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Abstract. In this paper we consider two questions. First we consider whether every
pattern language which is regular can be generated by a regular pattern. We show
that this is indeed the case for extended (erasing) pattern languages if alphabet size is
at least four. In all other cases, we show that there are patterns generating a regular
language which cannot be generated by a regular pattern. Next we consider whether
there are pattern languages which are context-free but not regular. We show that,
for alphabet size 2 and 3, there are both erasing and non-erasing pattern languages
which are context-free but not regular. On the other hand, for alphabet size at least
4, every erasing pattern language which is context-free is also regular. It is open at
present whether there exist non-erasing pattern languages which are context-free but
not regular for alphabet size at least 4.

1 Introduction

Angluin [1] introduced the concept of a pattern language as an example for an interesting
learnable class. A pattern is a finite string over Σ ∪ V , where Σ is a finite alphabet and V
is a set of variables. The language generated by the pattern is the set of strings which can
be obtained by replacing each variable in the pattern by a string over Σ. If the strings are
permitted to be empty, then the corresponding languages are called extended or erasing pattern
languages [11]; otherwise, the corresponding languages are called non-erasing pattern languages.
Angluin [1] showed that the class of non-erasing pattern languages are learnable from positive
data in the limit, while the problem whether the class of erasing pattern languages is learnable
remained open for many years until it was eventually resolved negatively by Reidenbach [8].
Indeed, pattern languages became a well-studied topic and various decidability questions related
to them were only settled after a long time [3].
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Angluin’s algorithm for learning non-erasing pattern languages had certain weaknesses which
were later improved by Lange and Wiehagen [6]. Zeugmann [13] investigated the learning prop-
erties of Lange and Wiehagen’s algorithm from a statistical perspective. Other investigations on
various approaches to learn pattern languages followed [2, 5, 10, 12]. It is NP-complete to test
whether a pattern generates a certain string; this hinders feasible consistent learning algorithms
with respect to various paradigms.

For getting better learnability properties, the learnability of subclasses of the pattern lan-
guages was studied. For example, patterns generated by only a few variables were considered
[2, 5]. Another approach is due to Shinohara [11]: he introduced the concept of regular patterns
and regular pattern languages, where each variable appears at most once in the pattern.

It is easy to see that the language generated by a regular pattern is regular, that is, recog-
nizable by a deterministic finite automaton. For the converse direction, Reidenbach [9] showed
that, for non-erasing pattern languages, for any non-empty alphabet, there are pattern languages
which are regular but which are not generated by any regular pattern. In this paper we study
this question for erasing pattern languages. We show that if alphabet Σ contains at least four
letters, then every erasing pattern language which is also regular can be generated by a regular
pattern. On the other hand, if alphabet Σ is non-empty and has at most three elements, then
there are erasing pattern languages which are also regular, but are not generated by any regular
pattern.

Reidenbach [9] asked whether there are pattern languages which generate context-free lan-
guages which are not regular. Note that for alphabet size 1, every erasing or non-erasing pattern
language is regular. We show that, for alphabet size 2 or 3, for both erasing as well as non-erasing
case, there exist pattern languages which are context-free but not regular. On the other hand,
for alphabet size at least 4, we show that every erasing pattern language which is context-free
is also regular. The corresponding question for non-erasing pattern languages for alphabet size
at least 4 is open at this point.

2 Preliminaries

For a string x, we let |x| denote the length of x, and x(i) denote the (i + 1)-th character in the
string. Thus x = x(0)x(1) . . . x(|x| − 1). Symbol ε denotes the empty string.

Throughout the paper we let Σ be a finite and non-empty alphabet. Without loss of gener-
ality, we assume that Σ = {0, 1, . . . , n} for some natural number n. Furthermore, we let V be
an infinite set of variables. We often use V = {x1, x2, . . .} and we might also just use x, y, z for
the variables if we need only two or three of them. A pattern [1] is a member of (Σ ∪ V )∗.

Informally, a substitution is a mapping from (Σ∪V )∗ to Σ∗ which replaces consistently every
variable by a string in Σ∗. More formally, a substitution s is any mapping which is defined as
follows.

