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Abstract

A class C of recursive functions is called robustly learnable in the sense I (where
I is any success criterion of learning) if not only C itself but even all transformed
classes Θ(C) where Θ is any general recursive operator, are learnable in the sense
I. It was already shown before, see [Ful90,JSW01], that for I = Ex (learning in the
limit) robust learning is rich in that there are classes being both not contained in
any recursively enumerable class of recursive functions and, nevertheless, robustly
learnable. For several criteria I, the present paper makes much more precise where
we can hope for robustly learnable classes and where we cannot. This is achieved in
two ways. First, for I = Ex, it is shown that only consistently learnable classes can
be uniformly robustly learnable. Second, some other learning types I are classified
as to whether or not they contain rich robustly learnable classes. Moreover, the first
results on separating robust learning from uniformly robust learning are derived.

1 Introduction

Robust learning has attracted much attention recently. Intuitively, a class of
objects is robustly learnable if not only this class itself is learnable but all of its
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effective transformations remain learnable as well. In this sense, being learn-
able robustly seems to be a desirable property in all fields of learning. In in-
ductive inference, i.e., informally, learning of recursive functions in the limit, a
large collection of function classes was already known to be robustly learnable.
Actually, in [Gol67] any recursively enumerable class of recursive functions was
shown to be learnable. This was achieved even by one and the same learning
algorithm, the so-called identification by enumeration, see [Gol67]. Moreover,
any reasonable model of effective transformations maps any recursively enu-
merable class again to a recursively enumerable and, hence, learnable class.
Consequently, all these classes are robustly learnable. Clearly, the same is true
for all subclasses of recursively enumerable classes. Thus, the challenging re-
maining question was if robust learning is even possible outside the world of
the recursively enumerable classes. This question remained open for about 20
years, until it has been answered positively! [Ful90,JSW01] showed that there
are classes of recursive functions which are both “algorithmically rich” and ro-
bustly learnable, where algorithmically rich means being not contained in any
recursively enumerable class of recursive functions. Earliest examples of (large)
algorithmically rich classes featured direct self-referential coding. Though en-
suring the learnability of these classes themselves, these direct codings could
be destroyed already by simple effective transformations, thus proving that
these classes are not robustly learnable. An early motivation from Bārzdiņš
for studying robustness was just to examine what happens to learnability when
at least the then known direct codings are destroyed (by the effective trans-
formations). Later examples of algorithmically rich classes, including some
indeed robustly learnable examples, featured more indirect, “topological” cod-
ing. [Ful90,JSW01] mainly had focussed on the existence of rich and robustly
learnable classes; however, in the present paper we want to make much more
precise where we can hope for robustly learnable classes and where we cannot.
In order to reach this goal we will follow two lines.

The first line, outlined in Section 3, consists in exhibiting a “borderline” that
separates the region where robustly learnable classes do exist from the region
where robustly learnable classes provably cannot exist. More exactly, for the
basic type Ex of learning in the limit, such a borderline is given just by the
type Cons of learning in the limit consistently (i.e., each hypothesis correctly
and completely reflects all the data seen so far). Actually, in Theorem 23 we
show that all the uniformly robustly Ex-learnable classes must be already
contained in Cons, and hence the complementary region Ex−Cons is free of
any such classes. Notice that Ex−Cons is far from being empty, since it was
shown before that Cons is a proper subset of Ex, see [Bar74a,BB75,Wie76];
the latter is also known as inconsistency phenomenon, see [WZ94,Ste98,CF99]
where it has been shown that this phenomenon is present in polynomial-time
learning as well. We were surprised to find the “robustness phenomenon” and
the inconsistency phenomenon so closely related this way. There is another
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interpretation suggested by Theorem 23 which in a sense nicely contrasts the
results on robust learning from [JSW01]. All the robustly learnable classes
exhibited in that paper were of some non-trivial topological complexity, see
[JSW01] for details. On the other hand, Theorem 23 intuitively says that
uniformly robustly learnable classes may not be “too complex”, as they all
are located in the “lower part” Cons of the type Ex. Finally, this location in
Cons in turn seems useful in that just consistent learning plays an important
role not only in inductive inference, see [JB81,Ful88,Lan90,WZ95], but also in
various other fields of learning such as PAC learning, machine learning and
statistical learning, see the books [AB92,Mit97,Vap00], respectively.

In Section 4, we follow another line to solve the problem where rich robustly
learnable classes can be found and where they cannot. Therefore let us call
any type I of learning such as I = Ex, Cons etc. robustly rich if I contains
rich classes being robustly learnable in the sense I (where “rich” is understood
as above, i.e., a class is rich if it is not contained in any recursively enumerable
class); otherwise, the type I is said to be robustly poor. Then, for a few types, it
was already known if they are robustly rich or robustly poor. The first results in
this direction are due to Zeugmann [Zeu86] where the types Ex0 (Ex-learning
without any mind change) and Reliable (see Definition 8) were proved to be
robustly poor. In [Ful90,JSW01] the type Ex was shown robustly rich. Below
we classify several other types as to whether they are robustly rich or poor,
respectively. We exhibit types of both categories, rich ones (hence the first rich
ones after Ex) and poor ones, thus making the whole picture noticeably more
complete. This might even serve as an appropriate starting point for solving
the currently open problem to derive conditions (necessary, sufficient, both)
for when a type is of which category. Notice that in proving types robustly rich
below, in general, we show some stronger results, namely, we robustly separate
the corresponding types from some other “close” types, thereby strengthening
known separations in a robust way. From these separations, the corresponding
richness results follow easily.

