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Abstract

Intuitively, a class of objects is robustly learnable if not only this class itself is learnable but
all of its computable transformations remain learnable as well. In that sense, being learnable
robustly seems to be a desirable property in all fields of learning.

We will study this phenomenon within the paradigm of inductive inference. Here a class of
recursive functions is called robustly learnable under a success criterion I iff all of its images
under general recursive operators are learnable under the criterion I. Fulk [Ful90] showed
the existence of a non-trivial class which is robustly learnable under the criterion Ex. However,
several of the hierarchies (such as the anomaly hierarchies for Ex and Bc) do not stand robustly.
Hence, up to now it was not clear if robust learning is really rich. The main intention of this
paper is to give strong evidence that robust learning is rich.

Our main result proved by a priority construction is that the mind change hierarchy for Ex
stands robustly. Moreover, the hierarchies of team learning for both Ex and Bc stand robustly
as well. In several contexts, we observe the surprising fact that a more complex topological
structure of the classes to be learned leads to positive robustness results, whereas an easy
topological structure yields negative results. We also show the counter-intuitive fact that even
some self-referential classes can be learned robustly. Some of our results point out the difficulty
of robust learning when only a bounded number of mind changes is allowed. Further results
concerning uniformly robust learning are derived.

1 Introduction

Consider the following basic learning scenario. A learning machine has to learn some unknown
object, that is, based on some information the machine creates one or more hypotheses which
finally yield a correct global description of that object. Then consider the extent to which such a
machine can be a general purpose learner in that it can learn each object from a, finite or even
infinite, class of objects. In various learning models this can be shown to be possible. A next
question to ask then could be the following: How “stable” is the property that a class is learnable?
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That is, under which, small or not so small, “transformations” the transformed classes remain
learnable? Of course, this may depend on the class under consideration; some classes may be more
stable in that sense than others. In the best case, there could be learnable classes such that all of
their “derivatives” remain learnable. Such classes, if any, we call robustly learnable. Do they exist
at all? And, if they do, how “rich” are they? Are they worth studying? It may be interesting
to answer these questions in any concrete learning model. We will do so within the paradigm of
inductive inference. Our main intention is to give strong evidence that in this model, and hence,
hopefully, in others too, robust learning is really rich.

The basic learning situation in inductive inference may be described as follows. A learner
receives as input a graph of a function f , one element at a time. As the learner is receiving its
input, it conjectures a sequence of programs as hypotheses. The learner is said to Ex-identify f iff
the sequence of programs output by it converges to a program for f . This is essentially the model
of identification introduced by Gold [Gol67] (see the formal definitions in Section 2).

In this paper we will restrict our attention to computable learners of (classes of) total and
computable, i.e. recursive, functions. Let us consider the extent to which a machine M can be a
general purpose learner, i.e., to what extent it can, say, Ex-identify each function f in a class of
functions. For example, it is not too difficult to show that a suitable machine M can Ex-identify the
class of all the polynomials. Gold [Gol67] even showed that one can Ex-identify every recursively
enumerable class of recursive functions. This can be done as follows: Suppose C is a recursively
enumerable class of recursive functions. Let p0, p1, . . . be an effective sequence of programs which
compute exactly the functions in C. Consider a machine M which behaves as follows: on any input
data, M searches for the least i such that the function computed by program pi is consistent with
the input data; M then outputs pi. It can be shown that M acting as above will Ex-identify each
function in C. The above technique is often called identification by enumeration. The naturalness
of this strategy led Gold to conjecture that any class of functions which can be Ex-identified, can
also be Ex-identified using identification by enumeration. In other words, Gold’s conjecture was:
every Ex-identifiable class is contained in a recursively enumerable class of functions. However,
as Bārzdiņš proved in [Bār71], this conjecture is false. He exhibited the following “self-describing”
class SD of recursive functions, SD = {f | f(0) is a program for f}. A machine can Ex-identify
each function f in SD by just outputting the program f(0). On the other hand, no recursively
enumerable class of recursive functions contains SD.

In the 1970’s Bārzdiņš came up with a more sophisticated version of Gold’s conjecture designed
to transcend such self-referential counterexamples as above. He reasoned that if a class of functions
is identifiable only by way of a self-referential property, then there would be an “effective transfor-
mation” that would transform the class into an unidentifiable one. The idea is that if a learning
device is able to find the embedded self-referential information in the elements of a class, so can
an effective transformation, which can then weed out this information. Naturally, the notion of an
effective transformation can be made precise in several ways. In the present paper we therefore use
the concept of general recursive operators, i.e. effective and total mappings from total functions
to total functions (see Definition 6); below we will discuss this choice and possible alternatives in
more detail. In order to illustrate Bārzdiņš’ intuition in the context of the class SD above, con-
sider the operator Θ weeding out the self-referential information f(0) as follows: Θ(f) = g, where
g(x) = f(x+ 1). One can show that Θ(SD) = {Θ(f) | f ∈ SD} = R, the class of all the recursive
functions. Thus, Θ(SD) is not Ex-identifiable [Gol67]. Informally, Bārzdiņš’ conjecture then can be
stated as follows: If all the projections of a class of functions under all general recursive operators
are identifiable (or, in other words, if the class is identifiable robustly), then the class is contained
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in a recursively enumerable class of recursive functions and, consequently, it is identifiable by enu-
meration. This was how the notion of robust learning appeared in inductive inference historically.
Zeugmann [Zeu86] and Kurtz and Smith [KS89] then dealt with Bārzdiņš’ conjecture. The paper
[Zeu86] is remarkable in several respects. It gives a formal statement of Bārzdiņš’ conjecture for the
first time. To this end, effective operators (see [Rog67]) rather than general recursive operators are
used to make the notion of effective transformations mathematically precise. Then this conjecture
has been verified for several learning criteria, namely Ex0-identification (see Definition 1), REx-
identification and T Ex-identification (reliable learning; here the learning machine is not allowed to
converge on a recursive or total function, respectively, which cannot be learned by the machine).
For Ex-identification, Bārzdiņš’ conjecture remained open. The paper [KS89] sparked Fulk’s inter-
est in Bārzdiņš’ conjecture. He then showed in [Ful90] that Bārzdiņš’ conjecture as stated above is
false by exhibiting a class of functions which is robustly Ex-identifiable, but not contained in any
recursively enumerable class of recursive functions. This result can be taken as the first non-trivial
step to show that, in the model of inductive inference, robust learning may be really interesting
and rich.

Since Gold [Gol67] many criteria of inference have been proposed by researchers all over the
world, see for example [AS83, BB75, CS83, Fre91, KW80, JORS99]. These have usually been accom-
panied by proofs showing the differences between the new and old criteria of inference. The proof
techniques used to show separations between the criteria often involve classes with self-referential
properties. Thus, it would be interesting to study whether these separations hold robustly. For
example, Fulk [Ful90] showed that the anomaly hierarchies for Ex and Bc-identification (see formal
definitions in Section 2) do not hold robustly. Hence, one may expect some celebrated results of
inductive inference (especially the hierarchies) not to stand robustly.

In this paper we further study robust identification. Our main result, Theorem 24 and Corol-
lary 31, shows that the mind change hierarchy with respect to Ex-identification stands robustly!
Contrast this with the fact that the anomaly hierarchies for Ex and Bc-identification do not stand
robustly. The proof of this result uses a complicated priority construction. We can also show that
the hierarchies of team learning for both Ex and Bc [Smi82] stand robustly as well (Theorem 41 and
Corollary 42). Moreover, we exhibit the counter-intuitive fact that even some of the self-describing
classes can be learned robustly (Theorem 36). In a sense, this yields also a “second order” disproof
of Bārzdiņš’ conjecture, since we disprove it even with self-describing classes, i.e. with classes for
which it was commonly believed that this conjecture does hold. Consequently, there are two kinds
of self-describing classes, namely robustly learnable ones, and not robustly learnable ones (such
as SD mentioned above). In order to find out where this difference may come from, we made a
surprising observation, namely that the robust self-describing class from Theorem 36 has a much
more complex topological structure (more exactly, it possesses some kind of “accumulation point”)
than the non-robustly learnable class SD (which is “extremely discrete” in that f(0) 6= g(0), for all
distinct f and g in SD). Moreover, it is precisely this topological structure which apparently yields
the corresponding robustness property (see the more detailed discussion after Theorem 36, where
we can rely on the corresponding proof). Note that both SD and the class from Theorem 36 are not
contained in any recursively enumerable class of recursive functions. Interestingly, a similar type of
phenomenon is observed also for recursively enumerable classes. There, again, the more complex
topological structure leads to a positive robustness result (concerning the existence of an infinite
robustly learnable subclass), whereas the “trivial” structure yields a corresponding negative result
(see Theorem 22, Corollary 33, and the discussion following Corollary 33).

Several of our results show the difficulty of robustly identifying even simple classes when only
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a bounded number of mind changes is allowed. For example, Theorem 16 shows that no infinite
class of functions can be robustly finitely identified (i.e. Ex-identified without any mind changes).
Theorem 18 states that no infinite recursively enumerable class of functions can be robustly iden-
tified with a bounded number of mind changes. Theorem 22 points out that some simple classes
such as the class of all constant functions, do not even contain any infinite subclass which can be
robustly Ex-identified with a bounded number of mind changes.

We have also considered uniformly robust learning. Informally, a class C is uniformly robustly
learnable if C is robustly learnable, and, moreover, given any general recursive operator Θ, one can
effectively generate a machine which learns the class Θ(C). In other words, the images of C are all
not only learnable in that learning machines for them exist, but one even has learning machines for
them effectively at hand. For this strengthened version of robust learning, we have both positive
and negative results. Actually, for Ex-learning with a bounded number of mind changes, uniformly
robust learning is possible only for very restricted classes, whereas for standard Ex-learning as well
as for some kind of generalized Ex-learning, uniformly robust learning seems to be achievable for
quite rich classes.

We have mainly concentrated on robustness under transformations by general recursive opera-
tors. This is mainly due to the fact that we deal with learning of recursive functions, and general
recursive operators transform any class of recursive functions “automatically” into a class of re-
cursive functions again. Also in the papers [CJO+98] and [OS99] dealing with robust learning,
the set of general recursive operators or subsets of this set such as the primitive recursive oper-
ators are used, respectively. On the other hand, it may be useful to consider robustness under
transformations by recursive operators which are only required to take the functions in the class
being learned to total functions, but need not map functions outside this class to total functions.
In Section 6, we note that some of our positive results, such as the mind change hierarchy, hold
even for this strengthened form of robustness. Moreover, again some self-referential classes turn
out to be robustly learnable in this strengthened sense. Hence, as a non-expected consequence,
even recursive operators are not capable of weeding out all self-referential codings! However, other
results specifically use the properties of general recursive operators, and thus do not go through for
this strengthened form of robustness. As already mentioned above, there are further approaches
to make the notion of an “effective transformation” mathematically precise. Recall that in [Zeu86]
effective operators are used for this purpose. At this moment, we do not see any “master approach”
to this end. Actually, each approach seems to be justified if it yields interesting results.

In [CJO+98] robust learning has been studied for another specific learning scenario, namely
learning aided by context. The intuition behind this model is to present the functions to be learned
not in a pure fashion to the learner, but together with some “context” which is intended to help
in learning. It is shown then that within this scenario several results hold robustly as well. In
[OS99] the notion of hyperrobust learning is introduced. A class of recursive functions is called
hyperrobustly learnable if there is one and the same learner which learns not only this class itself but
also all of its images under all primitive recursive operators. Hence this learner must be capable
to learn the union of all these images. This definition is then justified by the following results.
First, it is shown that the power of hyperrobust learning does not change if the class of primitive
recursive operators is replaced by any larger, still recursively enumerable class of general recursive
operators. Second, based on this stronger definition Bārzdiņš’ conjecture is proved by showing that
a class of recursive functions is hyperrobustly Ex-learnable iff this class is contained in a recursively
enumerable class of recursive functions.

