Robust Behaviourally Correct Learning

Sanjay Jain
School of Computing
National University of Singapore
Singapore 119260
sanjay@comp.nus.edu.sg

Abstract

Intuitively, a class of functions is robustly learnable if not only the class itself, but also
all of the transformations of the class under natural transformations (such as via general
recursive operators) are learnable.

Fulk [Ful90] showed the existence of a non-trivial class which is robustly learnable under
the criterion Ex. However, several of the hierarchies (such as the anomaly hierarchies for
Ex and Bc) do not stand robustly. Fulk left open the question about whether Be and Ex
can be robustly separated. In this paper we resolve this question positively.

1 Introduction

The learning situation often studied in inductive inference may be described as follows. A
learner receives as input a graph of a function f, one element at a time. As the learner
is receiving its input, it conjectures a sequence of programs as hypotheses. To be able to
learn the function f, the sequence of programs conjectured by the learner must have some
desirable property with respect to the input function f. By appropriately choosing this desirable
property one gets different criteria of learning. One of the first such criteria studied is called
Ex-identification ([Gol67]). The learner is said to Ex-identify f iff the sequence of programs
output by it converges to a program for f (see the formal definitions in Section 2). A learner
is said to Ex-identify a class iff it Ex-identifies each function in the class. A class of functions
is Ex-identifiable iff some machine Ex-identifies the class.

Even though one cannot Ex-identify the class of all recursive functions, several interesting
and important classes, such as the class of polynomials, are Ex-identifiable. Gold [Gol67]
showed that one can Ex-identify every recursively enumerable class of recursive functions using
the following technique. Suppose C is a recursively enumerable class of recursive functions,
and po, p1, ... is an effective sequence of programs which compute exactly the functions in C.
Consider a machine M which, on any input data, searches for the least ¢ such that the function
computed by program p; is consistent with the input data; M then outputs p;. It is easy to
verify that M acting as above will Ex-identify each function in C. The above technique is known
as identification by enumeration. The naturalness of this strategy led Gold to conjecture that
any class of functions which can be Ex-identified, can also be Ex-identified using identification
by enumeration. That is, every Ex-identifiable class is contained in a recursively enumerable
class of functions. Barzdins [Bar71] showed the above conjecture to be false using the “self-
describing” class, SD = {f | f(0) is a program for f}. A machine can Ex-identify each function

f in SD by just outputting the program f(0). On the other hand, no recursively enumerable
class of recursive functions contains SD. In defense of Gold’s intuitions, SD and other self-
referential classes used to refute his conjecture seem like artificial tricks. After all, to identify
these self-referential classes, a learning device need only find some coded value from its input.
On the other hand, one could argue that self-description is quite natural in that every cell of
every organism contains a “program” that completely describes that organism. The reader is
directed to [JSW98] for further discussion on this issue. Some of the following motiviation is
from [JSWOS|.

Barzdins formulated a more sophisticated version of Gold’s conjecture designed to transcend
such counterexamples as above. He reasoned that if a class of functions is identifiable only by
way of a self-referential property, then there would be a general recursive operator (i.e. an
effective and total mapping from total functions to total functions) that would transform the
class into an unidentifiable one. The idea is that if a learning device is able to find the embedded
self-referential information in the elements of a class, so can a general recursive operator, which
can then remove this information. To see this in the context of SD, consider the operator ©
which removes the self-referential information f(0) as follows: O(f) = g, where g(z) = f(x+1).
One can show that ©(SD) = {O(f) | f € SD} = R, the class of all the recursive functions.
Thus, ©(SD) is not Ex-identifiable [Gol67]. Informally stated, Barzdins’ conjecture is: If all the
projections of a class of functions under all general recursive operators are Ex-identifiable (or, in
other words, if the class is robustly Ex-identifiable), then the class is contained in a recursively
enumerable class of recursive functions and, consequently, it is identifiable by enumeration.
Fulk [Ful90] showed that Barzdins’ conjecture is false by exhibiting a class of functions which
is robustly Ex-identifiable, but not contained in any recursively enumerable class of recursive
functions. This result can be taken as the first non-trivial step to show that, in the model of
inductive inference, robust learning may be really interesting.

