Learning How to Separate

Sanjay Jain®! Frank Stephan 2

aSchool of Computing, National University of Singapore, Singapore 119260,
sanjay@comp.nus.edu.sg

b Mathematisches Institut, Im Neuenheimer Feld 294, Ruprecht-Karls-Universitit
Heidelberg, 69120 Heidelberg, Germany, fstephan@math.uni-heidelberg.de

Abstract

The main question addressed in the present work is how to find effectively a recursive
function separating two sets drawn arbitrarily from a given collection of disjoint
sets. In particular, it is investigated when one can find better learners which satisfy
additional constraints. Such learners are the following: confident learners which
converge on all data-sequences; conservative learners which abandon only definitely
wrong hypotheses; set-driven learners whose hypotheses are independent of the order
and the number of repetitions of the data-items supplied; learners where either the
last or even all hypotheses are programs of total recursive functions.

The present work gives a complete picture of the relations between these no-
tions: the only implications are that whenever one has a learner which only outputs
programs of total recursive functions as hypotheses, then one can also find learn-
ers which are conservative and set-driven. The following two major results need a
nontrivial proof.

(1) There is a class for which one can find, in the limit, recursive functions
separating the sets in a confident and conservative way, but one cannot find even
partial-recursive functions separating the sets in a set-driven way.

(2) There is a class for which one can find, in the limit, recursive functions
separating the sets in a confident and set-driven way, but one cannot find even
partial-recursive functions separating the sets in a conservative way.

1 Introduction

Consider the scenario in which a subject is attempting to learn its environ-
ment. At any given time, the subject receives a finite piece of data about its

1 Sanjay Jain was supported in part by NUS grant number R252-000-127-112.
2 Frank Stephan was supported by the Deutsche Forschungsgemeinschaft (DFG),
Heisenberg grant Ste 967/1-2.

Preprint submitted to Elsevier Science 11 March 2007

environment, and based on this finite information, conjectures an explanation
about the environment. The subject is said to learn its environment just in
case the explanations conjectured by the subject become fixed over time, and
this fixed explanation is a correct representation of the subject’s environment.
Inductive Inference, a subfield of computational learning theory, provides a
framework for the study of the above scenario when the subject is an algo-
rithmic device. The above model of learning is based on the work initiated by
Gold [8] and has been used in inductive inference of both functions and sets.
This model is often referred to as explanatory learning. We refer the reader to
[1,2,5,10,13] for background material in this field.

In recursion theory, recursive separability of disjoint sets has been exten-
sively explored [19]. A prominent fact is that there are disjoint recursively
enumerable sets which cannot be separated by a total recursive function which
takes 0 on the first and 1 on the second set. Indeed, the following question
has been investigated: What are the oracles such that relative to them ev-
ery two disjoint and recursively enumerable sets are separable? These oracles
turned out to be those which allow to compute a complete extension of Peano-
Arithmetic [17].

In the present work, we consider a combination of learning and separation.
Thus a machine receives, as input, data about two disjoint sets. The machine
is then expected to come up, in the limit, with a procedure separating the two
input sets. A machine is able to sep-identify sets from a class of disjoint sets,
if it is able to sep-identify any pair of sets from the class.

Here are some examples. Given a recursively enumerable class C = {Lg, L1,
...} of non-empty disjoint sets, the sep-identifier reads more and more data on
the input sets L, L' until it finds a data-item € L" and a j such that z € L;.
Then the sep-identifier outputs an index for a partial-recursive function which
maps L; to 1 and all L; with i # j to 0 (and is done).

But it is not required that the class C is recursively enumerable. One can
even sep-identify any given class which consists of one infinite and arbitrarily
many finite sets. The sep-identifier, in parallel, reads data and outputs hy-
potheses. At any intermediate step it does the following. Let H, H' denote the
sets of examples seen so far from the sets L, L’ to be separated. If |H| < |H'|,
then the sep-identifier outputs the characteristic function of N — H, otherwise
it outputs the characteristic function of H’. A hypothesis is revised only if
new elements of the currently smaller set show up. As one of the sets L, L' is
finite, the sep-identifier therefore converges to one of the following functions:
If |L| < |L'|, then the last hypothesis is the characteristic function of IN — L;
otherwise the last hypothesis is the characteristic function of L’. Thus, the
sep-identifier is successful on C. In contrast to the previous example, this sep-
identifier might have to revise the conjectured function finitely often.

One can combine sep-identification with additional constraints which are
motivated from corresponding constraints used for notions of learning. The
main result of the present work is to give a complete picture of the relations
between the following criteria of sep-identification: confident sep-identifica-

tion, conservative separation, set-driven sep-identification and Popperian sep-
identification. Here a confident sep-identifier converges on every input func-
tion. A conservative sep-identifier abandons only definitely wrong hypotheses.
A set-driven sep-identifier outputs hypotheses depending only on the set of
data-items seen so far, but not on their order or quantity. A Popperian sep-
identifier only conjectures programs for total functions. In addition, a weak
version of Popperian sep-identification is considered, namely where the sep-
identifier might preliminarily conjecture some partial-recursive functions but
the final hypothesis is then a program for a total function separating the given
sets. It is shown that Popperian sep-identification implies the other notions
of sep-identification except confident sep-identification; further implications
between these five criteria of sep-identification do not exist.

Notation. Any unexplained recursion theoretic notation is from [19]. The
symbol IN denotes the set of natural numbers, {0,1,2,3,...}. Symbols), C,
C, D, and D denote empty set, subset, proper subset, superset, and proper su-
perset, respectively. Cardinality of a set S is denoted by card(S). Let max(A)
denote the maximum of A and min(A) the minimum of A; by convention,
max()) = 0 and min(f)) = oo. The notions domain(n) and range(n) denote
the domain and range of partial function 7 respectively.

The function (-,-) is a computable, bijective mapping from IN x IN onto
N [19], (z,y) = 5 - (x +y +1) - (x +y) + y. Note that (-,-) is monotonically
increasing in both of its arguments. This notion is extended to triples in a
natural way: (z,y, z) = (z, (y, 2)).

By ¢ we denote a fixed acceptable programming system for the partial-
recursive functions mapping IN to IN [15,19]. An example for an acceptable
programming system is any recursive enumeration of all Turing machines.
Further examples are standard programming languages such as Basic, C, For-
tran, Pascal provided that the data-type of normal variables is IN (without
upper bound on the values). By ¢; we denote the partial-recursive function
computed by the program with number 7 in the @p-system. By & we denote
an arbitrary fixed Blum complexity measure [3,9] for the p-system. By W; we
denote domain(p;). W; is, then, the recursively enumerable subset of IN ac-
cepted (or equivalently, generated) by the ¢-program i. Symbols L, L', H, H',
with or without subscripts, range over recursively enumerable sets. By W
we denote the set {x < s : ®;(z) < s}.

A non-empty class C of recursively enumerable sets is said to be recursively
enumerable [19] iff there exists a recursive function f such that C = {Wy; :
i € IN}. In this latter case we say that Wy, Wy, ... is a recursive enumer-
ation of C.