On a philosophical side, Herman Weyl [Wey52] started to describe the famous Erlangen program
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on founding geometry algebraically due to Felix Klein as follows: “If you are to find deep properties
of some object, consider all the natural transformations that preserve your object (i.e. under which
the object remains invariant).” Since general recursive operators (or other types of operators)
can be looked upon as natural transformations, it is interesting to consider robust identification
from a purely philosophical point of view too. Note that in [AF96] a problem dual to ours is
investigated. While we will search for learnable classes which remain learnable under all general
recursive operators, Ambainis and Freivalds - even more in the spirit of the Erlangen program
- search for such general recursive operators which map all learnable classes to learnable classes.
However, being robustly identifiable is a desirable property worth studying on its own. Actually,
we feel it fully justified to find out both, which classes of objects are not only learnable themselves
but also all of their “derivatives” and where this property comes from.

The paper is organized as follows. In Section 2 the needed definitions and some basic results are
presented. In Section 3 robust learning with a bounded number of mind changes is investigated. In
Section 4 the hierarchies on robust team identification are derived. Section 5 deals with uniformly
robust learning. In Section 6 we discuss the results obtained and point out some directions for future
work. Finally, note that the present paper is an extended version of both [JW97] and [JSW98].

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set of
natural numbers. ∗ denotes a non-member of N and is assumed to satisfy (∀n)[n < ∗ < ∞].
Let ∈,⊆,⊂,⊇,⊃, respectively denote the membership, subset, proper subset, superset and proper
superset relations for sets. The empty set is denoted by ∅. We let card(S) denote the cardinality
of the set S. So “card(S) ≤ ∗” means that card(S) is finite. The minimum and maximum of a set
S are denoted by min(S) and max(S), respectively. We take max(∅) to be 0 and min(∅) to be ∞.
For a set A, 2A denotes the power set of A.
〈·, ·〉 denotes a 1-1 computable mapping from pairs of natural numbers onto natural numbers.

π1, π2 are the corresponding projection functions. 〈·, ·〉 is extended to n-tuples of natural numbers
in a natural way. Λ denotes the empty function. η, with or without decorations1, ranges over
partial functions. If η1 and η2 are both undefined on input x, then, we take η1(x) = η2(x). We
say that η1 ⊆ η2 iff for all x in domain of η1, η1(x) = η2(x). For a ∈ N ∪ {∗}, η1 =a η2 means
that card({x | η1(x) 6= η2(x)}) ≤ a. η1 6=a η2 means that ¬[η1 =a η2]. If η =a f , then we often
call a program for η as an a-error program for f . We let domain(η) and range(η) respectively
denote the domain and range of the partial function η. η(x)↓ denotes that η(x) is defined. η(x)↑
denotes that η(x) is undefined. We say that a partial function η is consistent with η′ iff for all
x ∈ domain(η) ∩ domain(η′), η(x) = η(x′). η is inconsistent with η′ iff there exists an x such that
η(x)↓ 6= η′(x)↓.

f, g, h, F and H, with or without decorations, range over total functions. R denotes the class
of all recursive functions, i.e., total computable functions with arguments and values from N . C
and S, with or without decorations, range over subsets of R. P denotes the class of all partial
recursive functions over N . ϕ denotes a fixed acceptable programming system. ϕi denotes the
partial recursive function computed by program i in the ϕ-system. Note that in this paper all
programs are interpreted with respect to the ϕ-system. We let Φ be an arbitrary Blum complexity
measure [Blu67] associated with the acceptable programming system ϕ; many such measures exist

1Decorations are subscripts, superscripts, primes, and the like.
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for any acceptable programming system [Blu67].
A class C ⊆ R is said to be recursively enumerable (r.e.) iff there exists an r.e. set X such

that C = {ϕi | i ∈ X}. For any non-empty recursively enumerable class C, there exists a recursive
function f such that C = {ϕf(i) | i ∈ N}. A function g is said to be an accumulation point
of a class C ⊆ R iff g ∈ R and (∀n ∈ N)(∃f ∈ C)[(∀x ≤ n)[f(x) = g(x)] ∧ f 6= g]. Note
that the accumulation point may or may not belong to the class. The following functions and
classes are commonly considered below. Zero is the everywhere 0 function, i.e., Zero(x) = 0,
for all x ∈ N . CONST = {f | (∀x)[f(x) = f(0)]} denotes the class of the constant functions.
FINSUP = {f | (∀∞x)[f(x) = 0]} denotes the class of all recursive functions of finite support.

2.1 Function Identification

We first describe inductive inference machines. We assume, without loss of generality, that the
graph of a function is fed to a machine in canonical order. For f ∈ R and n ∈ N , we let f [n]
denote the finite initial segment {(x, f(x)) | x < n}. Clearly, f [0] denotes the empty segment. SEG
denotes the set of all finite initial segments, {f [n] | f ∈ R ∧ n ∈ N}. We let σ and τ , with or
without decorations, range over SEG. Let |σ| denote the length of σ. We often identify (partial)
functions with their graphs. Thus for example, for σ = f [n] and for x < n, σ(x) denotes f(x). An
inductive inference machine (IIM) [Gol67] is an algorithmic device that computes a mapping from
SEG into N ∪{?}. Intuitively, “?” above denotes the case when the machine may not wish to make
a conjecture. Although it is not necessary to consider learners that issue “?” for identification in
the limit, it becomes useful when the number of mind changes a learner can make is bounded (see
Definition 1 below). In this paper, we assume, without loss of generality, that once an IIM has
issued a conjecture on some initial segment of a function, it outputs a conjecture on all extensions
of that initial segment. This is without loss of generality because a machine wishing to emit “?”
after making a conjecture can instead be thought of as repeating its previous conjecture. We let
M, with or without decorations, range over learning machines. Since the set of all finite initial
segments, SEG, can be coded onto N , we can view these machines as taking natural numbers as
input and emitting natural numbers or ?’s as output. We say that M(f) converges to i (written:
M(f)↓ = i) iff (∀∞n)[M(f [n]) = i]; M(f) is undefined if no such i exists. The next definitions
describe several criteria of function identification.

Definition 1 [Gol67, BB75, CS83] Let a, b ∈ N ∪ {∗}. Let f ∈ R.

(a) M Exab -identifies f (written: f ∈ Exab (M)) just in case there exists an a-error program i for f
such that M(f)↓ = i and card({n |? 6= M(f [n]) 6= M(f [n+ 1])}) ≤ b (i.e., M makes no more
than b mind changes on f).

(b) M Exab -identifies S iff M Exab -identifies each f ∈ S.

(c) Exab = {S ⊆ R | (∃M)[S ⊆ Exab (M)]}.

Note that in part (a) above, change of conjecture from ? to some i ∈ N is not considered a mind
change.

We often write Exb for Ex0
b , Exa for Exa∗, and Ex for Ex0

∗. Ex0 is also refered to as finite
identification. By the definition of convergence, only finitely many data points from a function f
have been observed by an IIM M at the (unknown) point of convergence. Hence, some form of
learning must take place in order for M to learn f . For this reason, hereafter the terms identify,
learn and infer are used interchangeably.
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Definition 2 [Bār74, CS83] Let a ∈ N ∪ {∗}. Let f ∈ R.

(a) M Bca-identifies f (written: f ∈ Bca(M)) iff, for all but finitely many n ∈ N , M(f [n]) is an
a-error program for f .

(b) M Bca-identifies S iff M Bca-identifies each f ∈ S.

(c) Bca = {S ⊆ R | (∃M)[S ⊆ Bca(M)]}.

We often write Bc for Bc0.

Definition 3 NUM = {C | (∃C′ | C ⊆ C′ ⊆ R)[C′ is recursively enumerable]}.

Some relationships between the above criteria are summarized in the following theorem.

Theorem 4 [CS83, BB75, Bār71, Gol67]
(a) Let b ∈ N ∪ {∗}. Then, Exb = Ex0

b ⊂ Ex1
b ⊂ Ex2

b ⊂ · · · ⊂ Ex∗b .
(b) Let a ∈ N ∪ {∗}. Then, Exa0 ⊂ Exa1 ⊂ Exa2 ⊂ · · · ⊂ Exa∗.
(c) Let a, b, c, d ∈ N ∪ {∗}. Then, Exab ⊆ Excd iff a ≤ c and b ≤ d.
(d) NUM ⊆ Ex.
(e) Ex0 −NUM 6= ∅.
(f) NUM−

⋃
m∈N Exm 6= ∅.

(g) FINSUP 6∈
⋃
m∈N Exm.

(h) Ex∗∗ ⊂ Bc = Bc0 ⊂ Bc1 ⊂ Bc2 ⊂ · · · ⊂ Bc∗ = 2R.

We let I and J range over identification criteria defined above. Below we will mainly deal with
NUM, Ex0, Exm,

⋃
m∈N Exm and Ex. Using essentially the idea in [JORS99, Proposition 4.22],

(for Ex-identification), for all criteria I of inference considered in this paper, one can show that:

There exists an r.e. sequence M0,M1,M2, . . ., of inductive inference machines such
that, for any I, for all C ∈ I, there exists an i ∈ N such that C ⊆ I(Mi).

We assume M0,M1,M2, . . . to be one such sequence of machines.

2.2 Operators

Definition 5 [Rog67] A recursive operator is an effective total mapping, Θ, from (possibly partial)
functions to (possibly partial) functions, which satisfies the following properties:

(a) Monotonicity: For all functions η, η′, if η ⊆ η′ then Θ(η) ⊆ Θ(η′).

(b) Compactness: For all η, if (x, y) ∈ Θ(η), then there exists a finite function α ⊆ η such that
(x, y) ∈ Θ(α).

(c) Recursiveness: For all finite functions α, one can effectively enumerate (in α) all (x, y) ∈ Θ(α).

Definition 6 [Rog67] A recursive operator Θ is called general recursive iff Θ maps all total func-
tions to total functions.

For each recursive operator Θ, we can effectively (from Θ) find a recursive operator Θ′ such
that,
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(d) for each finite function α, Θ′(α) is finite, and its canonical index can be effectively determined
from α, and

(e) for all total functions f , Θ′(f) = Θ(f).

This allows us to get a nice effective sequence of recursive operators.

Proposition 7 There exists an effective enumeration, Θ0,Θ1, · · · of recursive operators satisfying
condition (d) above such that, for all recursive operators Θ, there exists an i ∈ N satisfying:

for all total functions f , Θ(f) = Θi(f).

Proof. Let Θ0,Θ1,Θ2, . . . denote a recursive enumeration of all the operators satisfying properties
(b) Compactness and (c) Recursiveness above. Note that there exists such a recursive enumeration
of operators. (Θi however may not be monotone). Define Θi as follows. We will define Θi on
elements of SEG. This Θi can then be extended to all partial functions by taking Θi(η) =

⋃
{Θi(σ) |

σ ⊆ η ∧ σ ∈ SEG}. Let Θi(Λ) = Λ. Let Si(f [n + 1]) =
⋃
m≤n+1[Θ

i(f [m]) enumerated in n + 1
steps]. For n ≥ 1, let

Θi(f [n+ 1]) =

{
Si(f [n+ 1]), if Si(f [n+ 1]) denotes a partial function;
Θi(f [n]), otherwise.

Note that Si(f [n + 1]) may not be a partial function (i.e. it may be multiply defined on some
arguments). This is so, since Θi may not satisfy monotonicity, and hence Si may not be monotone.

It is easy to verify that each Θi is a recursive operator (i.e. satisfies conditions (a) Monotonicity,
(b) Compactness and (c) Recursiveness). Moreover, if Θi is a recursive operator, then Θi(f) =
Θi(f), for any total function f . The proposition follows.

Since we will be mainly concerned with the properties of operators on total functions, for diag-
onalization purposes, one can restrict attention to operators in the above enumeration Θ0,Θ1, . . ..

