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Abstract

A new investigation of the complexity of language identification is undertaken
using the notion of reduction from recursion theory and complexity theory. The
approach, referred to as the intrinsic complexity of language identification, employs
notions of ‘weak’ and ‘strong’ reduction between learnable classes of languages. The
intrinsic complexity of several classes is considered and the results agree with the
intuitive difficulty of learning these classes. Several complete classes are shown for
both the reductions and it is also established that the weak and strong reductions
are distinct.

An interesting result is that the self referential class of Wiehagen in which the
minimal element of every language is a grammar for the language and the class of
pattern languages introduced by Angluin are equivalent in the strong sense.

This study has been influenced by a similar treatment of function identification
by Freivalds, Kinber, and Smith.
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1 Introduction

The present paper introduces a novel way to look at the difficulty of learning collections of
languages from positive data. Most studies on feasibility issues in learning have concen-
trated on the complexity of the learning algorithm. The present paper describes a model
which provides an insight into why certain classes are more easily learned than others.
Our model adopts a similar study in the context of learning functions by Freivalds [9],
and by Freivalds, Kinber, and Smith [10]. The main idea of the approach is to introduce
reductions between learnable classes of languages. If a collection of languages, L1, can
be reduced to another collection of languages, L2, then the learnability of L1 is no more
difficult than that of L2. We illustrate this idea with the help of simple examples.

Consider the following collections of languages over N , the set of natural numbers.
SINGLE = {L | L is singleton }.
COINIT = {L | (∃n)[L = {x | x ≥ n}]}.
FIN = {L | cardinality of L is finite }.
So, SINGLE is the collection of all singleton languages, COINIT is the collection of

languages that contain all natural numbers except a finite initial segment, and FIN is the
collection of all finite languages. Clearly, each of these three classes is identifiable in the
limit from only positive data. For example, a machine M1 that upon encountering the
first data element, say n, keeps on emitting a grammar for the singleton language {n}
identifies SINGLE. A machine M2 that, at any given time, finds the minimum element
among the data seen so far, say n, and emits a grammar for the language {x | x ≥ n} can
easily be seen to identify COINIT. Similarly, a machine M3 that continually outputs a
grammar for the finite set of data seen so far identifies FIN .

Now, although all three of these classes are identifiable, it can be argued that they
present learning problems of varying difficulty. One way to look at the difficulty is to
ask the question, “At what stage in the processing of the data can a learning machine
confirm its success?” In the case of SINGLE, the machine can be confident of success
as soon as it encounters the first data element. In the case of COINIT, the machine
cannot always be sure that it has identified the language. However, at any stage after it
has seen the first data element, the machine can provide an upper bound on the number
of mind changes that the machine will make before converging to a correct grammar.
For example, if at some stage the minimum element seen is m, then M2 will make
no more than m mind changes because it changes its mind only if a smaller element
appears. In the case of FIN , the learning machine can neither be confident about its
success nor can it, at any stage, provide an upper bound on the number of further mind
changes that it may have to undergo before it is rewarded with success. Clearly, these
three collections of languages pose learning problems of varying difficulty where SINGLE
appears to be the least difficult to learn and FIN is seen to be the most difficult to
learn with COINIT appearing to be of intermediate difficulty. The model described in
the present paper captures this gradation in difficulty of various identifiable collections
of languages. Following Freivalds, Kinber, and Smith [10], we refer to such a notion of
difficulty as “intrinsic complexity.”

We next present an informal description of the reductions that are central to our
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analysis of the intrinsic complexity of language learning. To facilitate our discussion, we
first present some technical notions about language learning.

Informally, a text for a language L is just an infinite sequence of elements, with possible
repetitions, of all and only the elements of L. A text for L is thus an abstraction of the
presentation of positive data about L. A learning machine is essentially an algorithmic
device. Elements of a text are sequentially fed to a learning machine one element at
a time. The learning machine, as it receives elements of the text, outputs an infinite
sequence of grammars. Several criteria for the learning machine to be successful on a
text have been proposed. In the present paper we will concern ourselves with Gold’s [11]
criterion of identification in the limit (referred to as TxtEx-identification). A sequence
of grammars, G = g0, g1, . . ., is said to converge to g just in case, for all but finitely
many n, gn = g. We say that the sequence of grammars, G = g0, g1, . . ., converges just
in case there exists a g such that G converges to g; if no such g exists, then we say
that the sequence G diverges. We say that M converges on T (to g), if the sequence of
grammars emitted by M on T converges (to g). If the sequence of grammars emitted by
the learning machine converges to a correct grammar for the language whose text is fed
to the machine, then the machine is said to TxtEx-identify the text. A machine is said
to TxtEx-identify a language just in case it TxtEx-identifies each text for the language.

It is also useful to call an infinite sequence of grammars, g0, g1, g2, . . ., TxtEx-
admissible for a text T just in case the sequence of grammars converges to a single
correct grammar for the language whose text is T .

Our reductions are based on the idea that for a collection of languages L to be
reducible to L′, we should be able to transform texts T for languages in L to texts
T ′ for languages in L′ and further transform TxtEx-admissible sequences for T ′ into
TxtEx-admissible sequences for T . This is achieved with the help of two enumeration
operators. Informally, enumeration operators are algorithmic devices that map infinite
sequences of objects (for example, texts and infinite sequences of grammars) into infinite
sequences of objects. The first operator, Θ, transforms texts for languages in L into
texts for languages in L′. The second operator, Ψ, behaves as follows: if Θ transforms a
text T for some language in L into text T ′ (for some language in L′), then Ψ transforms
TxtEx-admissible sequences for T ′ into TxtEx-admissible sequences for T .

To see that the above satisfies the intuitive notion of reduction consider collections L
and L′ such that L is reducible to L′. We now argue that if L′ is identifiable then so is
L.