Since Gold [Gol67] many criteria of inference have been proposed by researchers all over the
world, see [AS83, BB75, CS83, Fre9l, KW80, OSW86]. One such criterion is Be-identification
(cf. e.g. [CS83, Bar74]) informally described below (see formal definition in Section 2). In Bc-
identification of a function f by machine M one requires that, M on receiving a graph of the
function f, outputs an infinite sequence of programs pg, p1, ..., such that all but finitely many
programs in this sequence are programs for f. Intuitively, Bc-identification requires semantic
convergence rather than syntactic convergence. The criteria of inference, such as Bc above, that
have been studied in literature have usually been accompanied by proofs showing the differences
between the new and old criteria of inference. The proof techniques used to show separations
between the criteria often involve classes with self-referential properties. The same criticism of
the class SD above applies to such separations. Thus, it would be interesting to study whether
these separations hold robustly. For example, Fulk [Ful90] showed that the anomaly hierarchies
for Ex and Bc-identification (see formal definitions in Section 2) do not hold robustly. Hence,
one may expect some results of inductive inference (especially the hierarchies) not to stand
robustly, and it would be interesting to study which results do hold robustly.

Besides the issue of self-reference discussed above, it is also philosophically interesting to
study robust learning [JSW98|. Herman Weyl [Wey52] described the famous Erlangen program
on founding geometry algebraically due to Felix Klein as follows: “If you are to find deep
properties of some object, consider all the natural transformations that preserve your object
(i.e. under which the object remains invariant).” Since general recursive operators can be looked

upon as natural transformations, it is interesting to consider robust identification from a purely
philosophical point of view too. We direct the reader to [JSW98] for further motivations for
studying robust learning.

Ex and Bc are perhaps two of the most widely studied identification criteria. Thus, it is
important to study whether these criteria are robustly separated or not. In this paper we show
that Bc and Ex-identification are separated robustly.

In related work, [JSW98] presented several results on robust learning. For example, they
showed that the mind change hierarchy for Ex-identification, and team-hierarchy for Ex and
Bc-identification stands robustly. Furthermore, they even showed that there are ‘self-referential’
classes which can be robustly Ex-identified. [CJOT98] addresses robust learning in the presence
of context (see [AGS89, KSVW95]). Zeugmann [Zeu86] and Kurtz and Smith [KS89] have
studied a slightly different version of robust identification. Recently Ott and Stephan [OS99]
have studied a different version of robust identification (called hyper-robust identification) and
independently obtained Corollary 2 of this paper.

We now proceed formally.

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [Rog67]. N denotes the set of
natural numbers. * denotes a non-member of N and is assumed to satisfy (Vn)[n < % < ool.
Let €,C, C, D, D, respectively denote membership, subset, proper subset, superset and proper
superset relations for sets.) denotes the emptyset. card(S) denotes the cardinality of set S.
So “card(S) < *” means that card(S) is finite. min(S) and max(S), respectively, denote the
minimum and maximum element in S. We take min(() to be oo and max(f)) to be 0.

(-,-) denotes a 1-1 computable mapping from pairs of natural numbers onto natural numbers.
w1, mo are the corresponding projection functions. (-, -) is extended to n-tuples in a natural way.

A denotes the empty function. 7, with or without decorations, ranges over partial functions.
n(z)] denotes that n(z) is defined. n(z)T denotes that n(z) is not defined. For a € N U {x},
m =2 ne means that card({x | m(z) # n2(x)}) < a. n1 #* N2 means that —[n =2 2. (If n; and
12 are both undefined on input x, then, as is standard, we take n;(x) = n2(x).) If n = f, then
we often call a program for n as an a-error program for f. domain(n) and range(n) respectively
denote the domain and range of the partial function 7.

f,g and h, with or without decorations, range over total functions. R denotes the class
of all recursive functions, i.e., total computable functions with arguments and values from N.
C and S, with or without decorations, range over subsets of R. P denotes the class of all
partial recursive functions. ¢ denotes a fized acceptable programming system. ¢; denotes the
partial computable function computed by program ¢ in the ¢-system. Note that in this paper
all programs are interpreted with respect to the p-system. We let ® be an arbitrary Blum
complexity measure [Blu67] associated with the acceptable programming system ¢; many such
measures exist for any acceptable programming system [Blu67]. For this paper, without loss of
generality, we assume that ®;(z) > x, for all i, x.