Definition 8 Let I, J be identification criteria.
(I,J)-robust = {C | C ∈ I ∧ (∀ general recursive operators Θ)[Θ(C) ∈ J]}.
Note that traditionally only (I, I)-robust identification is considered and referred to as robust I-
identification (as we did in Section 1). The above definition is a generalization of this notion. The
reason we consider such a generalization is that there are classes which are not in (I, I)-robust, but
they are in (I,J)-robust for J a weaker identification criterion than I, i.e. I ⊂ J. Alternatively,
one may interpret a positive result on (I,J)-robustness as “how simple” (namely, even from I) a
robustly J-identifiable class can be. Also, as seen by the following proposition, we always have
(I,J)-robust as a subset of (J,J)-robust.

Proposition 9 (a) Suppose I ⊆ I′, J ⊆ J′. Then (I,J)-robust ⊆ (I′,J′)-robust.

(b) (I,J)-robust = (I ∩ J,J)-robust.

Proof. Follows easily from definitions.

Proposition 10 (a) NUM = (NUM,NUM)-robust.
(b) NUM ⊆ (Ex,Ex)-robust.

Proof. (a) Suppose C is recursively enumerable. Then for any general recursive operator Θ, Θ(C)
is also recursively enumerable. Part (a) follows.

(b) Follows using part (a), Theorem 4(d) and Proposition 9(a).
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2.3 Some Useful Propositions

In this subsection we prove some useful propositions. Some of these are folklore and likely to have
been proven by others, either explicitly or implicitly. We include them here in order to make the
paper self-contained. The following proposition is useful in proving the main result of the paper.

Proposition 11 Suppose n ∈ N , S ∈ Exn and C is finite. Then S ∪ C ∈ Exn+1.

Proof. Suppose C = {f0, f1, . . . , fm}, where fi are distinct. Let s be such that, for each distinct
i, j ≤ m, fi[s] 6= fj [s]. For i ≤ m, let pi denote a program for fi. Suppose M Exn-identifies S.
Define M′ as follows:

M′(f [z]) =


?, if z ≤ s;
pi, if z > s, i ≤ m, and fi[z] = f [z];
M(f [z]), if z > s, and (∀i ≤ m)[fi[z] 6= f [z]].

Note that M′ Ex-identifies each function in C ∪ S. Moreover, (i) M′ Ex0-identifies C, and
(ii) M′ makes at most one extra mind change than M on any function f . It follows that M′

Exn+1-identifies S ∪ C.

Proposition 12 Suppose m ∈ N . For any infinite class C ∈ Exm, there exists an infinite subclass
C′ ⊆ C such that C′ ∈ Ex0. Moreover, if C is recursively enumerable, then C′ can be chosen to be
recursively enumerable too.

Proof. Suppose C ∈ Exm as witnessed by M. For i ≤ m+ 1, let Ci = {f ∈ C |M on f makes at
least i mind changes}. Note that Cm+1 = ∅, and C0 = C. Moreover, if C is recursively enumerable,
then each Ci is recursively enumerable. Let j be the least number such that Cj is finite. Note that
1 ≤ j ≤ m+ 1. Let C′ = Cj−1 − Cj . We now show the following properties of C′:

(a) C′ ∈ Ex0: To see this, let M′
j be an IIM which, on input function f , outputs (only) the j-th

conjecture, if any, output by M on f . It is easy to verify that M′
j Ex0-identifies Cj−1 − Cj .

(b) C′ is infinite: Cj−1 is infinite, and Cj is finite, thus C′ is infinite.

(c) If C is recursively enumerable, then so is C′: If C is recursively enumerable, then each Ci,
i ≤ m + 1, is recursively enumerable. Now C′ being recursively enumerable follows from Cj
being finite.

The above properties prove the proposition.

The following proposition shows that, if a class contains an accumulation point for itself, then
it cannot be finitely identified.

Proposition 13 [Lin72] Suppose C ∈ Ex0. Then C does not contain any accumulation point of C.

In particular we will be using the following example. Let h0 = Zero. For k ∈ N , let

hk+1(x) =

{
1, if x = k + 1;
0, otherwise.

Consequently, h0 is an accumulation point of every infinite subclass of {hk | k ≥ 1}. Suppose
h0 ∈ C and C ∈ Ex0. By Proposition 13, C can contain at most finitely many hk’s.
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Our next proposition allows one to effectively construct a class diagonalizing against any given
machine (for Exm-identification). We will use this proposition with the same notation in the proof
of Theorem 18 below.

Proposition 14 Suppose k, l ∈ N and σ ∈ SEG are given. Then, for m = 2l+2, one can effectively
(in k, l, σ) enumerate a sequence F 0

k,l, F
1
k,l, F

2
k,l, . . . , F

m−1
k,l of (not necessarily distinct) functions such

that
(a) for i < m, σ ⊆ F ik,l.
(b) {F 0

k,l, F
1
k,l, . . . , F

m−1
k,l } 6⊆ Exl(Mk).

Proof. Below we will give the construction of F ik,l. It will be easy to see that the construction

is effective in k, l, σ. Initially, let S0 = {i | i < 2l+2}. For all i ∈ S0 and x ∈ domain(σ), let
F ik,l(x) = σ(x). Let x0 = max(domain(σ)) + 1. Go to stage 0.

Stage s

1. If card(Ss) = 1,

Then,

For i ∈ Ss, for x ≥ xs, let F ik,l(x) = 0.
Halt.

2. (* For the following card(Ss) > 1. *)

Let S0
s , S

1
s be a partition of Ss into two equal size subsets.

Let x = xs.

3. Repeat

3.1 Let i0, i1 be some members of S0
s and S1

s , respectively.
3.2 If Mk(F

i0
k,l[xs]) 6= Mk(F

i0
k,l[x]),

Then,
Let Ss+1 = S0

s .
For i ∈ S1

s , for y ≥ x, let F ik,l(y) = 1.
Go to stage s+ 1.

3.3 ElseIf Mk(F
i1
k,l[xs]) 6= Mk(F

i1
k,l[x]),

Then,
Let Ss+1 = S1

s .
For i ∈ S0

s , for y ≥ x, let F ik,l(y) = 0.
Go to stage s+ 1.

3.4 Else
For i ∈ S0

s , let F ik,l(x) = 0.

For i ∈ S1
s , let F ik,l(x) = 1.

Let x = x+ 1

Forever

End

Now fix k, l. Let F ik,l be as defined above. Clearly, clause (a) in the proposition is satisfied. It

is easy to verify that each F ik,l is total. Also, for s > 0, for each f ∈ Ss, Mk on f [xs] makes at least
s− 1 mind changes. We now consider two cases.
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Case 1: Stage l + 2 is entered. In this case, Sl+2 must have cardinality 1. Let i ∈ Sl+2. Now Mk

on F ik,l makes at least l + 2− 1 mind changes.

Case 2: Stage s < l + 2 is entered but never exited. In this case, Mk outputs the same program
(in the limit) on each F ik,l, for i ∈ Ss. However, for i0 ∈ S0

s and i1 ∈ S1
s , F i0k,l 6=∗ F

i1
k,l. Thus

Mk does not Exl-identify at least one of F i0k,l and F i1k,l.

From the above cases, (b) follows.

The next technical result turns out to be useful in proving classes robustly unlearnable with a
bounded number of mind changes. Moreover, this proposition is interesting on its own.

Proposition 15 There exists an infinite r.e. class S such that, for all m, no infinite subset of S
belongs to Exm.

Proof. We will construct a recursive S : N × N → SEG satisfying the following four properties
((A) to (D)).

(A) For all i, t ∈ N , S(i, t) is an initial segment of S(i+ 1, t).

(B) For all i ∈ N , limt→∞ S(i, t) converges. Let σi = limt→∞ S(i, t).

(C) For all i ∈ N , σi ⊆ σi+1.

(D) For all i ∈ N , for all j < i, either (D1) or (D2) is satisfied.

(D1) Mj on σi+1 makes at least i mind changes.

(D2) (∀σ ⊇ σi+1)[Mj(σi+1) = Mj(σ)]; in other words, Mj does not make a mind change on
any extension of σi+1.

Assuming such an S, for each k ∈ N , define Hk as follows:

Hk(x) =

{
S(k, k)(x), if x ∈ domain(S(k, k));
k, otherwise.

Note that Hk’s are pairwise different and one can compute Hk(x) effectively from k and x. Let
S = {Hk | k ∈ N}. We claim that S satisfies the properties claimed in the proposition. First note
that S is infinite and r.e. Now fix Mj and m. We claim that Mj cannot Exm-identify any infinite
subset of S. To see this, let i = 1 + max({j,m}). Now, by (A) and (B) it follows that, for all but
finitely many k, σi+1 ⊆ S(k, k). Thus, for all but finitely many k, σi+1 ⊆ Hk. However, by (D),
Mj can Exm-identify at most one extension of σi+1 (since either Mj makes at least m + 1 mind
changes on σi+1 or it never changes its mind on any extension of σi+1). It follows that Mj can
Exm-identify at most finitely many of Hk’s.

It remains to construct S as claimed. We implicitly assume a canonical indexing of all elements
of SEG, and often identify elements of SEG with their canonical indices. Thus, when we say τ < i,
we mean that the canonical index of τ is less than i. Similarly, when we say, min(X), where
X ⊆ SEG, then we mean the minimum based on the canonical indexing.

Let Mindchange(M, τ) denote the number of mind changes made by M on τ . For all t, let
S(0, t) be the empty sequence. For i ∈ N , define S(i + 1, t) as follows. Suppose τ = S(i, t). Let
X = {τ ′ | τ ⊆ τ ′ ∧ (∀j < i)[Mindchange(Mj , τ

′) ≥ i ∨ (∀τ ′′ | τ ′ ⊆ τ ′′ ∧ τ ′′ < t)[Mj(τ
′′) =

Mj(τ
′)]]}. Note that X is non-empty. Let S(i+ 1, t) = min(X).

It is now easy to verify that the properties (A) to (D) are satisfied.
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3 Robust Learning with a Bounded Number of Mind Changes

We start with some results pointing out the difficulty of robust learning when only a bounded
number of mind changes is allowed. The following theorem shows that no infinite class can be
robustly finitely identified. Thus, robust finite identification is very weak. Note that the analogous
result has been proved in [Zeu86] for effective operators instead of general recursive operators, as it
will be done in Theorem 16 below. We use essentially the same proof idea as in [Zeu86] and include
the proof for completeness.

Theorem 16 For any C ⊆ R, C ∈ (Ex0,Ex0)-robust iff C is finite.

Proof. Suppose by way of contradiction that C is infinite and belongs to (Ex0,Ex0)-robust.
Suppose M Ex0-identifies C. Let X = {f [n+ 1] |M(f [n]) =? ∧ M(f [n+ 1]) 6=?} (i.e. X denotes
the initial segments on which M outputs its conjecture for the first time). Let g be a fixed function
in C. Let σ ∈ X be such that σ ⊆ g. Let σ0, σ1, . . ., be a 1–1 recursive enumeration of X such that
σ0 = σ. Note that no total function can have two different σi’s as its initial segment.

Define hi as follows. h0 = Zero.

hk+1(x) =

{
1, if x = k + 1;
0, otherwise.

Now define Θ as follows:

Θ(η)

1. For k such that σk ⊆ η, let hk ⊆ Θ(η).

2. For k such that,

for all k′ < k, domain(σk′) ⊆ domain(η) and σk′ 6⊆ η,

let h0[k] ⊆ Θ(η).