Let M′ TxtEx-identify L′. Let enumeration operators Θ and Ψ witness the reduction
of L to L′. Then we describe a machine M that TxtEx-identifies L. M, upon being fed
a text T for some language L ∈ L, uses Θ to construct a text T ′ for a language in L′. It
then simulates machine M′ on text T ′ and feeds conjectures of M′ to the operator Ψ to
produce its conjectures. It is easy to verify that the properties of Θ, Ψ, and M′ guarantee
the success of M on each text for each language in L.

We show that under the above reduction, SINGLE is reducible to COINIT but
COINIT is not reducible to SINGLE. We also show that COINIT is reducible to FIN
while FIN is not reducible to COINIT, thereby justifying our intuition about the intrin-
sic complexity of these classes. We also show that FIN is in fact complete with respect
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to the above reduction. Additionally, we study the status of numerous language classes
with respect to this reduction and show several of them to be complete.

We also consider a stronger notion of reduction than the one discussed above. The
reader should note that in the above reduction, different texts for the same language may
be transformed into texts for different languages by Θ. If we further require that Θ is
such that it transforms every text for a language into texts for some unique language
then we have a stronger notion of reduction. In the context of function learning [10],
these two notions of reduction are the same. However, surprisingly, in the context of
language identification this stronger notion of reduction turns out to be different from
its weaker counterpart as we are able to show that FIN is not complete with respect to
the stronger reduction. We give an example of complete class with respect to the strong
reduction.

We now discuss two interesting collections of languages that are shown not to be
complete with respect to either reduction.

The first one is a class of languages introduced by Wiehagen [19] which contains all
those languages L such that the minimum element in L is a grammar for L; we refer
to this collection of languages as WIEHAGEN . This self-referential class, which can
be TxtEx-identified, is a very interesting class as it contains a finite variant of every
recursively enumerable language. We show that this class is not complete and is in fact
equivalent to COINIT under the strong reduction.

The second class is the collection of pattern languages introduced by Angluin [1].
Pattern languages have been studied extensively in the computational learning theory
literature since their introduction as a nontrivial class of languages that could be learned
in the limit from only positive data. We show that pattern languages are also equivalent
to COINIT in the strong sense, thereby implying that they pose a learning problem of
similar difficulty to that of Wiehagen’s class.

Finally, we also study intrinsic complexity of identification from both positive and
negative data. As in the case of functions, the weak and strong reductions result in the
same notion. We show that FIN is complete for identification from both positive and
negative data, too.

We now proceed formally. In Section 2, we present notation and preliminaries from
language learning theory. In Section 3, we introduce our reducibilities. Results are
presented in Section 4.

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [18]. The symbol N de-
notes the set of natural numbers, {0, 1, 2, 3, . . .}. Unless otherwise specified,
e, g, i, j, k, l, m, n, q, r, s, t, w, x, y, with or without decorations1, range over N . Sym-
bols ∅, ⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper subset, superset, and proper
superset, respectively. Symbols A and S, with or without decorations, range over sets of
numbers. S, with or without decorations, ranges over finite sets of numbers. D0, D1, . . . ,

1Decorations are subscripts, superscripts and the like.
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denotes a canonical recursive indexing of all the finite sets [18, Page 70]. We assume that
if Di ⊆ Dj then i ≤ j (the canonical indexing defined in [18] satisfies this property).

Cardinality of a set S is denoted by card(S). The maximum and minimum of a set
are denoted by max(·), min(·), respectively, where max(∅) = 0 and min(∅) = ∞.

Unless otherwise specified, letters f, F and h, with or without decorations, range over
total functions with arguments and values from N . Symbol R denotes the set of all total
computable functions. We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping
from N × N onto N [18]. We define π1(〈x, y〉) = x and π2(〈x, y〉) = y. 〈·, ·〉 can be
extended to n-tuples in a natural way.

By ϕ we denote a fixed acceptable programming system for the partial computable
functions: N → N [18, 15]. By ϕi we denote the partial computable function computed
by the program with number i in the ϕ-system. The letter, p, in some contexts, with or
without decorations, ranges over programs; in other contexts p ranges over total functions
with its range being construed as programs. By Φ we denote an arbitrary fixed Blum
complexity measure [3, 12] for the ϕ-system. By Wi we denote domain(ϕi). Wi is, then,
the r.e. set/language (⊆ N) accepted (or equivalently, generated) by the ϕ-program i. We
also say that i is a grammar for Wi. Symbol E will denote the set of all r.e. languages.
Symbol L, with or without decorations, ranges over E . Symbol L, with or without
decorations, ranges over subsets of E . We denote by Wi,s the set {x ≤ s | Φi(x) < s}.

We now present concepts from language learning theory. The definition below intro-
duces the concept of a sequence of data.

Definition 1

(a) A sequence σ is a mapping from an initial segment of N into (N ∪{#}). The empty
sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural numbers in
the range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.

(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is Λ.

(e) The last element of a nonempty sequence σ is denoted last(σ); the last element of
Λ is defined to be 0. Formally, last(σ) = σ(|σ| − 1) if σ 6= Λ, otherwise last(σ) is
defined to be 0.

(f) The result of stripping the last element from the sequence σ is denoted prev(σ).
Formally, if σ 6= Λ, then prev(σ) = σ[|σ| − 1], else prev(σ) = Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and γ, with
or without decorations, range over finite sequences. We denote the sequence formed by
the concatenation of τ at the end of σ by σ � τ . Sometimes we abuse the notation and
use σ � x to denote the concatenation of sequence σ and the sequence of length 1 which
contains the element x. SEQ denotes the set of all finite sequences.
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Definition 2 A language learning machine is an algorithmic device which computes a
mapping from SEQ into N .