K denotes the diagonal halting set, that is {z : ¢,(z) |}. A pair of disjoint
sets, L and L', are said to be recursively separable iff there exists a recursive
function f such that for all x € L, f(z) = 0 and for all z € L', f(z) = 1.
If a pair of disjoint sets is not recursively separable, then the pair is said to
be recursively inseparable; for example the sets {x € K : ¢,(z) = 0} and

{r € K : ¢,(x) =1} form a recursively inseparable pair of sets [17, Theorem
I1.2.5].

Following Gold [8], the next definition introduces the concept of a sequence
of data and of a text for a set.

Definition 1 (a) A sequence o is a mapping from an initial segment of IN
into (N U {#}). The empty sequence is denoted by A.

(b) The content of a sequence o, denoted content(o), is the set of natural
numbers in the range of o. That is, content(o) = range(o) — {#}.

(¢c) The length of o, denoted by |o|, is the number of elements in o. So, |A| =0
and [235# #| = 5.

(d) Let SEQ denote the set of all finite sequences. Let SEQ? denote the
set of all pairs (o,0’) such that 0,0’ € SEQ, |o| = |0/| and content(c) N
content(c’) = (). Furthermore, SEQ*(L, L') is the set of all (o,0') € SEQ?
such that content(c) C L and content(c’) C L.

(e) An infinite sequence T is called a text for a set L iff content(7T") = L. A pair
(T, T") of infinite sequences is a doubletext (for content(7") and content(7")),
if T"and T" are texts for disjoint sets.

(f) For n < |o|, the initial sequence of ¢ of length n is denoted by o[n].
So, ¢[0] is A. Similarly T'[n| is, for any n € IN, the initial segment of 7" of
length n.

Intuitively, #’s represent pauses in the presentation of data. We let o, o/, 7
and 7" with or without subscripts, range over finite sequences. We denote the
sequence formed by the concatenation of 7 at the end of o by o7. Furthermore,
we use ox to denote the concatenation of sequence o and the sequence of length
1 which contains the element .

We now consider the notion of separating sets. Roughly speaking, a sep-iden-
tifier for a class of disjoint sets finds for each doubletext for distinct sets in
this class a partial-recursive function mapping one set to 0 and the other one
to 1. More precisely, this is defined as follows.

Definition 2 (a) A partial-recursive function v separates sets L and L’ if
Y(x)=0forallz € L and ¢(x) =1forallz € L'.Ifx ¢ LUL' Y(x) is
either undefined or one of the values 0 and 1.

(b) A sep-identifier M is a recursive function from SEQ? to INU {?}. A sep-
identifier M converges on a doubletext (7,7") iff there is a length n such
that for all m > n, M(T[m], T'[m]) = M(T[n], T'[n]).

(¢) A class C of pairwise disjoint subsets of IN is sep-identifiable iff there
is a sep-identifier which, for every distinct (and thus disjoint) L, L € C,
converges on any doubletext for L and L’ to an index e of a partial-recur-
sive function which separates L and L'.

(d) Let My, M, ... be a recursive enumeration of all partial-recursive func-
tions from SEQ? to IN U {?} in the sense that n,o,0" — M,(o,0’) with

n € N and (0,0') € SEQ? is a partial-recursive function. The set of the
total functions in this list coincides with the set of all sep-identifiers.

Remark 3 It is not more difficult to separate k disjoint sets instead of 2.
For example, given 3 sets L, L', L” by their texts T,T’,T", one can simulate
the sep-identifier for each pair of 2 sets coming up with programs e, e’,e” to
separate the pairs (L, L'), (L, L") and (L', L"), respectively. Then one has that
the program d separates all three sets where d is given as

, if () L= 0N per(x) | = 0;

, if @e(x) = 1A906”($) 1=0;

) ifgpe’<x)l:1/\90e”<x)l:1;

,if e(), e (), per () are defined
and no previous case applies;

T, otherwise;

S N = O

and u is an arbitrary number in {0, 1,2}, it does not matter which one. It is
easy to verify then that L C ¢;(0), L' C ¢, (1), L" C ¢;*(2) and (g is total
if the functions ., @, per are total. Similar arguments deal with the case of
4,5,... sets. Thus we deal only with separating pairs of sets.

2 The Criteria of Separation

The following notions restrict the permitted behaviour of the sep-identifier.
That is, the sep-identifier M has to satisfy some additional properties. It will
be shown that there are classes which are sep-identifiable but where no sep-
identifier satisfies any of these additional requirements.

Definition 4 (a) M is Popperian iff for all (o, 0") € SEQ?, either M (o, 0') =
? or M(o,0’) is an index of a total function.

(b) M is conservative on (o, 0") € SEQ? iff the following holds for all m < |o]|,
n <m and e € N: whenever e = M(c[n],c’[n]), content(a[m]) C ¢.(0)
and content(c’[m]) C ¢ (1) then M(a[m],o’[m]) € {?,e}. M is conserva-
tive iff M is conservative on all (o,0') € SEQ?.

(c) M is set-driven iff it holds for all (o, ¢"), (1,7') € SEQ? with content(c) =
content(7) and content(c’) = content(7’) that M(o,0’) = M (7, 7’).

(d) M is confident iff M converges on all doubletexts, even on doubletexts
not for sets in C.

(e) M is a recsep-identifier for a class C of disjoint sets iff M is a sep-identifier
for C which converges on every doubletext for distinct sets in C to an index
of a total function.

Remark 5 These notions for behaviours of sep-identifiers are parallel to the
corresponding notions of traditional learners of the same name as introduced

in [2,4,10,16,18,21].

If a class C of disjoint sets is learnable under such a criterion, then it is also
sep-identifiable under the same criterion. For example, consider Popperian
learning where a class C is Popperian learnable in the limit iff there is a
recursive function M such that

e M maps every string in SEQ either to the symbol 7 or to an index of a total
recursive {0, 1}-valued function;

e If L € C, then for every text T for L, there is an index e computing the
characteristic function of L such that M (T'[n]) = e, for almost all n.

Then one can transform this M into a sep-identifier N by defining that, for
all (o,0") € SEQ?, N(o,0') = M(c'). The sep-identifier N converges on every
doubletext (7, T") for distinct sets L and L’ € C to the characteristic function
of L' which separates L and L’. Furthermore, whenever N outputs a hypoth-
esis e € IN, ¢, is a total function. That is, N inherits the property of being
Popperian from M. Similarly one can show that conservatively, set-driven and
confidently learnable classes C of disjoint sets are also conservatively, set-driven
and confidently sep-identifiable, respectively.

