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Abstract

In their pioneering work, Mukouchi and Arikawa modeled a learning situation in which the
learner is expected to refute texts which are not representative of L, the class of languages being
identified. Lange and Watson extended this model to consider justified refutation in which the
learner is expected to refute texts only if it contains a finite sample unrepresentative of the class
L. Both the above studies were in the context of indexed families of recursive languages. We
extend this study in two directions. Firstly, we consider general classes of recursively enumerable
languages. Secondly, we allow the machine to either identify or refute the unrepresentative texts
(respectively, texts containing finite unrepresentative samples). We observe some surprising
differences between our results and the results obtained for learning indexed families by Lange
and Watson.

1 Introduction

Consider the identification of formal languages from positive data. A text for a language is a
sequential presentation (in arbitrary oder) of all and only the elements of the language. In a widely
studied identification paradigm, called TxtEx-identification, a learning machine is fed texts for
languages, and, as the machine is receiving the data, it outputs a (possibly infinite) sequence of
hypotheses. A learning machine is said to TxtEx-identify a language L just in case, when presented
with a text for L, the sequence of hypotheses output by the machine converges to a grammar for L

(formal definitions of criteria of inference informally presented in this section are given in Sections 2
and 3). A learning machine TxtEx-identifies a class, L, of languages if it TxtEx-identifies each
language in L. This model of identification was introduced by Gold [Gol67] and has since then
been explored by several researchers.

For the following, let L denote a class of languages which we want to identify. The model
of identification presented above puts no constraint on the behaviour of the machine on texts for
languages not in L. However, we may want a machine to be able to detect that it cannot identify an
input text for at least two reasons. Firstly, once a machine detects that it cannot identify an input
text, we can use the machine for other useful purposes. Secondly, we may employ another machine
to identify the input text, so as to further enhance the class of languages that can be identified.
These are very useful considerations in the design of a practical learning system. Further, it is
philosophically interesting to study machines which know their limitations.

In their pioneering work, Mukouchi and Arikawa [MA93] modeled such a scenario. They required
that in addition to identifying all languages in L, the machine should refute texts for languages
not in L (i.e. texts which are “unrepresentative” of L). We refer to this identification criterion
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as TxtRef . Mukouchi and Arikawa showed that TxtRef constitutes a serious drawback on the
learning capabilities of machines. For example, a machine working as above cannot identify any
infinite language.1 This led Lange and Watson [LW94] (see also [MA95]) to consider justified refu-
tation in which they require a machine to refute a text iff some initial segment of the text is enough
to determine that the input text is not for a language in L, i.e., the input text contains a finite
sample “unrepresentative” of L. We call this criteria of learning TxtJRef . Lange and Watson also
considered a modification of justified refutation model (called TxtJIRef , for immediate justified
refutation) in which the machine is required to refute the input text as soon as the initial segment
contains an unrepresentative sample (formal definitions are given in Section 3). For further mo-
tivation regarding learning with refutation and its relationship with Popper’s Logic for scientific
inference, we refer the reader to [MA93] and [LW94].

[MA93] and [LW94] were mainly concerned with learning indexed families of recursive languages,
where the hypothesis space is also an indexed family. In this paper, we extend the study in two
directions. Firstly, we consider general classes of r.e. languages, and use the class of all computer
programs (modeling accepting grammars) as the hypothesis space. Secondly, we allow a learning
machine to either identify or refute unrepresentative texts (texts containing finite unrepresentative
samples). Note that in the models of learning with refutation considered by [MA93] and [LW94]
described above, the machine has to refute all texts which contain samples unrepresentative of
L. Thus, a machine which may identify some of these texts is disqualified.2 For learning general
classes of r.e. languages we feel that it is more reasonable to allow a machine to either identify
or refute such texts (in most applications identifying an unrepresentative text is not going to be a
disadvantage). This motivation has led us to the models described in the present paper. We refer
to these criteria by attaching an E (for extended) in front of the corresponding criteria considered
by [MA93, LW94].

We now highlight some important differences in the structure of results obtained by us, and those
in [LW94]. In the context of learning indexed families of recursive languages, Lange and Watson
(in their model, see also [MA95]) showed that TxtJIRef = TxtJRef (i.e. requiring machines to
refute as soon as the initial segment becomes unrepresentative of L, is not a restriction). Similar
result was also shown by them for learning from informants3. We show that requiring immediate
refutation is a restriction if we consider general classes of r.e. languages (in both our (extended)
and Lange and Watson’s models of justified refutation, and for learning from texts as well as
informants). We also consider a variation of our model in which “unrepresentative” is with respect
to what a machine identifies and not with respect to the class L. In this variation, for learning
from texts, (immediate) justified refutation model has the same power as TxtEx — a surprising
result in the context of results in [LW94] and other results in this paper. However, in the context
of learning from informants, even this variation fails to capture the power of InfEx (which is a
criteria of learning from informants; see Section 2).

We now proceed formally.

1A machine working as above, cannot refute a text for any subset of a language it identifies; this along with a
result due to Gold [Gol67] (which says that no machine can TxtEx-identify an infinite language and all of its finite
subsets) shows that no machine can TxtRef -identify a class containing an infinite language.