We let M, with or without decorations, range over learning machines.

Definition 3

(a) A text T for a language L is a mapping from N into (N ∪ {#}) such that L is the
set of natural numbers in the range of T .

(b) The content of a text T , denoted content(T ), is the set of natural numbers in the
range of T .

(c) T [n] denotes the finite initial sequence of T with length n.

Thus, M(T [n]) is interpreted as the grammar (index for an accepting program) conjec-
tured by learning machine M on initial sequence T [n]. We say that M converges on T

to i, (written M(T )↓ = i) if (
∞
∀ n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language. Below
we define identification in the limit introduced by Gold [11].

Definition 4 [11]

(a) M TxtEx-identifies a text T just in case (∃i | Wi = content(T )) (
∞
∀ n)[M(T [n]) =

i].

(b) M TxtEx-identifies an r.e. language L (written: L ∈ TxtEx(M)) just in case M
TxtEx-identifies each text for L.

(c) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Other criteria of success are finite identification [11], behaviorally correct identification
[8, 17, 7], and vacillatory identification [17, 5]. In the present paper, we only discuss
results about TxtEx-identification.

3 Weak and Strong Reductions

We first present some technical machinery.
We write “σ ⊆ τ” if σ is an initial segment of τ , and “σ ⊂ τ” if σ is a proper initial

segment of τ . Likewise, we write σ ⊂ T if σ is an initial finite sequence of text T . Let finite
sequences σ0, σ1, σ2, . . . be given such that σ0 ⊆ σ1 ⊆ σ2 ⊆ · · · and limi→∞ |σi| = ∞.
Then there is a unique text T such that for all n ∈ N , σn = T [|σn|]. This text is denoted⋃

n σn. Let T denote the set of all texts, that is, the set of all infinite sequences over
N ∪ {#}.

We define an enumeration operator , Θ, to be an algorithmic mapping from SEQ into
SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ). We further assume that
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for all texts T , limn→∞ |Θ(T [n])| = ∞. By extension, we think of Θ as also defining a
mapping from T into T such that Θ(T ) =

⋃
n Θ(T [n]).

A final notation about the operator Θ. If for a language L, there exists an L′ such
that for each text T for L, Θ(T ) is a text for L′, then we write Θ(L) = L′, else we say
that Θ(L) is undefined. The reader should note the overloading of this notation because
the type of the argument to Θ could be a sequence, a text, or a language; it will be clear
from the context which usage is intended.

We also need the notion of an infinite sequence of grammars. We let G, with or
without decorations, range over infinite sequences of grammars. From the discussion
in the previous section it is clear that infinite sequences of grammars are essentially
infinite sequences over N . Hence, we adopt the machinery defined for sequences and
texts over to finite sequences of grammars and infinite sequences of grammars. So, if
G = g0, g1, g2, g3, . . ., then G[3] denotes the sequence g0, g1, g2, G(3) is g3, last(G[3]) is g2,
and prev(G[3]) is the sequence g0, g1.

We now formally introduce our reductions. Although we develop the theory of these
reductions for only TxtEx-identification, we present the general case of the definition.

Let I be an identification criterion. We say that an infinite sequence of grammars G
is I-admissible for text T just in case G is an infinite sequence of grammars witnessing
I-identification of text T . So, if G = g0, g1, g2, . . . is a TxtEx-admissible sequence for
T , then there exists n such that for all n′ ≥ n, gn′ = gn and Wgn = content(T ).

We now introduce our first reduction.

Definition 5 Let L1 ⊆ E and L2 ⊆ E be given. Let identification criteria I1 and I2 be
given. Let T1 = {T | T is a text for L ∈ L1}. Let T2 = {T | T is a text for L ∈ L2}. We
say that L1 ≤I1,I2

weak L2 just in case there exist operators Θ and Ψ such that for all T ∈ T1

and for all infinite sequences of grammars G = g0, g1, . . . the following hold:

(a) Θ(T ) ∈ T2 and

(b) if G is an I2-admissible sequence for Θ(T ), then Ψ(G) is an I1-admissible sequence
for T .

We say that L1 ≤I
weak L2 iff L1 ≤I,I

weak L2. We say that L1 ≡I
weak L2 iff L1 ≤I

weak L2 and
L2 ≤I

weak L1.

As noted before, we have deliberately made the above definition general. In this
paper, most of our results are about ≤TxtEx

weak reduction. We now define the corresponding
notions of hardness and completeness for the above reduction.

Definition 6 Let I be an identification criterion. Let L ⊆ E be given.

(a) If for all L′ ∈ I, L′ ≤I
weak L, then L is ≤I

weak-hard .

(b) If L is ≤I
weak-hard and L ∈ I, then L is ≤I

weak-complete.
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Intuitively, L1 ≤I
weak L2 just in case there exists an operator Θ that transforms texts

for languages in L1 into texts for languages in L2 and there exists another operator Ψ
that behaves as follows: if Θ transform text T to text T ′, then Ψ transforms I-admissible
sequences for T ′ into I-admissible sequences for T . It should be noted that there is no
requirement that Θ map every text for a language in L1 into texts for a unique language
in L2. If we further place such a constraint on Θ, we get the following stronger notion.

Definition 7 Let L1 ⊆ E and L2 ⊆ E be given. We say that L1 ≤I1,I2
strong L2 just in case

there exist operators Θ, Ψ witnessing that L1 ≤I1,I2
weak L2, and for all L1 ∈ L1, there exists

an L2 ∈ L2, such that (∀ texts T for L1)[Θ(T ) is a text for L2].
We say that L1 ≤I

strong L2 iff L1 ≤I,I
strong L2. We say that L1 ≡I

strong L2 iff L1 ≤I
strong L2

and L2 ≤I
strong L1.

