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Abstract. This work extends studies of Angluin, Lange and Zeugmann on the de-
pendence of learning on the hypotheses space chosen for the class. In subsequent
investigations, uniformly recursively enumerable hypotheses spaces have been con-
sidered. In the present work, the following four types of learning are distinguished:
class-comprising (where the learner can choose a uniformly recursively enumerable
superclass as hypotheses space), class-preserving (where the learner has to choose
a uniformly recursively enumerable hypotheses space of the same class), prescribed
(where there must be a learner for every uniformly recursively enumerable hypothe-
ses space of the same class) and uniform (like prescribed, but the learner has to be
synthesized effectively from an index of the hypothesis space). While for explanatory
learning, these four types of learnability coincide, some or all are different for other
learning criteria. For example, for conservative learning, all four types are different.
Several results are obtained for vacillatory and behaviourally correct learning; three
of the four types can be separated, however the relation between prescribed and uni-
form learning remains open. It is also shown that every (not necessarily uniformly
recursively enumerable) behaviourally correct learnable class has a prudent learner,
that is, a learner using a hypotheses space such that it learns every set in the hy-
potheses space. Moreover the prudent learner can be effectively built from any learner
for the class.

1 Introduction

The intuition behind learning in inductive inference [10] is that a learner sees more and more
data and while reading the data produces conjectures about the concept to be learned which
eventually stabilize on a correct description. The learning task is not arbitrary, but stems from
a given class of concepts. Angluin [1] considered the important case that such a class is given
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by an indexed family, that is, the class is uniformly recursive. She has given a characterization
when such a class is explanatorily learnable and introduced also important variants such as
conservative learning. In the present work, the more general case of uniformly r.e. classes is
addressed. Previously learnability of uniformly r.e. classes had been considered by de Jongh,
Kanazawa [7] and Zilles [26, 27].

Remark 1. First some basic notation. Let W0, W1, W2, . . . be an acceptable enumeration of all
r.e. subsets of the set of natural numbers N. A language is a r.e. subset of natural numbers. Let
ϕe denote the e-th partial recursive function, again from an acceptable numbering. For more
information on recursion theory, the reader is referred to standard text books like the ones of
Odifreddi [18] and Soare [21]. The function 〈e, x〉 = 1

2
· (e + x)(e + x + 1) + x is Cantor’s pairing

function. A family L0, L1, L2, . . . is uniformly recursively enumerable iff {〈e, x〉 : x ∈ Le} is a
recursively enumerable set. For ease of notation, uniformly r.e. classes are just called r.e. classes.
Note that in this paper, notations like {L0, L1, L2, . . .} are used as a short-hand for both, the
family as well as for the class of the sets; so set-theoretic comparisons like {L0, L1, L2, . . .} ⊆ {H0,
H1, H2, . . .} and {L0, L1, L2, . . .} = {H0, H1, H2, . . .} ignore the ordering of the sets inside the
class. Furthermore, let We,s, Le,s, He,s be the elements enumerated within time s into We, Le, He,
respectively. Without loss of generality, We,s, Le,s, He,s are subsets of {0, 1, . . . , s}.

Let σ, τ range over (N ∪ {#})∗. Furthermore, let σ ⊆ τ denote that τ is an extension of σ
as a string. content(σ) denotes the set of natural numbers in the range of σ. T is a text if T
maps N to N ∪ {#} and T is a text for La iff the numbers occurring in T are exactly those in
La. content(T ) denotes the set of natural numbers in the range of T . T [n] denotes the string
consisting of the first n elements of the text T , so T [0] is the empty string and T [2] = T (0)T (1).

Remark 2. A learner is a recursive function from (N ∪ {#})∗ to N ∪ {?}. In the following, let
M be a learner and let {L0, L1, L2, . . .}, {H0, H1, H2, . . .} be r.e. classes. Here {L0, L1, L2, . . .} is
the class M should learn and {H0, H1, H2, . . .} is the hypotheses space used by M .

The learner M converges on T to b if there is an n with M(T [m]) = b for all m ≥ n.
The learner M is finite [10] if for every text T there is one index e such that for all n, either

M(T [n]) = ? or M(T [n]) = e.
The learner M is confident [19] if M converges on every text T to a hypothesis.
The learner M is conservative [1] if for all σ, τ with M(στ) 6= M(σ) there is an x occurring

in στ such that x /∈ HM(σ).
The learner M semantically identifies La if, given any text T for L, HM(T [n]) = La for almost

all n. The learner M syntactically identifies La if, given any text T for L, there is a b with
Hb = La and M(T [n]) = b for almost all n.

The learner M is a behaviourally correct learner for {L0, L1, L2, . . .} iff M semantically iden-
tifies every La [3, 6]; M is an explanatory learner for {L0, L1, L2, . . .} if M syntactically identifies
every La [4, 10]. M is a vacillatory learner for {L0, L1, L2, . . .} iff M is a behaviourally correct
learner for {L0, L1, L2, . . .} which on every text for a language La outputs only finitely many
syntactically different hypotheses [5].

The learner M is prudent [9, 19] if it learns all languages in its hypotheses space {H0, H1,
H2, . . .}.
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In the first three sections, all classes considered are recursively enumerable, only in Section 4
learnability of general classes is investigated.

Remark 3. Let M be a learner for {L0, L1, L2, . . .} using hypotheses space {H0, H1, H2, . . .}.
A sequence σ is called syntactic stabilizing sequence for M on a set L iff σ ∈ (L ∪ {#})∗ and
for all τ ∈ (L ∪ {#})∗, M(στ) = M(σ). A sequence σ is called semantic stabilizing sequence
for M on a set L iff σ ∈ (L ∪ {#})∗ and for all τ ∈ (L ∪ {#})∗, HM(στ) = HM(σ). Stabilizing
sequences are called locking sequences for M on L, if in addition to the above conditions it holds
that HM(σ) = L. Note that, if M learns L then stabilizing sequences for M on L are also locking
sequences for M on L.