The converse direction does not hold. For a given enumeration of machines
containing all learners, one can choose for the eth learner a non-empty recur-
sive set L. C {(e,z) : x € N} not learned by it; the choice is arbitrary if the
eth machine is not a learner because of being partial. The sets L, L1, . . . exist
because no learner learns all recursive sets, even not all recursive subsets of
{{e,z) : x € N}. The class {Lg, L1, Lo, . ..} has the following sep-identifier M:
M (o, 0’) outputs the characteristic function of the set {(e,z) : € N} if e is
the unique number such that there is a pair of the form (e, z) € content(c’).
If there is no such e or if there are several, then M (o, 0") outputs ?. The sep-
identifier M satisfies all the restrictions postulated in Definition 4. For more
connections between learning sets and learning how to separate, the reader
should consult the technical report [11].

Remark 6 Blum and Blum [2] considered the model of learning extensions
of partial-recursive functions. The separations considered in the present work
can be viewed as a special case of this type of learning, since one could map
the class C to the class F of all functions Uy, ;/ (for distinct L, L' € C) with
Uy 1 being 0 on L and being 1 on L' and being undefined everywhere else.
Now C is (conservatively) sep-identifiable iff F is (conservatively) learnable in
the model of Blum and Blum [2]. Let C be a class which is sep-identifiable
but not conservatively sep-identifiable. Then F corresponding to this class C
witnesses that, in the model of Blum and Blum, some class of partial-recur-
sive functions is learnable in the limit but is not conservatively learnable. This
gives a contrast to the case of learning total recursive functions where Stephan
and Zeugmann [20] showed that conservativeness is not restrictive.

Although every separation problem is the special case of a learning problem
in the model of Blum and Blum [2], there is no general correspondence between

these worlds. For example, there are reliably but not consistently learnable
classes of functions while Theorem 8 below shows that these notions coincide
in the case of separating sets.

Definition 7 [2,6,7] Let L, L’ be disjoint sets and (o, 0") € SEQ*(L, L').

(a) (o,0') is a stabilizing sequence for M on (L,L') iff for all (r,7') €
SEQ*(L, L') such that ¢ C 7 and o’ C 7/, M(0,0") = M(r,7').

(b) (o,0") is a locking sequence for M on (L, L") iff (o,0") is a stabilizing
sequence for M on (L, L") and (o) separates L and L'.

Using standard arguments, as for example in [2], one can show that if M
sep-identifies {L, L'}, then there is a locking sequence for M on (L, L').

A sep-identifier M is consistent on (o,0’) iff either M(o,0") = 7 or all z €
content (o) satisfy par(s0)(2) = 0 and all x € content(o’) satisfy @ar(po)(2) =
1. A sep-identifier M is consistent iff it is consistent on all (¢,0’) € SEQ?. A
sep-identifier M is reliable iff for all doubletexts (T, T") where M converges to
a natural number e, the partial-recursive function ¢, separates content(7") and
content(7”). Given a Popperian sep-identifier M for a class C, one can build
a new sep-identifier N which is consistent on every input (o,0’) € SEQ?”.
This can be done as follows. Note that the programs output by M form a
recursively enumerable set of programs, {po,p1,...}, for a class of recursive
functions (as M is Popperian). Without loss of generality, one may assume
that this class contains a program for the characteristic function of every finite
set. Now, N on any input (o,0’) € SEQ?, can output the first program p; in
the list which is consistent with the input (that is, content(c) C ¢, '(0), and
content(o’) C ¢, *(1)). Clearly, N is consistent. Furthermore, N is a sep-
identifier for any pair of languages, for which M is a sep-identifier (as N
sep-identifies any pair of languages which can be separated by some program
in the list).

One can easily see that every consistent N is also reliable since whenever N
converges on a doubletext (7,7") to an index for 1, then 1) maps content(7’)
to 0 and content(7”) to 1.

The next result shows that the converse of above two results also holds, and
thus it is not necessary to consider consistent and reliable learners beyond this
result.

Theorem 8 A class C is Popperian sep-identifiable iff it is consistently sep-
wdentifiable iff it is reliably sep-identifiable.

Proof. By the comments preceding Theorem 8, it is sufficient to show that C
is Popperian sep-identifiable whenever C is reliably sep-identifiable.
Let M be a reliable sep-identifier for C. Consider the following class

F = {F(Uyg/) : (0, (7,) € SEQQ}

where the membership of z in a set F{,,) is defined according to the first case
below which applies:

If € content(o’) then x € F,);

If € content(c) or M(0,0") =7 then & & Fi501;

If ¢ content(c) U content(c’) and there is an s such that for all ¢t < s,
M(o#', 0'x") = M(o,0') and M(oz®,0'#°) # M(0,0’), then & € Fi, ,;

If ¢ content(c) U content(o’) and there is a ¢ such that for all s < ¢,
M(ox®,0'#°) = M(o,0’) and M(o#',0'z") # M(o,0’), then z ¢ F(5,).

Let (0,0") € SEQ?. If M(c,0') = ? then only the first two cases are relevant
and Fl,) = content(o’). Otherwise M (o, 0’) outputs a number e € IN. Since
M is reliable, there is no = ¢ content(o) U content(¢’) for which M converges
on both doubletexts (04>, 0'x>) and (o>, 0’#°) to e. Thus the above case-
distinction defines for every x, whether = belongs to F(, /) or not. It is easy
to see that these computations are uniform and that F is contained in an
indexed family {Lo, Ly, ...}. Recall that {L¢, Ly, ...} is an indexed family iff
the function ¢,z — L;(z) is total recursive in both inputs [10, Exercise 4-7 on
page 85]. Let ind(e) be a program for the characteristic function of L.

Now a Popperian sep-identifier N for F outputs on input (o,0’) € SEQ?
an index ind(e), where e is the least number such that L. is consistent with
(0,0") € SEQ? (that is, content(c) C IN — L., and content(c’) C L.). The
sep-identifier N is total because the set F{, .+ is consistent with the input
(0,0") and F, o € {Lo, Ly,...}.

It remains to prove that N actually works for C and not only for F. So
let L, L' be disjoint sets in C. By assumption M converges on every double-
text for L and L'. Thus there exists a locking-sequence (o,0") € SEQ?*(L, L)
such that M(oT,0'7") = M(0o,7) for all (r,7') € SEQ*(L, L’). It holds that
M(ox®,0'#°) = M(o,0') for all € L and all s. Similarly M (c#°,0'2%) =
M(o,0') for all z € L' and all s. It follows that L € IN—F{, .y and L' C F(, 4.
Since F{,) belongs to the indexed family, there exists an e such that L, =
Fl55n. Then N converges to a canonical index of the characteristic function
of a set L., with ¢/ < e. Since M is consistent, this function separates L and
L'. This completes the proof. |

The main result of the paper is that there are only three implications within
the set of properties defined in Definition 4. These implications are the ones
caused by the fact that the Popperian sep-identifier N defined in Theorem 8
is a conservative and set-driven recsep-identifier.

Theorem 9 Fvery Popperian sep-identifiable class is also conservatively sep-
identifiable, set-driven sep-identifiable and recsep-identifiable; further implica-
tions do not hold.