We can similarly define ≤I
strong-hardness and ≤I

strong-completeness.
It is easy to see the following.

Proposition 1 ≤TxtEx
weak , ≤TxtEx

strong are reflexive and transitive.

The above proposition holds for most natural learning criteria. It is also easy to verify
the next proposition stating that strong reducibility implies weak reducibility.

Proposition 2 Let L ⊆ E and L′ ⊆ E be given. Let I be an identification criterion.
Then L ≤I

strong L′ ⇒ L ≤I
weak L′.

4 Results

In Section 4.1, we present results about reductions between the classes discussed in the
introduction. Section 4.2 contains results about the status of two interesting collections
of languages with respect to these reductions. Sections 4.3 and 4.4 contain results about
complete classes with respect to weak and strong reductions, respectively. Finally, in
Section 4.5, we consider identification from both positive and negative data.

4.1 Examples of Reductions

Recall the three language classes, SINGLE, COINIT, and FIN , discussed in the intro-
duction. Our first result uses the notion of reducibility to show that in the context of
TxtEx-identification SINGLE presents a strictly weaker learning problem than COINIT,
as SINGLE is strong-reducible to COINIT whereas COINIT is not even weak-reducible
to SINGLE. This is in keeping with our earlier intuitive discussion of these classes.

Theorem 1 SINGLE ≤TxtEx
strong COINIT ∧ COINIT 6≤TxtEx

weak SINGLE.

Proof. We first construct a Θ such that Θ({n}) = {x | x ≥ n}. Let τm,n be the
lexicographically least sequence such that content(τm,n) = {x | m ≤ x ≤ n}. Note that
content(τn+1,n) = ∅. Consider operator Θ such that if content(σ) = ∅, then Θ(σ) = σ,
else Θ(σ) = Θ(prev(σ)) � τmin(content(σ)),|σ|. For i ∈ N , let f(i) denote the index of a
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grammar (derived effectively from i) for the singleton language {i}. Let Ψ be defined
as follows. Suppose G is a sequence of grammars, g0, g1, . . .. Then Ψ(G) denotes the
sequence of grammars g′0, g

′
1, . . ., where, for n ∈ N , g′n = f(min({n} ∪Wgn,n)).

We now show that Θ and Ψ witness SINGLE ≤TxtEx
strong COINIT.

Let L ∈ SINGLE. We first show that Θ maps each text for L into texts for some
unique language in COINIT. Let L = {e}. Let T be any text for L. It is easy to
verify that Θ(T ) = ∪n∈NΘ(T [n]) is a text for the language {x | x ≥ e} ∈ COINIT.
Moreover, if T ′ is another text for L, distinct from T , then it is also easy to verify that
content(Θ(T )) = content(Θ(T ′)) = {x | x ≥ e}.

We next show that Ψ works. Suppose T is a text for {e} ∈ SINGLE. Let T ′ = Θ(T ).
Clearly, content(T ′) = {x | x ≥ e}. Suppose G = g0, g1, g2, . . . is a TxtEx-admissible
sequence for T ′. We claim that Ψ(G) is a TxtEx-admissible sequence for T . To see the
claim, let n0 be so large that

(a) (∀n > n0)[gn = gn0 ];

(b) n0 > min(Wgn0
); and

(c) min(Wgn0
) ∈ Wgn0 ,n0 .

There exists such an n0, since G is a TxtEx-admissible sequence for T ′. Let Ψ(G) =
g′0, g

′
1, g

′
2, . . .. It is easy to verify from the definition of Ψ that, for all n > n0, g′n = g′n0

and
g′n0

is a grammar for the language {min(Wgn0
)} = min(content(T ′)) = {e} = content(T ).

Thus Θ and Ψ witness that SINGLE ≤TxtEx
strong COINIT.

Now suppose by way of contradiction that COINIT ≤TxtEx
weak SINGLE as witnessed

by Θ and Ψ. Consider languages L0 and L1, where L0 = {0, 1, 2, 3, . . .} and L1 =
{1, 2, 3, . . .}. Clearly, both L0, L1 ∈ COINIT. Let σ be such that content(σ) ⊆ L1

and content(Θ(σ)) 6= ∅ (if no such σ exists then clearly Θ does not map any text for
L1 to a text for a language in SINGLE). Let T0 be a text for L0 and T1 be a text
for L1 such that σ ⊂ T0 and σ ⊂ T1. Now either content(Θ(T0)) = content(Θ(T1)) or
content(Θ(T0)) 6∈ SINGLE or content(Θ(T1)) 6∈ SINGLE. It immediately follows that Θ
and Ψ do not witness COINIT ≤TxtEx

weak SINGLE.

Our next result justifies the earlier discussion that COINIT is a strictly weaker learn-
ing problem than FIN .

Theorem 2 COINIT ≤TxtEx
weak FIN ∧ FIN 6≤TxtEx

weak COINIT.

Proof. COINIT ≤TxtEx
weak FIN follows from Corollary 3 presented later. FIN 6≤TxtEx

weak

COINIT follows from Theorem 3 presented next. (The reader should contrast this result
with theorem 11 later which implies that COINIT 6≤TxtEx

strong FIN .)

We now present a theorem that turns out to be very useful in showing that certain
classes are not complete with respect to ≤TxtEx

weak reduction. The theorem states that if
a collection of languages L is such that each natural number x appears in only finitely
many languages in L, then FIN is not ≤TxtEx

weak reducible to L. Since FIN ∈ TxtEx, this
theorem immediately implies that COINIT is not ≤TxtEx

weak -complete.
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Theorem 3 Suppose L is such that (∀x)[card({L ∈ L | x ∈ L}) < ∞]. Then FIN 6≤TxtEx
weak

L.