Let K denote the halting problem. Let K ′ denote the halting problem relative to K. There
is a partial K-recursive function Γ which assigns to each e the length-lexicographically least
syntactic stabilizing sequence for M on Le; Γ (e) is defined iff such a sequence exists. Γ has a two-
place approximation γ(e, t) which converges to Γ (e) if Γ (e) is defined and diverges otherwise.
Note that Γ and γ can be obtained effectively from an index for M and an index e′ with
We′ = {〈e, x〉 : x ∈ Le}. Blum and Blum [4] introduced the notion of locking sequences and Fulk
[9] introduced the notion of stabilizing sequences.

Angluin [1], Lange, Kapur and Zeugmann [15, 16, 23–25] studied the dependence between the
family {L0, L1, L2, . . .} to be learned and the hypotheses space {H0, H1, H2, . . .} used by the
learner. To formalize this, they introduced the notions of exact, class-preserving and class-
comprising learning. In addition to this, new notions like uniform and prescribed are introduced.
Here I ranges over properties of the learner as defined in Remark 2, so I stands for “finite”,
“explanatory”, “conservatively explanatory”, “confidently explanatory”, “vacillatory” and “be-
haviourally correct”.

Definition 4. {L0, L1, L2, . . .} is class-comprisingly I learnable iff it is I learnable with respect
to some hypotheses space {H0, H1, H2, . . .}; note that learnability automatically implies {L0, L1,
L2, . . .} ⊆ {H0, H1, H2, . . .}.

{L0, L1, L2, . . .} is class-preservingly I learnable iff it is I learnable with respect to some
hypotheses space {H0, H1, H2, . . .} satisfying {H0, H1, H2, . . .} = {L0, L1, L2, . . .}.

{L0, L1, L2, . . .} is prescribed I learnable iff it is I learnable with respect to every hypotheses
space {H0, H1, H2, . . .} such that {L0, L1, L2, . . .} = {H0, H1, H2, . . .}.

{L0, L1, L2, . . .} is uniformly I learnable iff there is a recursive enumeration of partial-
recursive functions M0, M1, M2, . . . such that the following holds: Whenever {H0, H1, H2, . . .} =
{L0, L1, L2, . . .} and We = {〈d, x〉 : x ∈ Hd} then Me is total and an I learner for {L0, L1,
L2, . . .} with respect to this hypotheses space {H0, H1, H2, . . .}.

Remark 5. Lange and Zeugmann [15, 23] considered besides class-preserving and class-compris-
ing also the following notion: {L0, L1, L2, . . .} is exactly I learnable iff it is I learnable with {L0,
L1, L2, . . .} itself taken as hypotheses space. Note that this notion needs that the ordering of
the languages in {L0, L1, L2, . . .} is taken into account, while all other definitions hold without
paying attention to the specific ordering of the sets inside {L0, L1, L2, . . .}. The relation to
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prescribed learning is that a class {L0, L1, L2, . . .} is prescribed I learnable iff every family {H0,
H1, H2, . . .} with {H0, H1, H2, . . .} = {L0, L1, L2, . . .} is exactly I learnable.

The question whether a class can be learned using any given representation is quite natural. It
reflects the situation where a company building learners cannot enforce its representation of the
data/hypothesis on the clients but has to make for each client a learning algorithm using the
client’s representation. The difference between prescribed and uniform learning would then be
that in the first case the programmers have to adjust for each client the learning program by
hand, while in the second case there is some synthesizer which reads the clients requirements
from some file and then adapts the learner automatically.

Remark 6. Note that in the case of learning with respect to r.e. families, uniform learning and
prescribed learning are defined in a class-preserving way. Jain and Stephan [13] showed that
there is a one-one numbering of all r.e. sets (that is a Friedberg Numbering [8]) such that only
classes with finitely many infinite sets can be behaviourally correct learned with respect to this
numbering as hypotheses space.

Furthermore, above result can be strengthened to uniform learning by showing that only
classes consisting of finite sets are class-comprising-uniformly behaviourally correct learnable. To
see this, let {H0, H1, H2, . . .} be a Friedberg numbering [8]. For a given parameter e, a family {G0,
G1, G2, . . .} is constructed from {H0, H1, H2, . . .} such that the following holds for all a:

– For all b, G〈a,b〉 ⊆ Ha;
– G〈a,b〉 = Ha if either b = 0 ∧ |We| = ∞ or b = |We|+ 1;
– G〈a,b〉 is finite if either b > 0 ∧ |We| = ∞ or b 6= |We|+ 1 ∧ |We| < ∞.

Suppose by way of contradiction that there is an r.e. infinite set Ha such that some class con-
taining Ha can be class-comprising-uniformly behaviourally correctly learned. Note that for any
fixed e and the class {G0, G1, G2, . . .} with parameter e built as above, there exists exactly one
index 〈f(e), g(e)〉 with G〈f(e),g(e)〉 = Ha. By construction, f(e) = a. By the assumption on uni-
form learnability, there is a recursive enumeration of learners N0, N1, N2, . . . such that each Ne

learns the given class with respect to the hypotheses space {G0, G1, G2, . . .} built with param-
eter e. As there is a fixed recursive text T for Ha and one can simulate Ne on T , the function
g is limit-recursive (that is, there exists a recursive function h such that g(x) = limt→∞ h(x, t)).
Note that We is infinite iff g(e) = 0. As {e : |We| = ∞} 6≤T K, this gives a contradiction. So
class-comprising uniform behaviourally correct learning only permits to learn classes of finite
sets.

Thus it is reasonable to restrict oneself to the class-preserving versions of prescribed and
uniform learning; this convention has already been adapted in Definition 4.

The next result is obvious from the definitions.

Proposition 7. For any notion I of learning and any class L, the following implications hold:
L is uniformly I-learnable ⇒ {L0, L1, L2, . . .} is prescribed I-learnable ⇒ L is class-preservingly
I-learnable ⇒ L is class-comprisingly I-learnable.
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It depends on the chosen learning criterion I, which of the implications can be reversed. For
finite and explanatory learning, all four notions are the same, as shown in Theorems 8 and 9.
A lot of research [11] deals with requiring additional constraints on how hypotheses are cho-
sen during explanatory learning. Such requirements change also the relations between the four
types of learning. For confident learning, Theorem 10 shows that the uniform, prescribed and
class-preserving type coincide while class-comprising confident learning is more general. For con-
servative learning, Example 11 gives classes which separate all four types of conservative learning.
Theorems 12, 13, 15 and 16 deal with vacillatory and behaviourally correct learning. They give
classes which, for these criteria, are class-comprisingly but not class-preservingly learnable as well
as classes which are class-preservingly but not prescribed learnable. The separation of prescribed
from uniform is open for these two criteria.

