
Mathematical Logic Quarterly, 28 October 2011

Rice and Rice-Shapiro Theorems for Transfinite Correc-
tion Grammars

John Case1, and Sanjay Jain2, ∗

1 Department of Computer and Information Sciences, University of Delaware, Newark, DE 19716-
2586, United States of America. Email: case@cis.udel.edu

2 Department of Computer Science, National University of Singapore, Singapore 117417, Republic
of Singapore. Email: sanjay@comp.nus.edu.sg

Key words Recursion theory, Rice and Rice-Shapiro theorems, Transfinite correction grammars,
Decidability
Subject classification 03D99

Hay and, then, Johnson extended the classic Rice and Rice-Shapiro Theorems for computably
enumerable sets, to analogs for all the higher levels in the finite Ershov Hierarchy. The present
paper extends their work (with some motivations presented) to analogs in the transfinite Ershov
Hierarchy. Some of the transfinite cases are done for all transfinite notations in Kleene’s important
system of notations, O. Other cases are done for all transfinite notations in a very natural, proper
subsystem OCantor of O, where OCantor has at least one notation for each constructive ordinal.
In these latter cases it is open as to what happens for the entire set of transfinite notations in
(O −OCantor).

Copyright line will be provided by the publisher

1 Introduction and motivation

In Section 1.1 we motivate and informally describe our correction grammar approach to indexing the
sets in the levels, (finite and transfinite) of the Ershov Hierarchy [1, 2, 3]. A more formal describing
and other mathematical preliminaries are in Section 2.

Then, in Section 1.2, first we describe the ordinary Rice and Rice-Shapiro Theorems for sets of
grammars or indices for the computably (or recursively) enumerable (c.e.) sets [4]. Secondly, we
describe their generalizations from Hay [5] and later Johnson [6] up into the finite Ershov Hierarchy
whose levels are each based on bounded finite iteration of differences of c.e. sets [1]. Lastly, we briefly,
informally describe our further generalizations herein up into the transfinite Ershov Hierarchy [2, 3].

The formal statements of our main new results are in Section 4. The proofs of our main results are
based on various hardness results proven in Section 3.

1.1 Motivating and describing correction grammars

Burgin [7] suggested that a human knowing a language L may involve his/her storing a representation
of the language in terms of two grammars, say g1 and g2: g2 is used to “edit” errors of (make corrections
to) g1. In set-theoretic terms, the language L is represented as the difference (L1−L2), where Li is the
language generated by the grammar gi. The pair 〈g1, g2〉 can thus be seen as a single description of (or
“grammar” for) the language L. Burgin called these grammars grammars with prohibition. We prefer,
as in [8, 9], to call them correction grammars. These correction grammars may be seen as modeling the
self-correcting behavior of humans.1 In our computability-theoretic context herein we first think of p as
being a correction grammar for L if and only if p = 〈i, j〉 and L = (Wi−Wj).2 Hence, such a correction

∗ Supported in part by NUS grant number C252-000-087-001.
1 For more discussion, see [9].
2 Wi is the i-th c.e. set, where i codes a program for generating or for accepting Wi [4]; see formal definition in

Section 2.

Copyright line will be provided by the publisher



2 J. Case and S. Jain: Rice and Rice-Shapiro Theorems

grammar 〈i, j〉 is an index from [5] for the difference of c.e. sets, i.e., for the d.c.e. set, (Wi −Wj). The
concept of correction grammar, then, provides a motivation for studying the indices of d.c.e. sets.

Extensions [8, 9], of the correction grammars paradigm are natural. The concept is generalizable to
descriptions of languages as finite, fixed differences of c.e. languages. This idea formalizes the concept
of a finite, fixed number of successive editings for errors. For integer n > 0, an n-correction grammar
for a language L is a p such that p = 〈i1, . . . , in〉 and L = (Wi1 − (Wi2 − · · · (Win−1 − Win) · · · )).
This extension may model humans’ tendency to correct, bounded iteratively, their linguistic utterances.
Clearly, the n-correction grammar 〈i1, . . . , in〉 can be thought of as an index from [6] for the n-c.e. set,
(Wi1 − (Wi2 − · · · (Win−1 − Win) · · · )) from the Σ−1

n level in the finite Ershov Hierarchy [1]. Hence,
n-correction grammars provide a motivation for studying these indices of n-c.e. sets.

As we will spell out in more detail below in Section 2, the formal concept of a general correction
grammar can be equivalently expressed in terms of algorithms that initially exclude all candidate items
but are allowed, for each candidate item, a finite number of mind-changes about whether to include in
or exclude from the language that candidate item (in other words, correction grammars are algorithms
for limiting computable functions — that initially output 0 for exclusion). For example, a correction
grammar 〈g1, g2〉 for L = L1−L2 can be equivalently thought of as an algorithm that initially excludes
each item x and, then, can change its mind about x’s inclusion or exclusion up to twice on the way to
giving its final, correct answer as to whether x is included or excluded in L.3 More generally, for n > 0,
an n-correction grammar is equivalent to an algorithm that initially excludes each item x and, then, it
can change its mind about x’s inclusion or exclusion up to n times on the way to giving its final, correct
answer as to whether x is included or excluded.

A next mathematical step is to extend the notion of correction grammars into the constructive
transfinite. We explain briefly. We will assume herein that the reader already knows the material about
ordinals, including constructive ordinals, from [4]. Intuitively, constructive ordinals are equivalent to
those that have a program, called a notation, which specifies how to build them algorithmically or lay
them out end-to-end [4]. Our concept of a general correction grammar is based on the idea of using
constructive ordinal notations to bound the number of corrections that the grammar can make. To do
this rigorously, we provide below in Section 2 the concept of (algorithmic) counting-down from notations
for (countable, constructive) transfinite ordinals.

For example, it can be shown that counting down corrections allowed from any notation for ω is
equivalent to declaring algorithmically, at the time a first correction is made, a finite number bound
on the number of further corrections to be allowed. This is more powerful than just initially setting a
fixed, finite number of corrections allowed. As another example consider using a notation for the ordinal
ω + ω (two copies of ω laid end to end), also constructive and transfinite: in this case, at the time the
first correction is made, the algorithm declares a finite bound on the number of further corrections it is
going to make; this bound is, however, allowed to be changed once, at a later time. For a notation for
the constructive ordinal ω + ω + ω, the algorithm is allowed to update the bound twice. For at least
natural notations for the constructive ordinal ω2, the algorithm is allowed to make a finite number of
changes to the bound, where the maximum number of changes allowed to the bound is announced at
the time the algorithm makes the first correction!