Proof. Suppose by way of contradiction that Θ and Ψ witness that FIN ≤TxtEx
weak L. Let

σ be such that content(Θ(σ)) 6= ∅ (there exists such a σ, since otherwise clearly, Θ and
Ψ do not witness the reduction from FIN to L). Let w = min(content(Θ(σ))). Let Ti be
a text for content(σ)∪ {i} such that σ ⊂ Ti. Thus for all i, we have w ∈ content(Θ(Ti)).
But since {content(Ti) | i ∈ N} contains infinitely many languages and {L ∈ L | w ∈
L} is finite, there exist i, j such that content(Ti) 6= content(Tj) but content(Θ(Ti)) =
content(Θ(Tj)). But then Θ and Ψ do not witness that FIN ≤TxtEx

weak L.

4.2 WIEHAGEN and Pattern Languages

Earlier results about identification in the limit from positive data turned out to be pes-
simistic because Gold [11] established that any collection of languages that contains an
infinite language and all its finite subsets cannot be TxtEx-identified. As a consequence
of this result no class in the Chomsky hierarchy can be identified in the limit from texts.
However, later, two interesting classes were proposed that could be identified in the limit
from texts. In this section, we describe these classes and locate their status with respect
to the reductions introduced in this paper.

The first of these classes was introduced by Wiehagen [19]. We define, WIEHAGEN =
{L | L ∈ E ∧ L = Wmin(L)}.

WIEHAGEN is an interesting class because it can be shown that it contains a
finite variant of every recursively enumerable language. It is easy to verify that
WIEHAGEN ∈ TxtEx. It is also easy to see that there exists a machine which TxtEx-
identifies WIEHAGEN and that this machine, while processing a text for any language
in WIEHAGEN , can provide an upper bound on the number of additional mind changes
required before convergence. In this connection this class appears to pose a learning
problem similar in nature to COINIT above. This intuition is indeed justified by the
following two theorems as these two classes turn out to be equivalent in the strong sense.

Theorem 4 WIEHAGEN ≤TxtEx
strong COINIT.

Proof. Suppose Θ is such that Θ(L) = {x | (∃y)[y ∈ L ∧ x ≥ y]}. Note that such
a Θ can be easily constructed. Let Ψ be defined as follows. Suppose G is a sequence
of grammars, g0, g1, . . .. Then Ψ(G) denotes the sequence of grammars g′0, g

′
1, . . ., where,

for n ∈ N , g′n = min({n} ∪Wgn,n). It is easy to see that Θ and Ψ witness WIEHAGEN
≤TxtEx

strong COINIT; we omit the details.

Theorem 5 COINIT ≤TxtEx
strong WIEHAGEN .

Proof. By operator recursion theorem [4] there exists a recursive 1–1 increasing function
p such that for all i, Wp(i) = {x | x ≥ p(i)}. Let Θ be such that Θ(L) = {x | (∃i)[i ∈
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L ∧ x ≥ p(i)]}. Note that such a Θ can be easily constructed. Let Ψ be defined as
follows. Let f(i) denote a grammar (effectively obtained from i) such that

Wf(i) =
{ ∅ if i 6∈ range(p);
{x | x ≥ p−1(i)} otherwise.

Suppose G is a sequence of grammars, g0, g1, . . .. Then Ψ(G) denotes the sequence of
grammars g′0, g

′
1, . . ., where, for n ∈ N , g′n = f(min({n} ∪Wgn,n)). It is easy to see that

Θ and Ψ witness COINIT ≤TxtEx
strong WIEHAGEN ; we omit the details.

Corollary 1 COINIT ≡TxtEx
strong WIEHAGEN .

We next consider the class, PATTERN , of pattern languages introduced by Angluin
[1].

Suppose V is a countably infinite set of variables and C is a nonempty finite set of
constants, such that V ∩C = ∅. Notation: For a set X over variables and constants, X∗

denotes the set of strings over X, and X+ denotes the set of non-empty strings over X.
Any w ∈ (V ∪C)+ is called a pattern. Suppose f is a mapping from (V ∪C)+ to C+, such
that, for all a ∈ C, f(a) = a and, for each w1, w2 ∈ (V ∪C)+, f(w1 ·w2) = f(w1) · f(w2),
where · denotes concatenation of strings. Let PatMap denote the collection of all such
mappings f .

Let code denote a 1-1 onto mapping from strings in C∗ to N .
The language associated with the pattern w is defined as L(w) = {code(f(w)) | f ∈

PatMap}. Then, PATTERN = {L(w) | w is a pattern}.
Angluin [2] showed that PATTERN ∈ TxtEx. Our first result about PATTERN is

that it is not ≤TxtEx
weak -complete.

Corollary 2 FIN 6≤TxtEx
weak PATTERN .

The above Corollary follows directly from Theorem 3, since for any string x, there
are only finitely many patterns w such that x ∈ L(w).

Actually, we are also able to establish the following result.

Theorem 6 COINIT ≡TxtEx
strong PATTERN .

Proof. We first show that COINIT ≤TxtEx
strong PATTERN . Let Li = L(aix), where a ∈ C

and x ∈ V . Let Θ be such that Θ(L) = {code(alw) | w ∈ C+ ∧ l ∈ L}. Note that such
a Θ can be easily constructed. Note that code(al+1) ∈ content(Θ(L)) ⇔ l ≥ min(L).

Let f(i) denote an index of a grammar (obtained effectively from i) for {x | x ≥ i}.
Let Ψ be defined as follows. Suppose G = g0, g1, . . .. Then Ψ(G) = g′0, g

′
1, . . ., such that,

for n ∈ N , g′n = f(min({l | code(al+1) ∈ Wgn,n})). It is easy to see that Θ and Ψ witness
that COINIT ≤TxtEx

strong PATTERN .
We now show that PATTERN ≤TxtEx

strong COINIT. Note that there exists a recursive
indexing L0, L1, . . . of pattern languages such that

(1) Li = Lj ⇔ i = j.
(2) Li ⊂ Lj ⇒ i > j.