End

We first show that Θ is general recursive. Fix any η ∈ P. By definition of σi, i ∈ N , there can
be at most one i such that σi ⊆ η. If for all i, σi 6⊆ η, then Θ(η) ⊆ h0, and is thus a partial function.
On the other hand, if i is such that σi ⊆ η, then Θ(η) = hi (note that h0[i] ⊆ hi, and if step 2
makes h0[k] ⊆ Θ(η), then k ≤ i). It follows that Θ maps partial functions to partial functions.
Also Θ satisfies (a) monotonicity and (b) compactness, since Θ is based only on whether σi ⊆ η,
for various values of i. Θ satisfies (c) recursiveness since σi, i ∈ N , is a recursive enumeration. Now
suppose η is a total function. If there exists a k such that σk ⊆ η, then clearly Θ(η) is total due
to step 1. On the other hand, if for all k, σk 6⊆ η, then by step 2, h0[k] ⊆ Θ(η), for all k. Thus,
Θ(η) = h0. It follows that Θ is general recursive.

We now show that Θ(C) 6∈ Ex0. Note that h0 ∈ Θ(C), since σ0 ⊆ g, and thus Θ(g) = h0.
Moreover, each f ∈ C is mapped to a different hk, since each f ∈ C extends one and only one σk.
Thus, Θ(C) contains infinitely many hk. It follows from Proposition 13 that Θ(C) 6∈ Ex0.

Corollary 17 For any I, no infinite class belongs to (I,Ex0)-robust.
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Proof. By Proposition 9, (I,Ex0)-robust ⊆ (Ex0,Ex0)-robust. The corollary follows from Theo-
rem 16.

The next theorem shows that no infinite recursively enumerable class can be robustly identified
with a bounded number of mind changes.

Theorem 18 Suppose C is an infinite r.e. class. Then, for any I, C 6∈ (I,
⋃
m∈N Exm)-robust.

Proof. If C is an infinite r.e. class and C ∈ (I,
⋃
m∈N Exm)-robust, then C ∈

⋃
m∈N Exm.

Thus, C ∈ Exn for some n ∈ N . Now, by Proposition 12, C contains an infinite r.e. subclass in
Ex0. Hence, without loss of generality, it suffices to show that no infinite r.e. class belongs to
(Ex0,

⋃
m∈N Exm)-robust.

Suppose C is an infinite r.e. class in (Ex0,
⋃
m∈N Exm)-robust. Let h0, h1, . . . denote a 1–1,

recursive enumeration of C. Let M be such that C ⊆ Ex0(M). Let σi ⊆ hi be such that M(σi) 6=?
(thus M(σi) must be a program for hi).

For fixed k, l, let F ik,l, 0 ≤ i < 2l+2, denote a sequence of 2l+2 total functions, such that (a) for

x ≤ 〈k, l〉, F ik,l(x) = 0; and (b) Mk fails to Exl-identify {F ik,l | i < 2l+2}. Note that such a sequence
of functions can be effectively constructed by Proposition 14. Let n0 < n1 < . . . be a sequence of
increasing numbers such that, n〈k,l〉+1 − n〈k,l〉 = 2l+2. Now define Θ as follows.

Θ(η)

1. If there exist k, l ∈ N and i < 2l+2 such that σn〈k,l〉+1+i ⊆ η,

then Θ(η) = F ik,l.

2. If σ0 ⊆ η, then Θ(η) = Zero.

3. If for all k′ ≤ nk, domain(σk′) ⊆ domain(η) and σk′ 6⊆ η,

then Zero[k] ⊆ Θ(η).

End

Note that step 3 above is consistent with steps 1 and 2, since Zero[〈k, l〉] ⊆ F ik,l. Clearly, Θ is

general recursive. Hence, Θ(C) ⊇ {F ik,l | k, l ∈ N ∧ i < 2l+2}. Thus, for any k and l, Mk does not

Exl-identify Θ(C). It follows that Θ(C) 6∈
⋃
m∈N Exm.

The following corollaries can be derived from Theorem 18.

Corollary 19 No infinite r.e. class is in
⋃
m∈N (Exm,Exm)-robust.

Corollary 20 NUM−
⋃
m∈N (Exm,Exm)-robust 6= ∅.

Contrasting Corollary 20 with the fact that NUM is contained in (Ex,Ex)-robust, Proposi-
tion 10(b), we have

Corollary 21 (Ex,Ex)-robust −
⋃
m∈N (Exm,Exm)-robust 6= ∅.

Note that CONST 6∈
⋃
m∈N (Exm,Exm)-robust follows directly from Corollary 19. The following

gives both an easy direct proof and an idea for why CONST behaves so “negatively” with respect
to robust learning with a bounded number of mind changes. Recall from Section 2 that FINSUP
denotes the set of functions of finite support. Suppose Fi denotes (in some recursive enumeration)
the i-th function in FINSUP. Define Θ as follows: Θ(f) = Ff(0). Clearly, Θ(CONST) = FINSUP.
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Thus Θ(CONST) 6∈
⋃
m∈N Exm, by Theorem 4(g). The following theorem is a generalization of

the above idea to show that not only CONST, but even none of its infinite subclasses belongs to⋃
m∈N (Exm,Exm)-robust.

Theorem 22 Suppose C is an infinite subset of CONST. Then, for any I, C 6∈ (I,
⋃
m∈N Exm)-

robust.

Proof. Let S be as in Proposition 15. Let H0, H1, . . . be a 1–1 enumeration of S.
Define Θ as follows:

Θ(η) =

{
Hi, if η(0) = i;
Λ, if η(0) is undefined.

Clearly, Θ is general recursive. Since Hi’s are pairwise distinct, it follows that Θ(C) is infinite. It
follows by Proposition 15 that, for all m, Θ(C) /∈ Exm. The theorem follows.

In the remainder of this section we derive several positive results on robust learning with a
bounded number of mind changes. We start with our main result. This result shows that the mind
change hierarchy, Ex0 ⊂ Ex1 ⊂ Ex2 . . ., stands robustly, that is, for all n ∈ N , (Exn,Exn)-robust
is properly contained in (Exn+1,Exn+1)-robust. Note that Fulk [Ful90] showed that, for all a ∈
N ∪ {∗}, (Exa,Exa)-robust = (Ex,Ex)-robust, and, for all a ∈ N , (Bca,Bca)-robust = (Bc,Bc)-
robust. Thus, several hierarchies do not stand for robust identification. The (Exn,Exn)-robust
hierarchy result interestingly contrasts with the above collapses. Furthermore, Theorem 16 showed
that (Ex0,Ex0)-robust contains only finite classes. Thus, the fact that even (Ex0,Ex1)-robust
contains infinite classes is interesting on its own, see Corollary 33 and Theorem 35 below.

Definition 23 Suppose m ∈ N , and 0 = x0 < x1 < x2 < ... < xm <∞. Then Step(x1, x2, ..., xm)
denotes the function f defined as: f(x) = i, if xi ≤ x < xi+1, i < m; f(x) = m, if xm ≤ x;

Step() denotes Zero.
For n ∈ N , let ST EPn = {Step(x1, x2, ..., xm) | m ≤ n, and 0 < x1 < x2 < · · · < xm}. We

allow m = 0 in this definition, that is ST EPn includes Step() = Zero.

Intuitively, Step(x1, x2, ..., xm) is an m-step function with steps at x1, x2, ...., xm. We only con-
sider steps of size 1, without explicitly mentioning it. Let Base be a function such that
Base(Step(x1, . . . , xm)) = xm. By convention, Base(Step()) = 0.

Theorem 24 For every n ≥ 1, there exists a class Cn ∈ (Exn,Exn)-robust such that Cn 6∈ Exn−1.

Proof. We use a priority construction to determine the functions in Cn. Cn will be a subset of
ST EPn that contains Zero.

Definition 25 A label is a finite sequence of the form (a1, · · · , am), where m ≤ n, and ai ∈ N . As
usual () is also a label.

Think of the labels as nodes of a tree, where () is the root, and (a1, a2, · · · , am, am+1) is the
am+1-th child of (a1, a2, · · · , am) (we start with 0-th child). The tree above is a depth n tree, where
each node (except the leaves which are at depth n) has infinitely many children. Often below we
will refer to parent, ancestors, etc. of a label. We mean the parent, ancestors, etc. in this tree.

Below we will define, for each label (a1, · · · , am), a function F(a1,···,am), where m ≤ n, and
ai ∈ N . F(···) will satisfy the following properties (in addition to some other properties considered
later on).
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(A) F() = Step() = Zero. Each F(a1,a2,···,am) will be of the form Step(x1, x2, · · · , xm) for some
x1, x2, · · · , xm.

(B) Suppose F(a1,a2,···,am) is Step(x1, x2, · · · , xm), and m < n. Then F(a1,a2,···,am,am+1) is
Step(x1, x2, · · · , xm, xm+1), for some xm+1 > xm. Moreover, if F(a1,a2,···,am,am+1) is
Step(x1, x2, · · · , xm, xm+1) and F(a1,a2,···,am,a′m+1)

is Step(x1, x2, · · · , xm, x′m+1), then, [am+1 <

a′m+1 iff xm+1 < x′m+1].

(A) and (B) are important properties to be maintained throughout the construction. We take
Cn to be the collection of all F(a1,···,am), where (a1, · · · , am), m ≤ n, is a label.

Claim 26 Cn is in Exn, but not in Exn−1.

Proof. Since ST EPn ∈ Exn, it follows that Cn ∈ Exn. Suppose by way of contradiction that Cn is
in Exn−1 as witnessed by M. We will define a sequence of labels, L0 = (), L1 = (a1), L2 = (a1, a2),
. . ., Ln = (a1, a2, ..., an) as follows. Label L0 is (). Let y0 be such that M(FL0 [y0]) is a program
for FL0 (there must exist such a y0, since otherwise M does not Exn−1-identify FL0). Suppose we
have already defined L0, L1, . . .,Li and y0, y1, . . ., yi, where i < n. Suppose Li = (a1, a2, . . . , ai).
We now define Li+1 as follows. Pick ai+1 such that Base(F(a1,...,ai,ai+1)) > yi (there exists such an
ai+1 due to properties (A) and (B) above). Let Li+1 = (a1, . . . , ai, ai+1). Choose yi+1 > yi, such
that M(FLi+1 [yi+1]) is a program for FLi+1 (note that there exists such a yi+1 since otherwise M
does not Exn−1-identify FLi+1). Continuing in this way we can define the labels L0, . . . , Ln.

Label Ln = (a1, . . . , an) is such that FLn ∈ Cn, but M on FLn outputs at least n + 1 different
programs (one for each of FL0 , . . . , FLn). Thus M does not Exn−1-identify Cn. 2

The construction below defines F(···)’s using a priority construction. For this purpose, to each
label, we will assign a function in ST EPn. The functions associated with a label may change over
time (higher priority labels may spoil lower priority labels). However, the functions associated with
any particular label will stabilize in the limit. We take F(a1,···,am) as the function associated (in the
limit) with label (a1, · · · , am). We will use f(a1,···,am) to denote the function currently associated
with label (a1, · · · , am).

We assign priority as follows. Let pr denote a computable bijective function from the labels to
N . (Thus pr−1 is a computable bijective function from N to labels). We take pr(a1, · · · , am) as
the priority of label (a1, · · · , am). Lower pr value means higher priority. We assume pr is nice, in
the sense that, for all a1, a2, . . . , am+1: pr(a1, · · · , am) < pr(a1, · · · , am, am+1) and pr(a1, · · · , am) <
pr(a1, · · · , am + 1).

For ease of notation, we usually identify a label with its image under pr. Thus, if
pr(a1, a2, · · · , am) = i, then we will often say label i to mean label (a1, · · · , am). Also, we will
often use fi (Fi) to mean f(a1,···,am) (F(a1,···,am)), where pr(a1, a2, · · · , am) = i. We may also talk of i
as being parent of j, where in the tree mentioned above pr−1(i) is the parent of pr−1(j). Intuitively,
the aim of the construction is to define the F(...) in such a way so that Claims 29 and 30 below
are satisfied. Properties ensured by these claims then allows us to Exn-identify Θr(Cn), for each
general recursive Θr. This is described in more detail later.