In the present paper we primarily (but not exclusively) employ Kleene’s important general system
O (coded as a proper subset of the set of natural numbers) [10, 11, 12, 4, 13]. This system has at
least one notation for each constructive ordinal and comes with Kleene’s standard, useful order relation
<O on the notations in O and naturally embedding into the ordering of the corresponding constructive
ordinals.

We also employ a very natural, proper subsystem of Kleene’s O which we call OCantor. In Section 2.2
below we discuss computable operations which, on O-notations, provide notational analogs of +,×,
and exponentiation for ordinals. {··}O is the computable operation which, on O-notations, is analogous
to ordinal exponentiation. Fix an O-notation w for ω. Suppose v ∈ O. Suppose v is a notation for

3 Of course, an ordinary grammar (c.e. index) g for a c.e. language L can be thought of as an algorithm that initially
excludes each item x and, then, it can change its mind about x’s inclusion or exclusion up to once on the way to giving
its final, correct answer as to whether x is included or excluded in L.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 3

the (constructive) ordinal β. Then the O-notation {wv}O is a natural O-notation for the ordinal ωβ .
OCantor

def= {x ∈ O | (∃v ∈ O)[x ≤O {wv}O]}. Corollary 2.4 in Section 2.2 below provides a very
pleasant normal form for the notations in OCantor. OCantor also has at least one notation for each
constructive ordinal.

For notations u ∈ O for constructive ordinals (finite or transfinite), our u-correction grammars are
(by definition) each algorithms for counting down corrections from u. Essentially, then, from [14, 8, 9],
a u-correction grammar p can be thought of as an index for the corresponding u-c.e. set from the Σ−1

u

level in the general Ershov Hierarchy [1, 2, 3]. Hence, u-correction grammars provide a motivation for
studying these indices of u-c.e. sets.4

For notation u in O and for one of our u-correction grammars p, we let Wu
p denote the u-c.e. set

defined by p. It is essentially shown in [8, 9] how to handle defining the u-correction grammars so that
Wu

p , p = 0, 1, . . . defines an acceptable programming system (numbering) of the u-c.e. sets, i.e., of the
class Σ−1

u .5

By definition, the acceptable programming systems for a class are those: which contain a universal
simulator for the class and into which all other universal programming systems for the class can be
compiled. Acceptable systems for a class are characterized as the universal systems for the class with
an algorithmic substitutivity principle called S-m-n [4, 24, 25, 8, 9]. Acceptable systems also satisfy
convenient self-reference principles such as Recursion Theorems [4, 24, 25, 8, 9].

For non-negative integers n we identify n with the finite well-ordering {0 < 1 < 2 < · · · < (n − 1)}.
Kleene’s partially computable and unique O-notation for the well-ordering n is not n itself but some
other number which we will write as n.6 Hence, in Section 1.2 just below where we spell out the
previous work of Johnson [6] on Rice and Rice-Shapiro Theorems in the finite Ershov Hierarchy, where
she indexes (or would index) by n, we’ll index by n. Also, in our informal discussion above of the finite
levels of the Ershov Hierarchy, we indexed by n, but from now on we’ll index those levels instead by n.
This will simplify our discussion re our extending herein Johnson’s work up into the transfinite Ershov
Hierarchy.

1.2 Introduction to Rice theorems

The Rice Theorem for c.e. sets is as follows [26, 4].
Theorem 1.1 (Rice Theorem) Suppose C is a class of c.e. sets. Then, {i : Wi ∈ C} is computable

iff, C is empty or the entire class of c.e. sets.
We let Dq denote the finite subset of non-negative integers with canonical index q [4].
A theorem, called the Rice-Shapiro Theorem, conjectured by Rice [26] and independently proved by

Shapiro, Myhill, and McNaughton (see [27, 4]) can be formulated (as in [5]) as follows.
Theorem 1.2 (Rice-Shapiro Theorem) Suppose C is a class of c.e. sets. Then, {i : Wi ∈ C} is

c.e. iff, C is empty or there exists a computable function f such that C = {Wi : (∃u)[Df(u) ⊆ Wi]}.

4 Even if u is a notation for a transfinite constructive ordinal, count-downs from u are finite since there are no infinite
descending chains of notations under u.

Ones employing notations to perform algorithmic count-down from transfinite (constructive) ordinals is widely used
in Proof Theory (e.g., to measure the strength of formal systems and classify their provably total functions) [15, 16], and
in Term Rewriting (e.g., to prove termination of rewrite systems) [17, 18]. In Computational Learning Theory, this idea
was introduced by Freivalds and Smith in [19].

We have not considered herein notations or programs for non-well orderings, with, for example, no computable infinite
descending chains [2, 20, 21, 22].

5 This was originally to make sure such systems existed, and it was shown how to get them uniformly algorithmically
in u. Herein, to simplify exposition, we’ll imagine ourselves to be working in these particular W u-systems. However,
fortunately, we’ll be able to do so without having to know in extreme detail how they actually work. Furthermore, our

results are all independent of which acceptable system for the Σ−1
u s are actually employed.

The reader should note, for example, that for our above fixed w ∈ O, a notation for ω, while our w-c.e. sets are the Σ−1
w

sets, they are not at all the same as the well known ω-c.e. sets, the sets for which there is an also initially empty, effective
approximation of their elements but where the number of mind changes are bounded by some computable function [23].

The ω-c.e. sets all belong to the more restricted Ershov level ∆−1
w = (Σ−1

w ∩Π−1
w ).

6 Herein we won’t need to spell out in detail Kleene’s exact numerical coding for his notations in his O, but the
interested reader can consult, e.g., [4].

Copyright line will be provided by the publisher



4 J. Case and S. Jain: Rice and Rice-Shapiro Theorems

Hay [5] lifted these results to classes of d.c.e. sets, i.e., to the 2-c.e. sets, essentially as follows, where
we first present her analog of the Rice Theorem, and, then, her analog of the Rice-Shapiro Theorem.

Theorem 1.3 (Hay [5]) Suppose C is a class of 2-c.e. sets. Then, {i : W
2
i ∈ C} is c.e. iff, C is empty

or the entire class of 2-c.e. sets.

Theorem 1.4 (Hay [5]) Suppose C is a class of 2-c.e. sets. Then, {i : W
2
i ∈ C} is 2-c.e. iff, C is

empty or there exists a finite set S such that C = {W 2
i : S ⊆ W

2
i }.

Johnson [6], then, for each natural number n > 2, lifted these results (respectively, analogs of the
Rice Theorem and the Rice-Shapiro Theorem) to classes of n-c.e. sets as follows.

Theorem 1.5 (Johnson [6]) Suppose C is a class of n-c.e. sets for natural number n > 2. Then:
{i : W

n
i ∈ C} is (n− 1)-c.e. iff, C is empty or the entire class of n-c.e. sets.