11



(One such indexing can be obtained as follows. First note that for patterns w1 and
w2, if L(w1) ⊆ L(w2) then length of w1 is at least as large as that of w2. Also for patterns
of the same length ⊆ relation is decidable [1]. Thus we can form the indexing as required
using the following method. We consider only canonical patterns [1]. We place w1 before
w2 if (a) length of w1 is smaller than that of w2 or (b) length of w1 and w2 are same,
but L(w1) ⊇ L(w2) or (c) length of w1 and w2 are same, L(w1) 6⊆ L(w2) and w1 is
lexicographically smaller than w2.)

Moreover, there exists a machine, M, such that
(a) For all σ ⊆ τ , such that content(σ) 6= ∅, M(σ) ≥ M(τ).
(b) For all texts T for pattern languages, M(T )↓ = i, such that Li = content(T ).
(Angluin’s method of identification of pattern languages essentially achieves this prop-

erty).
Let τm,n be the lexicographically least sequence of length n, such that content(τm,n) =

{x | m ≤ x ≤ n}. If content(σ) = ∅, then Θ(σ) = σ, else Θ(σ) = Θ(prev(σ)) � τM(σ),|σ|.
Let f(i) denote a grammar effectively obtained from i for Li. Let Ψ be defined

as follows. Suppose G = g0, g1, . . .. Then Ψ(G) = g′0, g
′
1, . . ., such that, for n ∈ N ,

g′n = f(min({n}∪Wgn,n)). It is easy to see that Θ and Ψ witness that PATTERN ≤TxtEx
strong

COINIT.

4.3 Complete Classes for Weak Reduction

Consider the following collections of languages.
INIT = {L | (∃n)[L = {x | x < n}]}.
COSINGLE = {L | card(N − L) = 1}.
COFIN = {L | L is cofinite}.
For n ∈ N , CONTONn = {L | card(N − L) = n}.
We first show that INIT and FIN are equivalent in the strong sense.

Theorem 7 INIT ≡TxtEx
strong FIN .

Proof. Since INIT ⊆ FIN , we trivially have INIT ≤TxtEx
strong FIN . We show that

FIN ≤TxtEx
strong INIT.

Note that our indexing D0, D1, . . . of finite sets satisfies the property that if Di ⊆ Dj,
then i ≤ j. Let Θ be such that, Θ(Di) = {x | x ≤ i}. Note that it is easy to construct
such a Θ (since Di ⊂ Dj ⇒ i < j). Let f be a function such that Wf(i) = Di. Let Ψ
be defined as follows. Suppose G is the sequence g0, g1, . . . ,. Then Ψ(G) is the sequence
g′0, g

′
1, . . . , where, for n ∈ N , g′n = f(max(Wgn,n)). It is easy to see that Θ and Ψ witness

that FIN ≤TxtEx
strong INIT.

We next show that for each n, CONTONn is equivalent to COSINGLE in the strong
sense.

Theorem 8 For all n ∈ N+, COSINGLE ≡TxtEx
strong CONTONn.

12



Proof. Fix n ∈ N+. First we show that COSINGLE ≤TxtEx
strong CONTONn. For L ∈

COSINGLE let L′ = {y | b y
n
c ∈ L}. Let f be such that, for all i, Wf(i) = {x |

(∃y ∈ Wi)[b y
n
c = x]}. Now consider Θ such that Θ(L) = L′. Note that such a Θ can

easily be constructed. Ψ is defined as follows. Suppose G is the sequence g0, g1, . . ..
Then Ψ(G) is the sequence f(g0), f(g1), . . .. It is easy to see that Θ and Ψ witness that
COSINGLE ≤TxtEx

strong CONTONn.
Now we show that CONTONn ≤TxtEx

strong COSINGLE. For L ∈ CONTONn, let L′ =
{〈x1, x2, x3, . . . , xn〉 | (∃j | 1 ≤ j ≤ n)[xj ∈ L] ∨ (∃i, j | 1 ≤ i < j ≤ n)[xi = xj]}. Let f
be such that, for all 〈x1, x2, . . . , xn〉, Wf(〈x1,x2,...,xn〉) = {x | (∀j | 1 ≤ j ≤ n)[x 6= xj]}. Let
Θ be such that Θ(L) = L′. Note that such a Θ can easily be constructed. Ψ is defined
as follows. Suppose G is the sequence g0, g1, . . .. Then Ψ(G) is the sequence g′0, g

′
1, . . .,

where, for i ∈ N , g′i = f(min(N −Wgi,i)). It is easy to see that Θ and Ψ witness that
CONTONn ≤TxtEx

strong COSINGLE.

Since CONTONn ⊆ COFIN , we trivially have CONTONn ≤TxtEx
strong COFIN (note

however that COFIN 6∈ TxtEx [11]).
The next theorem shows that COSINGLE and CONTONn, for each n ∈ N , are

complete with respect to weak reduction.

Theorem 9

(a) COSINGLE is ≤TxtEx
weak -complete.

(b) COFIN is ≤TxtEx
weak -hard.

(c) For all n ∈ N+, CONTONn is ≤TxtEx
weak -complete.

Proof. We prove part (a). Other parts follow as corollaries. Suppose L ⊆ TxtEx(M).
We construct Θ and Ψ which witness that L ≤TxtEx

weak COSINGLE. We define Θ in-
ductively. It is helpful to simultaneously define a function F . F (T [0]) = 〈M(T [0]), 0〉.
Θ(T [0]) = Λ. Define F (T [n + 1]) and Θ(T [n + 1]) as follows.