In the following we will sometimes place stars on the labels. There are infinitely many different
kinds of stars, one for each Θi. We denote the star used for Θi by ∗i. Intuitively, when we place ∗i
on label k at stage s, we mean that Θi(fk[s]) is inconsistent with Θi(fj [s]), for all j < k. Initially,
we assign Step() to label (). All other labels are assigned functions in some manner consistent with
(A) and (B) above. Initially, for all i, we place ∗i on label ().
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Stage s.

1. If there exists an i < s such that

(a) For some k ≤ i,
there is no ∗i placed on label k and
for each j < k, Θi(fk[s]) is inconsistent with Θi(fj [s])

OR
(b) For some k < i,

there is no ∗k placed on label i, and
for all j < i, Θk(fi[s]) is inconsistent with Θk(fj [s])

Then go to step 2. Otherwise go to stage s+ 1.

2. Pick the least i, satisfying 1(a) or 1(b) above.

2a. If i satisfies 1(a): place ∗i on label k and Go to step 3.

2b. If i satisfies 1(b): place ∗k on label i and Go to step 3.

(In case of many k’s satisfying 1(a)/1(b), choose an arbitrary one. Choosing the least i is
important, but the corresponding k can be any of the successful ones).

Note that in case of 1(b) being successful, s > Base(fi) must hold (otherwise, there cannot be
inconsistency with fparent(i)).

3. (Labels greater than i get spoiled). A new fj is assigned to labels j > i in such a way that

(1) For j > i, Base(fj) > s.

(2) New assignments satisfy properties (A) and (B) above.

(3) All ∗’s on labels j > i are removed.

NOTE: For i as above, let Ss = {fr[s] | r ≤ i}. Now (1) and (2) above imply that each fj (the
new function assigned to label j) is an extension of some element of Ss. Thus all functions
currently assigned to labels are extensions of some element of Ss. This property will be used
later in the proof.

4. Go to stage s+ 1.

End Stage s

Note that in the construction above, in step 1, (b) is the important condition; (a) is used merely
to get around the “initial functions” problem.

Claim 27 For each r, the function assigned to label r eventually stabilizes.

Proof. By induction on r. Suppose all labels less than r eventually get stable functions but label
r does not. Suppose all labels less than r get stable functions before stage s. Now we consider how
many times label r may be spoiled beyond stage s. Since, all labels less than r get stable functions
by stage s, beyond stage s, label r can be spoiled only if i = r − 1 in step 1.

Due to each of (a) or (b) in step 1, label r may be spoiled at most r times, since there are only
r possible values for k ≤ r − 1. Thus, r can get spoiled only finitely often beyond stage s. Thus,
the function assigned to label r stabilizes. 2

We let F0, F1, . . . denote the functions eventually assigned to the labels.

Claim 28 Suppose at some stage s, step 1 succeeds in finding an i satisfying (a) or (b). Let i be
the least one as chosen in step 2. Let Ss = {fr[s] | r ≤ i}, where fr is as at step 2 of stage s (note
that fr, r ≤ i, is not changed in stage s). Then,

16



(1) All fr as at the end of step 3 of stage s, are extensions of some element of Ss.

(2) All functions ever assigned to some label beyond stage s, are extensions of some element of Ss.

(3) All functions in Cn are extensions of some element of Ss.

Proof. (1) is straight from construction (see comment at the end of step 3 of the construction).
(2) follows by induction on the stages greater than or equal to s, and (3) follows from (2). 2

Claim 29 Suppose at some stage s, step 2b is executed with i = ` and k = r. Let f` be as at the
end of stage s. Then,

(1) For all w such that Θr(f`[s]) ⊆ Θr(Fw), we must have f`[s] ⊆ Fw.
(2) Either ` never gets spoiled beyond stage s, OR, for all w, Θr(f`[s]) 6⊆ Θr(Fw).

Proof. (1) Note that by Claim 28, Fw must be an extension of some element of Ss. However,
due to success of step 1(b) in stage s, with i = ` and k = r, if Fw is not an extension of f`[s],
then Θr(Fw) will be inconsistent with Θr(f`[s]). A contradiction. Thus Fw must be an extension
of f`[s].

(2) If ` gets spoiled in some stage greater than s, then let s′ be first such stage. Let `′ be the
value of i as chosen in stage s′. Let fu be the value of functions assigned to label u as at the end
of stage s. Note that functions assigned to labels less than or equal to `′ do not change between
stage s and s′. Thus, by Claim 28, all functions in Cn must be an extension of some element in
Ss′ = {fu[s′] | u ≤ `′}. Thus, every function in Cn is inconsistent with f`[s] (due to success of step
1(b) in stage s, with i = ` and k = r). Thus, no element of Cn extends f`[s]. (2) now follows from
(1). 2

Claim 30 Suppose, w > r, and Θr(Fw) is inconsistent with Θr(Fu), for each u < w. Then there
exists a stage s such that, (1) w never gets spoiled at or beyond stage s (thus, for u ≤ w, fu (at
stage s) is the same as Fu) and (2) at stage s, step 2b is executed with i = w and k = r.

Proof. Suppose stage s′ is the least stage at the end of which all functions assigned to labels less
than or equal to w are stabilized (i.e. stage s′ is the last stage in which step 1 succeeds with an
i < w). Now, by hypothesis, for all but finitely many s′′ > s′, we have: for all u < w, Θr(Fw[s′′])
is inconsistent with Θr(Fu[s′′]). Thus there must be a stage s > s′, in which step 1 (b) succeeds
with i = w and k = r. (Note: Step 2b may choose i = w and some other k 6= r; however this can
happen only finitely often, and eventually k = r must be taken by step 2b). 2

Now we are in a position to show the robustness of Cn. For this, fix r such that Θr is general
recursive. Claims 29 and 30 allow us an easy way to identify Θr(Cn). For the time being only
consider C′n = Cn−{Fj | (∃i ≤ r)[Θr(Fi) = Θr(Fj)]}. Note that Θr(C′n) = Θr(Cn)−Θr({Fi | i ≤ r}).

Suppose g ∈ C′n and Θr(g) is the input function. Initially M outputs ?, and “thinks” the input
function to be Θr(F0). (Note that M does not actually output a program for Θr(F0).) Let L0 = (),
currfunc = F0 and s0 = 0. Then M executes the following loop (starting with iteration 1).

Loop iteration p

1. Search for a stage sp > sp−1, a descendant Lp of Lp−1 such that

1.1 Θr(currfunc[sp]) is inconsistent with Θr(g) (note that Θr(g) is the input function, and we
are not calculating it).
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1.2 In the construction of Cn above at stage sp: (a) Step 2b is executed with i = pr(Lp) and
k = r, where i > k and (b) Θr(fLp [sp]) ⊆ Θr(g), where fLp is the function assigned to
label Lp at stage sp.

Then,

fix one such sp and corresponding Lp. Output a program for Θr(fLp), and set currfunc =
fLp .

End

Suppose g ∈ C′n. Suppose the sequence of stages and labels considered by M in the above
procedure are s1, s2, . . ., and L1, L2, . . ., respectively. For u = 1, 2, . . ., let fLu be the corresponding
function assigned to label Lu at stage su. Then, by Claim 29 part (1), we must have fLu [su] ⊆ g, for
u = 1, 2, · · ·, and by Claim 29 part (2), we must additionally have fLu = FLu . Since the depth of the
label tree is finite, M’s final output stabilizes. This must be a program for Θr(g), since otherwise,
by Claim 30, the search by machine M would have succeeded. (Note that the limiting value of
currfunc may not be equal to g. However, we will have: Θr(limiting value of currfunc) = Θr(g)).
The number of outputs of M is bounded by n (i.e. n − 1 mind changes), since the depth of the
tree is at most n (Note: M did NOT output a program for Θr(F0) in the beginning). Thus, M
Exn−1-identifies Θr(C′n).

Finally, since Θr(Cn) − Θr(C′n) is finite, it follows that Θr(Cn) ∈ Exn (using Proposition 11).
This proves the theorem.

Corollary 31 For all n ∈ N , (Exn,Exn)-robust ⊂ (Exn+1,Exn+1)-robust.

Proof. Immediately from Theorem 24.

Corollary 32 For every n ≥ 1, (Exn−1,Exn)-robust −(Exn−1,Exn−1)-robust 6= ∅.

Proof. Let Cn, F(···) be as in the proof of Theorem 24. Let C′n = Cn − {Zero}. Note that
C′n ∈ (Exn−1,Exn)-robust. We claim that C′n 6∈ (Exn−1,Exn−1)-robust. Let g = F(0,0,···,0) (there
are n 0’s in the subscript). Let b = Base(g). Let Θ be defined as follows:

Θ(η) =


Zero, if g[b+ 1] ⊆ η;
η, if g[b+ 1] 6⊆ η and

{x | x ≤ b} ⊆ domain(η);
Λ, if {x | x ≤ b} 6⊆ domain(η).

Note that such a Θ can be easily constructed. Moreover, Θ is general recursive. Further note
that Θ(C′n) = Cn − {g} (since Θ(g) = Zero, and, for all f ∈ C′n − {g}, Θ(f) = f). However, it is
easy to show (using a proof similar to that of Claim 26, by taking y0 > b) that Cn − {g} 6∈ Exn−1.
The corollary follows.

Hence, using the n = 1 case of Corollary 32, we have

Corollary 33 Let S = ST EP1−{Zero}. Then there exists an infinite subclass of S which belongs
to (Ex0,Ex1)-robust.
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Consequently, though (Ex0,Ex0)-robust classes are trivial (Theorem 16), already (Ex0,Ex1)-
robust learning is much richer. Moreover, contrasting Corollary 33 with Theorem 22 we see that
subsets of CONST are “much harder” to robustly learn than subsets of ST EP1 which is, on the sur-
face, counter-intuitive. We now consider some of the reasons for this difference. Let Equalupto(f, g)
denote the least x such that f(x) 6= g(x). The proof of Theorem 24 can easily be modified to work
when we replace the functions Step(x1, x2, · · · , xm) by recursive functions G(x1, x2, · · · , xm), where

(i) a program for G(x1, x2, · · · , xm) can be effectively obtained from x1, x2, · · · , xm, and

(ii) for all x1, x2, · · · , xm, y1, y2, such that 0 < x1 < x2 < · · · < xm < y1 < y2,

Equalupto(G(x1, x2, . . . , xm−1), G(x1, x2, . . . , xm))

< Equalupto(G(x1, x2, . . . , xm−1, xm), G(x1, x2, . . . , xm, y1))

< Equalupto(G(x1, x2, . . . , xm−1, xm), G(x1, x2, . . . , xm, y2)).

Thus, we have the following.

Corollary 34 Let C ⊆ R be any recursively enumerable class for which there exists an accumula-
tion point. Then, there exists an infinite subclass of C belonging to (Ex0,Ex1)-robust.

On the other hand, CONST, the class from Theorem 22, clearly does not possess an accumula-
tion point. Moreover, any two constant functions differ “from the very beginning,” i.e. at argument
0, from each other. Thus, we have the surprising fact that the more complex topological structure
leads to a positive robustness result, whereas the “trivial” structure yields a negative result. Note
that an analogous phenomenon can also be observed for classes not contained in any recursively
enumerable class (see Theorem 36 below and the discussion thereafter).

Notice that Theorem 22 remains valid if we replace CONST by any recursively enumerable
class S for which there exists a computable functional F , mapping every function f ∈ R to some
F (f) ∈ N , such that {F (f) | f ∈ S} is infinite, and for every f ∈ S, {g ∈ S | F (f) = F (g)} is
finite. This holds, since one can construct Θ(f) = cF (f), where ci is the constant i function. Now,
for any infinite subset S ′ of S, Θ(S ′) is an infinite subset of CONST. Our claim then follows from
Theorem 22 (since composition of general recursive operators gives a general recursive operator).

Though the above cases do not exhaust all the recursively enumerable classes, they give us an
idea about the kind of properties one may look for, to determine whether a recursively enumerable
class has an infinite (Exm,Exn)-robust subclass. It is an open problem to characterize which
recursively enumerable classes have infinite (Exm,Exn)-robust subclasses.