The importance of prudence is that the hypotheses space and the class of learned sets coincide;
so the learner never conjectures some set it cannot learn. Fulk [9] showed that prudence is
not restrictive for explanatory learning. Jain and Sharma [12] showed that prudence is not
restrictive for vacillatory learning. In Theorem 17 it is shown that prudence is not restrictive
for behaviourally correct learning. In 1988, Kurtz and Royer [14] had claimed to have this
result, but their proof had a bug and the problem had remained open since then. Furthermore,
the construction of the prudent learner is effective in the original learner for a behaviourally
learnable class. It is still open whether prudence for explanatory and vacillatory learning can be
effectivized.

2 Finite and Explanatory Learning

Finite learnable classes can be learnt uniformly, because finite learning is determined by a finite
subset of the target language.

Theorem 8. Every class-comprisingly finitely learnable class is also uniformly finitely learnable.

Proof. Let M be a finite learner for {L0, L1, L2, . . .} using a class-comprising hypotheses space.
Let e be an index for a hypothesis space {H0, H1, H2, . . .}. That is, We = {〈b, x〉 : x ∈ Hb}.
Further suppose {H0, H1, H2, . . .} = {L0, L1, L2, . . .}. Then a learner Me is defined as follows.
Me(T [n]) is defined by the first case below which applies:

– If there is an m < n with Me(T [m]) 6= ? then Me(T [n]) = Me(T [m]) for the least such m;
– If there are m ≤ n and b ≤ n with M(T [m]) 6= ? and content(T [m]) ⊆ Hb,n then Me(T [n]) = b;
– Otherwise Me(T [n]) = ?.

The first condition guarantees that Me outputs on T at most one hypothesis besides the symbol ?.
Hence every Me is a finite learner. It follows from the definition of finite learning that Hb = Hc

whenever M(T [m]) 6= ?, content(T [m]) ⊆ Hb and content(T [m]) ⊆ Hc. Hence the b chosen
in the second case is a correct hypothesis whenever this case applies. Furthermore, this case
eventually applies on texts for languages in {L0, L1, L2, . . .}. This completes the proof that {L0,
L1, L2, . . .} is uniformly finitely learnable. �

The same result holds for explanatory learning.
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Theorem 9. Every class-comprisingly explanatorily learnable class is also uniformly explana-
torily learnable.

Proof. Let L be given and let M be a learner using a hypotheses space {L0, L1, L2, . . .} con-
taining L and perhaps other languages. Choose i such that Wi = {〈a, x〉 : x ∈ La}.

Fix any j and assume that j is an index of a hypotheses space {H0, H1, H2, . . .} for L, that is,
assume {H0, H1, H2, . . .} = L and Wj = {〈b, x〉 : x ∈ Hb}. Let Γj be the function from Remark 3
which assigns to the members of {H0, H1, H2, . . .} the length-lexicographically least syntactic
stabilizing sequences with respect to the learner M . γj(b, t) is then the t-th approximation of
Γj(b) as defined in Remark 3.

The learner Mj is constructed as follows: Mj(σ) is the least b such that either γi(M(σ), |σ|)
= γj(b, |σ|) or b = |σ|. The latter condition is just to make Mj total and to terminate the search.

Assume that M converges on some text T to an index a of a language La ∈ L. As La ∈ L,
there is a b with Hb = La; assume that b is the least such index. As {H0, H1, H2, . . .} = L and
M is a learner for {H0, H1, H2, . . .}, an index c satisfies Γj(c) = Γi(a) iff Hc = La. Hence Mj

converges on T to b as, for all c < b and almost all s, γj(b, s) = γi(a, s) and γj(c, s) 6= γi(a, s). It
follows that Mj learns L using the hypotheses space {H0, H1, H2, . . .}. �

The next result shows that class-preserving confident learning coincides with uniform confident
learning. The proof of the second part shows that class-preserving confident learning is not closed
under taking subclasses.

Theorem 10. (a) Every class-preservingly confidently learnable class L is also uniformly con-
fidently learnable.

(b) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly but not class-
preservingly confidently learnable.

Proof. (a) Reviewing the proof of Theorem 9, the additional constraints to those given there
on M and {L0, L1, L2, . . .} are that {L0, L1, L2, . . .} = L and M converges on every text to some
index. Assume again that j and {H0, H1, H2, . . .} satisfy {L0, L1, L2, . . .} = {H0, H1, H2, . . .} and
Wj = {〈b, x〉 : x ∈ Hb}. Assume that T is any text. Then M converges on T to some index a as
M is confident. By construction, Mj converges then to the least index b with La = Hb. Hence Mj

also converges on all texts and hence Mj is confident. Furthermore, Mj learns L explanatorily
with respect to the hypotheses space {H0, H1, H2, . . .}.

(b) The class {D : |D| = 2∨ (|D| = 1∧D ⊆ K ′)} is class-comprisingly confidently learnable
as follows. On a text for a set with up to two elements, the learner converges to an index for
this set using {W0, W1, W2, . . .} as hypotheses space. The learner does not revise its hypothesis
after seeing three elements in the input, in order to obtain confidence.

Note that {D : |D| = 2 ∨ (|D| = 1 ∧D ⊆ K ′)} is an r.e. class. To see this, note that there
is a two-place recursive function g with x ∈ K ′ iff g(x, y) = 1 for almost all y and x /∈ K ′ iff
g(x, y) = 0 for infinitely many y. Now let

L2〈x,y〉 = {x, x + y + 1} and
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L2〈x,y〉+1 =

 {x, x + z + 1} if z is the least number with
z > y and g(x, z) 6= 1;

{x} if g(x, z) = 1 for all z > y.