2This property and the restriction to indexed families is crucially used in proving some of the results in [LW94].
3An informant for a language L is a sequential presentation of the elements of the set {(x, 1) | x ∈ L} ∪ {(x, 0) |

x 6∈ L}; see formal definition in Section 2.
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2 Preliminaries

The recursion theoretic notions not explained below are from [Rog67]. N = {0, 1, 2, . . .} is the
set of all natural numbers, and this paper considers r.e. subsets L of N . All conventions regard-
ing range of variables apply, with or without decorations4, unless otherwise specified. We let
c, e, i, j, k, l,m, n, p, s, t, u, v, w, x, y, z, range over N . ∅,∈,⊆,⊇,⊂,⊃ denote empty set, member of,
subset, superset, proper subset, and proper superset respectively. max(), min(), and card() denote
the maximum, minimum, and cardinality of a set respectively, where by convention max(∅) = 0
and min(∅) = ∞. 〈·, ·〉 stands for an arbitrary, one to one, computable encoding of all pairs of
natural numbers onto N . Quantifiers ∀∞,∃∞, and ∃! denote for all but finitely many, there exist
infinitely many, and there exists a unique respectively.

R denotes the set of total recursive functions from N to N . f and g range over total recursive
functions. E denotes the set of all recursively enumerable (r.e.) sets. L ranges over E . L denotes
the complement of set L (i.e. L = N −L). χL denotes the characteristic function of set L. L1∆L2

denotes the symmetric difference of L1 and L2, i.e., L1∆L2 = (L1 − L2) ∪ (L2 − L1). L ranges
over subsets of E . ϕ denotes a standard acceptable programming system (acceptable numbering)
[Rog67]. ϕi denotes the function computed by the i-th program in the programming system ϕ.
We also call i a program or index for ϕi. For a (partial) function η, domain(η) and range(η)
respectively denote the domain and range of partial function η. We often write η(x)↓ (η(x)↑) to
denote that η(x) is defined (undefined). Wi denotes the domain of ϕi. Wi is considered as the
language enumerated by the i-th program in ϕ system, and we say that i is a grammar or index
for Wi. Φ denotes a standard Blum complexity measure [Blu67] for the programming system ϕ.
Wi,s = {x < s | Φi(x) < s}.

FIN denotes the class of finite languages, {L | card(L) < ∞}. INIT denotes the class of
initial segments of N , that is {{x | x < l} | l ∈ N}. L is called a single valued total language
iff (∀x)(∃!y)[〈x, y〉 ∈ L]. svt = {L | L is a single valued total language }. If L ∈ svt, then we
say that L represents the total function f such that L = {〈x, f(x)〉 | x ∈ N}. K denotes the set
{x | ϕx(x)↓}. Note that K is r.e. but K is not.

A text is a mapping from N to N ∪ {#}. We let T range over texts. content(T ) is defined to
be the set of natural numbers in the range of T (i.e. content(T ) = range(T ) − {#}). T is a text
for L iff content(T ) = L. That means a text for L is an infinite sequence whose range, except for
a possible #, is just L.

An infinite information sequence or informant is a mapping from N to (N × {0, 1}) ∪ {#}.
We let I range over informants. content(I) is defined to be the set of pairs in the range of I (i.e.
content(I) = range(I) − {#}). By PosInfo(I) we denote the set {x | (x, 1) ∈ content(I)}. By
NegInfo(I) we denote the set {x | (x, 0) ∈ content(I)}. For this paper, we only consider informants
I such that PosInfo(I) and NegInfo(I) partition the set of natural numbers.

An informant for L is an informant I such that PosInfo(I) = L. It is useful to consider canonical
information sequence for L. I is a canonical information sequence for L iff I(x) = (x, χL(x)). We
sometimes abuse notation and refer to the canonical information sequence for L by χL.

σ, τ , and γ range over finite initial segments of texts or informants, where the context determines
which is meant. We denote the set of finite initial segments of texts by SEG and set of finite initial
segments of informants by SEQ. We define content(σ) = range(σ) − {#} and, for σ ∈ SEQ,
PosInfo(σ) = {x | (x, 1) ∈ content(σ)}, and NegInfo(σ) = {x | (x, 0) ∈ content(σ)}

4Decorations are subscripts, superscripts, primes and the like.
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We use σ � T (respectively, σ � I, σ � τ) to denote that σ is an initial segment of T

(respectively, I, τ). |σ| denotes the length of σ. T [n] denotes the initial segment of T of length n.
Similarly, I[n] denotes the initial segment of I of length n. σ � τ (respectively, σ � T , σ � I) denotes
the concatenation of σ and τ (respectively, concatenation of σ and T , concatenation of σ and I).
We sometimes abuse notation and say σ �w to denote the concatenation of σ with the sequence of
one element w.

A learning machine (also called inductive inference machine) M is an algorithmic mapping from
initial segments of texts (informants) to (N ∪ {?}). We say that M converges on T to i, (written:
M(T )↓ = i) iff, for all but finitely many n, M(T [n]) = i. Convergence on informants is defined
similarly.

We now present the basic models of identification from texts and informants.

Definition 1 [Gol67, CL82]
(a) M TxtEx-identifies text T iff (∃i | Wi = content(T ))[M(T )↓ = i].
(b) M TxtEx-identifies L (written: L ∈ TxtEx(M)) iff M TxtEx-identifies each text T for

L.
(c) M TxtEx-identifies L iff M TxtEx-identifies each L ∈ L.
(d) TxtEx = {L | (∃M)[M TxtEx-identifies L]}.

Definition 2 [Gol67]
(a) M TxtFin-identifies text T iff (∃i | Wi = content(T ))(∃n)[(∀m < n)[M(T [m]) =?] ∧ (∀m ≥

n)[M(T [m]) = i]].
(b) M TxtFin-identifies L (written: L ∈ TxtFin(M)) iff M TxtFin-identifies each text T for

L.
(c) M TxtFin-identifies L iff M TxtFin-identifies each L ∈ L.
(d) TxtFin = {L | (∃M)[M TxtFin-identifies L]}.

Intuitively, for finite identification, M outputs just one grammar, which must be correct.