1. Start with a mapping s from V to Σ∗.

2. Let s(a) = a for all a ∈ Σ.
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3. Extend s inductively to a mapping from strings over Σ ∪ V to strings over Σ by taking
s(ε) = ε, s(wa) = s(w)a and s(wx) = s(w)s(x), for all w ∈ (Σ ∪ V )∗, a ∈ Σ and x ∈ V .

A substitution s is called non-erasing if s(x) 6= ε for all x ∈ V , that is, if s(w) 6= ε for all w 6= ε.
The definition of the language generated by a pattern depends on whether we are considering

erasing or non-erasing substitutions. For a pattern π, Le(π) = {s(π) : s is a substitution} and
Lne(π) = {s(π) : s is a non-erasing substitution}. Angluin [1] only considered non-erasing pattern
languages. Shinohara [11] first considered the concept of extended or erasing pattern languages.

A regular pattern [11] is a pattern in which variables do not repeat. That is, for all i < |π|, if
π(i) ∈ V , then for all j < |π| such that i 6= j, we must have π(i) 6= π(j). For a regular pattern π,
the language Le(π) and Lne(π) are respectively called regular pattern language and non-erasing
regular pattern language.

3 Regular Languages Generated only by Nonregular Patterns

Clearly, a (non-erasing) regular pattern language is also a regular language. In the following, we
will consider whether every pattern language which is a regular language can be generated by
a regular pattern. For non-erasing pattern languages, for any alphabet, this is not possible in
general [9]. For erasing pattern languages, this depends on the size of the alphabet.

We first consider alphabet size 1; that is, we consider the case that Σ = {0}. In this case, every
pattern language (erasing or non-erasing) is regular [9]. For example, Le(00xx) is the regular
language 00(00)∗. However, 00(00)∗ is not generated by any regular pattern, as the language
generated by any regular pattern is either a singleton or a cofinite set over the alphabet Σ. The
next two results look at the case of alphabet size 2 and 3.

Theorem 1. Suppose |Σ| = 2. Then there exists a pattern π such that Le(π) is regular but for
no regular pattern π′, Le(π

′) = Le(π).

Proof. Consider the pattern π = x1x2x31x2x4x4x51x6x5x7 and the alphabet Σ = {0, 1}. We
first claim that Le(π) is regular. In particular, we claim that the equality

Le(π) = Σ∗1(00)∗1Σ∗ ∪Σ∗0Σ∗10(00)∗1Σ∗ ∪Σ∗10(00)∗1Σ∗0Σ∗

holds.
(⊆): Clearly, Le(π) ⊆ Σ∗1Σ∗1Σ∗. Any w which contains at least two 1’s, must satisfy:

(i) w ∈ Σ∗1(00)∗1Σ∗ or (ii) w ∈ Σ∗0Σ∗10(00)∗1Σ∗ or (iii) w ∈ Σ∗10(00)∗1Σ∗0Σ∗ or (iv)
w ∈ 10(00)∗1. Note that 10(00)∗1 ∩ Le(π) = ∅. Thus,

Le(π) ⊆ Σ∗1(00)∗1Σ∗ ∪Σ∗0Σ∗10(00)∗1Σ∗ ∪Σ∗10(00)∗1Σ∗0Σ∗

and so the desired inclusion holds.
(⊇): Any string α1(00)j1β is in Le(π), by choosing x1 = α, x7 = β, x4 = 0j, x2 = x3 = x5 =

x6 = ε. Any string α0β10(00)j1γ is in Le(π), by choosing x1 = α, x7 = γ, x4 = 0j, x2 = 0, x3 = β
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and x5 = x6 = ε. Any string α10(00)j1β0γ is in Le(π), by choosing x1 = α, x7 = γ, x4 = 0j,
x2 = x3 = ε, x5 = 0 and x6 = β. Thus, Le(π) is regular.

Now consider any regular pattern π′ such that the shortest word in Le(π
′) is 11, that is,

the shortest word of Le(π
′) coincides with the shortest word of Le(π). It follows that π′ ∈

V ∗1V ∗1V ∗. If π′ has a variable between the two 1’s, then 101 ∈ Le(π
′) − Le(π); otherwise

1001 ∈ Le(π)− Le(π
′). Thus, for any regular pattern π′, Le(π) 6= Le(π

′). 2

Theorem 2. Suppose |Σ| = 3. Then there exists a pattern π such that Le(π) is regular but for
no regular pattern π′, Le(π

′) = Le(π).