Theorem 1.6 (Johnson [6]) Suppose C is a class of n-c.e. sets for natural number n > 2. Then:
{i : W

n
i ∈ C} is n-c.e. iff, C is empty, or C = Σ−1

n , or there exists a non-negative integer a such that
C = {Wn

i : a ∈ W
n
i }.

Our first main result, Corollary 4.2, implies an extension of Johnson’s analog of the Rice Theorem
(Theorem 1.5 above) to all transfinite u ∈ O: for any u′ such that 1 ≤ u′ <O u, for C ⊆ Σ−1

u , we have,
{i : Wu

i ∈ C} is u′-c.e. iff, C = ∅ or C = Σ−1
u .

Our second main result, Corollary 4.5, implies an extension of Johnson’s analog of the Rice-Shapiro
Theorem (Theorem 1.6 above) to all u ∈ O, where u is for a transfinite successor ordinal: for C ⊆ Σ−1

u ,
we have, {i : Wu

i ∈ C} is u-c.e. iff, C = ∅, or C = Σ−1
u , or C = {Wu

i : a ∈ Wu
i }, for some a ∈ N.

Our next and last two main results extend Rice-Shapiro for notations for limit ordinals, but they are
for limit ordinal notations in OCantor.

It is open as to what happens for every limit ordinal notation in (O −OCantor).
Our third main result, Corollary 4.10, looks like an an extension of Hay’s analog of Rice-Shapiro

(Theorem 1.4 above): for every limit ordinal (OCantor) notation u = wv (then 0 <O v), for C ⊆ Σ−1
u ,

we have, {i : Wu
i ∈ C} is u-c.e. iff, either C = ∅ or C = {Wu

i : S ⊆ Wu
i }, for some finite set S.

Our last main result, Corollary 4.14, looks like an an extension of Johnson’s analog of Rice-Shapiro
(Theorem 1.6 above): for every limit ordinal notation u in OCantor, where, for all v ∈ O, u is not of the
form wv, for C ⊆ Σ−1

u , we have {i : Wu
i ∈ C} is u-c.e. iff, either C = ∅, C = Σ−1

u , or C = {Wu
i : a ∈ Wu

i },
for some a ∈ N.

2 Mathematical preliminaries

This section contains basic terminology for the rest of the paper (Section 2.1), information and termi-
nology re Kleene’s ordinal notation system O as well as the subsystem OCantor (Section 2.2), and general
background on the Ershov Hierarchy (Section 2.3).

2.1 Basic terminology

Any unexplained recursion theoretic notation is from [4]. We let N denote the set of natural numbers,
{0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇, and ⊃, respectively denote empty set, subset, proper subset,
superset, and proper superset. Cardinality of a set S is denoted by |S|.
〈·, ·〉 denotes a computable and bijective mapping from N × N to N (see [4]). We assume without

loss of generality that 〈·, ·〉 is increasing in both its arguments. One can extend the pairing function to
encoding of n-tuples, for n ≥ 3, by taking 〈x1, x2, x3, . . . , xn〉 = 〈〈x1, x2, . . . , xn−1〉, xn〉.

By ϕ we denote a fixed acceptable programming system for the partial computable functions mapping
N to N [4]. ϕi denotes the partial computable function computed by the program number i in this system.
For functions over two or more arguments, one can assume that the input to the functions are encoded
using the pairing functions as above, and we will assume so without explicitly mentioning it. Φ denotes
a fixed Blum complexity measure [28, 29] for the ϕ-system. Intuitively, Φi(x) can be thought of as the

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 5

number of steps needed to compute ϕi(x).

ϕi,s =

{
ϕi(x), if x < s and Φi(x) < s;
↑, otherwise.

A language is a subset of N. We let L, with or without decorations, range over languages. Symbol
E denotes the set of all computably enumerable (recursively enumerable) languages. L = N − L, and
χL is the characteristic function for L; it is 1 on L and 0 off L. Let Wi = dom(ϕi). In other words, Wi

is the language accepted by ϕi. Let Wi,s = dom(ϕi,s) = {x < s : Φi(x) < s}. ≤m and ≤1 respectively
denote many-one and 1–1 reducibility among sets. K denotes the halting problem, {i : i ∈ Wi}. K ′

denotes the halting problem relative to K, that is, when one allows the programs access to oracle K.
Note that K ′ is ≤m-hard for Σ2, the sets computably enumerable using the oracle K. Furthermore,
K ′ ≤m {i : Wi is finite}.

For a function f of two variables, we let f(x,∞) = limt−→∞ f(x, t). A function F is partial limiting
computable if there exists a computable f such that f(x,∞) = F (x) for each x ∈ N. If partial limiting
computable function F is total, then we call it limiting computable. Program p is a limiting computable
program for a total function F if for all x, limt→∞ ϕp(x, t) = F (x).

2.2 Kleene’s system O and the subsystem OCantor

As above, a system of notations is a collection of programs each of which specifies how to build a
constructive ordinal. In the present paper, we will be employing two such systems, (primarily) Kleene’s
O [10, 11, 12, 4, 13], but, also, a very natural (proper) subsystem which we callOCantor (see Definition 2.3
below). Each of these systems will provide at least one notation for each constructive ordinal.

We let u, v range over notations in the system O. We let vO be the constructive ordinal with notation
v.

As noted above, we will not go into the details regarding the notation system O, but refer the reader
to [10, 11, 12, 4, 13] and to Remark 2.1 below.

As noted above, there is a partial order <O on the notations O. We let u ≤O v iff, u = v or u <O v.
Similarly: u >O v iff v <O u; and u ≥O v iff v ≤O u.

Regarding O, we have the following.

Remark 2.1

(a) There is a partial computable function pred such that, if x is a notation for successor ordinal, then
pred(x) is a notation for its predecessor. That is, pred(x)O + 1 = xO.

(b) There is a computably enumerable set Z such that, for each v ∈ O, {u : 〈u, v〉 ∈ Z} = {u : u <O v}.

It is useful to discuss the above mentioned very basic computable operations (for O-notations), +O,
×O, and {··}O. These operations on O naturally embed (by · O) into the corresponding (constructive)
ordinal operations of addition, multiplication, and exponentiation, respectively.7 Just as Kleene essen-
tially changed his definition of +O between [10] and [12] to obtain some auxiliary, useful properties, in
[30] an additional base case is added for each of +O and ×O over what would be needed merely to get
the embedding into the corresponding ordinal operations. We omit the details herein, but these extra
base cases importantly guarantee the Notational Cantor Normal Form Theorem from [30] (reproduced
herein as Theorem 2.2 just below).8 Below ‘=’ means has the same numerical value, so, when comparing
notations from O, it means the two sides are the very same notation. This is much stronger than that
the two sides merely denote the same constructive ordinal.