Recsep Set-Driven Sep Conservative Sep

Confident Sep

Popperian Sep

Furthermore, for every criterion I mentioned in Definition 4 there is class
C which is not I-sep-identifiable but J-sep-identifiable for all criteria J men-
tioned in Definition 4 which does not imply the criterion I. The class C can
be chosen such that every set in C s recursive.

The remaining part of the paper is used to prove Theorem 9. In three cases,
the classes to witness the result are easy to construct.

Proposition 10 LetC contain all sets L., = {(e, y) }U{{e, 2+2) : p.(z) = y}
where e € IN, y € {0,1} and ¢, is a {0, 1}-valued total recursive function.
Then C has a conservative, confident and set-driven recsep-identifier but is
not Popperian sep-identifiable.

Proof. The sep-identifier M outputs on input (o, 0’) € SEQ? the index h(e, y)
for the function

0 ife Zeorx=1-—y;
p 1 if ¢ =eand x=y;
Phiew) (€)= Ye(r —2) ife =e,y=1and z > 2;
1 —pe(lr—2) ife=e, y=0andz > 2

if there are a unique e € IN and y € {0,1} such that (e,y) € content(c’).
Otherwise M(o,0’) is 7. Whenever L' € C and (T,7") is a doubletext with
content(7”) = L', M converges to h(e,y) which is an index of the characteristic
function of L. Thus M witnesses that C is sep-identifiable. Since M outputs
on every doubletext at most one index different from ?, M is conservative. It
is easy to see that M is set-driven and confident.

However, there is no Popperian sep-identifier for C. This holds because
otherwise one could obtain from such a sep-identifier a recursive enumera-
tion of all {0, 1}-valued recursive functions as follows. Suppose {po,p1, ...}
is an enumeration of all the programs in the range of M. Without loss of
generality assume that all the programs in the above list are {0, 1}-valued.
Define ¢, (x) = ¢p,(x +2). Then, {qo, ¢1, ...} gives a recursive enumeration of
programs for the class of all {0, 1}-valued recursive functions. However, such
an enumeration not exist [17, Proposition I1.2.1]. Thus there is no Popperian
sep-identifier for C. |

Proposition 11 LetC contain all sets L., = {{e,y) }U{{e,z4+2) : p.(x) =y}
where e € IN, y € {0,1} and ¢, is a {0, 1}-valued function which is undefined

on at most one input. Then C has a conservative, confident and set-driven
sep-identifier but neither a recsep-identifier nor a Popperian sep-identifier.

Proof. The conservative, confident and set-driven sep-identifier is the same
one as in Proposition 11. However, due to enriching the class, the property of
being a recsep-identifier is lost.

Now, assume by way of contradiction that there is a recsep-identifier N for
C. Let e be an index of a {0, 1}-valued function ¢, which is defined at all but at
most one input. Now define a doubletext (T',T") for L = {(e,0)} U{(e,x+2) :
we(x) =0} and L' = {{e, 1) }U{(e,2+2) : p.(z) = 1}. Feeding this doubletext
(T,T") into N, one finds, in the limit, a program ¢’ such that ¢ is a total
function separating L and L’. Then one can compute from €’ a further program
¢’ such that g (x) = @e ((e,x + 2)). The function p. is a total extension of
©e. But it is well-known that there is no procedure to obtain such an e” from
e, even in the limit. This follows, for example, from a result of Kummer and
Stephan [14, Proof of Theorem 8.1]. They constructed a family of partial-re-
cursive functions ¢g), @g(1), - - -, each of which is defined on all but at most
one input, such that every learner finding in the limit, from e and a graph
of total extension of), an index for this total extension, has high Turing
degree [14, Proof of Theorem 8.1]. [

The following auxiliary result is used to prove Proposition 13 below.

Proposition 12 If A is infinite and M a confident sep-identifier, then M
fails to sep-identify a class of two disjoint finite subsets of A.

Proof. Let A = {ag,aq,...}. Now one tries to construct inductively over n
a doubletext (7,7") on which M diverges if the construction goes through
for all n successfully. It is intended that 7" = lim, 0, and 7" = lim, o,. At
the beginning, 0p = A and o) = A. For n = 0,1,... one does the follow-
ing: If M(o,al?, ol #™) # M(0,,0,,) for some m, then one takes 0,11 = oal?
and o), = o, #™. Otherwise, if there is an m such that M (o, #™,0,a") #
M(oy,,0;,) then one takes 0,11 = o#™ and o, = o,a;". If there is in both
cases no such m, then the construction terminates without giving the de-
sired doubletext. If the construction runs for all n, then M changes its hy-
pothesis infinitely often in contradiction to M being confident. Thus there is
an n where the construction terminates. It follows that M converges to the
same index on the doubletexts (o,a°, 0, #°°) and (0, #>,0.a5°). Thus M
fails to sep-identify at least one of the classes {content(c,a,),content(o’,)}
and {content(c,,), content(o’,a,)}. |

Proposition 13 There is a class of finite sets which is Popperian sep-iden-
tiftable but not confidently sep-identifiable.

10

Proof. The proof is a variant of the proof that the class of finite sets have
a Popperian learner but not a confident learner [18, Proposition 4.6.2A]. The
class will be a subclass of the class of finite sets and is Popperian sep-iden-
tifiable by Remark 5. C is constructed by induction over x starting with the
empty class before stage 0.

In stage x, it is tested whether there are two finite sets L and L’ disjoint
from each other and the finitely many finite sets already in C such that M,
does not sep-identify {L, L'}. If such L and L’ exist, then they are put into
C. Otherwise, C remains unchanged. But in that case, it follows from Propo-
sition 12 that M, is not a confident sep-identifier. |

3 Diagonalizing Against Set-Driven Separation

The following technical result is based on a method of Jockusch [12]. Its main
objective is to build a partial-recursive function v which is total on U,, =
{(z,y,2) : z € N}, if W, is infinite, and which does not have a total recursive
extension on U, ,, if W, is finite. In Theorem 15 below, the auxiliary partial-
recursive function ¢ will be used to define a class which is not sep-identifiable
according to a certain criterion.

Proposition 14 Let U,, = {(z,y,2) : z € IN}. There exists a partial-recur-
sive {0, 1}-valued function v such that, for all x,vy,

(A) If W, is infinite then 1 is total on U,,, that is, U,, C domain(v);
(B) If W, is finite, then there is no recursive function ¥ which coincides with

Y on domain(y) N Us,.

Furthermore, 1 takes on each set U,, both values 0 and 1.

Proof. The function v is defined as

z if 2z <1;
1—0b if z > 1 and the computation

of v.((z,y, z)) terminates

with output b before z elements are
v({z,y,2)) = enumerated into W,,, where b € {0, 1};
1 if z > 1 and the previous case

does not hold and W, contains

at least z elements;
T otherwise;

where the first case is just inserted in order to get that 1) takes both values, 0
and 1.

11

Verification of (A). If W, is infinite, then ¢ is defined on all (x,y,) since
in the case that ¥((x,y, z)) is not defined according the second case, then it
is defined according to the third case eventually.