It is easy to verify that {L0, L1, . . .} = {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)}. It is easy to
see that {L0, L1, L2, . . .} is even an indexed family for the given class. Now assume that some
confident learner M for {L0, L1, L2, . . .} uses some hypotheses space {H0, H1, H2, . . .} with {H0,
H1, H2, . . .} = {L0, L1, L2, . . .}. Then one can define the K-recursive function f with f(x) being
the hypothesis to which M converges on the text x∞. If x ∈ K ′ then Hf(x) = {x} as M learns
this set. If x /∈ K ′ then Hf(x) 6= {x} as no member of {H0, H1, H2, . . .} equals {x}. The test
whether Hf(x) = {x} is also K-recursive. This would give a contradiction to K ′ 6≤T K. Thus
there is no class-preserving confident learner for {L0, L1, L2, . . .}. �

For conservative learning, a full hierarchy can be established. Note that the following example
can be transferred to many related notions like monotonic [22] and non U-shaped learning [2]
without giving more insight. Therefore, these learning criteria are not considered in the present
work.

Example 11. (a) The class {D : |D| ≤ 1} is prescribed conservatively but not uniformly con-
servatively learnable.

(b) The class {D : |D| < ∞} is class-preservingly conservatively but not prescribed conser-
vatively learnable.

(c) The class {D : |D| = 2 ∨ (|D| = 1 ∧ D ⊆ K ′)} is class-comprisingly conservatively but
not class-preservingly conservatively learnable.

Proof. (a) The prescribed learner knows the index a of ∅ in the given numbering {H0, H1,
H2, . . .}. So it conjectures Ha until a number x occurs in the input and an index b is found with
x ∈ Hb. Then the learner makes one mind change to b and keeps this index forever. This learner
is conservative and correct as {x} is the only set in {H0, H1, H2, . . .} containing x. For the second
part, let S be a simple set [20], Se = S ∪ {0, 1, ..., e}, and let Se

y denote Se enumerated within
y steps, in some effective enumeration (in e) of Se. Define class-preserving hypotheses spaces
H0,H1,H2, . . ., where He = {He

0 , H
e
1 , H

e
2 , . . .} with He

x(y) = 1 if x ∈ Se
y − Se

y−1 and He
x(y) = 0 if

x /∈ Se
y − Se

y−1.
If {D : |D| ≤ 1} is uniformly conservatively learnable, then there exists a recursive family of

learners N0, N1, N2, . . . such that for all e ∈ N, Ne conservatively learns the class {D : |D| ≤ 1}
with respect to He. The r.e. set A = {x : for some e, Ne outputs x on #∞} is infinite (as for
all e, Ne outputs an index larger than e) and disjoint to S. This contradicts the fact that S is
simple.

Note that the hypotheses spaces He constructed above are uniformly recursive. Thus, {D :
|D| ≤ 1} is not even uniformly class-preservingly conservatively learnable when the hypotheses
spaces must be uniformly recursive. Similar observation holds for part (b), too.

(b) The class of all finite sets is clearly conservatively learnable in the canonical numbering of
the finite sets. Now let I0, I1, I2, . . . be a recursive partition of the natural numbers into intervals
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such that there is a simple set A with In 6⊆ A for all n. Let {L0, L1, L2, . . .} be the canonical
numbering of the finite sets and let Hm = Ln for m ∈ In−A and Hm = Ln∪{m+n+t,m+n+t+1}
for m ∈ In ∩A, with m ∈ At −At−1. It is easy to see that {H0, H1, H2, . . .} is also a numbering
of all finite sets. Assume now that M is a learner using the hypotheses space {H0, H1, H2, . . .}.
Then one defines a recursive function f as follows: f(x) = b for the first b found such that x ∈ Hb

and M(xk) = b for some k. As all Hb are finite, the set {f(0), f(1), f(2), . . .} contains infinitely
many indices and is recursively enumerable. Hence there is an x with f(x) ∈ A. It follows that
{x} ⊂ Hf(x) as Hf(x) contains at least two elements. So the learner M overgeneralizes on xk and
is not conservative.

(c) In Theorem 10, it has been shown that the class {D : |D| = 2∨ (|D| = 1∧D ⊆ K ′)} is an
r.e. class. The class-comprising confident learner given there is also conservative. Now assume
that some conservative learner M for this class uses some class-preserving hypotheses space {H0,
H1, H2, . . .}. Then one can again define f(x), this time only partial-recursive, to be the b found
such that M outputs b on the text x∞ and x ∈ Hb. Now x ∈ K ′ iff f(x) is defined and Hf(x) = {x}.
This condition can be checked with oracle K although K ′ 6≤T K. From this contradiction follows
that there is no class-preserving conservative learner for {D : |D| = 2∨ (|D| = 1∧D ⊆ K ′)}. �

3 Vacillatory and Behaviourally Correct Learning

For vacillatory and behaviourally correct learning, a strict hierarchy from prescribed to class-
preserving to class-comprising learning can be established. It remains open whether uniform
learning is more restrictive than prescribed learning.

Theorem 12. Let L2a = {〈a, b〉 : b ∈ N} and L2a+1 = {〈a, b〉 : b ≤ |Wa|}. Then {L0, L1,
L2, . . .} is uniformly behaviourally correct learnable and class-preservingly vacillatorily learnable
but neither prescribed vacillatorily learnable nor class-comprisingly explanatorily learnable.

Proof. Assume that {H0, H1, H2, . . .} = {L0, L1, L2, . . .} and We = {〈b, x〉 : x ∈ Hb}. Let s
be the length and D be the content of the input. Now a learner Me is constructed. Me first
computes the sets

– A = {c ≤ s : D = Hc,s} and
– B = {c ≤ s : D ∩Hc,s 6= ∅};

then Me follows the first of the following cases which applies:

– If D = ∅ then Me outputs ?;
– If A 6= ∅ then Me outputs min(A);
– If B 6= ∅ then Me outputs some c ∈ B for which Hc,s has largest number of elements;
– Otherwise Me repeats the previous conjecture.