Theorem 2.2 (Notational CNF Theorem [30]) For each v ∈ O, for all w ∈ O for ω, for all x >O 0,

7 Intuitively, for u, v ∈ O, u +O v is a program for laying out the ordinal uO followed by the ordinal vO to form the
ordinal u +O vO. ×O, and {··}O are programs for standardly iterating this action of +O.

8 In unparenthesized expressions involving these computable operations, {··}O has higher priority than ×O which in
turn has higher priority than +O.

Copyright line will be provided by the publisher



6 J. Case and S. Jain: Rice and Rice-Shapiro Theorems

x <O {wv}O ⇔

 there exists a unique k ∈ N, unique n0, n1, . . . , nk ∈ N+,
and unique v0, v1, . . . , vk where v >O v0 > v1 · · · >O vk,
such that x = {wv0}O ×O n0 +O (· · ·+O ({wvk}O ×O nk) · · · ).

Furthermore, for the left to right direction of the ⇔ statement just above, the values of k, n0, . . . , nk,
and v0, . . . , vk can be algorithmically obtained from v, w, and x.

We call the above unique representation of x <O {wv}O, for v, w, and x as in the above theorem,
the Notational CNF of x with respect to {wv}O. Where it is clear from the context, we will drop the
phrase “with respect to {wv}O” — when referring to the Notational CNF of such an x.9

As in Section 1.1 above, we have
Definition 2.3 Fix a w ∈ O for ω.
Let OCantor = {x ∈ O | (∃v ∈ O)[x ≤O {wv}O]}.
Hence, by Theorem 2.2 just above, we have
Corollary 2.4 OCantor = {0}∪{{wv0}O×O n0 +O ({wv1}O×O n1 +O (· · ·+O ({wvk}O×O nk) · · · )) |

k ∈ N ∧ n0, n1, . . . , nk ∈ N+ ∧ v0 >O v1 >O · · · >O vk}.
Since, by contrast with ordinal addition, +O is not associative, the parenthesizations above are needed

[30].
We note that for every ordinal α > 0, there exists a (unique) ordinal β such that ωβ ≤ α < ωβ+1 [31,

Theorem 2, Chapter XIV.18, page 321]. Therefore, the above Notational CNF Theorem is sufficiently
general to apply to notations for as large a constructive ordinal as we may choose, and we have, then,
for each constructive ordinal β, at least one notation in OCantor for β.10

As in [30], for all x, y <O {wv}O, we define the useful algorithmic natural sum of x and y and denote
the operation by (+)O; this operation is a notational analog of the natural sum of ordinals from [32,
Chapter VII, Section 7, pages 259-260].11

If x = 0 or y = 0,

x(+)Oy
def= x +O y;

Otherwise, write x, y (as per Theorem 2.2 above) as follows.

x = {wv0}O ×O m′
0 +O ({wv1}O ×O m′

1 +O (· · ·+O ({wvk}O ×O m′
k) · · · )),

y = {wv0}O ×O m′′
0 +O ({wv1}O ×O m′′

1 +O (· · ·+O ({wvk}O ×O m′′
k) · · · )),

where m′
0, . . . ,m

′
k and m′′

0 , . . . ,m′′
k are possibly 0, and v >O v0.

Then x(+)Oy
def=

{wv0}O ×O (m′
0 + m′′

0) +O (· · ·+O ({wvk}O ×O (m′
k + m′′

k)) · · · ).

Clearly, (+)O is an algorithmic operation. It is also commutative and associative, unlike +O [30].

2.3 The Ershov hierarchy

We now present the Ershov Hierarchy [1, 2, 3], somewhat formally and including the transfinite levels.
Definition 2.5 (Count-Down Functions) A computable function F : N × N → O is called a count-

down function iff, for all x and t, F (x, t + 1) ≤O F (x, t).

9 The Cantor Normal Form Theorem itself ([31, Theorem 2, Chapter XIV.19, page 323] and [32, Theorems 2 and 5,
Chapter VII, Section 7]) states: for any ordinal β > 0, there exists a unique k, unique n0, n1, . . . , nk ∈ N+, and unique
ordinals α0, α1, . . . , αk, where α0 > α1 > · · · > αk, such that β = ωα0 × n0 + ωα1 × n1 + · · ·+ ωαk × nk.

10 We expect that, beyond the present paper and [30], OCantor is a generally useful notation system for the entire
class of constructive ordinals. It is ostensibly free of the problematic, pathological notations found in O, for example, for
each constructive ordinal ≥ ω2 [33, 34, 30].

11 N.B. the notational (+)O depends on the choice of the pre-given v and w.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 7

Definition 2.6 (Ershov Hierarchy) Suppose A ⊆ N. A ∈ Σ−1
u iff, there exists a computable function

E : N× N → {0, 1} and a count-down function F such that, for all x, t ∈ N,

(i) E(x,∞) = χA(x),

(ii) E(x, 0) = 0 and F (x, 0) ≤O u,

(iii) E(x, t + 1) 6= E(x, t) ⇒ F (x, t + 1) <O F (x, t).

In this case we say that E and F witness A ∈ Σ−1
u . As above, a member of Σ−1

u is also called a u-c.e. set.
Note that E(x, 0) = 0, and thus, Σ−1

0 = {∅}. It is well known that, u <O v ⇒ Σ−1
u ⊂ Σ−1

v . Hence,
the Ershov Hierarchy is strict.

The formal Wu-system itself has implicit functions like E,F in Definition 2.6 above for witnessing
sets A are in Σ−1

u . In fact, there exist functions Eu
p (·, ·) and Fu

p (·, ·), computable uniformly in p, which
witness that Wu

p ∈ Σ−1
u . Below, we’ll drop the superscript u from Eu

p (·, ·), Fu
p (·, ·) (since u will be

understood) and will write these functions instead as Ep(·, ·), Fp(·, ·).
From here on in the present paper, as in [9], when we are working with our system Wu, many

times we will also describe functions like the computable functions E,F witnessing A ∈ Σ−1
u (from

Definition 2.6 above) informally, but, then, we’ll implicitly invoke Wu’s acceptability, and imagine our
informal descriptions are actually compiled into the Wu-system for use in that system. When we do
this, we’ll use, instead of the symbols E,F , the respective symbols H,G (many times with program
subscripts, and, then, the corresponding A will have the same program subscript).

Suppose we give an algorithmic description of a computable {0,1}-valued function H·(·, ·) and count-
down function G·(·, ·), such that (i) for all p, x, limt→∞Hp(x, t) converges, and (ii) for all p, Hp(·, ·) and
Gp(·, ·) witness that Ap ∈ Σ−1

u , where Ap = {x : limt→∞Hp(x, t) = 1}.
Informally, then, the S-m-n Theorem for the Wu-system provides that there exists a computable

function f such that Wu
f(p) = Ap, for all p, and the Kleene Recursion Theorem for the Wu-system

provides that there exists an e, which, in effect, creates a self-copy and uses it to make Wu
e = Ae.