F (T [n + 1]) =


F (T [n]), if M(T [n + 1]) = M(T [n]);
〈M(T [n]), j〉, otherwise; where j is such that

〈M(T [n]), j〉 > max(content(Θ(T [n]))).

Θ(T [n + 1]) is a proper extension of Θ(T [n]) such that content(Θ(T [n + 1])) = {x | x ≤
n ∧ x 6= F (T [n + 1])}.

We now define Ψ. Intuitively, Ψ is such that if G converges to a final grammar for a
language in COSINGLE, then Ψ(G) converges to the first component of the only element
not in the language enumerated by the grammar to which G converges. We now formally
define Ψ. Suppose G is a sequence of grammar g0, g1, . . .. Then Ψ(G) is the sequence of
grammars g′0, g

′
1, . . . , where, for i ∈ N , g′i = π1(min(N −Wgi,i)).

It is easy to verify that, for content(T ) ∈ TxtEx(M), if G is a TxtEx-admissible
sequence for Θ(T ), then Ψ(G) is a TxtEx-admissible sequence for T .

Thus Θ and Ψ witness that L ≤TxtEx
weak COSINGLE.
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Our next result establishes that COSINGLE is reducible to INIT in the strong sense.
This result, together with Theorem 7, yields Corollary 3 which says that both INIT
and FIN are complete with respect to weak reduction. It should be noted that each of
these complete classes has the property that no learning machine that identifies these
classes can provide an upper bound on the number of mind changes before the onset of
convergence.

Theorem 10 COSINGLE ≤TxtEx
strong INIT.

Proof. For L, let L′ = {x | (∀y ≤ x)[y ∈ L]}. Let Θ be such that Θ(L) = L′. Note
that such a Θ can be easily constructed. Let f(i) denote a grammar effectively obtained
from i, for {x | x 6= i}. Suppose G is the sequence g0, g1, . . .. Then Ψ(G) is the sequence
g′0, g

′
1, . . ., where for n ∈ N , g′n = f(min(N −Wgn,n)). It is easy to verify that Θ and Ψ

witness that COSINGLE ≤TxtEx
strong INIT.

Corollary 3 INIT and FIN are ≤TxtEx
weak -complete.

4.4 A Complete Class for Strong Reduction

In this section we present a collection of languages that is complete with respect strong
reduction. But first we show that the classes shown to be complete with respect to weak
reduction in the previous section are not complete with respect to strong reduction.
Proposition 3 and Lemma 1 are useful in proving that some classes are not strongly
reducible to other class.

Proposition 3 If Θ(L) is defined then, for all σ, such that content(σ) ⊆ L,
content(Θ(σ)) ⊆ Θ(L).

Proof. Follows from the definition of Θ(L).

Lemma 1 Suppose L ⊆ L′. Then if both Θ(L) and Θ(L′) are defined then Θ(L) ⊆ Θ(L′).

Proof. Follows from Proposition 3.

Theorem 11 COINIT 6≤TxtEx
strong FIN .

Proof. Suppose by way of contradiction that COINIT ≤TxtEx
strong FIN , as witnessed by Θ

and Ψ. Then by Lemma 1 it follows that (∀L ∈ COINIT)[Θ(L) ⊆ Θ(N)]. Since COINIT
is an infinite collection of languages, it follows that either Θ(N) is infinite or there exist
distinct L1 and L2 in COINIT such that Θ(L1) = Θ(L2). It follows that COINIT 6≤TxtEx

strong

FIN .

Corollary 4 FIN is not ≤TxtEx
strong -complete.
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Theorem 12 Suppose L1 ⊂ L2, then {L1, L2} 6≤TxtEx
strong COSINGLE.

Proof. Suppose by way of contradiction that L1 ⊂ L2 and Θ and Ψ witness that
{L1, L2} ≤TxtEx

strong COSINGLE. Then by Lemma 1 we have that Θ(L1) ⊆ Θ(L2). Since for
all L′

1, L
′
2 ∈ COSINGLE, L′

1 ⊆ L′
2 ⇒ L′

1 = L′
2, it must be the case that Θ(L1) = Θ(L2).

But then, Θ and Ψ do not witness that {L1, L2} ≤TxtEx
strong COSINGLE.

As a immediate corollary we have

Corollary 5

(a) COINIT 6≤TxtEx
strong COSINGLE.

(b) INIT 6≤TxtEx
strong COSINGLE.

Theorem 13 SINGLE ≤TxtEx
strong COSINGLE.

Proof. For n, let Ln = {x | x 6= n}. Let Θ be such that Θ({n}) = Ln. It is easy to
construct such a Θ. Let f(n) denote a grammar effectively obtained from n, for {n}.
Let Ψ be defined as follows. If G is the sequence g0, g1, . . ., then Ψ(G) is the sequence
g′0, g

′
1, . . ., where, for n ∈ N , g′n = f(min(N −Wgn,n)). It is easy to verify that Θ and Ψ

witness that SINGLE ≤TxtEx
strong COSINGLE.

Clearly, COINIT ≤TxtEx
strong COFIN . However,

Theorem 14 INIT 6≤TxtEx
strong COFIN .

Proof. Suppose by way of contradiction that Θ and Ψ witness that INIT ≤TxtEx
strong

COFIN . Let Ln = {x | x ≤ n}. Now by Lemma 1, we have that for all n, Θ(Ln) ⊆
Θ(Ln+1). Moreover since Θ(Ln) 6= Θ(Ln+1) (otherwise Θ and Ψ cannot witness that
INIT ≤TxtEx

strong COFIN), we have that Θ(Ln) ⊂ Θ(Ln+1). But since Θ(L0) ∈ COFIN , this
is not possible (only finitely many additions can be done to Θ(L0) before it becomes N).
A contradiction.