Proof. Consider the pattern π = x1x2x30x2x4x4x51x6x5x7 and the alphabet Σ = {0, 1, 2}. We
first claim that Le(π) is regular. In particular, we claim that the equality

Le(π) = Σ∗0Σ∗1Σ∗ − 1∗0∗02(22)∗11∗0∗

holds.
(⊆): Suppose w ∈ Le(π). Then, clearly, w ∈ Σ∗0Σ∗1Σ∗. Suppose, by way of contradic-

tion that w = s(π) ∈ 1∗0∗02(22)∗11∗0∗, for some substitution s. Thus, s(x1x2x3) ∈ 1∗0∗ and
s(x6x5x7) ∈ 1∗0∗. However, then only s(x4) contains a 2, which can allow only even number of
2’s in s(π), a contradiction.

(⊇) : Suppose w ∈ Σ∗0Σ∗1Σ∗ − 1∗0∗02(22)∗11∗0∗. Let β be the shortest string such that
there are α, γ with w = α0β1γ; note that β does not contain 0 or 1, as otherwise one could
replace β by a part of itself and choose α, γ accordingly. One of the following two cases applies.

First assume that β = 22n for some n. Now let s(x2) = s(x3) = s(x5) = s(x6) = ε, s(x4) = 2n,
s(x1) = α and s(x7) = γ. Thus w = s(π) ∈ Le(π).

Second assume that β = 22n+1 for some n. Now, at least one of α or γ contains a 2, as
otherwise, we will have that w ∈ 1∗0∗02(22)∗11∗0∗. Suppose α = α′2α′′. Then, the substitution
s(x2) = 2, s(x4) = 2n, s(x1) = α′, s(x3) = α′′, s(x5) = s(x6) = ε, s(x7) = γ, witnesses that
w ∈ Le(π). One can similarly show that if γ contains a 2, then w ∈ Le(π).

Thus, Le(π) is regular.
Now consider any regular pattern π′ such that the shortest word in Le(π

′) is 01, that is, the
shortest word of Le(π

′) coincides with the shortest word of Le(π). It follows that π′ ∈ V ∗0V ∗1V ∗.
If π′ has a variable between 0 and 1 then 021 ∈ Le(π

′)−Le(π); otherwise 0221 ∈ Le(π)−Le(π
′).

Thus, for any regular pattern π′, Le(π) 6= Le(π
′). 2

4 Block-Regular Patterns and Alphabet Size 4 or Greater

Given a pattern π, a variable block of π is a substring π(i)π(i + 1) . . . π(j) of π such that (a)
π(r) is a variable for i ≤ r ≤ j, (b) i = 0 or π(i − 1) ∈ Σ and (c) j = |π| − 1 or π(j + 1) ∈ Σ.
Let NRV (π) = {x : x appears in π exactly once } (NRV stands for non-repeating variables).

Definition 3. A block-regular pattern is a pattern π in which every variable block contains a
variable which appears only once in the pattern π, that is, for every variable block π(i)π(i + 1)
. . . π(j) of π, there is a k such that i ≤ k ≤ j and π(k) ∈ NRV (π).
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For the following we use the following version of the pumping lemma and the corresponding
corollary for regular languages.

Lemma 4 (Pumping Lemma). Suppose L is a regular language. Then, there exists a constant
n such that, for all strings z ∈ L and all of its splittings z1z2z3 = z with |z2| ≥ n, there exists a
splitting of z2 as z2 = z21z22z23 such that z22 6= ε and z1z21z

m
22z23z3 ∈ L, for all natural numbers

m.

Corollary 5. Suppose L is a regular language. Then, there exists a constant n such that, for
all strings z ∈ L and all of its splittings z1z2z3 = z, there exists a z′2 such that |z′2| ≤ n and
z1z

′
2z3 ∈ L.

Theorem 6. (a) Suppose |Σ| ≥ 4. If π is not a block-regular pattern, then Le(π) and Lne(π)
are not regular.

(b) Suppose π is a block-regular pattern. Then Le(π) = Le(π
′), for the regular pattern π′

which is obtained from π by dropping all variables not in NRV (π).

Proof. (a) Suppose by way of contradiction that π is not a block-regular pattern but Le(π)
(respectively, Lne(π)) is regular.