Verification of (B). If W, is finite and ¥ is a {0, 1}-valued recursive function,
then U has a program z with z > card(WW,). In particular, ¥ ((z,y, 2)) is
defined according to the second case and different from ¥: ¢((x,y,2)) =1 —

p-((r,y,2)) =1 = V((z,y,2)). |

Theorem 15 There is a class C which is not set-driven sep-identifiable al-
though C has a confident and conservative recsep-identifier.

Proof. Let the set U, ,, function ¢, and the conditions (A) and (B) satisfied
by ¢ be as in Proposition 14. Let Mgy, My, ... be the enumeration of partial-
recursive functions from Definition 2. Furthermore, let

f(u) = max({@y,(w) : v,w < uA p,(w) is defined}).

The function f is total and approximable from below by the total recursive
sequence f, with

fs(u) = max({p,(w) : v,w < u A @,(w) terminates in up to s steps}).

The class C is now intended to be defined such that it contains for all total
and set-driven M, disjoint counterexample-sets L, and L/, such that M, fails
to sep-identify them. So, whenever M, is total and set-driven, one searches for
y and L,, L’ such that (C) holds and, in the case that (C) cannot be satisfied,
(D) holds. It will be shown below that it is always possible to satisfy either
(C) or (D); from this it follows that C is not set-driven sep-identifiable. The
conditions for y, L, and L/ are the following.

(C) Wy, is infinite, L, = {u € U, : ¢¥(u) |=0}, L, ={u € Uy, : ¢Y(u) |=1}
and M, does not sep-identify {L,, L’ };

(D) W, is finite, L, and L! are disjoint subsets of U,,, (z,y,0) € L,,
(x,y,1) € L, card(L,) < f(y), card(L),) < f(y) and M, does not sep-
identify {L,, L. }.

The further parts of the proof do the following.

e A conservative and confident sep-identifier M is constructed. The construc-
tion is based on the property that L,, L/ either are subsets of U, , of car-
dinality below f(y) or are of the form {u € U,, : ¥(u) |= b} for b = 0,1
with U, , C domain(z)).

e It is shown that there is no set-driven sep-identifier for C. This is done by
showing that whenever M, is set-driven and total, then either (C) or (D)
applies so that M, is diagonalized against explicitly.

12

Construction of M. M (o, 0’) checks whether there are unique parameters
x,y,b such that z,y € N, b € {0,1} and (z,y,b) € content(c’). If not,
M(o,0') = 7. If so, M outputs the hypothesis e(c’[n]) (defined below), for
the least n such that (1) n < |o’|, (11) (z,y,b) € content(c’[n]) and (111) either
card(content(o’[n])) > fi»|(y) or no inconsistency between the data (o,0”)
and @(o[n)) can be found by simulating . for |o'| many steps.

The program e(7’) on input u does the following.

1. Search for (x,y,b) with b € {0,1} such that (x,y,b) € content(7’). If
(x,y,b) does not exist or is not unique, then ¢,y (u) is undefined.

2. If u € content(7’) then e (u) = 1.

3. If u ¢ Uy, then ey (u) = 0.

4. Search for the first s > |7| such that either card(content(7")) < fs(y) or
¥ (u) has been computed in up to s computation steps.

5. If s is found in step 4 and card(content(7’)) < fs(y) then @e)(u) = 0.

6. If s is found in step 4, card(content(7’)) > fs(y) and b = 0, then . (u) =
1 —(u).

7.1f s is found in step 4, card(content(7')) > fs(y) and b = 1, then @) (u) =
b(w).

8. Otherwise @,(,/)(u) is undefined.

M is conservative. The algorithm abandons a hypothesis e(7’) only if either
©e(rr) is explicitly inconsistent with the data seen so far or it turns out that the
data for the second set does not have a unique (x,y,b), with b € {0, 1} — but
then .,/ is also inconsistent with the data seen so far. So M is conservative.

M is confident. Let (7,7") be any doubletext and let L' = content(7"”).
Assume that M does not converge to ?. Then there is a unique (x,y,b) €
content(7") with z,y € N and b € {0, 1}.

If L/ has f(y) + 1 or more elements, then there is a least n such that
(x,y,b) € content(T"[n]) and card(content(7"[n])) > f(y). The algorithm of M
will never select any e(7”[m]) with m > n. Furthermore, whenever it abandons
an e(T"[m]) with m < n, it never takes this hypothesis again. So the algorithm
converges to an index e(T’[m]) with m < n.

Otherwise L’ has at most f(y) many elements. Let n be the first number
such that f,(y) = f(y) and content(7”[n]) = L. It follows that (v}, is the
characteristic function of L’ which is consistent with (7'[m], T"[m]) for all m.
Therefore, e(T"[n]) is never abandoned whenever it is taken and M converges
to e(T'[m]) for an m < n. It follows from the case distinction that M always
converges.

M is a recsep-identifier for C. Let L’ be in C, take x,y such that L' C U,
and consider any doubletext (7,7") with L' = content(T”). Let n be the
number such that e, is the final hypothesis of M on (7,7"). Now it is
shown that the algorithm to compute e (u) is defined for every u and

13

that it is correct.

If u ¢ U, or u € content(7"[n]) then the algorithm terminates already in
line 2 or 3 and is correct for u. Otherwise it finds an s in line 4 according to
one of the following two cases: In the case that card(content(7"[n])) < f(y),
then card(content(7"[n])) < fs(y) for an s. Furthermore, if the output for the
final hypothesis on input u is wrong, the hypothesis would be revised and not
be the last one. Hence the last hypothesis of M is correct at u.

Otherwise card(content(7”[n])) > f(y) and L' = {u € U, : ¢¥(u) |= b}
since L' has come into C by condition (C). So W, is infinite and U,, C
domain(¢). In particular the computation (u) terminates after some time s.
So s is found and e (u) defined according to one of the lines 6 and 7
and is correct. In particular, @)y is the characteristic function of L’ and
therefore sep-identifies {L, L'}.

C is not set-driven sep-identifiable. Consider any total and set-driven M,
and assume that L., L’ cannot be taken according to (C). Now it is shown
that they can then be found according to (D). Consider the sets

Usyp={u € Usy - ¥(u) |= b},

Ve={y: (3(0,0") € SEQ*(Usy0,Usya)) (Vu € Upy)

[(z,y,0) € content(c) A (z,y,1) € content(c’) A
(U(u) L= 0 = M, (0w, 0'#) = My(0,0")) A
(P(u) |=1= M,(c#,0'u) = M,(0,0")) A
(M, (ou,0'#) = My(0,0")V M, (c#,0'u) = M,(c,0"))] }.
The set V, is a X.9-set as it is defined with an existential quantifier followed by
a universal one and the conditions inside are II;. Moreover, whenever W, is
infinite, then M, sep-identifies the class {Us. 0, Uz 1} and there is a locking-
sequence (0,0") € SEQ*(Uyy.0,Usy1) Witnessing this fact. Without loss of
generality, (z,y,0) € content(o) and (x,y, 1) € content(c’). Then (o, 0’) also
witnesses that y € V. Since {y : W, is infinite} is not X9 and the X-sets are
closed under finite variants, there are infinitely many y € V, such that W, is
finite.