The first case, together with the last, make sure that Me is total, starts with ? and never returns
to ? once it has taken another hypothesis. Assume now that Me sees a text for a language
Hb ∈ {L2a, L2a+1} and that b is the least index of Hb in {H0, H1, H2, . . .}. Furthermore, assume
that so much data has been observed such that the following four conditions hold:
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– s ≥ b;
– The datum 〈a, 0〉 is in both, D and Hb,s;
– If Hb 6= L2a+1 then |Hb,s| > |L2a+1| and |D| > |L2a+1|;
– If Hb is finite then Hb = Hb,s = D and, for all d < b and t ≥ s, Hd,t 6= D.

Note that D 6= ∅ and B 6= ∅ and therefore Me outputs a hypothesis c different from ?. Now it is
shown that Hc = Hb: First note that 〈a, 0〉 ∈ D and b ∈ B, hence the algorithm chooses c either
by the second or the third condition in the algorithm. It follows that Hc = L2a or Hc = L2a+1.
If Hb is finite, it follows directly from the learning algorithm that b = min(A) for the set A
considered there and hence c = b. If Hb is infinite and L2a+1 is finite, then |Hc| ≥ |Hb,s| > |L2a+1|
and Hc = L2a = Hb. If Hb and L2a+1 are both infinite then Hb = L2a = L2a+1 and Hc = Hb. So
Me is a behaviourally correct learner for {L0, L1, L2, . . .} using the hypotheses space {H0, H1,
H2, . . .}.

To see that {L0, L1, L2, . . .} is class-preservingly vacillatorily learnable, take Hb = Lb for all
b. For each language there are at most 2 indices in {H0, H1, H2, . . .} and therefore the above
described behaviorally correct learner is also a vacillatory one.

To see that {L0, L1, L2, . . .} is not prescribed vacillatory learnable, one constructs a suitable
hypotheses space as follows:

H〈a,b〉 =

{
L2a+1 if b = min({s : |Wa,s| = |Wa|});
L2a otherwise.

For each a there is a b with H〈a,b〉 = L2a+1; if Wa is finite then one can take b as the minimum
of the nonempty set {s : |Wa,s| = |Wa|}; if Wa is infinite then one can take b = 0. The reason
for the latter case is that then L2a = L2a+1. Furthermore, all but at most one of the b satisfy
L2a = H〈a,b〉. Hence {H0, H1, H2, . . .} is a hypotheses space for {L0, L1, L2, . . .}. If there were a
prescribed vacillatory learner using {H0, H1, H2, . . .} as the hypothesis space then there would
also be a K-recursive function f such that f(a) is the maximal element output by this learner
on the canonical text for L2a+1. It would follow that Wa is finite iff Wa,f(a) = Wa; note that
f(a) ≥ 〈a, b〉 ≥ b for the least b such that L2a+1 = H〈a,b〉. But then a K-recursive procedure
could check, given a, whether Wa is finite. As such a procedure does not exist [21], {L0, L1,
L2, . . .} is not vacillatorily learnable with respect to the hypotheses space {H0, H1, H2, . . .}.

As just seen, {L0, L1, L2, . . .} is not prescribed vacillatorily learnable and hence also not
prescribed explanatorily learnable. It follows using Theorem 9 that {L0, L1, L2, . . .} is also not
class-comprisingly explanatorily learnable. �

Theorem 13. For all a, b let

L〈a,b〉 =


{〈a, c〉 : c ∈ N} if b = 0;
{〈a, c〉 : c ≤ |Wa|} if b = 1;
{〈a, c〉 : c ≤ |Wa,d|} ∪ {〈a + 1, |Wa,d|+ e + 1〉} if b = 2 + 〈d, e〉.

The class {L0, L1, L2, . . .} is class-preservingly behaviourally correct learnable but not prescribed
behaviourally correct learnable.
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Proof. Recall that |Wa,d| ≤ d + 1 for all d. It is easy to see that {L0, L1, L2, . . .} is a uniformly
r.e. class. Assume that an input of length s and content D is given. A behaviourally correct
learner takes now the first case which applies.

– If there is a pair 〈a, b〉 such that 〈a + 1, a + b + 2〉 < s and L〈a,b〉,s = D then output 〈a, b〉 for
the least pair where these conditions are true.

– If there is an a such that {〈a, 0〉} ⊆ D ⊆ L〈a,0〉 then output 〈a, 0〉.
– Otherwise output ?.

In this context it is assumed that for b > 1 and s > 〈a + 1, a + b + 2〉, L〈a,b〉,s = L〈a,b〉 as one
can compute all members directly from the parameters a, b. It is easy to see that this learner
succeeds on all finite sets from {L0, L1, L2, . . .}. So assume that an infinite set L〈a,0〉 is given. If
L〈a,1〉 = L〈a,0〉 then the learner will eventually vacillate between these two indices. If L〈a,1〉 ⊂ L〈a,0〉
then L〈a,1〉 is finite and as the learner eventually sees an element of L〈a,0〉−L〈a,1〉, it will converge
to 〈a, 0〉. So {L0, L1, L2, . . .} is class-preservingly behaviourally correct learnable.

Now a hypotheses space is constructed using which {L0, L1, L2, . . .} cannot be behaviourally
correct learned. For all a, b let

H〈a,0〉 = L〈a,0〉;

H〈a,2b+1〉 = L〈a,b+2〉;

H〈a,2b+2〉 =


{〈a, c〉 : c ≤ |Wa,b|} if Wa,b = Wa;
{〈a, c〉 : c ≤ |Wa,b|} ∪ {〈a + 1, |Wa,b|+ s + 1〉} if s is the least number

with Wa,b ⊂ Wa,s.