As π is not a block-regular pattern, there exists a variable block of π which consists only of
variables which are repeated in the pattern. Pick such a variable block π(i)π(i + 1) . . . π(j). Let
a, b ∈ Σ be such that a 6= b and a, b 6∈ {π(i− 1), π(j + 1)} (here if i = 0 or j + 1 = |π|, then we
just ignore the corresponding entry).

Now let w be the string obtained by using a substitution s which replaces every variable in π
by an+1bn+1, where n is as in the pumping lemma for the regular language Le(π) (respectively,
Lne(π)). Let w1 = s(π(0) . . . π(i− 1)), w2 = s(π(i) . . . π(j)) and w3 = s(π(j + 1) . . . π(|π| − 1)).

Note that the number of characters in π which belong to Σ−{a, b} is exactly the same as the
number of characters in w which belong to Σ − {a, b}. Now, by using pumping lemma, we have
that, for some substitution s′ (which is non-erasing in the case of Lne(π)), w′ = w′

1w
′
2w

′
3 = s′(π),

where

– s′(π(0) . . . π(i− 1)) = w′
1, s′(π(i) . . . π(j)) = w′

2, s′(π(j + 1) . . . π(|π| − 1)) = w′
3,

– w′
1 does not end in a or b and w′

3 does not start with a or b,
– |w′

1| ≤ n, |w′
3| ≤ n and

– w′
2 = akib`iaki+1b`i+1 . . . akjb`j , where n < ki < `i < ki+1 < `i+1 < . . . < kj < `j.

Such w′
1, w

′
2, w

′
3 can be obtained as follows. Initially, by taking z = w, with z1 = ε, z2 = w1

and z3 = w2w3, in the corollary to the pumping lemma, one can obtain w′
1 = z′2 of length at

most n. Then, by taking z = w′
1w2w3, with z1 = w′

1w2, z2 = w3 and z3 = ε, in the corollary
to the pumping lemma, one can obtain w′

3 = z′2 of length at most n. Then, by starting with
z = w′

1w2w
′
3, and repeatedly using pumping lemma, with z2 being the different segments of an+1

or bn+1 in w2 and taking large enough m for pumping, one can obtain the appropriate w′
2 as

needed above.
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However this leads to a contradiction as follows. Note that s′(π(r)), where i ≤ r ≤ j, cannot
be of the form a+b+a+ or b+a+b+, as each π(r) is a repeated variable and a substring of form
a+b`ma+, i ≤ m ≤ j (respectively, b+akmb+, i ≤ m ≤ j) does not appear twice in w′. This implies
that s′(π(r)) = akrb`r . But then this contradicts the fact that π(j) appears at least twice in π,
as the string akjb`j does not appear twice in w′.

Thus, Le(π) and Lne(π) are not regular.
(b) Clearly, Le(π

′) ⊆ Le(π). We now show that Le(π) ⊆ Le(π
′). Suppose w = s(π), for

some substitution s. Let s′ be a substitution such that s′(x) = s(π(i)π(i + 1) . . . π(j)), where
π(i)π(i+1) . . . π(j) is a variable block of π and x is the first variable in π(i)π(i+1) . . . π(j) from
NRV (π). All other variables are mapped by s′ to ε. Then, it is easy to verify that w = s′(π′).
Thus, Le(π) is a regular pattern language. 2

Corollary 7. Suppose |Σ| ≥ 4. Then the following three statements are equivalent
(a) Le(π) is regular;
(b) π is a block-regular pattern;
(c) Le(π) = Le(π

′) for some regular pattern π′.

5 Non-Erasing Pattern Languages and Regular Patterns

For non-erasing pattern languages, for every non-empty alphabet Σ there is a regular language
which is generated by a pattern but not by a regular pattern. This result follows from the work of
Reidenbach [9]. Here, we give the details for completeness. We additionally consider block-regular
patterns and mention an open problem.

If Σ = {0}, then the pattern xx generates the regular language 00(00)∗. However, this
language cannot be generated by a regular pattern or a block-regular pattern. Furthermore, for
Σ = {0}, every block-regular pattern language is generated by a regular pattern.