For every y € V, such that W, is finite, the sets U, , o and U,,; form a
recursively inseparable pair by condition (B) in Proposition 14. In particular
the sets {u € U, : My(ou,0'#) = M,(0,0')} and {u € U, : M, (0#,0'u) =
M,(c,0')} cannot partition U,, and must have an infinite intersection.

Therefore, the following function is partial-recursive and defined for all
y € V,, where W), is finite: ¢.(y) = card(co’u) for the first (o, o', u) found such
that (0,0") € SEQ*(Usy0,Usy1), u € Usy, (x,9,0) € content(o), (z,y,1) €
content(o’), u ¢ content(co’) and M, (ou,o'#) = M (c#,c'u).

In particular, there is an y > e such that W), is finite and ¢.(y) is defined.
It holds that f(y) > ¢.(y). Since M, is set-driven, M, converges on double-
texts (7,7") for content(ou) and content(c’) and (7", T") for content(o) and

14

content(o'u) to the same index of a partial-recursive function 6. Since u occurs
in T and 7", 6 has to map u to 0 and 1, respectively. So, M, fails to sep-identify
one of the classes {content(cu),content(c’)} and {content(o), content(o’u)}.
This class then satisfies condition (D) and C contains sets L,, L witnessing
that M, is not a sep-identifier for C. |

4 Diagonalizing Against Conservative Separation

Theorem 16 There is a class which has a confident and set-driven recsep-
identifier but is not conservatively sep-identifiable.

Proof. Let O, , = {(z,y,22+1) : z€ N}, E,, = {(z,y,22) : z € N} and
Upy = OryULE,,. Let My, My, ... be an enumeration of total machines never
outputting ? such that for every C which is conservatively sep-identifiable,
there exists an M, which conservatively sep-identifies C. Note that such an
enumeration can be easily obtained from the enumeration in Definition 2, using
the technique in [10, Proposition 4.15] and the fact that this construction is
compatible with conservativeness.

Furthermore, it is easy to adapt Proposition 14 such that it holds with O,
in place of U, ,. Namely, there is a partial-recursive {0, 1}-valued function v
such that, for all z,y,

(A) if W, is infinite then ¢ is total on O, ,, that is, O,, C domain(¢);
(B) If W, is finite, then there is no recursive function ¥ which coincides with
¢ on domain(¢)) N Oy,

The function v takes on each set O, , both values 0 and 1. Here we assume
w({x,y,2%04+1)) =0 and ¢ ({x,y,2x 1+ 1)) = 1, based on construction given
for the proof of Proposition 14.

Construction of C. Let ConsM = {z : (Yy) (V finite and disjoint L,, L/ C
U..) [M, is conservative on all (o,0") € SEQ*(L,, L.)]}.

Note that the complement of ConsM is recursively enumerable. We will
later construct a recursive f such that for all z and y, Wy(,,) is a recursive
subset of I, ,. In addition, for all z, we will define L, and L/. We will ensure
that, for all z, there exists a y such that following properties are satisfied:

(C) Ly, L), CU,, and L,, L], are not empty.
(D) M, is not a conservative sep-identifier for {L,, L }.
(E) If 2 € ConsM and (L, U L!) N Wiz # 0, then card(L, UL!) < 2+
mln((Lm U L;C) N Wf(’hy)) and (Lm U L;) N Wf(x,y),max(LzuL;) =+ 0.
F) If 2 € ConsM and (L, U L") N Wyp,y = 0, then W, is infinite, L, =
T f(7y))
(V7H0) N Oyy) U (Eyy — Wigay) and L =7 H1) N O,y

15

(G) If = € ConsM, then L, = content(c) U {d} and L’ = content(c’), where
(0,0") € SEQ? is the least pair such that content(c) and content(o’) are
disjoint non-empty subsets of U, ,, M, is not conservative on (o,c’), and
d € O, is the least number such that z is enumerated into the complement
of ConsM within d steps and d > max(content(c) U content(c’)).

Now let C ={L, : x e N}U{L, : = € N}.

Intuitively, if M, is not conservative (on U, ,), then one can detect it, and use
appropriate diagonalizing L., L, (see property (G) above). On the other hand,
if M, is conservative, then for an appropriate y, we place elements of Wy,)
in L, UL! to denote whether W, is finite or infinite (see properties (E), (F)
above). These properties, then allow us to construct a confident and set-driven
recsep-identifier for C. Moreover, we ensure that M, is not a conservative sep-
identifier for {L,, L’ }, using an appropriate construction.

By (D), C is not conservatively sep-identifiable. Using (C), (E), (F) and (G)
above, we construct the following machine which is a confident and set-driven
recsep-identifier for C.

Construction of M(o,d’).
1. Let A = content(c) and let B = content(o”).
2. Determine z,y, 2, y’ such that A and B are non-empty subsets of U, , and
Uy 4, Tespectively.
If A or B are empty or z,y,x’,y" do not exist then output ?.
4. Else If (z,y) # («',y), then output a program for characteristic function
of Uy .
5. Else If x ¢ ConsM as witnessed within max(A U B) steps, then let
(7,7") € SEQ? be the least pair such that content(7) and content(7’)
are non-empty disjoint subsets of U, , and M, is not conservative
on (7,7') and
d € O, be the least number such that z is enumerated into the
complement of ConsM within d steps and d > max(content(r) U
content(7”)).
(* Such 7,77, d can be effectively found from z, using the fact that
x ¢ ConsM. *)
If A C content(7), then output characteristic function of content(7").
Else output characteristic function of content(7) U {d}.
(* This step was designed to satisfy property (G). *)
6. Else If (AU B) N Wy (z4) max(aun) 7 0, then
If card(AU B) <2+ min((AU B) N Wy(,,y)), output a program for
the characteristic function of B.
Else output 7.
(* This step was designed to satisfy property (E). *)
7. Else

w

16

Let b=0if (z,y,1) € A and b = 1 otherwise.
Output a program for the (possibly partial) function 7 defined as:

0 if u ¢ U,y;
b ifuekE,,;

n(u) = (u) if z € O, and b = 0;
1—9¢(u) ifzeO,,andb=1.

(* This step was designed to satisfy property (F). *)
End.

M is a set-driven and confident recsep-identifierfor C. It follows from
the definition that M is set-driven. Suppose that a doubletext (7',7") for L
and L' is given to M. We now show that M will converge on (7',7") (and thus
M is confident). Furthermore, if L, L’ are members of C, then M on (T,7")
will converge to a program for a recursive function separating (L, L’). Now
consider the first case which applies. So x,y,z’,y’ exist implicitly in Cases 2,
3,4 and 5; (z,y) = (2/,y’) in Cases 3, 4 and 5; x € ConsM in Cases 4 and 5.

