, via this characterization, have shown

that in relativized worlds, Ko’s statement cannot be improved to equality.

Acknowledgements

We thank William Gasarch and Alan Selman for helpful comments on the paper.

References

[1] E. Allender. Limitations of the upward separation technique. Mathematical

Systems Theory, 24(1):53–67, 1991.

[2] J. Balcázar. Only smart oracles help. Technical Report LSI-88-9, Universitat

Politecnica de Barcelona, Barcelona, Spain, 1988.

[3] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In 28th

Annual IEEE Symposium on Foundations of Computer Science, October 1987.

21

[4] R. Book. Tally languages and complexity classes. Information and Control,

26:186–193, 1974.

[5] R. Book and K. Ko. On sets truth-table reducible to sparse sets. SIAM Journal

on Computing, 17(5):903–919, 1988.

[6] R. Book, T. Long, and A. Selman. Quantitative relativizations of complexity

classes. SIAM Journal on Computing, 13(3):461–487, 1984.

[7] R. Book, T. Long, and A. Selman. Qualitative relativizations of complexity

classes. Journal of Computer and System Sciences, 30:395–413, 1985.

[8] R. Book, C. Wrathall, A. Selman, and D. Dobkin. Inclusion languages and the

Berman-Hartmanis conjecture. Mathematical Systems Theory, 11:1–8, 1978.

[9] J. Cai, L. Hemachandra, and J. Vyskoč. The powers of non-adaptive, fault-

tolerant, and guarded access to unambiguous computation. In preparation.

[10] J. Hartmanis and L. Hemachandra. Robust machines accept easy sets. Theo-

retical Computer Science, 74(2):217–226, 1990.

[11] J. Hartmanis, N. Immerman, and V. Sewelson. Sparse sets in NP-P: EXPTIME

versus NEXPTIME. Information and Control, 65(2/3):159–181, 1985.

[12] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, 1979.

[13] K. Ko. On self-reducibility and weak P-selectivity. Journal of Computer and

System Sciences, 26:209–221, 1983.

[14] K. Ko. On helping by robust oracle machines. Theoretical Computer Science,

52:15–36, 1987.

[15] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time re-

ducibilities. Theoretical Computer Science, 1(2):103–124, 1975.

[16] U. Schöning. Robust algorithms: A different approach to oracles. Theoretical

Computer Science, 40:57–66, 1985.

[17] A. Selman. P-selective sets, tally languages, and the behavior of polynomial

time reducibilities on NP. Mathematical Systems Theory, 13:55–65, 1979.

[18] A. Selman. Analogues of semirecursive sets. Information and Control, 52:36–

51, 1982.

22

[19] A. Selman. Reductions on NP and P-selective sets. Theoretical Computer

Science, 19:287–304, 1982.

[20] G. Tardos. Query complexity, or why is it difficult to separate NPA∪ coNPA

from PA by random oracles A. Combinatorica, 9(4):385–392, 1989.

23