If |Σ| ≥ 2, that is, if 0, 1 ∈ Σ, then Lne(1xy1xz) =
⋃

a∈Σ 1aΣ+1aΣ+ is regular. On the
other hand, by [1], we have that Lne(π) = Lne(1xy1xz) iff π = 1xy1xz, except for renaming of
variables. Thus, Lne(1xy1xz) is not generated by a regular pattern.

Note that, by Theorem 6(a), for alphabet size at least 4, if π is not a block-regular pat-
tern, then Lne(π) is not regular. On the other hand, for block-regular pattern 0x1x2x30x2x1x4,
Lne(0x1x2x30x2x1x4)∩ 001∗01∗01 = {001m01n01 : m > n ≥ 1} is non-regular. Thus, for |Σ| ≥ 2,
block-regular patterns can generate languages which are non-regular. Hence, for |Σ| ≥ 4, the
class of languages generated by block-regular patterns is a strict generalization of the class of
pattern languages which are regular.

One might ask whether a language is regular if every block starts and ends with a variable
occurring only once. However, this is also false as shown by the following example. Consider the
language

B = Lne(x1y1y3x20x3y1y2y3x40x5y1y2y3x60x7y1y2y3x8)

with non-repeating x-variables and repeating y-variables. Every block in the pattern above starts
and ends with a non-repeating variable. Consider the intersection

A = B ∩ 11110112+110112+110112+11 = {11110112n110112n110112n11 : n ∈ {1, 2, . . .}}
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of B with a regular language. The language A is neither regular nor context-free and therefore
B is neither regular nor context-free.

An interesting question for non-erasing pattern languages is whether there exist regular
languages that can be generated only by patterns which are not block-regular. As already seen,
this is impossible for alphabet size at least 4 and possible for alphabet size 1. While the next
result provides a solution for alphabet size 2, the question remains open for alphabet size 3.

Proposition 8. Suppose Σ = {0, 1}. There exists a non-block regular pattern π such that,
(a) Lne(π) is regular and
(b) Lne(π) 6= Lne(π

′) for any block regular pattern π′.

Proof. Let π = x10y1x20y1x3. Lne(π) is only generated by patterns which are equal to π up to
a renaming of the variables [1], thus part (b) follows.

We now show that

Lne(π) = Σ+001Σ+001Σ+ ∪Σ+011Σ+011Σ+ ∪Σ+0101Σ+0101Σ+

and hence Lne(π) is regular. To see

Lne(π) ⊆ Σ+001Σ+001Σ+ ∪Σ+011Σ+011Σ+ ∪Σ+0101Σ+0101Σ+,

let w ∈ Lne(π) and choose the values of the variables such that y is as short as possible. Then y
cannot be of the form y′0y′′ with |y′′| ≥ 1 — as otherwise one could replace y by y′′ and x1, x2 by
x10y

′ and x20y
′, respectively, so that y would not be as short as possible. Similarly, if y = y′1y′′

and |y′| ≥ 1, then one can replace y by y′, x2 by y′′1x2 and x3 by y′′1x3; again y would not have
been of the shortest possible form. Therefore 0 can occur in y only at the last position and 1
can occur only in the first position. It follows that w ∈ Σ+0y1Σ+0y1Σ+ for some y ∈ {0, 1, 10}.
This establishes that Lne(π) is a subset of the given regular language.

For the converse direction, assume that w ∈ Σ+0y1Σ+0y1Σ+ and y ∈ {0, 1, 10}. Then it is
immediate that one can choose x1, x2, x3 such that w = x10y1x20y1x3 and w ∈ Lne(π). This
completes the proof. 2

Open Problem 9. Suppose the alphabet size is 3. Is there a pattern π which is not block-regular
such that Lne(π) is a regular language?

6 Pattern Languages Which Are Context-Free But Not Regular

Reidenbach [9] asked whether there are pattern languages which are context-free but not regular.
Note that, if alphabet size is 1, then every pattern language is regular. Theorem 10 below shows
that, for alphabet size 2 or 3, for both erasing as well as non-erasing case, there are pattern
languages which are context-free but not regular. On the other hand, Theorem 12 below shows
that, for alphabet size at least 4, every erasing pattern language which is context-free is also
regular.
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Theorem 10. (a) Suppose Σ = {0, 1}. Then Le(1x1y1x1z) and Lne(1x1y1x1z) are context-free
but not regular.