Definition 3 [Gol67, CL82]
(a) M InfEx-identifies informant I iff (∃i | Wi = PosInfo(I))[M(I)↓ = i].
(b) M InfEx-identifies L (written: L ∈ InfEx(M)) iff M InfEx-identifies each informant I for

L.
(c) M InfEx-identifies L iff M InfEx-identifies each L ∈ L.
(d) InfEx = {L | (∃M)[M InfEx-identifies L]}.

Definition 4 [Gol67]
(a) M InfFin-identifies informant I iff (∃i | Wi = PosInfo(I))(∃n)[(∀m < n)[M(I[m]) =

?] ∧ (∀m ≥ n)[M(I[m]) = i]].
(b) M InfFin-identifies L (written: L ∈ InfFin(M)) iff M InfFin-identifies each informant I

for L.
(c) M InfFin-identifies L iff M InfFin-identifies each L ∈ L.
(d) InfFin = {L | (∃M)[M InfFin-identifies L]}.

The next two definitions introduce reliable identification. A reliable machine diverges on texts
(informants) it does not identify. Though a reliable machine does not refute a text (informant)
it does not identify, it at least doesn’t give false hope by converging to a wrong hypothesis. This
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was probably the first constraint imposed on machine’s behaviour on languages outside the class
being identified. We give two variations of reliable identification based on whether the machine is
expected to diverge on every text which is for a language not in L, or just on texts it does not
identify.

For the rest of the paper, for criteria of inference, J, we will only define what it means for a
machine to J-identify a class of languages L. The identification class J is then implicitly defined
as J = {L | (∃M)[M J-identifies L]}.

Definition 5 [Min76]
(a) M TxtRel-identifies L iff

(a.1) M TxtEx-identifies L and
(a.2) (∀T | content(T ) 6∈ L)[M(T )↑].

(b) M InfRel identifies L iff
(b.1) M InfEx-identifies L and
(b.2) (∀I | PosInfo(I) 6∈ L)[M(I)↑].

(c) M ETxtRel-identifies L iff
(c.1) M TxtEx-identifies L and
(c.2) (∀T | M does not TxtEx-identify T )[M(T )↑].

(d) M EInfRel identifies L iff
(d.1) M InfEx-identifies L and
(d.2) (∀I | M does not InfEx-identify I)[M(I)↑].

The following propositions are some known facts about the identification criteria discussed
above, which we will be using in this paper. First two propositions are based on results due to
Gold [Gol67].

Proposition 6 Suppose L is any infinite r.e. language, and M a learning machine. Let σ be such
that content(σ) ⊆ L. Then there exists an r.e. L′, content(σ) ⊆ L′ ⊆ L such that M does not
TxtEx-identify L′.

Proposition 7 Suppose L is any infinite r.e. language, and M a learning machine. Let σ be such
that PosInfo(σ) ⊆ L. Then there exists an r.e. L′, PosInfo(σ) ⊆ L′ ⊆ L such that M does not
InfEx-identify L′.

Proposition 8 [Gol67, Sha98] TxtFin ⊂ InfFin ⊂ TxtEx ⊂ InfEx.

3 Learning with Refutation

In this section we introduce the refutation models for learning. For learning with refutation we allow
learning machines to output a special refutation symbol denoted ⊥. We assume that if M(σ) =⊥,
then, for all τ , M(σ � τ) =⊥. Intuitively output of ⊥ denotes that M is declaring the input to be
“unrepresentative”. In the following definitions we consider the different criteria mentioned in the
introduction. It is useful to define ConsL = {σ | (∃L ∈ L)[content(σ) ⊆ L]}.

The following definition introduces learning with refutation for general classes of r.e. languages.

Definition 9 [MA93] M TxtRef identifies L iff
(a) M TxtEx-identifies L and
(b) (∀T | content(T ) 6∈ L)[M(T )↓ =⊥].
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If M(T )↓ =⊥, then we often say that M refutes the text T . The following definitions introduce
identification with justified refutation for general classes of r.e. languages. Below JRef stands for
justified refutation, and JIRef stands for justified immediate refutation.

Definition 10 [LW94] M TxtJRef identifies L iff
(a) M TxtEx-identifies L and
(b) (∀T | content(T ) 6∈ L and (∃σ � T )[σ 6∈ ConsL])[M(T )↓ =⊥].

Intuitively, in the above definition, M is required to refute a text T only if T contains a finite
sample which is unrepresentative of L. Following definition additionally requires that M refutes an
initial segment of T as soon as it contains an unrepresentative sample.

Definition 11 [LW94] M TxtJIRef identifies L iff
(a) M TxtEx-identifies L and
(b) (∀T | content(T ) 6∈ L)(∀σ � T | σ 6∈ ConsL)[M(σ) =⊥].

We now present the above criteria for learning from informants. It is useful to define the
following analogue of Cons. IConsL = {σ | (∃L ∈ L)[PosInfo(σ) ⊆ L ∧ NegInfo(σ) ⊆ L]}.