In this Kleene Recursion Theorem application, as in [9], the e is a formal program in the Wu-system
and we implicitly invoke the acceptability of Wu to obtain a translation of the informal descriptions of
H·(·, ·), G·(·, ·) into the Wu-system to get what e really does in the Wu-system with its self-copy — so
as to make Wu

e = Ae.
We let Ku = {i : i ∈ Wu

i }. It can be shown that Ku is ≤m complete for Σ−1
u .

For C ⊆ Σ−1
u , for brevity, we write Θu(C) = {i : Wu

i ∈ C}. That is, Θu(C) is the u-index set for C in
the Wu-system.

3 Basic hardness lemmas and their corollaries

As above, u ∈ O. We fix an arbitrary C ⊆ Σ−1
u .

Lemma 3.1 Suppose Wu
i is infinite. Then, there exists a computable 1–1 function f such that,

(a) if Wy is infinite, then Wu
f(y) = Wu

i ;
(b) if Wy is finite, then Wu

f(y) is a finite subset of Wu
i .

P r o o f. By the S-m-n theorem for u-c.e. sets, there exists a computable function f such that Wu
f(y) =

Ay, where Ay ∈ Σ−1
u as witnessed by Hy and Gy defined below. For all x, t,

Hy(x, t) = Ei(x, t), if x ≤ |Wy,t|; Hy(x, t) = 0, if x > |Wy,t|.
Gy(x, t) = Fi(x, t), if x ≤ |Wy,t|; Gy(x, t) = u, if x > |Wy,t|.
It is easy to verify that f witnesses the lemma.

We next prove some hardness results for Θu(C).
The following three lemmas allow us to deduce in Corollary 3.5 that if Θu(C) is u-c.e., then C = {Wu

i :
for some finite set S ∈ C, Wu

i ⊇ S}.
The first lemma shows that if C contains some infinite u-c.e. set, but not any finite subset of it, then

K ′ ≤1 Θu(C).

Copyright line will be provided by the publisher



8 J. Case and S. Jain: Rice and Rice-Shapiro Theorems

Lemma 3.2 Suppose C contains some infinite u-c.e. set, but no finite subset of it, then K ′ ≤1 Θu(C).

P r o o f. Let Wu
i be the infinite u-c.e. set which is in C, but no finite subset of Wu

i is in C.
Let f be as in Lemma 3.1 (corresponding to above i). Then, f witnesses that Wy is infinite iff

f(y) ∈ Θu(C). Thus, K ′ ≤1 Θu(C).

The next lemma shows that if C contains some finite set S, every finite superset of S, but not some
u-c.e. superset of S, then K ′ ≤1 Θu(C).

Lemma 3.3 If C contains every finite superset of a finite set S, but not some u-c.e. superset S′ of
S, then K ′ ≤1 Θu(C).

P r o o f. Suppose Wu
i = S′.

Let f be as in Lemma 3.1 (for above i). Let f ′ be 1–1 computable function such that Wu
f ′(x) =

Wu
f(x) ∪ S.
Then, Wx is infinite implies Wu

f ′(x) = Wu
i , and thus f ′(x) 6∈ Θu(C). On the other hand, if Wx is

finite, then Wu
f ′(x) is a finite superset of S, and thus f ′(x) ∈ Θu(C). Thus, K ′ ≤ Θu(C).

The next lemma shows that if C contains S but not some c.e. (in particular finite) superset S′ of S,
then Ku ≤1 Θu(C), thus Θu(C) cannot be u-c.e.

Lemma 3.4 Suppose u ≥O 1. If C contains a finite set S, but not some c.e. superset S′ of S, then
Ku ≤1 Θu(C).

P r o o f. Suppose Wu
i = Ku. Let z be such that Wz = S′ − S.

By the S-m-n Theorem for u-c.e. sets, there exists a 1–1 computable function f such that Wu
f(y) = Ay,

where Hy(·, ·), Gy(·, ·) below witness that Ay is in Σ−1
u .

For all x, y:

Hy(x, 0) = 0 and Gy(x, 0) = u.

For x ∈ S and t > 0:

Hy(x, t) = 1 and Gy(x, t) = 0.

For x 6∈ S and t > 0:

Hy(x, t) = 1, if Ei(y, t) = 1 and x ∈ Wz,t;
Hy(x, t) = 0, if Ei(y, t) = 0 or x 6∈ Wz,t;
Gy(x, t) = u, if for all t′ ≤ t, Hy(x, t′) = 0;
Gy(x, t) = Fi(y, t), if for some t′ ≤ t, Hy(x, t′) = 1.

Note that S ⊆ Wu
f(y), for all y. Furthermore, if x 6∈ Wz ∪ S, then x 6∈ Wu

f(y), and if x ∈ Wz, then
x ∈ Wu

f(y) iff y ∈ Wu
i = Ku. Therefore, if y ∈ Ku, then Wu

f(y) = Wz ∪ S = S′ and if y 6∈ Ku, then

Wu
f(y) = S. Thus, y ∈ Ku iff f(y) ∈ Θu(C).
The Lemma follows.

As a corollary to Lemmas 3.2, 3.3, and 3.4, we have the following.

Corollary 3.5 Suppose u ≥O 1. If Θu(C) is u-c.e., then C = {Wu
i : for some finite set S ∈ C,

Wu
i ⊇ S}.
If u ≥ 2 and Θu(C) is u-r.e., then the following lemma, along with the above corollary, allows us to

conclude that either C = ∅ or C = {Wu
i : S ⊆ Wu

i }, for some finite set S.

Lemma 3.6 Suppose u ≥O 2. Suppose S, S′ ∈ C but S ∩S′ 6∈ C, where S, S′ are finite. Then, Θu(C)
is not u-c.e.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 9

P r o o f. Suppose by way contradiction z is an u-c.e. index for Θu(C).
Then by the Kleene’s Recursion Theorem for Wu, there exists an e such that Wu

e = Ae, where He(·, ·)
and Ge(·, ·) below witness that Ae ∈ Σ−1

u .
For all x:

He(x, 0) = 0 and Ge(x, 0) = u.

For all x ∈ S ∩ S′ and for all t > 0:

He(x, t) = 1 and Ge(x, t) = 0.

For x 6∈ S′ ∪ S and all t,

He(x, t) = 0 and Ge(x, t) = u.