A class C C R is said to be recursively enumerable (r.e.) iff there exists an r.e. set X such
that C = {¢; | i € X}. Zero is the everywhere 0 function, i.e., Zero(z) = 0, for all z € N.

2.1 Function Identification

We first describe inductive inference machines. We assume, without loss of generality, that the
graph of a function is fed to a machine in canonical order. For any partial function n and n € N
such that, for all x < n, n(x)], we let n[n] denote the finite initial segment {(z,n(x)) | + < n}.
Clearly, n[0] denotes the empty segment. SEG denotes the set of all finite initial segments,
{fIn]| f € RAn € N}. We let 0 and 7, with or without decorations, range over SEG. Let
|o| denote the length of 0. We often identify (partial) functions with their graphs. Thus for
example, for 0 = f[n] and for x < n, o(z) denotes f(x). An inductive inference machine (IIM)
[Gol67] is an algorithmic device that computes a mapping from SEG into N U {?}. Intuitively,
“?” above denotes the case when the machine may not wish to make a conjecture. Although
it is not necessary to consider learners that issue “?” for identification in the limit, it becomes
useful when the number of mind changes a learner can make is bounded. In this paper, we
assume, without loss of generality, that once an IIM has issued a conjecture on some initial
segment of a function, it outputs a conjecture on all extensions of that initial segment. This
is without loss of generality because a machine wishing to emit “?” after making a conjecture
can instead be thought of as repeating its previous conjecture. We let M, with or without
decorations, range over learning machines. Since the set of all finite initial segments, SEG, can
be coded onto N, we can view these machines as taking natural numbers as input and emitting
natural numbers or ?’s as output. We say that M(f) converges to i (written: M(f)] = 7) iff
(V°n)[M(f[n]) = i]; M(f) is undefined if no such i exists. The next definitions describe several
criteria of function identification.

Definition 1 [Gol67, BB75, CS83] Let a,b € N U {x}. Let f € R.

(a) M Ex{-identifies f (written: f € Exj(IM)) just in case there exists an a-error program
i for f such that M(f)| =i and card({n |? # M(f[n]) # M(f[n+1])}) < b (i.e., M makes no
more than b mind changes on f).

(b) M Exj-identifies S iff M Exg-identifies each f € S.

(c) Exi = {SCR|(ZM)[S C Ex}(M)]}.

We often write Ex; for Exg, Ex? for Ex?, and Ex for Ex?. Exg is also refered to as finite
identification.

By definition of convergence, only finitely many data points from a function f had been
observed by an IIM M at the (unknown) point of convergence. Hence, some form of learning
must take place in order for M to learn f. For this reason, hereafter the terms identify, learn
and infer are used interchangeably.

Definition 2 [Bar74, CS83] Let a € N U {x}. Let f € R.

(a) M Bc®-identifies f (written: f € Be®(M)) iff, for all but finitely many n € N, M(f[n])
is an a-error program for f.

(b) M Bc®-identifies S iff M Bc®-identifies each f € S.

(c) Bc® ={SCR|(EM)[S C Bc*(M)]}.

We often write Bc for BcP.

Definition 3 [Gol67]

(a) A machine M is said to be identifying by enumeration iff there exists an effective sequence
of programs pg, p1, ..., such that (i) each ¢, is total, and (ii) for all o € SEG, M(0) = p;,
where i = min({j | o C @p, }).

(b) NUM = {C | (3C’ 2 C)|C’ is recursively enumerable]}.

Note that NUM is the collection of all the classes which can be identified using identification
by enumeration, [Gol67].
Some relationships between the above criteria are summarized in the following theorem.