(b) Suppose Σ = {0, 1, 2}. Then Le(y0x1z0x1w) and Lne(y0x1z0x1w) are context-free but
not regular.

Proof. (a) Note that

Le(1x1y1x1z) = {10n1y10n1z : y, z ∈ Σ∗, n ≥ 0} and

Lne(1x1y1x1z) = {10n1y10n1z : y, z ∈ Σ+, n > 0} ∪ {110n1y110n1z : y, z ∈ Σ+, n ≥ 0}.

The above can be verified by using the shortest possible x which witnesses a string to be in
Le(1x1y1x1z) or Lne(1x1y1x1z). Each of these two languages is easily seen to be context-free.
However, their intersection with 10+1010+10 gives the language {10n1010n10 : n > 0}, which is
not regular.

(b) Note that

Le(y0x1z0x1w) = {y02n1z02n1w : y, z, w ∈ Σ∗, n ≥ 0} and

Lne(y0x1z0x1w) = {y02n1z02n1w : y, z, w ∈ Σ+, n > 0} ∪
{y012n1z012n1w : y, z, w ∈ Σ+, n ≥ 0} ∪
{y02n01z02n01w : y, z, w ∈ Σ+, n ≥ 0} ∪
{y012n01z012n01w : y, z, w ∈ Σ+, n ≥ 0}.

The above can be verified by using the shortest possible x which witnesses a string to be in
Le(y0x1z0x1w) or Lne(y0x1z0x1w). Each of these two languages is easily seen to be context-
free. However, their intersection with 202+1202+12 gives the language {202n1202n12 : n > 0},
which is not regular. 2

We now consider the case of alphabet size at least 4, for erasing pattern languages. Let occur(π, x)
(respectively, occur(π, a)) denote the number of times that variable x (respectively, character a)
occurs in pattern π. The following lemma is useful to show that pattern languages of certain
form are not context-free.

Lemma 11. Suppose Σ = {2, 3}. Suppose π is a non-empty pattern consisting of only variables
and for each variable x in π, occur(π, x) ≥ 2. Then Le(π) is not context-free.

Proof. Suppose by way of contradiction that π is as in the hypothesis of the lemma, but Le(π) is
context-free. Consider a Chomsky Normal Form grammar G for Le(π)−{ε}. Let x be a variable
in π for which occur(π, x) is minimized. Let k = occur(π, x). Now consider any sufficiently long
Kolmogorov random string w, that is a string w of Kolmogorov complexity at least |w| (see [7]).

Below we will give a description of w which is of length approximately (2k−1)|w|
2k

, contradicting
randomness of w.

The string w can be described as follows. Let w′ = s(π), where s maps x to w and rest of the
variables to ε. Consider the derivation tree of w′ in G. Then, there exists a node corresponding
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to a non-terminal A in the tree such that, in this tree, A derived a substring w2 of w′ = w1w2w3,
where |w|/2 ≤ |w2| ≤ |w|. Let u be the shortest string that can be generated by the non-
terminal A in grammar G. Then, w′′ = w1uw3 ∈ Le(π). Thus, as w′′ can be described using the
substitution needed to obtain w′′, complexity of w′′ is at most |w′′|/k plus a constant. Thus,

w′′ has complexity at most (2k−1)|w|
2k

plus a constant. Note that w = w′
1w

′
3, for some appropriate

prefix w′
1 of w1 and suffix w′

3 of w3. Thus, w can be obtained from w′′ by just giving the location

where the w′
1 ends and w′

3 starts in w′′. Thus, w has complexity at most (2k−1)|w|
2k

+2 log2(|w|)+c,
for a constant c. For sufficiently long w, this contradicts the randomness of w. 2

Theorem 12. Suppose Σ ⊇ {0, 1, 2, 3} and let a pattern π be given. If Le(π) is context-free,
then it is regular.

Proof. Without loss of generality assume that π starts and ends with a member of Σ (this
is just for ease of writing the proof). Suppose Le(π) is not regular. Then, by Theorem 6(b),
there exists a variable block π(i)π(i + 1) . . . π(j), with i ≤ j, such that occur(π, π(r)) ≥ 2, for
i ≤ r ≤ j. Fix one such i, j. Without loss of generality assume that π(i−1) = 0 and π(j+1) = 1.