For x ∈ S − S′ and t > 0:

He(x, t) = 1 and Ge(x, t) = 1, if for all t′ < t, Ez(e, t′) = 0;
He(x, t) = 0 and Ge(x, t) = 0, if for some t′ < t, Ez(e, t′) 6= 0.

For x ∈ S′ − S and t > 0:

He(x, t) = 0, if Ez(e, t) = 1 or, for all t′ < t, Ez(e, t′) = 0.
He(x, t) = 1, if Ez(e, t) = 0 and, for some t′ < t, Ez(e, t′) = 1.
Ge(x, t) = u, if for all t′ < t, He(x, t′) = He(x, t);
Ge(x, t) = Fz(e, t), if for some t′ < t, He(x, t′) 6= He(x, t).

If Ez(e, t) = 0 for all t, then clearly, Wu
e = S, and thus, z is not an u-c.e. index for Θu(C). On the

other hand, if Ez(e, t) = 1 for some t, then Wu
e = S′ if Ez(e, ·) converges to 0 and Wu

e = S ∩ S′ if
Ez(e, ·) converges to 1. It follows that z is not an u-c.e. index for Θu(C) in this case also.

The following Lemma strengthens Lemma 3.6 in the case that u ≥0 3 and uO is not a limit ordinal.
Lemma 3.7 Suppose u ≥O 3 and uO is not a limit ordinal. Suppose C contains S but no proper

subset of S, and S contains at least 2 elements. Then Θu(C) cannot be u-c.e.

P r o o f. Suppose by way of contradiction that z is an u-c.e. index for Θu(C). Then by the Kleene’s
Recursion Theorem for Wu, there exists an e such that Wu

e = Ae, where He(·, ·) and Ge(·, ·) below
witness that Ae ∈ Σ−1

u .
Let a, b ∈ S, where a, b are distinct.
For all x, let

He(x, 0) = 0 and Ge(x, 0) = u.

For x ∈ S − {a, b}, and t > 0, let

He(x, t) = 1 and Ge(x, t) = 0.

For x 6∈ S, and t > 0, let

He(x, t) = 0 and Ge(x, t) = 0.

Let He(a, t) = He(b, t) = 1 and Ge(a, t) = Ge(b, t) = pred(u), for 1 ≤ t ≤ t′e, where t′e is the least
number (if any) such that Ez(e, t′e) = 1.

Let He(a, t) = 1, He(b, t) = 0, Ge(a, t) = pred(u) and Ge(b, t) = 1, for t′e < t ≤ t′′e , where t′′e is the
least number > t′e, if any, such that Ez(e, t′′e ) = 0.

Let He(b, t) = 1, Ge(b, t) = 0, for t > t′′e .
For t > t′′e , let He(a, t) = 1, if Ez(e, t) = 0, and He(a, t) = 0, if Ez(e, t) = 1. Let Ge(a, t) = Fz(a, t),

for t > t′′e .
Clearly, if t′e is not defined, then Wu

e = S, but e 6∈ Wu
z . Similarly, if t′e is defined but t′′e is not defined,

then Wu
e = S − {b}, but e ∈ Wu

z . On the other hand, if t′′e is defined, then Wu
e = S if e 6∈ Wu

z and
Wu

e = S − {a} if e ∈ Wu
z . Thus, in any of the cases, Wu

z 6= Θu(C).

Copyright line will be provided by the publisher



10 J. Case and S. Jain: Rice and Rice-Shapiro Theorems

4 Results

Theorem 4.1 Suppose u ≥O 2. Suppose C ⊆ Σ−1
u . If Θu(C) is u-c.e., then either C = ∅ or

C = {Wu
i : S ⊆ Wu

i }, for some finite set S.

P r o o f. Follows from Corollary 3.5 and Lemma 3.6.

As a corollary to the just prior theorem (Theorem 4.1), we get the following analog of Rice’s Theorem
and the first of our main results. New to the present paper are the cases where u is for a transfinite
ordinal.

Corollary 4.2 Suppose u ≥O 2. Suppose 1 ≤ u′ <O u. Suppose C ⊆ Σ−1
u . Then Θu(C) is u′-c.e. iff,

C = ∅ or C = Σ−1
u . Furthermore, Θu(C) is computable iff, C = ∅ or C = Σ−1

u .

Theorem 4.3 Suppose u ≥O 3, and uO is not a limit-ordinal. Suppose C ⊆ Σ−1
u . If Θu(C) is u-c.e.,

then either C = ∅, C = Σ−1
u , or C = {Wu

i : a ∈ Wu
i }, for some a ∈ N.

P r o o f. Follows from Corollary 3.5, Lemma 3.6, and Lemma 3.7.

Theorem 4.4 Let a ∈ N, and C = {Wu
i : a ∈ Wu

i }. Then, for u ≥O 1, Θu(C) is u-c.e.

P r o o f. Let H(i, t) = Ei(a, t), and G(i, t) = Fi(a, t). Then Θu(C) ∈ Σ−1
u as witnessed by H and

G.

The just above two theorems together characterize when Θu(C) is u-c.e., for non-limit ordinal nota-
tions u ≥O 3. The corresponding corollary immediately below is, then, the second of our main results,
and it provides, for notations in O for transfinite successor ordinals, a new analog of the Rice-Shapiro
Theorem.

Corollary 4.5 Suppose u ≥O 3, and uO is not a limit-ordinal, and C ⊆ Σ−1
u . Then, Θu(C) is

u-c.e. iff, C = ∅, or C = Σ−1
u , or C = {Wu

i : a ∈ Wu
i }, for some a ∈ N.

However, a result similar to Theorem 4.3 does not hold for at least some limit ordinals, as the following
Theorem shows.

Theorem 4.6 Suppose u is a notation for ω. Suppose S is a finite set. Let C consist of all u-c.e. sets
which contain S. Then, Θu(C) is u-c.e.

P r o o f. Given a fixed S, define H and G as follows.
H(e, t) = 0, if Ee(x, t) = 0 for some x ∈ S.
H(e, t) = 1, if Ee(x, t) = 1 for all x ∈ S.
Let t′e be the least t such that H(e, t) = 1 (here, if no such t exists, then we take t′e to be ∞).
G(e, t) = u, for t < t′e.
G(e, t) =

∑
x∈S Fe(x, t), for t ≥ t′e.

(Note that, in the above,
∑

is the +O summation over the finite ordinals Fe(x, t)).
It is easy to verify that H and G witness that Θu(C) is a Σ−1

u set.

Note that the above Theorem along with Theorem 4.1 characterizes when Θu(C) is u-r.e., for u being
a notation for ω.

Corollary 4.7 Suppose u is a notation for ω. Suppose C ⊆ Σ−1
u . Then, Θu(C) is u-c.e. iff, either

C = ∅ or C = {Wu
i : S ⊆ Wu

i }, for some finite set S.