Theorem 1 [CS83, BB75, Bar71]
(o) Ex’ CEx' ¢ --- CEx* C BcCc Bc' ¢ --- ¢ Be* =2%.
et a,b,c,d € N U {*}. en, Exy C Ex; iffa < can <d.
b) L b,c,de N Th Exp; C Ex] i db<d
(c) NUM C Ex.

We let I and J range over identification criteria defined above.
There exists an r.e. sequence Mg, M1, Mo, ..., of inductive inference machines such that,
for all criteria I of inference considered in this paper,

for all C € I, there exists an i € N such that C C I(M;).

[OSW86] shows the above for I = Ex. Essentially, the same proof can be used for all I
considered in this paper. We assume Mg, M1, Mo, ... to be one such sequence of machines.

2.2 Operators

Definition 4 [Rog67] A recursive operator is an effective total mapping, ©, from (possibly
partial) functions to (possibly partial) functions, which satisfies the following properties:

(a) Monotonicity: For all functions n,7’, if n C n’ then ©(n) C O(7).

(b) Compactness: For all n, if (z,y) € ©(n), then there exists a finite function o C 7 such
that (z,y) € ©(a).

(c) Recursiveness: For all finite functions a, one can effectively enumerate (in «) all (x,y) €

O(a).

Definition 5 [Rog67] A recursive operator © is called general recursive iff © maps all total
functions to total functions.

Remark 1 For each recursive operator ©, we can effectively (from ©) find a recursive operator
©’ such that,

(a) for each finite function o, ©'(«) is finite, and its canonical index can be effectively
determined from o, and

(b) for all total functions f, ©'(f) = O(f).

Definition 6 [JSW98] Let I, J be identification criteria.
(I,J)-robust ={C | C € I A (V general recursive operators ©)[0(C) € J|}.

Note that traditionally only (I,I)-robust identification is considered and referred to as robust
I-identification. The above definition is a generalization of this notion. The reason we consider
such a generalization is that there are classes which are not in (I,I)-robust, but they are in
(I,J)-robust for J a weaker identification criterion than I, i.e. I C J. Alternatively, one
may interpret a positive result on (I, J)-robustness as “how simple” (namely, even from I) a
robustly J-identifiable class can be. Also, as seen by the following proposition, we always have
(I,J)-robust as a subset of (J,J)-robust.

Proposition 1 [JSW98]
(a) Suppose IC T, J CJ'. Then (I,J)-robust C (I',J’)-robust.
(b) (I,J)-robust = (INJ,J)-robust.

Barzdin had conjectured that every class C in (Ex, Ex)-robust is in NUM, that is C is
contained in a recursively enumerable class. Fulk refuted this conjecture by constructing a
class C € (Ex, Ex)-robust which is not in NUM. Fulk also showed that:

Theorem 2 [Ful90]
(a) For all a € N U {x}, (Ex® Ex%)-robust = (Ex, Ex)-robust.
(b) For alln € N, (Bc",Bc")-robust = (Bc, Bc)-robust.

Since, R € Bc*, it follows that R € (Bc*, Bc*)-robust. Thus, for a € N U {*} and n € N,

(Ex, Ex)-robust= (Ex®, Ex®)-robustC (Bc, Bc)-robust= (Bc", Bc")-robustC (Bc*, Bc*)-robust.
It was left open by Fulk whether (Ex, Ex)-robust C (Bc, Bc)-robust. We solve this question

in this paper.

3 Main Result
We first show the following Lemma.

Lemma 1 There exists a recursive function p such that, for all i € N, following five properties
are satisfied:

(A) (Vo < i)[pp(s)(x) = 0].

(B) oo (i) = 1.

(C) card({z | gy (@)1} < 1),

(D) range(pp(i)) < {0,1}.

(E) For z € {0,1}, let

hZ(x) _ {Qop(i)(‘r)7 if Sop(i)(m)l;

¢ Z, otherwise.

Then {hY, h}} € Ex(M;).
PROOF. This proof is based on a modification of proof of Ex! — Ex #) in [CS83]. By operator
recursion theorem [Cas74] there exists a recursive p such that ¢,;) may be defined in stages as
follows.