Case I: There are no unique z,y, 2,y such that L C U, , and L' C Uy .
In this case, M converges on (T,7") to 7 according to step 3. Note that
Case 1 also covers the case where L or L' are empty.

Case 2: (z,y) # (2, y),
In this case, by step 4, M on (T,T") converges to a program for a recursive

function separating L and L'.

Case 3 x ¢ ConsM.

In this case, by step 5, clearly M converges on (7,7"). Furthermore, if
both L and L’ are members of C, then using property (G), M converges to a
program for a recursive function separating L and L’.

Case 4: (L U L/) N Wf(z,y),max(LUL/) #* 0.

In this case, clearly for large enough n, M (T[n], T’[n]) will output programs
based on step 6. Thus M clearly converges on (7,7"). Furthermore, if L, L" are
members of C, then using property (E), we have card(L U L") < 2+ min((L U
L") N Wg(zy), and thus M will converge to a program for recursive function
separating L, L'.

Case 5: (L U L/) N Wf(x,y),max(LUL/) = @

In this case, for large enough n, M (T'[n],T"[n]), will output based on step 7.
Thus M converges on (T, T"). Furthermore, if L, L' are members of C, then we
must have (LU L") N Wy, = 0 by property (E). Now using property (F), we
have that W, is infinite. Thus M converges to a program for 7 which is total
because v is total on O, ,. The definition of ¢ says that ¢ ((z,y,1)) = 0. So

17

the parameter b is chosen appropriately whenever sufficiently many data-items
have been seen and 71 separates L, L'.

The function f. We now continue with the definition of function f. Intu-
itively, for each = € ConsM, we try to fool M, into making an error (by
trying to force infinitely many mind changes) while separating L., L, where
L, =W 0)NO,y)U(Epy — Wiy, and L, = =1 (1) N O,,,. We will argue
that either we succeed in doing so, for some y with W, being infinite (and thus
we have a diagonalization using property (F)), or we can use property (E) for
diagonalization (for this, we will use the fact that {y : W, is infinite} is II,
complete).

Construction of f. We now define Wy,). Note that W,) will be a subset
of E,, (we will also argue below that W,) is recursive). Later, we will also
define suitable L, and L/, and show that (C) to (G) are satisfied.

Initially let o9 = o = A. Let W},) denote the set of those elements which
are enumerated into Wy, ,) before stage s. Go to stage 0.

Stage s
1. Dovetail steps 2 and 3, until search in one of them succeeds. If search in
step 2 succeeds (before the search in step 3), then go to step 4. If search
in step 3 succeeds (before the search in step 2), then go to step 5.
2. Search for z € E,, such that z > max(content(c,) U content(o”) U {s})
and Y, (0,,01)(2) 1 = 0.
3. Search for (7,,7!) € SEQ? such that the following conditions are satisfied.
os C 75 and content(7s) C (¢ 1(0) N Opy) U (Eyy — W]f(m})).
ol C 77 and content(77) € ¢~ H1) N Oyy.
M, (0s,0%) # M, (75, 70).
4. Enumerate z into Wy,).
Search for (75, 7!) € SEQ? such that the following conditions are satisfied.
os C 75 and content(7s) C (¥ "1(0) N O,y) U E,y, — (Wi Uiz
ol C 7/ and content(77) € ¢~ H(1) N Oyy.
M(os, 0y) # My(Ts, 75).-
If and when such 7, and 7. are found, go to step 5.
5. Let 0,41 be an extension of 7, and o7, be an extension of 7., such that
041] = |0, | and
content(os41) = content(75) U (¢ (0)N O, N{r : 7 < sHU([Eyy —
Wiy UizhINn{r : r <s}), and
content(o”, ;) = content()) U (¢ (1) N Oy N{r : r < s}).
Go to stage s + 1.
End stage s

18

Definition of L,, L/, and Verification of the properties (C) through
(G). Note that either Wy, is finite, or there exist infinitely many stages,
and s € Wy, iff s € W;(:c,y) (note that by step 2, we choose z to be larger
than s; some of these z may be placed into Wy(,,). Thus Wy, is recursive.

For each x € IN, we now consider the following cases.

Case 1. x ¢ ConsM.

In this case, let (0,0’) € SEQ? be the least pair such that, for some y,
content(o) and content(o’) are non-empty, disjoint subsets of U, and M, is
not conservative on (o, c’). Let L, = content(c) U {d} and L/ = content(c’),
where d € O, is the least number such that x is enumerated into the com-
plement of ConsM in less than d steps and d is larger than any element of
content(o) U content(o”).

Thus, properties (C), (D) and (G) are satisfied, and (E) and (F) do not
apply.

Case 2: x € ConsM and there exists a y such that W, is infinite and M, is
not a sep-identifier for {(¢"1(0) N Oy y) U Eyy — Wiz, ¥ 1) N Oy y}.

In this case, let L, = (¢"1(0)NO04 4)UE, y—Wi(zy), and L, = 1 (1)NO,,.
Now, M, is not a sep-identifier for (L,, L,).

Thus, (C), (D) and (F) are satisfied, and (E) and (G) do not apply.

Case 3: x € ConsM and for all y such that W, is infinite, M,, is a sep-identifier
for {(1(0) N Ou)) U By — Wiia, 41 (1) M Oy).

In the following we will select finite L,, L, with L, N Wy, # 0, for some
y, satisfying conditions (C), (D) and (E).

Now we deal with Case 3 in detail: Let I; = {y : (3s) [in the construction of
Wi(ay), step 4 of stage s is started but does not end |}. Note that, {y : W,
is infinite} C I;. (Reason: For W, being infinite, M, is a sep-identifier for
{(W7H0) N Ouy) U Eyy — Wiz, ¥ 1) N O,y }, by hypothesis of the case.
Thus there are only finitely many stages in the construction, and for every
stage entered, step 2 or step 3 must succeed).

Furthermore, I; is recursively enumerable relative to the oracle K. Thus,
for every y € I; one can find s, z and oy, 0%, (depending on y) using the oracle
K, where in the definition of Wy,), s is the stage in which step 4 is started
but does not end, and z is as defined in step 4 of stage s.

Using the oracle K, one can also test whether the following two conditions

hold:

(P1) M, (os2d™, ol#™) = M,(0s,0%), for all d € =1(0) N O,, and all n;

(P2) M, (0s2#",0ld™) = M,(0s,0%), for all d € (1) N O,, and all n.