It is easy to check that this class is an indexed family, that is, {H0, H1, H2, . . .} is uniformly
recursive. Thus, if one could behaviourally correct learn {L0, L1, L2, . . .} using {H0, H1, H2, . . .}
as the hypotheses space, one could also explanatorily learn {L0, L1, L2, . . .} using {H0, H1,
H2, . . .} (this folklore result is based on the observation that, for hypotheses space being an
indexed family, the mind changes can be delayed until it can be verified that the later hy-
pothesis differs from the earlier one). Using Theorem 9, this would imply that the class from
Theorem 12 (which is contained in {L0, L1, L2, . . .}) is prescribed explanatorily learnable and
hence prescribed vacillatory learnable. This contradicts Theorem 12. So {L0, L1, L2, . . .} is not
prescribed behaviourally correct learnable. �

Corollary 14. Let {L0, L1, L2, . . .} be as in Theorem 13. Then {L0, L1, L2, . . .} ∪ {N} is class-
preserving behaviourally correct learnable. Furthermore, no {F0, F1, F2, . . .} ⊇ {L0, L1, L2, . . .} ∪
{N} is prescribed behaviourally correct learnable.

Proof. The class-preserving behaviourally correct learner for {L0, L1, L2, . . .} from Theorem 13
can easily be extended to one for {L0, L1, L2, . . .} ∪ {N}. Let {H0, H1, H2, . . .} be the uniformly
recursive hypotheses space for {L0, L1, L2, . . .} from Theorem 13. Now define

G0 = N;
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G2a+1 = Ha;

G2〈a,b〉+2 =


N if there are c, e, t with t > b + c + (e + 7)2 and Fa,t 6= ∅ and

either Fa,t = He ∩ {0, 1, . . . , t}
or {〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆ Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .};

Fa otherwise.

Note that the bound (e+7)2 is used in the formula above to ensure the condition max(H〈a,2b+1〉) ≤
(〈a, 2b + 1〉+ 7)2 for all a, b which is used implicitly in Case (e) below.

Clearly {L0, L1, L2, . . .} ∪ {N} ⊆ {G0, G1, G2, . . .}. Furthermore, if ∅ ∈ {F0, F1, F2, . . .} then
∅ ∈ {G0, G1, G2, . . .}. Assume now that Fa is not in {L0, L1, L2, . . .} ∪ {∅, N}. Let c be the least
number such that there is some d with 〈c, d〉 ∈ Fa; fix this d as well. There are five cases.

Case (a): Fa contains two elements 〈c′, d′〉, 〈c′′, d′′〉 with c′ > c, d′′ ≥ d′ and 〈c′, d′〉 6= 〈c′′, d′′〉.
Then let b be so large that 〈c, d〉, 〈c′, d′〉 ∈ Fa,b. Now it follows that Fa,b 6⊆ He for all e and
G2〈a,b〉+2 = Fa.

Case (b): Fa is the union of {〈c′, d′ + 1〉} with a subset of {〈c, 0〉, 〈c, 1〉, . . . , 〈c, d′〉} for some
c′, d′ with c′ > c. It is easy to verify that Fa 6= He ∩ {0, 1, . . . , 〈c′, d′ + 1〉} for all e. Let b be so
large that Fa,b = Fa and b ≥ 〈c′, d′ + 1〉. Then, for all t > b, Fa,t 6= He ∩ {0, 1, . . . , t}. Hence
G2〈a,b〉+2 = Fa.

Case (c): Fa ⊂ {〈c, 0〉, 〈c, 1〉, . . .} and there are d′, d′′ with d′ < d′′, 〈c, d′〉 /∈ Fa and 〈c, d′′〉 ∈ Fa.
Let b be so large that 〈c, d′′〉 ∈ Fa,b and b > 〈c, d′′〉. Then, for all e and all t > b, Fa,t 6=
He∩{0, 1, . . . , t}. Furthermore, the condition {〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆ Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .}
does not hold. Hence G2〈a,b〉+2 = Fa.

Case (d): Fa = {〈c, 0〉, 〈c, 1〉, . . . , 〈c, d′〉} and d′ > |Wc|. Then there is no He with Fa =
He ∩ {0, 1, . . . , 〈c, d′ + 1〉}. Taking b so large that Fa,b = Fa and b ≥ 〈c, d′ + 1〉, the condition
{〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆ Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .} becomes false and thus G2〈a,b〉+2 = Fa.

Case (e): Fa = {〈c, 0〉, 〈c, 1〉, . . . , 〈c, d′〉} and d′ < |Wc|. Let s be so large that d′ + 1 = |Wc,s|
and take b so large that 〈c+1, |Wc,s|+ s+1〉 ≤ b, 〈c, d′ +1〉 ≤ b and Fa,b = Fa. Then Fa,t 6= He∩
{0, 1, . . . , t} for all e and t > b + (e + 7)2. Furthermore, the condition {〈c, 0〉, 〈c, 1〉, . . . , 〈c, b〉} ⊆
Fa,t ⊆ {〈c, 0〉, 〈c, 1〉, . . .} does not hold. Hence G2〈a,b〉+2 = Fa.

Note that the sets in {H0, H1, H2, . . .} have only odd indices in the numbering {G0, G1,
G2, . . .}. Hence, given a behaviourally correct learner M for {F0, F1, F2, . . .} using the hypotheses
space {G0, G1, G2, . . .}, one can build the following new learner N for {H0, H1, H2, . . .} using the
hypotheses space {H0, H1, H2, . . .} itself:

N(σ) =

{
1
2
(M(σ)− 1) if M(σ) is odd;

? if M(σ) is even or ?.

This contradicts Theorem 13 which showed that such a learner does not exist. ut

For the next result, let In = {2n−1, 2n, 2n+1, . . . , 2n+1−3, 2n+1−2} form a partition of the natural
numbers into intervals of length 2n and let C denote the plain Kolmogorov complexity [17]:
C(x) = min({n : ∃y ∈ In [ϕy(0) = x]}). Furthermore, let

A = {m : ∃n [m ∈ In ∧ C(m) < 0.4n]} and
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B = {m : ∃n [m ∈ In ∧ C(m) > 0.8n]}

be the sets of numbers of small and large Kolmogorov complexity, respectively.

Theorem 15. Let A and B be the sets of numbers of small and large Kolmogorov complexity
as above. Then the class consisting of N, A and all sets A∪{b} with b ∈ B is uniformly r.e. and
is class-comprisingly but not class-preservingly behaviourally correct learnable.