Initially, for x < i, @p;)(z) = 0, and ;) (i) = 1. Let g = i+ 1. Intuitively, x5 denotes the
least x such that ¢,;)(7) has not been defined before stage s. Go to stage 0.

Stage s

1. For z € {0,1}, let
ep@) (), if T <
fa(x) = {z, if © = xg;
0, otherwise.
2. Forz =z5,+ 1 to oo Do
2.1. If My(fo[z]) # Mi(fi[x]), then go to step 3.
2.2. Else let ¢p;(x) = 0.
EndFor
3. Let z € {0,1} be such that M;(f.[z]) # M;i(@pa)lzs])-
Set @y (7s) = 2, and let z511 = .
Go to stage s + 1.

End stage s

Fix i. It is easy to verify that (A) to (D) of lemma are satisfied. We show (E). We consider
two cases:
Case 1: There exist infinitely many stages.

In this case hY = h} = ©p(i)» and M; on ¢p,;) makes infinitely many mind changes
(due to execution of step 3 infinitely often).

Case 2: Stage s starts but does not finish.

In this case ;) is not defined on exactly one point zs. Also, for all z > s,
M, (h?[x]) = M;(h}[z]). Thus M; fails to Ex-identify at least one of h? and h}.

From the above cases, it follows that (E) holds. |

Theorem 3 There exists a C C R such that C € (Ex' — Ex, Bc)-robust.

PROOF. Let p be as given by Lemma 1. For z € {0,1}, let

hi(z) = {wp(i)(x% if pp(i) (@)1
z, otherwise.

Let Zero denote the everywhere zero function.

Let C = {Zero} U{h? | z € {0,1} A ¢ € N}. It is easy to verify, using Lemma 1, that
C € Ex! — Ex. Fix a general recursive operator ©. We assume without loss of generality (by
Remark 1) that for all f, n, ©(f[n]) is finite and a (canonical index) for O(f[n]) can be obtained
effectively from f[n]. We will show below that ©(C) € Be.

For all i,k € N and z € {0,1}, let

: oy ey (@), ifz#k
9i(%) { z, ifx=k.

Let progp(i) denote a program (obtained effectively from i) for ©(p,;). Let progq(i,k, z)
be a program (obtained effectively from i, k, z) for ©(g7;). Let progr(i,k) denote a program
(obtained effectively from i, k) such that ¢4 k) is defined as follows:

Porogp(i) (), if progp(i) ()13
Pprogr(ik) () = 4 PLoroga(i,k,0)(%)s I Oprogg(ik,0) ()L = Pprogq(ik,1) ()5
T, otherwise
Note that the second clause above is consistent with the first clause, since ¢, ;) is a subset

of at least one of gg . and gzlk
Define M as follows.

M(f[n])
1. If f[n] is consistent with ©(Zero[n]), then output a program for ©(Zero[n]).
2. Otherwise, let m be the least number such that f[n] is inconsistent with ©(Zero[m|).
3. Foreachi<m,let k; =min({z |z >1i A ®p;(x) > n}).
For each i < m, let u; = min({z | z > k; A @, (z) > n}).
(* Note that min({z | z > i A ®,4)(z) > n}), and min({z | > ki A @p;(7) > n}) are
non-empty, since by our assumption on ®, ®,;(x) > z. *)
4. (* Note that, for all x < u;, g7}, is defined. *)
Let i < m be the least number such that, for some z € {0,1}, ©(g7, [ui]) is consistent with
f[n]. (If no such ¢ exists, then output 0).
5. If both @(ggki [u;]) and 9(9}7,% [u;]) are consistent with f[n], then output progr(i, k;).
Else output progq(i, ki, z), where @(giki [u;]) is consistent with f[n].
End