The proof of Theorem 4.6 easily generalizes to give the following theorem.

Theorem 4.8 Suppose u is a notation for a limit ordinal. Suppose there is a partial computable
function fplus such that fplus is strictly monotonic with respect to <O in each of its arguments <O u, and
fplus(u1, u2) <O u, for all u1, u2 <O u (thus, fplus(u1, fplus(u2, fplus(u3, . . . fplus(uk, uk+1)))) <O u, for
any u1, u2, . . . , uk, uk+1 <O u). Suppose S is a finite set. Let C consist of all u-c.e. sets which contain
S. Then, Θu(C) is u-c.e.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 11

Corollary 4.9 Suppose u is a notation for a limit ordinal. Suppose there is a partial computable
function fplus such that fplus is strictly monotonic with respect to <O in each of its arguments <O u, and
fplus(u1, u2) <O u, for all u1, u2 <O u (thus, fplus(u1, fplus(u2, fplus(u3, . . . fplus(uk, uk+1)))) <O u,
for any u1, u2, . . . , uk, uk+1 <O u). Suppose C ⊆ Σ−1

u . Then, Θu(C) is u-c.e. iff, either C = ∅ or
C = {Wu

i : S ⊆ Wu
i }, for some finite set S.

The just above corollary (Corollary 4.9) applies to notations (in OCantor) of the form wv, v >O 0,
where we take fplus = (+)O. Hence, we obtain immediately below our third main result which provides
an analog of the Rice-Shapiro Theorem for such notations.

Corollary 4.10 Suppose v >O 0. Suppose u = wv. Suppose C ⊆ Σ−1
u . Then, Θu(C) is u-c.e. iff,

either C = ∅ or C = {Wu
i : S ⊆ Wu

i }, for some finite set S.
Lemma 4.11 Suppose u is a notation for a limit ordinal. Suppose for some u1 <O u, u2 <O u and

for some f(·), a partial computable function strictly monotonic with respect to <O on any argument
<O u2, we have, for all u′ satisfying u1 ≤O u′ ≤O u, there is a u′2 <O u2 such that f(u′2) = u′.

Suppose C contains S but no proper subset of S, and S contains at least 2 elements. Then Θu(C)
cannot be u-c.e.

P r o o f. Suppose by way of contradiction that z is an u-c.e. index for Θu(C). Then by the Kleene’s
Recursion Theorem for Wu, there exists an e such that Wu

e = Ae, where He(·, ·) and Ge(·, ·) below
witness that Ae ∈ Σ−1

u .
Let a, b ∈ S, where a, b are distinct.
For all x, let

He(x, 0) = 0 and Ge(x, 0) = u.

For x ∈ S − {a, b}, and t > 0, let

He(x, t) = 1 and Ge(x, t) = 0.

For x 6∈ S, and t > 0, let

He(x, t) = 0 and Ge(x, t) = 0.

Let He(a, 1) = He(b, 1) = 1 and Ge(a, 1) = u1, Ge(b, 1) = u2. Let t′e > 1 be least, if any, such that
Fz(e, t′e) <O u1 (if there is no such t′e, then we take t′e = ∞ for the following).

For 1 < t < t′e, we let He(a, t) = 1, Ge(a, t) = u1, He(b, t) = 1 − Ez(e, t), and Ge(b, t) be the
successor of f−1(Fz(e, t)). For t ≥ t′e, we let He(b, t) = 1, Ge(b, t) = 0, He(a, t) = 1 − Ez(e, t), and
Ge(a, t) = Fz(e, t).

Now, clearly, Wu
e = Ae is u-c.e. as witnessed by He and Ge. Furthermore, if limt→∞Ez(e, t) = 0

then Wu
e = S, and if limt→∞Ez(e, t) = 1 then Wu

e = S − {a} or Wu
e = S − {b}, based on whether

limt→∞ Fz(e, t) < u1 or not. Thus, if e ∈ Wu
z then Wu

e is a proper subset of S, and if e 6∈ Wu
z then

Wu
e = S. Thus, in any of the cases, Wu

z 6= Θu(C).

From the just above lemma, as a generalization of Theorem 4.3, we get the following.
Theorem 4.12 Suppose u is a notation for a limit ordinal. Suppose for some u1 <O u, u2 <O u

and for some f(·), a partial computable function strictly monotonic with respect to <O on any argument
<O u2, we have, for all u′ satisfying u1 ≤O u′ ≤O u, there is a u′2 <O u2 such that f(u′2) = u′. Suppose
C ⊆ Σ−1

u . If Θu(C) is u-c.e., then either C = ∅, C = Σ−1
u , or C = {Wu

i : a ∈ Wu
i }, for some a ∈ N.

P r o o f. Follows from Corollary 3.5, Lemma 3.6, and Lemma 4.11.

As a corollary, using Theorem 4.4, we get
Corollary 4.13 Suppose u is a notation for a limit ordinal. Suppose for some u1 <O u, u2 <O u

and for some f(·), a partial computable function strictly monotonic with respect to <O on any argument
<O u2, we have, for all u′ satisfying u1 ≤O u′ ≤O u, there is a u′2 <O u2 such that f(u′2) = u′. Suppose
C ⊆ Σ−1

u . Then, Θu(C) is u-c.e. iff, either C = ∅, C = Σ−1
u , or C = {Wu

i : a ∈ Wu
i }, for some a ∈ N.

Copyright line will be provided by the publisher



12 J. Case and S. Jain: Rice and Rice-Shapiro Theorems

We will show, as a consequence of the just prior corollary (Corollary 4.13), our fourth and last main
result immediately below. It handles the remaining case of limit ordinal notations u ∈ OCantor, the case
where u is not of the form wv.

Corollary 4.14 Suppose u ∈ OCantor is for a limit ordinal but, for all v, u 6= wv. Suppose C ⊆ Σ−1
u .

Then, Θu(C) is u-c.e. iff, either C = ∅, C = Σ−1
u , or C = {Wu

i : a ∈ Wu
i }, for some a ∈ N.

P r o o f. Suppose the hypotheses. We first reason about such u ∈ OCantor.
Below in this proof, it is to be understood that terms connected by +O are associated to the right.
By Theorem 2.2 above, u must be of the form wv1 ×O n1 +O wv2 ×O n2 +O · · ·+O wvk ×O nk, where

k > 0, n1, n2 . . . , nk ∈ N, v1 >O v2 >O · · · >O vk >O 0, and either (i) n1 > 1 or (i) n1 = 1 and some
nm > 0 where 2 ≤ m ≤ k,

In each of cases (i) and (ii) about u just above, we choose below corresponding u1, u2. For each of
our cases, for its corresponding choice of u1, u2, for each x <O u2, we take f(x) = u1(+)Ox. In each of
our cases, we suppose u1 ≤O u′ ≤O u, and we need to provide a u′2 <O u2 so that f(u′2) = u′.