Definition 12

(a) [MA93] M InfRef identifies L iff
(a.1) M InfEx-identifies L and
(a.2) (∀I | PosInfo(I) 6∈ L)[M(I)↓ =⊥].

(b) [LW94] M InfJRef identifies L iff
(b.1) M InfEx-identifies L and
(b.2) (∀I | PosInfo(I) 6∈ L and (∃σ � I)[σ 6∈ IConsL])[M(I)↓ =⊥].

(c) [LW94] M InfJIRef identifies L iff
(c.1) M InfEx-identifies L and
(c.2) (∀I | PosInfo(I) 6∈ L)(∀σ � I | σ 6∈ IConsL)[M(σ) =⊥].

We now present our extended definition for learning with refutation. Intuitively, we extend the
above definitions of [MA93, LW94] by allowing a machine to identify an unrepresentative text.

The following definition is a modification of the corresponding definition in [MA93]. E in the
beginning of criteria of inference, such as ETxtRef , stands for extended.

Definition 13 M ETxtRef identifies L iff
(a) M TxtEx-identifies L and
(b) (∀T | M does not TxtEx-identify T )[M(T )↓ =⊥].

Intuitively, in the above definition we require the machine to refute the input text, only if it
does not TxtEx-identify it.

The following definitions on identification by justified refutation are modifications of corre-
sponding definitions considered by [LW94].

Definition 14 M ETxtJRef identifies L iff
(a) M TxtEx-identifies L and
(b) (∀T | M does not TxtEx-identify T and (∃σ � T )[σ 6∈ ConsL])[M(T ) =⊥].
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Intuitively, in the above definition, M is required to refute a text T only if M does not identify
T , and T contains a finite sample which is unrepresentative of L. In the following definition, we
additionally require that M refute an initial segment of T as soon as it contains an unrepresentative
sample.

Definition 15 M ETxtJIRef identifies L iff
(a) M TxtEx-identifies L and
(b) (∀T | M does not TxtEx-identify T )(∀σ � T | σ 6∈ ConsL)[M(σ) =⊥].

We now present the above criteria for learning from informants.

Definition 16

(a) M EInfRef identifies L iff
(a.1) M InfEx-identifies L and
(a.2) (∀I | M does not InfEx-identify I)[M(I)↓ =⊥].

(b) M EInfJRef identifies L iff
(b.1) M InfEx-identifies L and
(b.2) (∀I | M does not InfEx-identify I and (∃σ � I)[σ 6∈ IConsL])[M(I)↓ =⊥].

(c) M EInfJIRef identifies L iff
(c.1) M InfEx-identifies L and
(c.2) (∀I | M does not InfEx-identify I)(∀σ � I | σ 6∈ IConsL)[M(σ) =⊥].

4 Results

We next consider the relationship between different identification criteria defined in this paper.
The results presented give a complete relationship between all the criteria of inference introduced
in this paper.

4.1 Containment Results

The following containments follow immediately from the definitions.

Proposition 17 TxtRef ⊆ TxtRel ⊆ TxtEx.
TxtRef ⊆ TxtJRef ⊆ TxtEx.
TxtJIRef ⊆ TxtJRef ⊆ TxtEx.
InfRef ⊆ InfRel ⊆ InfEx.
InfRef ⊆ InfJRef ⊆ InfEx.
InfJIRef ⊆ InfJRef ⊆ InfEx.
TxtRef ⊆ InfRef ⊆ InfEx.
TxtRel ⊆ InfRel ⊆ InfEx.

Proposition 18 ETxtRef ⊆ ETxtRel ⊆ TxtEx.
ETxtRef ⊆ ETxtJRef ⊆ TxtEx.
ETxtJIRef ⊆ ETxtJRef ⊆ TxtEx.
EInfRef ⊆ EInfRel ⊆ InfEx.
EInfRef ⊆ EInfJRef ⊆ InfEx.
EInfJIRef ⊆ EInfJRef ⊆ InfEx.
ETxtRef ⊆ EInfRef ⊆ InfEx.
ETxtRel ⊆ EInfRel ⊆ InfEx.
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Proposition 19 (a) TxtJIRef = ETxtJIRef .
(b) InfJIRef = EInfJIRef .

Proof. (a) It suffices to show ETxtJIRef ⊆ TxtJIRef . Suppose M ETxtJIRef -identifies L.

Claim 20 For all σ such that σ 6∈ ConsL, M(σ) =⊥.

Proof. (of Claim) Suppose by way of contradiction that there is a σ such that σ 6∈ ConsL and
M(σ) 6=⊥. Let T be an extension of σ such that M does not TxtEx-identify T . Note that
by Proposition 6 there exists such a T . But then by definition of ETxtJIRef , M(σ) =⊥. A
contradiction. Thus claim holds. 2

It immediately follows from the claim that M also TxtJIRef -identifies L.
Part (b) can be proved in a manner similar to part (a).

Theorem 21 Suppose X is a set not in Σ2. Let L = {{i} | i ∈ X}. Suppose J ∈ { TxtRef ,
TxtRel, TxtJRef , InfRef , InfRel, InfJRef}. Then L ∈ EJ but L 6∈ J.

Proof. It is easy to construct a machine which identifies all texts for empty or singleton languages
and refutes/diverges on all texts for languages containing at least 2 elements. Thus, we have that
L ∈ EJ.

Now, suppose by way of contradiction that M J-identifies L. Then, i ∈ X iff (∃σ | content(σ) =
{i})(∀τ | σ � τ ∧ content(τ) = {i})[M(σ) = M(τ) ∧ M(σ) ∈ N ]. A contradiction to the fact
that X is not in Σ2.