The following theorem generalizes Corollary 33.

Theorem 35 Suppose m,n ∈ N . For every infinite C in (Exm,Exn)-robust, there exists an infinite
subset of C in (Ex0,Ex1)-robust.

Proof. Since (Exm,Exn)-robust ⊆ (Exmax({m,n}),Exmax({m,n}))-robust, without loss of generality
we may assume m = n (otherwise one may just take each of m and n to be maximum of old values
of m and n). Suppose C is as given.

Below we will formally define Ci, Si satisfying the following five properties for each i ∈ N (we
give these properties before the formal definition of Ci, Si in order to provide intuition on what we
are going to achieve with these definitions):
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(1) Si contains exactly i elements;

(2) Si ⊆ Si+1 and Ci+1 ⊆ Ci;
(3) Ci+1 ∪ Si+1 ⊆ Ci ∪ Si ⊆ C;
(4) Ci is infinite;

(5) If Θi is general recursive, then Θi(Ci+1) ∈ Ex0.

It follows that:

(A) (
⋃
j∈N Sj) is an infinite subset of C (by (1) and (3));

(B) (
⋃
j∈N Sj) ⊆ Ci ∪ Si, for each i (by (2) and (3));

(C) if Θi is general recursive then, Θi(Ci+1 ∪ Si+1) ∈ Ex1 (by (5), Θi(Si+1) being finite, and
Proposition 11);

(D) (
⋃
j∈N Sj) is in (Exm,Ex1)-robust, (by (A), (B) and (C));

(E) there exists an infinite subset of
⋃
j∈N Sj in (Ex0,Ex1)-robust (by (D), and using Proposi-

tion 12).

We now inductively define Ci and Si satisfying (1) – (5) as follows. Notice that this definition
is not effective. Let C0 = C and S0 = ∅. Suppose Ci and Si have been defined. Let Ci+1 and Si+1

be defined as follows:
Case 1: Θi is not general recursive.

Let h be an element of Ci. Then let Ci+1 = Ci − {h} and Si+1 = Si ∪ {h}.

Case 2: Θi is general recursive.

Case 2a: Θi(Ci) is a finite class.

Define Ci+1 and Si+1 as in Case 1.

Case 2b: Θi(Ci) is an infinite class.

Note that Θi(Ci) is in Exn, since C ∈ (Exn,Exn)-robust, and Ci ⊆ C. Let
H ⊆ Θi(Ci) be an infinite class in Ex0 (such H exists by Proposition 12). Let
Ci+1 = Θ−1(H)∩Ci. Without loss of generality, assume Ci+1 is a proper subset
of Ci (otherwise just remove one element from Ci+1). Suppose h ∈ Ci − Ci+1.
Let Si+1 = Si ∪ {h}.

Properties (1)–(4) are satisfied by construction. (5) is satisfied, since Θi(Ci+1) ⊆ H ∈ Ex0.

Our motivation for the following theorem started with the search for simple classes which
disprove Bārzdiņš’ conjecture. We were quite surprised to find such a class in Ex0. Moreover, as
the proof shows, even some self-referential classes can be robustly identified! Thus, one cannot
claim that general recursive operators are capable of removing all coding. The self-referential class
we use below is the rendition of the class SD used in [BB75].

Theorem 36 There exists a C in (Ex0 −NUM,Ex)-robust.

Proof. Let C = {f | f 6= Zero ∧ ϕmin({x|f(x)6=0}) = f}, i.e., for f ∈ C, the minimum x such that
f(x) is non-zero, is a program for f .

Claim 37 C ∈ Ex0 −NUM.
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Proof. C ∈ Ex0 is obvious. Suppose by way of contradiction, C′ is a recursively enumerable
superset of C. Let f be a recursive function such that C′ = {ϕf(i) | i ∈ N}. Now by implicit use of
recursion theorem [Rog67], there exists an e such that,

ϕe(x) =


0, if x < e;
1, if x = e;
ϕf(x−e−1)(x) + 1, if x > e.

Now ϕe ∈ C. However, for each i, ϕe(i + e + 1) = 1 + ϕf(i)(i + e + 1), thus ϕe 6= ϕf(i). It follows
that ϕe 6∈ C′, contradicting C ⊆ C′. 2

We now show that,

Claim 38 For any general recursive operator Θ, Θ(C) ∈ Ex.

Proof. Suppose Θ is a general recursive operator. Let z be a program for Θ(Zero). Let ProgUnion
be a recursive function, mapping finite sets P of programs to programs, such that ϕProgUnion(P ) may
be defined as follows. Running on input x, program ProgUnion(P ) searches for a y, using a fixed
dovetailing procedure, such that (x, y) ∈

⋃
i∈P Θ(ϕi); if and when such a y is found, ϕProgUnion(P )(x)

is defined to be y. Define M as follows.

M(σ)

1. If Θ(Zero) is consistent with σ, then output z, the program for Θ(Zero).

2. Otherwise let n be the least number such that Θ(Zero[n]) is inconsistent with σ.

(* Note that this implies that the input function, if from Θ(C), is one of Θ(ϕi), i ≤ n. *)

3. Let P = {i | i ≤ n ∧ Θ(ϕi) (as enumerated in |σ| steps) is consistent with σ}.
4. Output ProgUnion(P ).

End

Now consider any input function f ∈ Θ(C). If f is consistent with Θ(Zero), then M Ex-identifies
f due to step 1. If f is not consistent with Θ(Zero), then let n be least number such that Θ(Zero[n])
is inconsistent with f . Now f must be one of Θ(ϕi), i ≤ n, due to the definition of C. Thus steps
3, 4 ensure that M Ex-identifies f . 2

The theorem follows from Claims 37 and 38.

The above proof uses a self-referential class. One may wish to find out the differences between
the self-referential classes which allow robust Ex-identification, and which do not, such as the class
SD from Section 1. We make the following observation. On one hand, the class SD is topologically
“extremely discrete” in that f(0) 6= g(0), for all distinct f and g in SD. On the other hand, the
class C from Theorem 36 has a much more complex topological structure. Actually, C possesses
an accumulation point g, namely g = Zero. Moreover, what we have used in proving C robustly
Ex-learnable is the following: For each n, one can effectively enumerate a finite set of programs,
P , such that {f ∈ C | Equalupto(f, g) < n} ⊆ {ϕi | i ∈ P}. The above properties are enough to
show that C is robustly Ex-identifiable for an arbitrary such class C.

Note that there are learning criteria I such that Ex0 6⊆ I; for example, I = T Ex [BB75]
where the learning machine is not allowed to converge on a total function which it cannot learn, or
I = T Cons [WZ95] where the learning machine is required to be consistent with the input data on
all inputs. Consequently, for these criteria I, (I−NUM,Ex)-robust 6= ∅ does not follow directly
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from Theorem 36. However, also for these I, we can show the nonemptyness of (I −NUM,Ex)-
robust. This can be done by using the class S (instead of the class C from the proof of Theorem 36)
defined as follows; recall that Φ denotes any Blum complexity measure [Blu67]. Let

fe(x) =


0, if x < e;
1, if x = e;
Φe(x− e− 1), otherwise

and then let S = {fe | Φe is total }. Clearly, S ∈ T Ex and S ∈ T Cons. Furthermore, S /∈ NUM,
since otherwiseR ∈ NUM would follow, a contradiction. Finally, for any general recursive operator
Θ, Θ(S) ∈ Ex can be proved using the technique of the proof of Theorem 36 above.

4 Robust Team Identification

Smith [Smi82] considered identification by a team of machines.

Definition 39 Suppose I is an identification criterion. A team (multi-set) M of n machines is
said to TeamnI-identify C iff, for each f ∈ C, there exists an M ∈M which I-identifies f .

TeamnI = {C | (∃M consisting of n machines)[M TeamnI-identifies C]}.

Smith [Smi82] showed that the team hierarchies for Ex and Bc-identification are infinite. Here we
show that these hierarchies are robustly infinite. Team learning has been generalized to consider the
case when m ≤ n out of n machines are correct instead of 1 out of n as considered in Definition 39
[OSW86]. We do not consider the generalized definition here since m out of n teams are equivalent
to 1 out of bn/mc teams for the identification types Ex and Bc [PS88].

First we consider the following Lemma, which is a modified (somewhat effective) version of the
team hierarchy theorem. Let IIMTeamn denote the set of all teams of IIMs of size n. We identify
members of SEG with the finite functions they represent.

Lemma 40 Suppose n ∈ N , σ ∈ SEG, and M ∈ IIMTeamn are given. Then one can define
F σ,Mi , for 1 ≤ i ≤ n+ 1 such that the following properties are satisfied.

(A) There exists a (unique) i, 1 ≤ i ≤ n+ 1, such that F σ,Mi is a total function.

(B) Suppose i is the unique number such that 1 ≤ i ≤ n + 1 and F σ,Mi is total. Then, σ ⊆ F σ,Mi
and M does not TeamnBc-identify F σ,Mi .

(C) There exists a recursive function g : N × SEG × IIMTeamn × N → N such that if F σ,Mj is

total then limt→∞ g(j, σ,M, t) converges to a program for F σ,Mj .

Proof. The idea of the proof is to modify the Teamn+1Ex − TeamnBc diagonalization proof
(as given in [Smi82]). Intuitively, consider the team hierarchy diagonalization for Teamn+1Ex vs
TeamnBc. This team hierarchy diagonalization can be viewed (see Figure 1) as being an n + 1
level construction where the first level either gives a total function f1 which is not Bc-identified by
any M ∈ M or gives a τ1 and a M1 ∈ M such that M1 does not Bc-identify any extension of τ1;
the second level then tries to extend this τ1 to construct either a f2 which is not Bc-identified by
any machine inM−{M1} or gives a τ2 and M2 ∈M−{M1} such that M2 does not Bc-identify
any extension of τ2; and so on.
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-f1
consider all M ∈M︸ ︷︷ ︸

τ1

Construction stalls considering M1

-f2
consider all M ∈ (M−{M1})︸ ︷︷ ︸

τ1︸ ︷︷ ︸
τ2

Construction stalls considering M2

-f3
consider all M ∈ (M−{M1,M2})︸ ︷︷ ︸

τ2︸ ︷︷ ︸
τ3

Construction stalls considering M3

and so on . . .

Figure 1: Construction of the functions f1, f2, . . . in team hierarchy.

Now, F σ,Mj is taken to be fj or τj as given by the construction above (for the purposes of the
lemma, we make σ to be a subset of f1 or τ1, respectively). g is obtained by essentially effectivizing
the above construction.

We now proceed with the formal construction.
Suppose M = {M1,M2, . . . ,Mn}. We will define below F σ,Mi , for i = 0, 1, . . . in order of

increasing i. (Though F σ,M0 is not needed for the statement of lemma, it is easier to give the

construction by defining F σ,M0 ). Along with it we will also define Si, for 1 ≤ i ≤ n+ 1. Si will be
a subset of {x | 1 ≤ x ≤ n} of size n − i + 1. It will be the case that Si ⊇ Si+1. The following
invariant will be satisfied.

Invariant (I): If F σ,Mi is finite for all i ≤ k, then for all total extensions f of F σ,Mk , none of the
machines in {Mr | r 6∈ Sk+1}, Bc-identifies f .

Also, if some F σ,Mj is defined to be a total function, then F σ,Mi is the empty function for
j < i ≤ n + 1 (in which case we do not need Si, for j < i ≤ n + 1). Thus, we only need to
inductively define F σ,Mj (and Sj+1 if needed) for j such that, for all i < j, F σ,Mi is finite.

Let F σ,M0 = σ. Let S1 = {x | 1 ≤ x ≤ n}. Suppose we have already defined F σ,Mi for i < j

(where none of F σ,Mi , i < j, is total), and Si for i ≤ j. We then define F σ,Mj (and possibly Sj+1)
as follows.