Let I, = {y € I, : (P1) and (P2) are satisfied}. Note that I is recursively
enumerable relative to the oracle K. Note that, if W, is infinite and M, is a

19

conservative sep-identifier for {(¢) ™' (0) N Oy y) U Eyy — Wiz, (1) N Oyy
then @5t . 0(0) 2 (071(0) 1 0,,) ULz} and gt (1) 2 01(1) N O,
(here Y, (0,,01)(2) = 0, since y € I, and thus step 2 had succeeded in stage
s). Thus, y must satisfy (P1) and (P2). Thus, I, D {y : W, is infinite}. Since
I, is recursively enumerable relative to oracle K, and {y : W, is infinite} is
II,-complete, there must exist a y such that W, is finite, and y € I,. For the
following, fix such a y, and corresponding s, z, o5 and o, where s is the stage
in which step 4 of Wy,) starts but does not finish, and z is as defined in step
4 of stage s. Let A = 90;411(05709(0), and B = 9017411(05,0@)(1)'

Case 3.1: At least one of the sets (¢ "1(0) N O,,) — Aand (v (1) N O,,) — B
is infinite.

If card((¢1(0) N O,y) — A) = oo, then let d € (v1(0) N O,,) — A be
such that z € Wy, a. Now, M, is not a sep-identifier for {content(cy) U
{z,d}, content(c”)}, since by property (P1), M,(cszd", o' #"*1) = M, (0, 07%),
for all n, and @y, (o, 07) does not separate (content(o,)U{z, d}) and content(c?).
Thus, we define L, = content(o,) U {z,d} and L/, = content(c’). Note that
card(L, U L)) < 2+ card(content(oy) U content(c,)) < 2 + z, z is the only
element of (L, UL!) N Wyzy), and 2 € Ly N W) max(L.uLr)-

Similarly, if card((¢"'(1) N O,,) — B) = oo, then we can reason as above by
taking d € (¢"'(1)NO,.,)— B, L, = content(o,)U{z} and L, = content(c’)U
{d}, and using (P2) instead of (P1).

Thus, properties (C), (D) and (E) are satisfied, and (F) and (G) do not

apply.

Case 3.2: content(os) € A or content(c,) Z B.

Let d € (¢7'(0) N O,,) — content(o,) be such that z € Wy, 4. Let
L, = content(oy) U {z,d}, L = content(o’). Now, M, is not a sep-identifier
for (L,, L"), since by property (P1), M,(cszd", o'#" ™) = M,(0,,0"), for all
n, and par, (o,,07) does not separate L, L.

Thus, properties (C), (D) and (E) are satisfied and (F) and (G) do not

apply.

Case 3.3: content(o,) C A, content(c’) C B and the two sets (¢ 71(0) N O,,)

— A and (¢~*(1)NO,,) — B are both finite.

Since by condition (B) no total function coincides with ¢ on O, ,, we must
have that AN O,, and BN O,, are not recursive. Since x € ConsM, the set

C ={d€0,, : 3Bn,m)[M,(o.zd", o' #") # M,(0,,0")]
A [My(oz#™, old™) £ M, (0, 00)]}

is disjoint from A and B. However, card(O,, — (AU BUC)) = oo, due to
non-recursiveness of ANO, , and BNO,,,. Thus, there existsad € O, , — (AU
BUC), such that z € Wy(y)q. If for all n, M, (o,zd", ol#") = M, (0, 07),

20

then let L, = content(oy) U {z,d}, L, = content(o)). Otherwise, for all n,
M, (o2#", 0.d"™) = M,(0,,0.) — in this case let L, = content(c,) U {z},
L/, = content(o’,) U {d}.

Now, M, is not a sep-identifier for (L, L)), since @y, (o,,01) does not sep-
arate L, and L.

Thus, properties (C), (D) and (E) are satisfied, and (F) and (G) do not

apply.

From the above cases 1, 2, 3.1, 3.2 and 3.3, we have that (C) to (G) are
satisfied. This completes the proof of the theorem. |

Acknowledgments. We would like to thank John Case for helpful discussions
and proposing research on learning how to separate sets. We are also grate-
ful to Eric Martin for contributing a lot of ideas about how to improve the
presentation and organization of the paper. Furthermore, we thank the anony-
mous referees for detailed comments. Preliminary versions of the present work
appeared at the conference on Algorithmic Learning Theory 2001 and as a
Forschungsbericht (technical report) [11]. The technical report should be con-
sulted for a more complete picture on related notions omitted in the present
work.

References

[1] Dana Angluin and Carl Smith. Inductive inference: Theory and methods.
Computing Surveys, 15:237-289, 1983.

[2] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive
inference. Information and Control, 28:125-155, 1975.

[3] Manuel Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322-336, 1967.

[4] John Case, Sanjay Jain and Suzanne Ngo Manguelle. Refinements of inductive
inference by Popperian and reliable machines. Kybernetika, 30:23-52, 1994.

[5] John Case and Carl Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193-220, 1983.

[6] Mark Fulk. A Study of Inductive Inference Machines. PhD Thesis, SUNY /
Buffalo, 1985.

[7] Mark Fulk. Prudence and Other Conditions on Formal Language Learning.
Information and Computation, 85:1-11, 1990.

[8] E. Mark Gold. Language identification in the limit. Information and Control,
10:447-474, 1967.

21

[9] John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[10] Sanjay Jain, Daniel Osherson, James S. Royer and Arun Sharma. Systems that
Learn: An Introduction to Learning Theory. MIT Press, Cambridge, Mass.,
second edition, 1999.

[11] Sanjay Jain and Frank Stephan. Learning how to separate. Forschungsberichte
Mathematische Logik 51/2001, Mathematisches Institut, Universitat
Heidelberg, 2001. Extended Abstract in Algorithmic Learning Theory: Twelfth
International Conference (ALT 2001), volume 2225 of Lecture Notes in Artificial
Intelligence, pages 219-234. Springer-Verlag, 2001.

[12] Carl Jockusch. Degrees in which recursive sets are uniformly recursive.
Canadian Journal of Mathematics, 24:1092-1099, 1972.

[13] Reinhard Klette and Rolf Wiehagen. Research in the theory of inductive
inference by GDR mathematicians — A survey. Information Sciences, 22:149—
169, 1980.

[14] Martin Kummer and Frank Stephan, On the structure of degrees of inferability.
Journal of Computer and System Sciences, 52:214-238, 1996.

[15] Michael Machtey and Paul Young. An Introduction to the General Theory of
Algorithms. North Holland, New York, 1978.

[16] Eliana Minicozzi. Some natural properties of strong identification in inductive
inference. Theoretical Computer Science, 2:345-360, 1976.

[17] Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam,
1989.

[18] Daniel Osherson, Micheal Stob and Scott Weinstein. Systems that Learn: An
Introduction to Learning Theory for Cognitive and Computer Scientists. MIT
Press, 1986.

[19] Hartley Rogers, Jr. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[20] Frank Stephan and Thomas Zeugmann. On the uniform learnability of
approximations to non-recursive functions. In O. Watanabe and T. Yokomori,
editors, Algorithmic Learning Theory: Tenth International Conference (ALT
1999), volume 1720 of Lecture Notes in Artificial Intelligence, pages 276-290.
Springer-Verlag, 1999.

[21] Rolf Wiehagen and Walter Liepe. Charakteristische Eigenschaften von
erkennbaren Klassen rekursiver Funktionen. Journal of Information Processing
and Cybernetics (EIK), 12:421-438, 1976.

22