Theorem 22 Suppose J ∈ { TxtRef , TxtRel, TxtJRef , InfRef , InfRel, InfJRef}. Then,
J ⊂ EJ.

Proof. J ⊆ EJ follows immediately from definition. Proper containment follows from Theo-
rem 21.

4.2 Separation Results

We now proceed to show the separation results. The next two theorems show the advantages of
finite identification over reliable identification and identification with refutation. For the proof of
first theorem, we need the following proposition, which follows immediately from definitions.

Proposition 23 Suppose L is such that:
(a) L ∈ EInfJRef , and
(b) For all L1, L2 ∈ L, either L1 ∩ L2 = ∅ or L1 = L2.

Then L ∈ EInfRef (and thus in EInfRel).

Let M0,M1, . . ., denote a recursive enumeration of all machines.

Theorem 24 TxtFin − (EInfRel ∪EInfJRef) 6= ∅.
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Proof. For each i, we will define below a nonempty language Li with the following properties:
(a) Li ⊆ {〈i, n〉 | n ∈ N};
(b) either Mi is not reliable, or Li 6∈ InfEx(Mi).
(c) a grammar for Li can be obtained effectively in i.
We take L = {Li | i ∈ N}. Clearly, L ∈ TxtFin (since a grammar for Li can be found

effectively from i). Further, (using clause (b) above) we have that L 6∈ EInfRel. It thus follows
from Proposition 23 that L 6∈ EInfJRef .

We will define Li in stages below. Let Ls
i denote Li defined before stage s. Let L0

i = {〈i, 0〉}.
Let x0 = 〈i, 1〉. Go to stage 0.

Stage s

1. Suppose, Is
1 is the canonical information sequence for Ls

i and Is
2 is the canonical information

sequence for Ls
i ∪ {xs}.

2. Search for n > xs such that either Mi(I
s
1 [n]) 6= Mi(I

s
1 [xs]) or Mi(I

s
2 [n]) 6= Mi(I

s
2 [xs]).

If and when such an n is found proceed to step 3.

3. Let n be as found in step 2. If Mi(I
s
2 [n]) 6= Mi(I

s
2 [x

s]), then let Ls+1
i = Ls

i ∪ {xs}; otherwise
let Ls+1

i = Ls
i .

Let xs+1 ∈ {〈i, z〉 | z ∈ N} be such that xs+1 > n.

Go to stage s + 1.

End stage s

It is easy to verify that Li can be enumerated effectively in i. Fix i. We consider two cases in
the definition of Li.

Case 1: There exist infinitely many stages.
In this case Mi on canonical informant for Li makes infinitely many mind changes.
Case 2: Stage s starts but does not end.
In this case Mi converges to the same grammar for both Li and Li ∪ {xs} (which are distinct

languages). Thus Mi is not reliable.
The above cases show that L is not EInfRel-identified by Mi.

Theorem 25 TxtFin − ETxtJRef 6= ∅.

Proof. The proof of this theorem is similar to that of Theorem 24. For each i, we will define
below a nonempty language Li with the following properties:

(a) Li ⊆ {〈i, n〉 | n ∈ N};
(b) a grammar for Li can be obtained effectively in i.
We take L = {Li | i ∈ N}. Clearly, L ∈ TxtFin (since a grammar for Li can be found

effectively from i). Further, we will have that Mi does not ETxtJRef -identify L.
We will define Li in stages below. Let Ls

i denote Li defined before stage s. Let L0
i = {〈i, 0〉}.

Let σ0 be such that content(σ0) = L0
i . Go to stage 0.

Stage s

1. Let T s
1 , T s

2 be texts extending σs, for Ls
i ∪ {〈i, 2s + 1〉} and Ls

i ∪ {〈i, 2s + 2〉} respectively.

2. Search for n > |σs| such that either Mi(T
s
1 [n]) 6= Mi(σs), or Mi(T

s
2 [n]) 6= Mi(σs), or Mi(T

s
1 [n])

=⊥, or Mi(T
s
2 [n]) =⊥.
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If and when such an n is found proceed to step 3.

3. Let n be as found in step 2. If Mi(T
s
1 [n]) 6= Mi(σs) or Mi(T

s
1 [n]) =⊥, then let Ls+1

i =
Ls

i ∪ {2s + 1}, and σ = T s
1 [n]. Otherwise, let Ls+1

i = Ls
i ∪ {2s + 2}, and σ = T s

2 [n].

Let σs+1 be an extension of σ such that content(σs+1) = Ls+1
i .

Go to stage s + 1.

End stage s

It is easy to verify that Li can be enumerated effectively in i. Fix i. We consider two cases in
the definition of Li.

Case 1: There exist infinitely many stages.
In this case T =

⋃
s σs is a text for Li. However Mi either makes infinitely many mind changes

on T , or refutes T .
Case 2: Stage s starts but does not end.
In this case note that (i) content(T s

1 ) and content(T s
2 ) are both finite, (ii) for large enough n,

T s
1 [n] and T s

2 [n] are not in ConsL, (iii) Mi does not refute the texts T s
1 and T s

2 , and (iv) Mi fails
to TxtEx-identify at least one of T s

1 and T s
2 (since Mi converges to the same grammar on both of

them). Thus, Mi does not ETxtJRef -identify L.
The above cases show that L is not ETxtJRef -identified by Mi. Since i was arbitrary, it

follows that L 6∈ ETxtJRef .