In case (i), choose u1 = wv1×n1 − 1, and u2 = (wv1×O1+Owv2×On2+O · · ·+Owvk×Onk)(+)Ow0×O
1. Hence, u2 = wv1 ×O 1 +O wv2 ×O n2 +O · · ·+O wvk ×O nk +O w0 ×O 1, and w0 ×O 1 = 1.

In this case, u′ must, then, be of the form u1(+)Ou′2, for some u′2 <O u2. Then, clearly, f(u′2) = u′.
In case (ii), choose u1 = wv1 × 1, and u2 = (wv2 ×O n2 +O · · ·+O wvk ×O nk)(+)Ow0 ×O 1. Hence,

u2 = wv2 ×O n2 +O · · ·+O wvk ×O nk +O w0 ×O 1, and w0 ×O 1 = 1.
In this case too, u′ must, then, be of the form u1(+)Ou′2, for some u′2 <O u2. Then, clearly,

f(u′2) = u′.

5 Acknowledgements

We thank Frank Stephan for many helpful discussions and comments.

References

[1] Y. Ershov, A hierarchy of sets I, Alg. Log. 7, 23–43 (1968).
[2] Y. Ershov, A hierarchy of sets II, Alg. Log. 7, 212–232 (1968).
[3] Y. Ershov, A hierarchy of sets III, Alg. Log. 9, 20–31 (1970).
[4] H. Rogers, Theory of Recursive Functions and Effective Computability (McGraw Hill, New York, 1967),

Reprinted, MIT Press, 1987.
[5] L. Hay, Rice theorems for d.r.e. sets, Can. J. Math. 27, 352–365 (1975).
[6] N. Johnson, Rice theorems for Σ−1

n sets, Can. J. Math. 29, 794–805 (1977).
[7] M. Burgin, Grammars with prohibition and human-computer interaction, in: Proceedings of the 2005

Business and Industry Symposium and the 2005 Military, Government, and Aerospace Simulation Sym-
posium, edited by J. Hill (Society for Modeling and Simulation, 2005), pp. 143–147.

[8] J. Case and J. Royer, Program size complexity of correction grammars, 2010, Working draft.
[9] L. Carlucci, J. Case, and S. Jain, Learning correction grammars, J. Symb. Log. 74(2), 489–516 (2009).

[10] S. Kleene, Notations for ordinal numbers, J. Symb. Log. 3, 150–155 (1938).
[11] S. Kleene, On the forms of predicates in the theory of constructive ordinals, Am. J. Math. 66, 41–58

(1944).
[12] S. Kleene, On the forms of predicates in the theory of constructive ordinals (second paper), Am. J. Math.

77, 405–428 (1955).
[13] G. Sacks, Higher Recursion Theory, Perspectives in Mathematical Logic, Vol. 2 (Springer-Verlag, Berlin,

1990).
[14] C. Ash and J. Knight, Recursive structures and Ershov’s hierarchy, Math. Log. Q. 42, 461–468 (1996).
[15] G. Takeuti, Proof Theory, second edition (North-Holland, 1987).
[16] M. Rathjen, The realm of ordinal analysis, in: Sets and Proofs, edited by S. Cooper and J. Truss, London

Mathematical Society Lecture Notes Series (Cambridge University Press, 1999), pp. 219–279.
[17] W. Buchholz, Proof-theoretic analysis of termination proofs, Ann. Pure Appl. Log. 75, 57–65 (1995).
[18] A. Weiermann, Proving termination for term rewriting systems, in: Computer Science Logic, 5th Work-

shop, edited by E. Börger, G. Jäger, H. Büning, and M. Richter, Lecture Notes in Computer Science
Vol. 626 (Springer, 1992), pp. 419–428.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 13

[19] R. Freivalds and C. Smith, On the role of procrastination in machine learning, Inform. Comput. 107(2),
237–271 (1993).

[20] A. Sharma, F. Stephan, and Y. Ventsov, Generalized notions of mind change complexity, Inform. Comput.
189(2), 235–262 (2004).

[21] A. Ambainis, R. Freivalds, and C. Smith, Inductive inference with procrastination: Back to definitions,
Fundam. Inform. 40, 1–16 (1999).

[22] J. Case and T. Kötzing, Dynamically delayed postdictive completeness and consistency in learning, in:
19th International Conference on Algorithmic Learning Theory (ALT’08), edited by T. Freund, L. Györfi,
G. Turán, and T. Zeugmann, Lecture Notes in Artificial Intelligence Vol. 5254 (Springer, 2008), pp. 389–
403.

[23] R. Soare, Turing oracle machines, online computing, and three displacements in computability theory,
Ann. Pure Appl. Log. 160, 368–399 (2009).

[24] M. Machtey and P. Young, An Introduction to the General Theory of Algorithms (North Holland, New
York, 1978).

[25] J. Royer and J. Case, Subrecursive Programming Systems: Complexity and Succinctness, Progress in
Theoretical Computer Science (Birkhäuser Boston, 1994).

[26] H. Rice, Class of recursively enumerable sets and their decision problems, Transactions of the American
Mathematical Society 74, 358–366 (1953).

[27] J. Myhill, A fixed point theorem in recursion theory, J. Symb. Log. 20, 205 (1955).
[28] M. Blum, A machine independent theory of the complexity of recursive functions, J. ACM 14, 322–336

(1967).
[29] J. Hopcroft and J. Ullman, Introduction to Automata Theory Languages and Computation (Addison-

Wesley Publishing Company, 1979).
[30] A. Ambainis, J. Case, S. Jain, and M. Suraj, Parsimony hierarchies for inductive inference, J. Symb.

Log. 69, 287–328 (2004).
[31] W. Sierpiński, Cardinal and ordinal numbers (PWN –Polish Scientific Publishers, 1965), Second revised

edition.
[32] K. Kuratowski and A. Mostowski, Set Theory, Studies in Logic and The foundations of Mathematics,

Vol. 86 (North-Holland, 1967).
[33] R. Epstein, R. Haas, and R. Kramer, Hierarchies of sets and degrees below 0′, in: Logic Year 1979–80,

edited by M. Lerman, J. H. Schmerl, and R. I. Soare, Lecture Notes in Mathematics, Vol. 859 (Springer–
Verlag, Heidelberg, 1981), pp. 32–48.

[34] V. Selivanov, On a hierarchy of limiting computations, Sib. Math. Zh. 25(5), 146–156 (1984), In Russian
(English translation in Sib. Math. J., 25:798-806, 1984).

Copyright line will be provided by the publisher