We finally present a collection of languages that is complete with respect to strong
reduction.

Suppose M0,M1, . . . is an enumeration of the learning machines such that, (∀L ∈
TxtEx)(∃i)[L ⊆ TxtEx(Mi)] (there exists such an enumeration, see for example [16]).
For j ∈ N and L ∈ E , let Sj

L = {〈x, j〉 | x ∈ L}. Then, let LTxtEx = {Sj
L | L ∈ E ∧ j ∈

N ∧ L ∈ TxtEx(Mj)}. It is easy to see that LTxtEx ∈ TxtEx.

Theorem 15 LTxtEx is ≤TxtEx
strong complete for TxtEx.

Proof. Let Lj = {Sj
L | L ∈ TxtEx(Mj)}.

If L ⊆ TxtEx(Mj), then it is easy to see that L ≤TxtEx
strong Lj. Since for all j, Lj ⊆

LTxtEx, it follows that LTxtEx is ≤TxtEx
strong -complete for TxtEx.
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4.5 Identification from Informants

The concepts of weak and strong reduction can be adopted to language identification from
informants. Informally, informants, first introduced by Gold [11], are texts which contain
both positive and negative data. Thus if IL is an informant for L, then content(IL) =
{〈x, 0〉 | x 6∈ L}∪ {〈x, 1〉 | x ∈ L}.2 Identification in the limit from informants is referred
to as InfEx-identification (we refer the reader to [11] for details). The definition of weak
and strong reduction can be adopted to language identification from informants in a
straightforward way by replacing texts by informants in Definitions 5 and 7.

For any language L, an informant of special interest is the canonical informant. I is
a canonical informant for L just in case for n ∈ N , I(n) = 〈n, x〉, where x = 1 if n ∈ L
and x = 0 if n 6∈  L.

Since a canonical informant can always be produced from any informant, we have the
following:

Proposition 4 L1 ≤InfEx
weak L2 ⇐⇒ L1 ≤InfEx

strong L2.

Theorem 16 FIN is ≤InfEx
strong complete.

Proof. For a language L, let IL be the canonical informant for L. Fix a machine M,
Let SM

L = {〈M(IL[n + 1]), n〉 | M(IL[n]) 6= M(IL[n + 1])}. Let Θ be such that for all
L, and informants I for L, Θ(I) = ISM

L
. Note that such a Θ can easily be constructed.

Suppose F is such that, for a finite set S, F (S) = min({i | (∃j)[〈i, j〉 ∈ S ∧ j = max({k |
(∃x)[〈x, k〉 ∈ S]})]}). Let Ψ be defined as follows. Suppose G is a sequence g0, g1, . . ..
Then Ψ(G) is the sequence g′0, g

′
1, . . ., where for n ∈ N , g′n = F (Wgn,n). It is easy to

verify that Θ and Ψ witness that InfEx(M) ≤InfEx
strong FIN .

However,

Theorem 17 The classes SINGLE, INIT, COSINGLE, CONTONn, COINIT, WIEHAGEN ,
and PATTERN are equivalent with respect to ≤InfEx

strong reduction.3

Proof. It is easy to see that SINGLE ≤InfEx
strong L, where L is one of COSINGLE,

CONTONn, COINIT, WIEHAGEN , PATTERN . We show that COSINGLE ≤InfEx
strong

SINGLE and that WIEHAGEN ≤InfEx
strong SINGLE. Other reduction can be done in a

similar manner.
We first show COSINGLE ≤InfEx

strong SINGLE. Consider Θ such that, for any I for L ∈
COSINGLE, Θ(I) = I ′, such that I ′ is an informant for {min(L)}. Note that such a Θ
can be easily constructed. Let Ψ, be defined as follows. Let f(i) be a grammar, effectively
obtained from i, for {x | x 6= i}. For G = g0, g1, . . . , Ψ(G) = g′0, g

′
1, g

′
2, . . ., where g′i =

f(min({n}∪Wgi,i)). It is easy to see that Θ, Ψ witness that COSINGLE ≤InfEx
strong SINGLE.

We now show WIEHAGEN ≤InfEx
strong SINGLE. Consider Θ such that, for any I for

L ∈ WIEHAGEN , Θ(I) = I ′, such that I ′ is an informant for {min(L)}. Note that

2Alternatively, an informant for a language L may be thought of as a “tagged” text for N such that
n appears in the text with tag 1 if n ∈ L; otherwise n appears in the text with tag 0.

3Actually, it can be shown that any collection of languages that can be finitely identified (i.e., identified
with 0 mind changes) from informants is ≤InfEx

strong SINGLE.
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such a Θ can be easily constructed. Let Ψ, be defined as follows. For G = g0, g1, . . . ,
Ψ(G) = g′0, g

′
1, g

′
2, . . ., where g′i = min({n} ∪ Wgi,i). It is easy to see that Θ, Ψ witness

that WIEHAGEN ≤InfEx
strong SINGLE.

5 Conclusion

A novel approach to studying the intrinsic complexity of language identification was
undertaken using weak and strong reductions between classes of languages. The intrinsic
complexity of several classes was considered. It was shown that the self referential class of
Wiehagen [19] in which the least element of every language is a grammar for the language
and the class of pattern languages introduced by Angluin [1] are equivalent in the strong
sense. A number of complete classes were presented for both the reductions. It was also
shown that the weak and strong reductions are distinct for learning from text.

The results presented were for the widely studied identification in the limit criterion.
These techniques have also been applied to other criteria of success. Additionally, the
structure of these reductions has also been studied [14]. However, it is felt that for these
reductions to have an impact on the study of feasibility issues in language identification,
their fidelity has to be improved.
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