The following theorem shows the advantages of identification with refutation over finite identi-
fication.

Theorem 26 (TxtRef ∩ TxtJIRef ∩ InfJIRef) − InfFin 6= ∅.

Proof. Let L = {L | card(L) ≤ 2}. It is easy to verify that L witnesses the separation.

The following theorem shows the advantages of justified refutation and reliable identification
over the case when the learning machine has to refute all unidentified texts (informants).

Theorem 27 (TxtRel ∩TxtJIRef ∩ InfJIRef) − InfRef 6= ∅.

Proof. It is easy to verify that FIN witnesses the separation.

The following theorem shows the disadvantages of immediate refutation. Note that for learning
indexed families of recursive languages, Lange and Watson have shown that TxtJRef = TxtJIRef

and InfJRef = InfJIRef , and thus the following result does not hold for learning indexed families
of recursive languages.

Theorem 28 (a) TxtRef − EInfJIRef 6= ∅.
(b) TxtRef −ETxtJIRef 6= ∅.

Proof. Let L = {{i} | i 6∈ K}. It is easy to verify that L ∈ TxtRef . We show that L 6∈
ETxtJIRef . A similar proof also shows that L 6∈ EInfJIRef . Suppose by way of contradiction
that M ETxtJIRef -identifies L. Then the following claim shows that K is r.e., a contradiction.
Thus L 6∈ ETxtJIRef .

Claim 29 i ∈ K ⇔ (∃σ | content(σ) = {i})[M(σ)↓ 6=⊥].
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Proof. Suppose i ∈ K. Then, since M TxtEx-identifies {i} ∈ L, there must exist a σ such that
content(σ) = {i} and M(σ)↓ 6=⊥. On the other hand suppose by way of contradiction that i 6∈ K,
and σ is such that content(σ) = {i} and M(σ)↓ 6=⊥. Let T be an extension of σ such that M does
not TxtEx-identify T (there exists such a T by Proposition 6). But then, since σ 6∈ ConsL, by
definition of ETxtJIRef , M(σ) must be equal to ⊥; a contradiction. This proves the claim, and
completes the proof of the theorem.

In the context of learnability of indexed families, Lange and Watson (in their model of learn-
ing with refutation) had shown that immediate refutation is not a restriction, i.e. TxtJRef =
TxtJIRef and InfJRef = InfJIRef . The following corollary shows that immediate refutation is
a restriction in the context of learning general classes of r.e. languages! Note that this restriction
holds for both extended and unextended models of justified refutation (for general classes of r.e.
languages).

Corollary 30 (a) InfJIRef ⊂ InfJRef .
(b) TxtJIRef ⊂ TxtJRef .
(c) EInfJIRef ⊂ EInfJRef .
(d) ETxtJIRef ⊂ ETxtJRef .

The following theorem shows the advantages of justified refutation over reliable identification.

Theorem 31 (TxtJIRef ∩ InfJIRef) −EInfRel 6= ∅.

Proof. For f ∈ R, let Lf = {〈x, y〉 | f(x) = y}. Let L = {Lf | ϕf(0) = f} ∪ {L | L ∈
FIN ∧ (∃x, y, z | y 6= z)[〈x, y〉 ∈ L ∧ 〈x, z〉 ∈ L]}. It is easy to verify that L ∈ TxtEx (and thus
InfEx). Since, IConsL = SEQ, it follows that L ∈ TxtJIRef ∩ InfJIRef . Essentially the proof
in [CJNM94] to show that {f | ϕf(0) = f} cannot be identified by a reliable machine (for function
learning) translates to show that L 6∈ EInfRel.

The following theorem shows the advantages of reliable identification over justified refutation.

Theorem 32 (a) TxtRel − ETxtJRef 6= ∅.
(b) TxtRel − EInfJRef 6= ∅.

Proof. (a) Let Li = {〈i, x〉 | x ∈ N}. Let Xi = {σ ∈ SEG | ∅ ⊂ content(σ) ⊆ Li ∧ Mi(σ) =⊥}.
Note that Xi is recursively enumerable (a grammar for which can be found effectively in i).

Let L = {content(σ) | (∃i)[σ ∈ Xi]}.
It is easy to verify that L ∈ TxtRel. Suppose by way of contradiction that Mi witnesses that

L ∈ ETxtJRef . We consider two cases,
Case 1: Xi is not empty.
In this case let σ ∈ Xi. Let T be a text for content(σ) that extends σ. Now content(T ) ∈ L,

but Mi refutes T .
Case 2: Xi is empty.
In this case, L does not contain any subset of Li. Let L be a nonempty subset of Li such that

Mi does not TxtEx-identify L (by Proposition 6 there must exist such an L). Let T be a text for
L. Now Mi does not TxtEx-identify T , nor does it refute T . However, for all initial segments σ

of T such that content(σ) 6= ∅, σ 6∈ ConsL.
From the above cases, it follows that Mi does not ETxtJRef -identify L. Thus L 6∈ ETxtJRef .
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(b) Let Li be as defined in part (a).
Let Xi = {σ ∈ SEQ | ∅ ⊂ PosInfo(σ) ⊆ Li ∧ Mi(σ) =⊥}.
Let L = {PosInfo(σ) | (∃i)[σ ∈ Xi]}.
It can now be proved in a manner similar to part (a) that L ∈ TxtRel − EInfJRef .

The following theorem shows the advantages of having an informant over texts.