Let Y = {π(r) : i ≤ r ≤ j}.
Let X = {x ∈ Y : occur(π, x) = occur(π(i)π(i + 1) . . . π(j), x)}. That is, X is the set of

variables x that appear in π but neither in π(0) . . . π(i− 1) nor in π(j + 1) . . . π(|π| − 1).

We will now show that Le(π) is not context-free. So suppose by way of contradiction that
Le(π) is context-free. We consider the following cases.

Case 1: X 6= ∅.
Let π′ be the pattern formed from π(i) . . . π(j) by dropping the variables x 6∈ X.

Consider the language L = {s(π) : s(x) ∈ {2, 3}∗, if x ∈ X, and s(x) = ε otherwise}. Then
L is also context-free (as it can be obtained by taking intersection of Le(π) with a regular set
formed by replacing each variable x ∈ X (treating each occurrence of a variable as distinct) by
{2, 3}∗, and rest of the variables by ε). But then, this would imply that L(π′) is context-free,
contradicting Lemma 11.

Case 2: X = ∅.
Let q be the maximum value of occur(π(i)π(i+1)...π(j),x)

occur(π,x)
, for the variables x ∈ Y .

Let Z = {x ∈ Y : occur(π(i)π(i+1)...π(j),x)
occur(π,x)

= q}.
Consider the language L = {s(π) : s(x) ∈ 2∗3∗ for each variable x ∈ Z and s(x) = ε for

x 6∈ Z}. Then L is also context-free (as it can be obtained by taking intersection of Le(π)
with a regular set formed from π by replacing each variable x ∈ Z (treating each occurrence
of a variable as distinct) by 2∗3∗ and each variable x 6∈ Z by ε). Let n2 = occur(π, 2) and
n3 = occur(π, 3). Note that, for each w ∈ L, the number of 2’s (3’s) in w occurring in between
the characters corresponding to π(i−1) and π(j+1) is at most q∗(occur(w, 2)−n2) (respectively,
q ∗ (occur(w, 3)− n3)).

Let n be as in the pumping lemma for context-free languages for L (see [4]). Consider string
w = s(π) obtained by using the substitution s which maps x ∈ Z to 2n3n and all other variables
to ε. Now by pumping lemma for context-free languages, there exists a splitting of w into uvzv′u′
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such that |vzv′| ≤ n, |vv′| ≥ 1, and both uvvzv′v′u′ and uzu′ are in L. Thus, vv′ cannot contain
0 or 1, and

(i) both v and v′ lie fully within the portion of w corresponding to π(i) . . . π(j) or
(ii) both v and v′ do not contain any part of π(i) . . . π(j) or
(iii) both v and v′ do not contain any 2’s from the portion of w corresponding to π(i) . . . π(j)

or
(iv) both v and v′ do not contain any 3’s from the portion of w corresponding to π(i) . . . π(j).

If (i) holds, then w′ = uvvzv′v′u′ will have more than q∗(occur(w′, 2)−n2) many 2’s or more than
q ∗ (occur(w′, 3)− n3) many 3’s between the characters corresponding to π(i− 1) and π(j + 1).
If (ii) holds, then w′ = uzu′ will have more than q ∗ (occur(w′, 2) − n2) many 2’s or more than
q ∗ (occur(w′, 3)− n3) many 3’s between the characters corresponding to π(i− 1) and π(j + 1).

So suppose (i) and (ii) do not hold and (iii) holds (case of (iv) holds is similar). If vv′

contains a 2, then w′ = uzu′ will have more than q ∗ (occur(w′, 2) − n2) many 2’s between the
characters corresponding to π(i − 1) and π(j + 1). On the other hand, if vv′ does not contain
a 2, then it consists only of 3’s, including at least one 3 corresponding to the portion of w in
π(j + 1) . . . π(|π| − 1). But then, this implies that the string uzu′ does not have the appropriate
sequence of constants following the character corresponding to π(j), as required for all strings
in L. 2

For alphabet size at least 4, it is unknown whether every context-free non-erasing pattern lan-
guage is also regular; the main reason is that there are languages generated by block-regular
patterns which are not regular languages; it might be that some of them are context-free, al-
though we think at the moment that this is unlikely.

Open Problem 13. Suppose |Σ| ≥ 4. Is there a pattern π such that Lne(π) is context-free but
not regular?
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