Intuitively, invariant (I), for k = j − 1, means that F σ,Mj−1 has diagonalized against all machines

in {Mr | r 6∈ Sj}. The job of F σ,Mj is to diagonalize against at least one more machine in
{Mr | r ∈ Sj}.
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Definition of F σ,Mj

1. Let τ = F σ,Mj−1 .

For x ∈ domain(τ), let Fσ,M
j (x) = τ(x).

2. If j = n + 1, then let F σ,Mj (x) = 0, for x 6∈ domain(τ). Else proceed with the rest of the
construction.

3. Let w0, w1, . . . be an effective infinite sequence such that each element of Sj appears infinitely
often in the sequence.

Let τ0 = τ .

Go to stage 0.

4. Stage s

4.1 Search for an extension τ ′s ∈ SEG of τs such that ϕMws (τ ′s)
(max(domain(τ ′s)) + 1)↓.

4.2 If and when such a τ ′s is found, let
4.2.1 F σ,Mj (x) = τ ′s(x), for x ∈ domain(τ ′s).

4.2.2 F σ,Mj (max(domain(τ ′s)) + 1) = ϕMws (τ ′s)
(max(domain(τ ′s)) + 1) + 1.

4.2.3 Let τs+1 be F σ,Mj [max(domain(τ ′s)) + 2]. (That is, τs+1 is F σ,Mj defined upto now).
(* Note that definition in 4.2.1 above is consistent with the already defined portion

of F σ,Mj , since τs ⊆ τ ′s ⊆ τs+1. *)
4.2.4 Go to stage s+ 1.

End stage s

End of Definition of F σ,Mj

Definition of Sj+1

If there are only finitely many stages in the above construction of F σ,Mj , then let Sj+1 =
Sj − {ws}, where s is the last stage which is entered but does not finish.

End of Definition of Sj+1

Note that F σ,Mj as defined above is an extension of F σ,Mj−1 due to step 1 of the construction.

We first show property (A) of Lemma. By our definition, if F σ,Mj is total, then F σ,Mi is empty,

for j < i ≤ n+ 1. It immediately follows that at most one of F σ,Mk , 1 ≤ k ≤ n+ 1 is total. Also, if

all F σ,Mi , 1 ≤ i ≤ n, are finite, then F σ,Mn+1 is total (by step 2 of the construction above). Property
(A) follows.

Suppose k is such that F σ,Mk is total. σ ⊆ F σ,Mk now follows since σ = F σ,M0 ⊆ F σ,M1 ⊆ · · · ⊆
F σ,Mk . (This shows the first part of property (B)).

We now show the remaining part of property (B). For this we also need to show that invariant
(I) is satisfied.

Assume inductively that Invariant (I) is satisfied, for k = j − 1 in the statement of invariant
(I), and for all i < j, F σ,Mi is finite.

We then show that invariant (I) is maintained by the definition of F σ,Mj (and Sj+1). Along

with it we will show that if F σ,Mj is total, then property (B) of lemma is satisfied.

For this we consider the following cases in the definition of F σ,Mj . Note that if j = n+ 1, then

clearly, F σ,Mn+1 would be total, and by invariant (I) (with k = n), no machine in M Bc-identifies

F σ,Mn+1 . So assume 1 ≤ j ≤ n, and consider the construction of F σ,Mj .
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Case 1: There exist infinitely many stages.

In this case F σ,Mj is total. Moreover, in each stage s we witness that Mws(τ ′s) is not a program

for F jσ,M (due to diagonalization in step 4.2.2). Since each i ∈ Sj appears infinitely often in

the sequence w0, w1, . . ., we have that for each i ∈ Sj , Mi does not Bc-identify F σ,Mj . This

along with invariant (I) for k = j−1, gives us that F σ,Mj is not Bc-identified by any machine
in M.

Case 2: Some stage s starts but does not halt.

Note that in this case F σ,Mj is finite, and Sj+1 is defined. Moreover, Mws does not Bc-identify

any total extension of F σ,Mj , since otherwise the search in step 4.1 would succeed. It follows
that invariant (I) is satisfied for k = j.

From the above cases we have that property (B) of lemma holds. To see property (C) of lemma,
suppose σ,M and j are given such that F σ,Mj is total. Then, one can determine in the limit, F σ,Mi ,
for i < j (since the construction for each of these has only finitely many stages each) and determine
Si, for i ≤ j. Given F σ,Mj−1 and Sj , a program for F σ,Mj can then be easily determined. This proves

the lemma.

Theorem 41 For each n ∈ N , there exists a class C such that C ∈ (Teamn+1Ex,Teamn+1Ex)-
robust but C 6∈ TeamnBc.

Proof. Let n be given. The idea is to superimpose the construction given by Lemma 40 over the
robustness construction of [Ful90].

For i ∈ N , define σi, τi such that

(D) For all j > i, τi ⊆ σj and τi ⊆ τj .

(E) For all j, for all k ≤ j, either:

(E1) Θk(τj) is inconsistent with Θk(σj) or

(E2) For all τext extending τj , for all σext extending σj , Θk(τext) is consistent with Θk(σext).

(F) One can obtain σi and τi limit recursively from i.

Now define C as follows.
Let M0, M1, . . . denote a recursive enumeration of all members of IIMTeamn. Let F σ,Mj be

as in Lemma 40. Let C = {F σi,Mi
j | i ∈ N ∧ 1 ≤ j ≤ n+1 ∧ F σi,Mi

j ∈ R}. Clearly, C 6∈ TeamnBc
(by properties (A) and (B) in Lemma 40). We claim that C ∈ (Teamn+1Ex,Teamn+1Ex)-robust.
For this, it suffices to show that, for 1 ≤ j ≤ n + 1, Cj = {F σi,Mi

j | i ∈ N ∧ F σi,Mi
j ∈ R} is in

(Ex,Ex)-robust. Thus, it suffices to show that, for each k, C′j = {Θk(F
σi,Mi
j ) | F σi,Mi

j ∈ R ∧ i ≥ k}
is in Ex (since Ex-identifiability is invariant under union of any finite set of functions). Below is
the informal description of the machine which Ex-identifies C′j .

M on any input g searches for the least i ≥ k such that Θk(σi) ⊆ g. Note that such an i, if any,
can be found in the limit (there exists such an i, if g ∈ C′j). If Θk(σi) and Θk(τi) are consistent,
then M outputs (in the limit) a program for

⋃
{Θk(γ) | σi ⊆ γ or τi ⊆ γ}; otherwise, M outputs
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(in the limit) a program for Θk(F
σi,Mi
j ). Note that using property (C) of Lemma 40, one can find

(in the limit) a program for F σi,Mi
j , and thus a program for Θk(F

σi,Mi
j ).

We now show that the above M Ex-identifies C′j . Let g be the input function and i be as
computed by M above. If Θk(σi) is consistent with Θk(τi), then for any total function f extending
σi or τi, Θk(f) is consistent with

⋃
{Θk(γ) | σi ⊆ γ or τi ⊆ γ}. Thus, M Ex-identifies g. On the

other hand, if Θk(τi) is inconsistent with Θk(σi) (and hence with g), then g must be Θk(F
σi,Mi
j )

(otherwise g 6∈ C′j). Thus, M Ex-identifies g. This proves the theorem.

Corollary 42 For all n ∈ N ,
(a) (TeamnEx,TeamnEx)-robust ⊂ (Teamn+1Ex,Teamn+1Ex)-robust,
(b) (TeamnBc,TeamnBc)-robust ⊂ (Teamn+1Bc,Teamn+1Bc)-robust.

Proof. Immediately from Theorem 41.

5 Uniformly Robust Learning

Intuitively, for C ∈ I to be uniformly in (I,J)-robust, one should be able to effectively (in i) find
a machine to J-identify Θi(C). In other words, the images of C are all not only learnable in that
learning machines for them exist, but in a sense one even has learning machines for them effectively
in hand. For this strengthened version of robust learning, we have both positive and negative results.
Actually, for Ex-learning with a bounded number of mind changes, uniformly robust learning is
possible only for very restricted (finite!) classes. On the other hand, for standard Ex-learning as
well as for some kind of generalized Ex-learning, uniformly robust learning seems to be achievable.

Definition 43 A class C is said to be in (I,J)-uniformrobust iff C ∈ I, and there exists a recursive
function G such that (∀i | Θi is general recursive)[Θi(C) ⊆ J(MG(i))].

We now show that for a bounded number of mind changes, uniformly robust identification is
quite weak.

Theorem 44 Suppose n ∈ N . Consider any C which contains at least 2n+2 distinct functions.
Then C 6∈ (I,Exn)-uniformrobust. So, in particular, no infinite class is in (I,Exn)-uniformrobust.

Proof. Suppose by way of contradiction that G is a recursive function such that for all e, if Θe is
general recursive, then MG(e) Exn-identifies Θe(C).

Let m = 2n+2. Let f0, f1, . . . , fm−1 be m distinct functions in C. Let t be such that for all
i < j < m, f i[t] 6= f j [t]. Let F ik,n be as in Proposition 14 (note that F ik,n can be generated
effectively from k, n, and i).

Now by the Kleene recursion theorem [Rog67], there exists an e such that Θe may be defined
as follows.

Θe(η) =


λx.↑, if {0, · · · , t} 6⊆ domain(η);
F iG(e),n, if {0, · · · , t} ⊆ domain(η) and η[t] ⊆ f i[t];
λx.0, if {0, · · · , t} ⊆ domain(η) and for all i < m, η[t] 6⊆ f i[t].

It is easy to see that Θe is general recursive and Θe({f0, · · · , fm−1}) = {F 0
G(e),n, · · · , F

m−1
G(e),n}.
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It thus follows from Proposition 14 that MG(e) does not Exn-identify Θe(C).

Note that the above theorem still holds if we require G to be partial recursive with domain a
superset of {k | Θk is general recursive }. To see this, given a program i for such partial recursive
G, one can construct a total function G′ (effectively from i) such that

MG′(e)(σ) =


?, if G(e) is not defined within |σ| steps

(here step counting is with respect to the program i)
MG(e)(σ), otherwise.

Now Theorem 44 can be applied to G′.
Our next results imply that uniformly robust identification in the limit is really rich. First, it

is easy to verify that

Proposition 45 NUM ⊆ (Ex,Ex)-uniformrobust.

Theorem 46 now shows that it is also possible to learn classes outside of NUM uniformly robustly.

Theorem 46 There exists a class C in (Ex0 −NUM,Ex)-uniformrobust.

Proof. Let C be the class from Theorem 36. Then it is easy to see that the proof of Theorem 36
can be “uniformized”.

It is open at present whether (Ex,Ex)-robust = (Ex,Ex)-uniformrobust. The next result
shows that for some non-trivial classes, uniformly robust learning can be achieved not only for
general recursive operators, but even for all partial recursive operators. Therefore, we need the
following generalization BlumEx of Ex which was introduced in [BB75]. Intuitively, a partial
function η is BlumEx-identifiable if in the limit an index i of an extension of η, i.e. η ⊆ ϕi, can
be discovered.

For identification of a partial function, η, M receives as input a graph of η, in arbitrary order.
For this purpose we define the notion of texts for partial function as follows. A text is a mapping
from N to (N ×N) ∪ {#}. The content of T , denoted content(T ), is range(T )− {#}. T is a text
for η iff content(T ) = {(x, η(x)) | η(x)↓}. T [n] denotes the initial segment of T of length n. We let
α range over initial segments of texts. content(α) denotes range(α)− {#}. |α| denotes the length
of α. M converges on T to i (written: M(T )↓ = i) iff (∀∞n)[M(T [n]) = i].

Definition 47 [BB75]

(a) M BlumEx-identifies η (written: η ∈ BlumEx(M) iff for each text T for η, there is an i such
that M(T )↓ = i and η ⊆ ϕi.

(b) M BlumEx-identifies a class S of partial functions, iff M BlumEx-identifies each η ∈ S.