Theorem 33 (InfRef ∩ InfJIRef) − TxtEx 6= ∅.

Proof. INIT ∪ {N} witnesses the separation.

5 A Variation of Extended Justified Refutation Criteria

In the definitions for (extended) criteria of learning with justified refutation, we required the ma-
chines to either identify or (immediately) refute any text (informant) which did not contain a finite
sample representative of the class, L, being learned. For example, in ETxtJRef -identification
we required that the machine either identify or refute every text which starts with an initial seg-
ment not in ConsL. Alternatively, we could place such a restriction only for texts which are not
representative of what the machine identifies (note that this gives more freedom to the machine).
In other words, in the definitions for ETxtJRef ,ETxtJIRef ,EInfJRef ,EInfJIRef , we could
have taken {T [n] | n ∈ N and M TxtEx-identifies T}, instead of ConsL and {I[n] | n ∈ N and
M InfEx-identifies I}, instead of IConsL. Let these new classes formed be called ETxtJRef ′,
EInfJRef ′, ETxtJIRef ′, EInfJIRef ′. Note that a similar change does not effect the classes
ETxtRef , ETxtRel, EInfRef , EInfRel.

An easy to show interesting property of the classes ETxtJRef ′, EInfJRef ′, ETxtJIRef ′,
EInfJIRef ′ is that they are closed under subset operation (i.e., if L ∈ ETxtJRef ′, then every
L′ ⊆ L is in ETxtJRef ′). Note that ETxtJIRef , ETxtJRef , EInfJIRef , EInfJRef are not
closed under subset operation — this follows immediately from Theorem 32 and the fact that FIN

belongs to each of these inference criteria.
We now show a result that ETxtJIRef ′ and ETxtJRef ′ obtain the full power of TxtEx! This

is a surprising result given the results in [LW94] and this paper (ETxtJRef and EInfJRef do not
even contain TxtFin, as shown in Theorem 24 and Theorem 25).

Theorem 34 (a) TxtEx = ETxtJRef ′ = ETxtJIRef ′.
(b) EInfJRef ′ = EInfJIRef ′.

Proof. For part (a), it is enough to show that TxtEx ⊆ ETxtJIRef ′. Consider any class
L ∈ TxtEx. If N ∈ L, then it immediately follows that L ∈ ETxtJIRef ′ (since ConsL = SEG).
If N 6∈ L, then let L′ = L ∪ INIT. It was shown by Fulk [Ful90] that, if L ∈ TxtEx and L does
not contain N , then L′ as defined above is in TxtEx. Since L′ contains a superset of every finite
set, it follows that L′ ∈ ETxtJIRef ′ (since ConsL′ = SEG). Part (a) now follows using the fact
that ETxtJIRef ′ is closed under subset operation.

(b) It is sufficient to show that EInfJRef ′ ⊆ EInfJIRef ′. Suppose M EInfJRef ′-identifies L.
We construct an M′ which EInfJIRef ′-identifies L. Let g denote a recursive function such that,
for all finite sets S, Wg(S) = S. On any input I[n], M′ behaves as follows. If M(I[n]) 6=⊥, then
M′(I[n]) = M(I[n]) (this ensures that M′ InfEx-identifies L). If M(I[n]) =⊥, then let m be the
smallest number such that M(I[m]) =⊥. If PosInfo(I[n]) = PosInfo(I[m]), then M′(I[n]) outputs
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g(PosInfo(I[n])). Otherwise M′(I[n]) outputs ⊥. We claim that for every σ, either M′(σ) =⊥
or there exists an extension I of σ such that M′ InfEx-identifies I. So suppose M′(σ) 6=⊥. We
consider the following cases.

Case 1: M(σ) 6=⊥.
If M InfEx-identifies some extension of σ, then clearly M′ does too. So suppose that M does

not InfEx-identify any extension of σ. This implies that M refutes every informant which begins
with σ. Let I be an informant, extending σ, for PosInfo(σ). Let n be the least number such that
M(I[n]) =⊥. Note that I[n] must be an extension of σ. It now follows from the definition of M′

that M′ InfEx-identifies I.
Case 2: M(σ) =⊥.
Let τ be the smallest prefix of σ such that M′(τ) =⊥. It follows from the definition of M′ that

PosInfo(τ) = PosInfo(σ). Let I, extending σ, be an informant for PosInfo(σ). It follows from the
definition of M′ that M′(I) is a grammar for PosInfo(τ) = PosInfo(I).

From the above cases, it follows that M′ EInfJIRef ′-identifies L.

However, unlike the case for texts, EInfJRef ′, is not equal to InfEx.

Theorem 35 TxtEx − EInfJRef ′ 6= ∅.

Proof. First we prove the following lemma. Note that if M EInfJRef ′-identifies L, then for each
finite information sequence σ, it must satisfy either (a) or (b) in the statement of lemma.

Lemma 36 Suppose M is such that for all finite information sequences σ, at least one of the
following two properties is satisfied:

(a) M InfEx-identifies some informant extending σ, or
(b) M refutes all infinite information sequences I extending σ.

Then, for every finite information sequence τ , one can find (effectively in τ and M) a grammar
g(τ,M) such that Wg(τ,M) ⊇ PosInfo(τ), and either

(c) There exists a γ extending τ such that M(γ) =⊥, or
(d) M diverges on some informant for Wg(τ,M).