Proof. Note that A is recursively enumerable and B is co-r.e.; an indexing of the class is now
given by fixing one index a ∈ A and then letting La = A, Lb = A∪{b} for all b ∈ B and Lb = N
for all b ∈ N−B − {a}.

Note that 0 /∈ A ∪B. Hence N is the only member of {L0, L1, L2, . . .} containing 0. Further-
more, let D0, D1, . . . be a canonical enumeration of all finite sets. Now let

Hb =

{
N if 0 ∈ Db;
Db ∪ A if 0 /∈ Db.

Furthermore, one can build a behaviourally correct learner using the hypotheses space {H0,
H1, H2, . . .} by conjecturing Hb for the unique b with Db = content(σ) on input σ. It is easy
to verify that this learner succeeds on all languages in {H0, H1, H2, . . .}. Therefore {L0, L1,
L2, . . .} is class-comprisingly behaviourally correct learnable.

Now assume that M is a class-preserving behaviourally correct learner for {L0, L1, L2, . . .}.
There is a family T0, T1, . . . of texts and an n such that

– Tx[n] is a fixed semantic locking sequence for M on A;
– Tx(n) = x;
– for all x, the subsequence Tx(n + 1), Tx(n + 2), Tx(n + 3), . . . of Tx is the same recursive

enumeration of A.

Now one defines two sets X and Y according to the behaviour of M on Tx.

– X is the set of all x such that, for some m > n, M(Tx[m]) conjectures a set containing x;
– Y is the set of all x such that, for some m > n, M(Tx[m]) conjectures a set containing 0.

Both sets are recursively enumerable. The set Y is disjoint to A as, for all x ∈ A and all m > n,
M(Tx[m]) is an index of A. As A is a simple set [17], Y is finite. As A∪B ⊆ X ⊆ A∪B∪Y , the
set A ∪B is recursively enumerable. For each sufficiently large n, at least half of elements of In

are in A ∪ B. Now let Jn be the first 20.6n elements of In to be enumerated into A ∪ B. The Jn

are uniformly r.e. and due to Kolmogorov-complexity considerations, for all sufficiently large n,
Jn∩B = ∅. Hence Jn ⊆ A∩ In in contradiction to the fact that |A∩ In| ≤ 20.4n. This shows that
the learner M cannot exist and {L0, L1, L2, . . .} is not class-preservingly behaviourally correct
learnable. �

Theorem 16. There exists an r.e. class L which is class-comprisingly but not class-preservingly
vacillatorily learnable.
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Proof. In the following, let 〈x, y, z〉 denote 〈x, 〈y, z〉〉. The class L will be a suitable subclass of
the following:

L〈e,2a〉 = {〈e, a, b〉 : b ∈ N}
L〈e,2a+1〉 = {〈e, a, b〉 : b ≤ |Wa|}

The proof of Theorem 12 can be adapted to show that L is class-comprisingly vacillatorily
learnable. Let

Ge
a = {x : 〈a, x〉 ∈ We}

be the a-th set in the e-th recursively enumerable hypotheses space. Now define a limit-recursive
predicate P as follows:

P (e, a, b) =

{
1 if ∀c < b [Ge

a 6= {〈e, a, d〉 : d ≤ b}];
0 if ∃c < b [Ge

a = {〈e, a, d〉 : d ≤ b}].

and let

L = {L〈e,2a〉 : e, a ∈ N} ∪ {L〈e,2a+1〉 : e, a ∈ N ∧ |Wa| < ∞∧ P (e, a, |Wa|)}.

It is easy to verify that L is an r.e. class. Suppose by way of contradiction that {H0, H1, H2, . . .} =
L and a learner M vacillatorily learns L using {H0, H1, H2, . . .} as hypotheses space. Let e be
such that We = {〈c, x〉 : x ∈ Hc}. So Ge

c = Hc for all c. Note that P (e, a, |Wa|) = 1 for all a where
Wa is finite; the reason is the following chain of implications: P (e, a, |Wa|) = 0 ⇒ ∃c < |Wa|
[Ge

c = L〈e,2a+1〉] ⇒ L〈e,2a+1〉 ∈ L ⇒ P (e, a, |Wa|) = 1. Thus L〈e,2a+1〉 ∈ L whenever Wa is finite.
Furthermore, L〈e,2a+1〉 ∈ L whenever Wa is infinite, as then L〈e,2a+1〉 = L〈e,2a〉. Thus M learns
L〈e,2a+1〉 for all a.

Let Ta be a text for L〈e,2a+1〉 uniformly recursive in the parameter a. Then M on Ta outputs
only finitely many indices; let g(a) be the greatest among these indices. It follows that g(a) ≥ |Wa|
whenever Wa is finite; the reason is that P (e, a, |Wa|) = 1, thus no Hc with c < |Wa| equals
L〈e,2a+1〉. This gives that Wa is finite iff |Wa| ≤ g(a). As g ≤T K, {a : |Wa| < ∞} ≤T K, a
contradiction. �

4 Prudence for Behaviourally Correct Learning

Osherson, Stob and Weinstein [19] were interested in the question whether every learnable class is
prudently learnable. Fulk [9] showed that every explanatory learnable class is prudently explana-
tory learnable. Jain and Sharma [12] showed the corresponding result for vacillatory learning.
The next theorem shows this result for behaviourally correct learning. In 1988, Kurtz and Royer
[14] had claimed to have this result, but their proof had a bug and the problem had remained
open since then. Furthermore, the construction of the prudent learner in the next theorem is
effective in the original learner. It is still open whether prudence for explanatory and vacillatory
learning can be effectivized.
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Theorem 17. If L is a (not necessarily uniformly r.e.) behaviourally correct learnable class then
L is a subclass of an r.e. class which is class-preservingly behaviourally correct learnable.

Proof. For any set A, let TA be the ascending text which is given by TA(x) = x for all x ∈ A
and TA(x) = # for all x /∈ A. Furthermore, let δ∅ be the empty string and δA = TA[max(A) + 1]
for all finite non-empty sets A. For example, δ{0,2,3} = 0 # 2 3.