We claim that the above M Bc-identifies ©(C). Suppose f € O(C). If f = ©(Zero), then
clearly, M Bec-identifies f. So suppose f # ©(Zero). Let mg be the least number such that
©(Zero[my)) is inconsistent with f. Then, clearly, for large enough n, m as computed in step 2
of M(f[n]) will be mg. Let ig be the least number such that, for some zg € {0, 1}, f = ©(h;?).
Note that ig < mg. Let ng > mg be large enough so that, for all n > ng, the following hold
(note that there exists such an ng):

(A) f[n] is inconsistent with ©(Zero[my)),

(B) For i < my, let k;,u; be as computed in step 3 of M(f[n]). Then, the following three
hold:

(B.1) For all i <o, and 2 € {0,1}, ©(g7, [us]) is inconsistent with f[n],

(B.2) If ¥Pp(io) ¢ R, then k;, = min({z | SDp(io)(aj)T})a

(B.3) For z € {0,1}, if ©(hZ)) is inconsistent with f, then ©(hZ [u;]) is inconsistent with
fln.

Now, it is easy to verify that, for all n > ng, ¢ as computed in step 4 is the same as ig. We
now claim that, for n > ng, M(f[n]) is a program for f.

Fix n > ng. Let ki, ui, be as computed in step 3 of M(f[n]). Note that if ;) ¢ R, then
ki, = min({z | ¢p,)(7)1}). We now consider the following two cases:

Case 1: Both Q(Q?O,kio [ui,]) and @(92‘107/% [u;,]), are consistent with f[n].

Note that, in this case, our assumption on ng implies that both @(h?o) and G(hllo)
are consistent with f.
Case 1a: py(;y) is not total.

In this case, our assumption on ng implies that ki, = min({x | ¢y, (2)T})-
Thus, hi = gfmkio. Hence, by definition of progr(ig, ko), for all z € {0, 1},

Qpprogr(io,kio) = @(hzzo) = @(gizo,kio)‘
Case 1b: pp,) 1s total.

In this case, h?o = hz-lo, and thus Pprogr(ioks,) = Pprogplio) = @(h?o) =

Case 2: For some z € {0,1}, O(g;, kig [uio]) is consistent with f but @(gilo_,f_ [ui,]) is inconsistent
v, v
with f.

In this case, hi = gfmkio, and f = @(gfmk‘io)' Thus, M(f[n]) = progq(io, ki, 2) is a
program for f.

From the above cases, it follows that M(f[n]) is a program for f. Thus, M Bec-identifies
o(C). |

Corollary 1 There exists a C' C R such that C' € (Ex} — Ex, Bc)-robust.

PROOF. Let C be as in the proof of Theorem 3. Let C' = C — {Zero}. One can now easily verify
that C’ € Ex} — Ex. The corollary now follows from Theorem 3. i

Corollary 2 (Bc,Bc)-robust —Ex # ().
The above solves an open problem from [Ful90].
Corollary 3 For alln € N, there exists a S C R such that S € (EXSJrl — Ex", Bc)-robust.

PRrROOF. For f € R, let f’ be defined as follows:

/ _ [flx), ify<mn;
f) = {0, otherwise.
Suppose, C € (Exj — Ex, Bc)-robust (Corollary 1 gives such a class). Let S = {f’ | f € C}.
Since C € Ex(l), it follows that S € EXS'H. Also, § € Ex" & S € Ex & C € Ex. Thus,
S ¢ Ex".
Also, since there exists a general recursive operator O such that, ©(C) = S, it follows that
S € (Be,Bc)-robust. The corollary follows. |

Corollary 4 There exists a S C R such that S € (Bc — Ex*, Bc)-robust.

PROOF. For f € R, let f' be defined as follows: f'({z,y)) = f(z). Suppose, C € (Ex'—Ex, Bc)-
robust (Theorem 3 gives such a class). Let S ={f"| f € C}. Now, S€e Ex* & ScEx < (C €
Ex. Thus, § ¢ Ex".

Also, since there exists a general recursive operator © such that, ©(C) = S, it follows that
S € (Bc, Bc)-robust. The corollary follows. |

Upto now we have confined ourselves to general recursive operators for realizing the trans-
formations of the classes to be learned. Clearly, this is not the most general approach. One
could allow recursive operators instead, which map the functions in the class to be learned to
total functions, but need not map functions outside the class to total functions.