Theorem 48 There exist a class C ⊆ R, C 6∈ NUM and a recursive function G such that, for all
k, Θk(C) ⊆ BlumEx(MG(k)).

Proof. The proof is based on a modification of the construction given in [Ful90]. First we show
the following.

Claim 49 There exist σi ∈ SEG and ηi ∈ P, where σi and a program for ηi can be obtained limit
recursively in i, such that, for i ∈ N , the following three conditions are satisfied.
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(A) For all j > i, σi ⊆ σj;

(B) ηi extends σi in such a way that: If

(i) ϕi is total, and

(ii) Si = {ϕw | w ∈ range(ϕi)} ⊆ R,

then ηi is total and does not belong to Si;

(C) For all j, for all i, k < j, either:

(C1) Θk(σj) is inconsistent with Θk(ηi) or

(C2) For all σext extending σj, Θk(ηi) is consistent with Θk(σext).

Proof. Let σ0 = Λ.
Suppose we have defined σj , for j ≤ i. Then define ηi, σi+1 as follows.

ηi(x) =

{
σi(x), if x ∈ domain(σi);
ϕϕi(x−max(domain(σi))−1)(x) + 1, otherwise.

Let σi+1 be an extension of σi such that (C) is satisfied. It is easy to verify that one can
determine (one suitable) σi limit effectively from (σj)j<i. A program for ηi can be determined
effectively from σi. The claim follows. 2

For i, k < j, let metki,j be a predicate which is true iff Θk(ηi) is inconsistent with Θk(σj). Note

that metki,j implies that Θk(ηi) is inconsistent with Θk(ηj′) for all j′ ≥ j. Moreover, metki,j can be
determined limit effectively from i, j, k. Let C = {ηi | ηi is total}. We claim that C satisfies the
theorem. C 6∈ NUM follows directly from (B).

A class of partial functions S is said to be recursively enumerable iff S is empty or there exists
a recursive function f such that S = {ϕf(i) | i ∈ N}. Suppose S is an r.e. class of partial functions,
where the “enumeration” f of S is fixed implicitly. Then, let Union(S) denote a (partial) function
η such that for any x ∈ N , η(x) is the first y found (in some systematic search), if any, such that,
for some i, ϕf(i)(x) = y. (Here if S = ∅, then we take Union(S) to be the everywhere undefined
function.)

Now for any i, k ∈ N , define βki as follows. Let βki = Union({Θk(σext) | σext ⊇ σi+1}). For
i ≥ k, define δki as follows.

δki (x) =

{
Θk(ηi), if metki,i+1;

Θk(ηi) ∪ βki , if NOT metki,i+1.

Note that programs for βki and δki can be found limit effectively in k and i. To see this, note
that one can determine σi+1 in the limit from i. Once σi+1 is determined, a program for βki can
be effectively found from σi+1. Furthermore, since one can limit effectively (in i and k) determine
whether metki,i+1 holds, one can limit effectively (in i and k) determine a program for δki using the

programs for ηi and βki .
Let σsi , s ∈ N , denote a recursive (in i and s) sequence which converges to σi. Let pηsi denote a

recursive (in i and s) sequence of programs which converges to a program for ηi. Similarly, let pβk,si
and pδk,si , respectively, denote a recursive (in i, k and s) sequence of programs which converge to a

program for βki and δki , respectively. Let ηsi , β
k,s
i , δk,si denote the functions computed by pηsi , pβ

k,s
i ,

and pδk,si , respectively.
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Now the construction of a machine MG(k) witnessing the theorem is as follows. Below when we
say ηsi restricted to s steps of computation, we mean the partial function computed by pηsi within
s steps. Similarly, for δk,sm restricted to s steps of computation.

Suppose k is given. Define MG(k) (effectively in k) to Ex-identify Θk(C) as follows:

MG(k)(α):

1. Let s = |α|.
2. Let Ss = {i ≤ k | Θk(η

s
i restricted to s steps of computation) is consistent with content(α)}.

3. Let ms ≤ s be the minimum value greater than k such that δk,sms
(restricted to s steps of

computation) is consistent with content(α) (where if no such ms ≤ s exists, then we take ms

to be s).

4. If content(α) is inconsistent with Θk(σ
s
k+1), Then output a program for Union({Θk(η

s
i ) | i ∈

Ss}).
Else output a program for Union({δk,sms

} ∪ {Θk(η
s
i ) | i ∈ Ss)}).

End

We now argue that MG(k) above suffices.
Suppose the input function is Θk(ηi). Clearly, on input text for Θk(ηi), Ss as calculated by

MG(k) converges (as s goes to infinity).

Case 1: i ≤ k.

Case 1a: Θk(σk+1) is inconsistent with Θk(ηi). In this case, in step 4, If statement will
succeed (for large enough s). Moreover, the limiting value of Ss contains i. It follows
that MG(k) BlumEx-identifies Θk(ηi).

Case 1b: Θk(σk+1) is consistent with Θk(ηi). In this case metki,k+1 is false. Thus, for all σext
extending σk+1, Θk(σext) is consistent with Θk(ηi). In particular δkk+1 is consistent with
Θk(ηi). Thus ms, as calculated by the procedure for MG(k), converges to k + 1 (as s
goes to infinity). Now again as in Case 1a, we immediately see that MG(k) will use Else
clause in step 4 and (for large enough s) a correct program will be output.

Case 2: i > k.

In this case, clearly, ms as computed by MG(k) above, converges (as s goes to infinity) to
something less than or equal to i. Below let m denote this limiting value. We first claim that
Θk(ηi) ⊆ δkm. To see this, first note that if m = i, then this is certainly true. If m < i, then
note that metkm,m+1 must be false (if metkm,m+1 is true, then δkm cannot be consistent with

Θk(ηi), due to the fact that σm+1 ⊆ ηi). It thus follows that domain(Θk(ηi)) ⊆ domain(βkm) ⊆
domain(δkm). Now consistency of δkm with Θk(ηi) implies that Θk(ηi) ⊆ δkm. Thus, again by
the Else part of step 4, MG(k) BlumEx-identifies Θk(ηi).

6 Conclusions

In this paper we considered robust identification, and provided several positive and negative results.
Our main result, Theorem 24 and Corollary 31, shows that the mind change hierarchy with respect
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to Ex-identification stands robustly! This contrasts with the fact that some other hierarchies,
such as the anomaly hierarchies for Ex and Bc-identification, do not stand robustly. Moreover,
we proved that the team hierarchies for both Ex and Bc stand robustly as well (Theorem 41
and Corollary 42). We also showed the counter-intuitive fact that even some of the self-describing
classes can be learned robustly (Theorem 36). We also discussed on the possible reasons behind
why some self-referential classes can be robustly identified while others cannot. Thereby, in several
contexts, we observed the surprising fact that a more complex topological structure of the classes
to be learned (expressed by the existence of an accumulation point, Corollary 34, possibly in
an “effectively approximable” manner, Theorem 36) leads to positive robustness results, whereas
an easy or even “trivial” topological structure (class SD from Section 1 and class CONST from
Theorem 22, in each of these classes all the functions are pairwise different as witnessed by argument
0) leads to negative results. Interestingly, this phenomenon holds both inside NUM, the world
of recursively enumerable classes (see Corollary 34 versus Theorem 22), and outside NUM (see
Theorem 36 versus class SD from Section 1).

Several of our results show the difficulty of robustly identifying even simple classes when only
a bounded number of mind changes is allowed. For example, Theorem 16 shows that no infinite
class of functions can be robustly Ex0-identified. Theorem 18 states that no recursively enumerable
class of functions can be robustly identified with a bounded number of mind changes, and Theo-
rem 22 points out that CONST does not even contain any infinite subclass which can be robustly⋃
m∈N Exm-identified.

In the present paper we have confined ourselves to general recursive operators for realizing the
transformations of the classes to be learned. Clearly, this is not the most general approach. One
could allow recursive operators instead, which map the functions in the class to be learned to total
functions, but need not map functions outside the class to total functions. Let (I,J)-recrobust
= {C | C ∈ I ∧ (∀ recursive operators Θ | Θ(C) ⊆ R)[Θ(C) ∈ J]}. Clearly, the negative results hold
also for this extended notion of robustness. However, some of our positive results do not carry over
to recursive operators. For example, Theorem 35 and Corollary 33 do not hold for this extended
notion of robustness. This follows as a corollary to the following theorem.

Theorem 50 For all m ∈ N , no infinite class belongs to (Ex0,Exm)-recrobust.

Proof. Suppose by way of contradiction that C is an infinite class in (Ex0,Exm)-recrobust. Sup-
pose M witnesses that C ∈ Ex0. Let X = {f [n + 1] | M(f [n]) =? ∧ M(f [n + 1]) 6=?} (i.e. X
denotes the initial segments on which M outputs its conjecture for the first time). Let σ0, σ1, . . .,
be a 1–1 recursive enumeration of X. Let H0, H1, . . . , be a recursive enumeration of the class S,
as given by Proposition 15. Now define

Θ(η) =

{
Hi, if σi ⊆ η;
Λ, otherwise.

It is easy to verify that Θ(C) is an infinite subset of S. The theorem now follows from Proposi-
tion 15.

In fact the above theorem can be strengthened as follows. Let I be an identification type. I
is called diverse iff for any infinite class C in I, there is a computable functional Q such that both
C ⊆ domain(Q), and {Q(f)|f ∈ C} is infinite (“diverse”). Then, for any diverse identification
type I, for any infinite C ∈ I, one can define a recursive operator Θ as follows: Θ(f) = HQ(f),
where Hi is as above. Note that Θ(C) is an infinite subset of S from Proposition 15. It thus
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follows from Proposition 15 that no infinite class belongs to (I,
⋃
m∈N Exm)-recrobust. As a further

possible objection against recrobustness we mention that this notion of robustness is not closed
under subset.

On the other hand, a close inspection of the proof of our main result on the robust mind
change hierarchy (Theorem 24) shows that this result remains valid even for the extended notion of
robustness. That is, the (Exn,Exn)-recrobust hierarchy stands. Further, we could add the function
Zero to the self-referential class C of Theorem 36 to show that (Ex1 − NUM,Ex)-recrobust is
non-empty (with essentially the same proof). Note that this is a strengthening of Fulk’s [Ful90]
result who proved (Ex−NUM,Ex)-recrobust non-empty. Moreover, our result leads to the non-
expected consequence that even recursive operators are incapable of removing all self-referential
coding! Recently, in [OS99] a notion of robustness, called hyperrobustness, has been defined which
prevents robust learning from self-referential classes as used above. Actually, it is proved there
that a class of recursive functions is hyperrobustly Ex-learnable iff this class belongs to NUM.
Hence, on the one hand, for the notion of hyperrobustness, Bārzdiņš’ conjecture is provably true.
On the other hand, in order to achieve this goal this notion of robustness had to be defined so
“strong” that in a sense it loses much of its richness. It seems interesting to find out if there is a
notion of robustness which both allows classes outside NUM to be learnable robustly and prevents
self-referential classes “as above” from being learnable robustly. Clearly, to answer this question in
a rigorous way would require to give a formal definition of “self-referential” before. But, possibly,
such a notion of robustness does not exist at all. The intuition behind this vague conjecture is
that self-description may be an inherent and even natural property of all sufficiently rich concepts
of computability. For example, recall that any polynomial (over the natural numbers as well as
over the reals) is self-describing in that it is uniquely determined by every segment containing more
points than the degree of the polynomial. Furthermore, one could argue that self-description is
quite natural, as every cell of every organism contains a “program” that completely describes this
organism.

Anyway, our work may be viewed as a further step to investigate robust learning. In our opinion,
the results obtained so far give strong evidence that robust learning is really surprisingly rich and
worth studying. Naturally, much remains to do to get a yet deeper understanding of the nature of
robustness in learning and thereby, hopefully, of the nature of learning in general.
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