There is a behaviourally correct learner for the class L using the acceptable numbering
{W0, W1, W2, . . .} as hypotheses space and satisfying the following constraints:

– M is consistent, that is, content(σ) ⊆ WM(σ) for all σ;
– M is rearrangement-independent, that is, WM(σ) = WM(τ) whenever σ, τ have the same

content and length;
– WM(σ) is finite whenever σ is not a semantical locking sequence for M on WM(σ).

Kurtz and Royer [14] showed that the first two conditions can be satisfied and such a learner can
be found effectively from any given learner. The third condition can also be effectively added since
the complement of the set of semantical locking sequences is K-r.e.; that is, σ is not a semantical
locking sequence iff there is a τ in (WM(σ)∪{#})∗ and an x ∈ N with x ∈ WM(στ) ⇔ x /∈ WM(σ).
For that reason, M is a behaviourally correct learner for all infinite sets for which some index is
output by M . So, to prove the theorem, one has mainly to take care of finite sets.

Now the following new learner N is constructed. N is defined by mapping σ to a hypothesis
Hσ; thus the hypotheses space is given directly instead of N . Hσ takes the first case which
applies.

Intuitively, Case (2) below handles learnability of all infinite sets behaviourally learnt by M ,
besides ensuring some nice properties of HδD

(main one being that HδD
does not contain any

element in {0, 1, . . . , max D} −D or it follows HδF
for some appropriate proper subset F of D).

During this process, Case (2) might introduce some finite sets into the hypotheses space. Case
(3) ensures learnability of all the finite sets learnt by M as well as those introduced by Case (2)
in the hypotheses space — for all other finite sets D, Case (3) would mimic Case (2). Case (4)
is just to map the remaining sequences to one of Case (2) or (3).

We now formally define Hσ.

Case (1): H#s = ∅ for all s.
Case (2): HδD

first enumerates all elements of D.
Let D′ = {0, 1, . . . , max(D)} −D. Let S = {s : WM(δD#max(D)),s ∩D′ = ∅}.
For all s ∈ S, enumerate all elements of WM(δD#max(D)),s into HδD

.
If WM(δD#max(D)) ∩ D′ is not empty, let s = max(S), let E = D ∪ WM(δD#max(D)),s, let x =
min(WM(δD#max(D)),s+1 ∩D′) and let F = D ∩ {0, 1, . . . , x}.
Now, if HδF

⊇ E then HδD
= HδF

else HδD
= E.

Case (3): HδD#s with s > 0 is defined as follows. If there is an x such that HδEx ,s = HδEx
= D

for the set Ex = D ∩ {0, 1, . . . , x} or if WM(δD#t) = D for all t ≥ s then HδD#s = D else
HδD#s = HδD

.
Case (4): Hσ = HδD#s if Hσ is not defined by Cases (1), (2), (3), s = max({|σ|−max(D)−1, 0})

and D = content(σ).
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Note that the only infinite sets in the hypotheses space are the ones which are conjectured by
M . So M learns all the infinite sets in the hypotheses space. Furthermore, for any A in the
hypotheses space, if Ex = {0, 1, . . . , x} ∩ A and δEx#

max(Ex) is a semantic locking sequence for
M on A, then for all finite D such that Ex ⊆ D ⊆ A, HδD

= A. This can be easily seen by
induction on cardinality of D−Ex, as in Case (2), either HδD

is made equal to A or HδD
would

simulate HδF
for some F such that Ex ⊆ F ⊂ D.

It will be shown first that the hypotheses space covers all sets learned by M and then it will
be shown that all sets in the hypotheses space are learned by N .

Clearly if M learns a finite set D then HδD#s = D for almost all s. Now consider an infinite
set A learned by M . Let Ex = A ∩ {0, 1, 2, . . . , x} for all x. As M learns A there is a semantic
locking sequence τ for M on A. Now let x ∈ A be such that x > |τ | + max(content(τ)). Then,
for the sequence δEx#

max(Ex), there is an η ∈ (Ex ∪ {#})∗ such that |τη| = |δEx#
max(Ex)| and

content(τη) = content(δEx#
max(Ex)) = Ex. As M is rearrangement-independent, one has that

WM(δEx#max(Ex)) = A. Hence HδEx
= A as well. This completes the first part of the verification.

For the second part of the verification consider any set A occurring in the hypotheses space
of N . There are three cases, those where A is empty, where A is finite but not empty and where
A is infinite.

Case (a): A = ∅. N learns A as H#s = ∅ for all s by Case (1) in the algorithm to enumerate
the hypotheses space.

Case (b): A is finite but not empty. Let D be smallest set such that HδD#s = A for some s.
By Case (1) in the algorithm for Hσ, D is not empty.

Assume the subcase A = HδD#s ⊂ HδD
. By Case (3) and D being smallest set such that

HδD#t = A for some t, this can happen only if A = D and WM(δD#t) = D for all t ≥ s. So
HδD#t = D for all t ≥ s and hence N learns A in this subcase as well.

Assume the subcase A = HδD#s = HδD
. Hence, by Case (2) it follows that there is no

element in A − D below max(D) since otherwise HδF
= A for some F ⊂ D. Thus, D =

A ∩ {0, 1, . . . , max(D)}. Therefore, HδA#t = A for almost all t and N learns A.
Case (c): A is infinite. Again, let Ez = A ∩ {0, 1, . . . , z} for all z. As M is rearrangement-

independent, there is a semantic locking sequence for M on A of the form δEx#
max(Ex). Hence

only finitely many sets HδEz
are finite. So there is an y ∈ A such that y > x and y is greater

than all elements of these finite sets HδEz
. Let F be any finite set with Ey ⊆ F ⊆ A. Let

Gz = F ∩ {0, 1, . . . , z}. If z ≥ y then HδGz
= A (as Ex ⊆ Gz ⊆ A) and HδGz

6= F . If z < y
then Gz = Ez and HδGz

6= F again. Furthermore, M does not learn F . Hence HδF #s = HδF
= A

for all s. So δEy is a semantic locking sequence for N on A. It follows that N learns A. This
completes the verification that N is a behaviourally correct learner for all the languages in its
hypotheses space. �
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