Definition 7 (I,J)-recrobust = {C | C € I A (V¥ recursive operators © | ©(C) C R)[O(C) € J]}.
It is easy to verify that the proof of Theorem 3 also shows that
Theorem 4 There exists a C C R such that C € (Ex} — Ex, Bc)-recrobust.

Further note that the proof of Theorem 3 shows that, for C as constructed in proof of
Theorem 3, one can find a machine Be-identifying ©(C) effectively from a program for ©. Thus
not only one can Bc-identify ©(C), for all general recursive operator ©, but one can effectively
find a program for Be-identifying ©(C), from a program for ©. Similar observation also holds
for Theorem 4, for recursive operators mapping C to a subset of R.

References

[AGS89] D. Angluin, W. Gasarch, and C. Smith. Training sequences. Theoretical Computer
Science, 66:255-272, 1989.

[AS83] D. Angluin and C. Smith. A survey of inductive inference: Theory and methods.
Computing Surveys, 15:237-289, 1983.

[Bar71] J. Barzdins. Complexity and Frequency Solution of Some Algorithmically Unsolvable
Problems. PhD thesis, Novosibirsk State University, 1971. In Russian.

[Bar74] J. Barzdins. Two theorems on the limiting synthesis of functions. In Theory of
Algorithms and Programs, vol. 1, pages 82—-88. Latvian State University, 1974. In
Russian.

[BB75] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.

Information and Control, 28:125-155, 1975.

[Blu67] M. Blum. A machine-independent theory of the complexity of recursive functions.
Journal of the ACM, 14:322-336, 1967.

[Cas74] J. Case. Periodicity in generations of automata. Mathematical Systems Theory,
8:15-32, 1974.

[CJO198] J. Case, S. Jain, M. Ott, A Sharma, and F. Stephan. Robustly learning aided
by context. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pages 44-55. ACM Press, 1998.

[CS83] J. Case and C. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193-220, 1983.

10

[Fre9l]

[Ful90]

[Gol67]

[JSWOSs]

[KS89]

[KSVWO5]

[KWS80]

[0S99]

[OSWS6]

[Rog67]

[Wey52]

[Zeu86]

R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In
J. Barzdins and D. Bjorner, editors, Baltic Computer Science, volume 502 of Lecture
Notes in Computer Science, pages 77-110. Springer-Verlag, 1991.

M. Fulk. Robust separations in inductive inference. In 31st Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 405-410. IEEE Computer Society
Press, 1990.

E. M. Gold. Language identification in the limit. Information and Control, 10:447—
474, 1967.

Sanjay Jain, Carl Smith, and Rolf Wiehagen. On the power of learning robustly. In
Proceedings of the Eleventh Annual Conference on Computational Learning Theory,
pages 187-197. ACM Press, 1998.

S. Kurtz and C. Smith. On the role of search for learning. In R. Rivest, D. Haus-
sler, and M. Warmuth, editors, Proceedings of the Second Annual Workshop on
Computational Learning Theory, pages 303-311. Morgan Kaufmann, 1989.

E. Kinber, C. Smith, M. Velauthapillai, and R. Wiehagen. On learning multiple
concepts in parallel. Journal of Computer and System Sciences, 50:41-52, 1995.

R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR
mathematicians — A survey. Information Sciences, 22:149-169, 1980.

Matthias Ott and Frank Stephan. Avoiding coding tricks by hyperrobust learning.
In Fourth FEuropean Conference on Computational Learning Theory, volume 1572
of Lecture Notes in Artificial Intelligence, pages 183—-197. Springer-Verlag, 1999.

D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967. Reprinted, MIT Press 1987.

H. Weyl. Symmetry. Princeton University Press, 1952.

T. Zeugmann. On Barzdins’ conjecture. In K. Jantke, editor, Analogical and Induc-
tive Inference, Proceedings of the International Workshop, volume 265 of Lecture
Notes in Computer Science, pages 220-227. Springer-Verlag, 1986.

11