Proof. Suppose M is given such that for each finite information sequence σ, either (a) or (b)
holds. Let τ be such that (c) fails. Then, we claim that, for each γ extending τ , there exists a
γ′′′ extending γ such that M(γ) 6= M(γ ′′′). To see this, consider any γ extending τ . Let γ ′ and
γ′′ be two extensions of γ such that PosInfo(γ ′) ∩ NegInfo(γ′′) 6= ∅ (i.e. γ′ and γ′′ are inconsistent
with each other). Now, since (b) is not true for σ = γ ′ or σ = γ′′, we have from (a) that M

InfEx-identifies some informant extending γ ′ as well as some informant extending γ ′′. Thus, there
exists a γ′′′ extending γ such that M(γ) 6= M(γ ′′′). Hence, for every γ extending τ , there exists a
γ′′′ extending γ such that M(γ) 6= M(γ ′′′). This is what our construction of g will utilize. We give
below a description of Wg(τ,M) (note that g can be defined using s-m-n theorem).

Wg(τ,M)

1. Let τ0 = τ .

Enumerate PosInfo(τ) into Wg(τ,M).

Go to stage 0.

2. Stage s
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Search for γ extending τs such that M(γ) 6= M(τs).
Let τs+1 be an extension of γ such that PosInfo(τs+1) ∪ NegInfo(τs+1) ⊇ {x | x ≤ s}.
Enumerate PosInfo(τs+1) in Wg(τ,M).
Go to stage s + 1.

End stage s

End

Note that if M is as given in the lemma and τ is such that (c) fails, then, based on analysis above,
there will be infinitely many stages in the construction of Wg(τ,M). Thus,

⋃
i τi is an informant for

Wg(τ,M) on which M makes infinitely many mind changes. This proves the lemma. 2

We now proceed with the proof of the theorem.
Let τi denote a finite information sequence (obtained effectively from i) such that PosInfo(τi) =

{i + 1} and NegInfo(τi) = {x | x ≤ i}.
Let Si = {γ | τi � γ ∧ Mi(γ) =⊥}.
Let L = {Wg(τi,Mi) | Si = ∅} ∪ {PosInfo(γ) | γ ∈ Si}.
It is easy to verify that L ∈ TxtEx. However, if Si is not empty, then Mi refutes γ ∈ Si,

even though PosInfo(γ) ∈ L. If Si is empty, then either Mi does not behave properly (i.e. Mi,
for some σ, fails to satisfy both conditions (a) and (b) in the statement of Lemma 36) or does not
InfEx-identify Wg(τi,Mi) ∈ L.

It follows that L 6∈ EInfJRef ′.

Corollary 37 TxtJIRef − EInfJRef ′ 6= ∅.

Proof. Note that no language in the class L defined in the proof of Theorem 35 contains 0.
Thus, L ∪ {N} ∈ TxtEx. However, L ∪ {N} 6∈ EInfJRef ′ using proof identical to the proof of
Theorem 35.

The following theorem, however, shows that EInfJRef ′ contains InfRel.

Theorem 38 InfRel ⊆ EInfJIRef ′

Proof. Note that InfRel is closed under finite union. Also FIN ∈ InfRel. Now suppose L ∈
InfRel. Thus (L ∪ FIN) ∈ InfRel ⊆ InfEx. It follows that (L ∪ FIN) ∈ EInfJIRef ′ (since
IConsL∪FIN = SEQ). Now, EInfJIRef ′ is closed under subset operation, and thus it follows that
L ∈ EInfJIRef ′.

6 Conclusions

Mukouchi and Arikawa modeled a learning situation in which the learner is expected to refute
texts which are not representative of L, the class of languages being identified. Lange and Watson
extended this model to consider justified refutation in which the learner is expected to refute texts
only if it contains a finite sample unrepresentative of the class L. Both the above studies were in
the context of indexed families of recursive languages. In this paper we extended this study in two
directions. Firstly, we considered general classes of recursively enumerable languages. Secondly,
we allowed the machine to either identify or refute the unrepresentative texts (respectively, texts
containing finite unrepresentative samples). We observed some surprising differences between our
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results and the results obtained for learning indexed families by Lange and Watson. For example,
in the context of learning indexed families of recursive languages, Lange and Watson (in their
model) showed that TxtJIRef = TxtJRef (i.e. requiring machines to refute as soon as the initial
segment becomes unrepresentative of L, is not a restriction). Similar result was also shown by them
for learning from informants. We showed that requiring immediate refutation is a restriction if we
consider general classes of r.e. languages (in both our (extended) and Lange and Watson’s models
of justified refutation, and for learning from texts as well as informants). We also considered a
variation of our model in which “unrepresentative” is with respect to what a machine identifies
and not with respect to the class L. In this variation, for learning from texts, (immediate) justified
refutation model has the same power as TxtEx — a surprising result in the context of results in
[LW94] and other results in this paper. However, in the context of learning from informants, even
this variation fails to capture the power of InfEx.

It would be useful to find interesting characterizations of the different inference classes studied
in this paper. An anonymous referee suggested the following problems. When we do not require
immediate refutation (as in TxtJRef) the delay in refuting the text may be arbitrarily large.
It would be interesting to study any hierarchy that can be formed by “quantifying” the delay.
Note that if one just considers the number of excess data points needed before refuting, then
the hierarchy collapses — except for the ∗ (unbounded but finite) case. As extensions of criteria
considered in this paper, one could consider the situation when a machine approximately identifies
[KY95, KY97, Muk94] a text T in the cases when it doesn’t identify or refute a text.
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