In Section 5, we deal with a problem which was competely open up to now,
namely, separating robust learning from uniformly robust learning. While in
robust learning any transformed class is required to be learnable in the mere
sense that there exists a learning machine for it, uniformly robust learning
intuitively requires to get such a learning machine for the transformed class
effectively at hand, see Definition 14. As it turns out by our results, this ad-
ditional requirement can really lead to a difference. Actually, for a number of
learning types, we show that uniformly robust learning is stronger than robust
learning. Notice that fixing this difference is also interesting for the following
reason. As said above, in Theorem 23 all the uniformly robustly Ex-learnable
classes are shown to be learnable consistently. However, at present, it is open
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if this result remains valid when uniform robustness will be replaced by ro-
bustness only. Some results of Section 5 can be considered as first steps to
attack this apparently difficult problem.

Recently, several papers were published that deal with robustness in inductive
inference, see [Zeu86,KS89a,KS89b,Ful90,JSW01,Jai99,OS02,CJO+00]. Each
of them has contributed interesting points to a better understanding of the
challenging phenomenon of robust learning. [Zeu86,Ful90,JSW01] are already
quoted above. In addition, notice that in [JSW01] the mind change hierarchy
for Ex-type learning is proved to stand robustly. This contrasts the result
from [Ful90] that the anomaly hierarchy for Ex-type learning does not hold
robustly. In [KS89a,KS89b] the authors were dealing with so-called Bārzdiņš’
Conjecture which, intuitively, stated that the type Ex is robustly poor. In
[CJO+00] robust learning has been studied for another specific learning sce-
nario, namely learning aided by context. The intuition behind this model is to
present the functions to be learned not in a pure fashion to the learner, but
together with some “context” which is intended to help in learning. It is shown
that within this scenario several results hold robustly as well. In [OS02] the
notion of hyperrobust learning is introduced. A class of recursive functions
is called hyperrobustly learnable if there is one and the same learner which
learns not only this class itself but also all of its images under all primitive
recursive operators. Hence this learner must be capable to learn the union
of all these images. This definition is then justified by the following results.
First, it is shown that the power of hyperrobust learning does not change if
the class of primitive recursive operators is replaced by any larger, still recur-
sively enumerable class of general recursive operators. Second, based on this
stronger definition, Bārzdiņš’ Conjecture is proved by showing that a class
of recursive functions is hyperrobustly Ex-learnable iff this class is contained
in a recursively enumerable class of recursive functions. Note that, by this
equivalence and by Corollary 34 below, hyperrobust Ex-learning is stronger
than uniformly robust Ex-learning. From [OS02] hyperrobustness destroys
both direct and topological coding tricks. In [CJO+00] it is noted that hyper-
robustness destroys any advantage of context, but, since, empirically, context
does help, this provides evidence that the real world, in a sense, has codes for
some things buried inside others. In [Jai99] another basic type of inductive
inference, namely Bc, has been robustly separated from Ex, thus solving an
open problem from [Ful90]. While in the present paper general recursive op-
erators are taken in order to realize the transformations of the classes under
consideration (the reason for this choice is mainly a technical one, namely,
that these operators “automatically” map any class of recursive functions to a
class of recursive functions again), in some of the papers above other types of
operators are used such as effective, recursive, primitive recursive operators,
respectively. At this moment, we do not see any choice to this end that seems
to be superior to the others. Indeed, each approach appears justified if it yields
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interesting results.

For references surveying the theory of learning recursive functions, the reader
is referred to [AS83,BB75,CS83,Fre91,KW80,OSW86,JORS99].

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [Rog67]. N
denotes the set of natural numbers. ∗ denotes a non-member of N and is
assumed to satisfy (∀n)[n < ∗ < ∞]. Let ∈,⊆,⊂,⊇,⊃, respectively denote
the membership, subset, proper subset, superset and proper superset relations
for sets. The empty set is denoted by ∅. We let card(S) denote the cardinality
of the set S. So “card(S) ≤ ∗” means that card(S) is finite. The minimum
and maximum of a set S are denoted by min(S) and max(S), respectively.
We take max(∅) to be 0 and min(∅) to be ∞. χA denotes the characteristic
function of A, that is, χA(x) = 1, if x ∈ A, and 0 otherwise.

〈·, ·〉 denotes a 1-1 computable mapping from pairs of natural numbers onto
natural numbers. π1, π2 are the corresponding projection functions. 〈·, ·〉 is
extended to n-tuples of natural numbers in a natural way. Λ denotes the
empty function. η, with or without subscripts, superscripts, primes and the
like, ranges over partial functions. If η1 and η2 are both undefined on input x,
then, we take η1(x) = η2(x). We say that η1 ⊆ η2 iff for all x in domain of η1,
η1(x) = η2(x). We let domain(η) and range(η) respectively denote the domain
and range of the partial function η. η(x)↓ denotes that η(x) is defined. η(x)↑
denotes that η(x) is undefined.

We say that a partial function η is conforming with η′ iff for all x ∈ domain(η)∩
domain(η′), η(x) = η(x′). η ∼ η′ denotes that η is conforming with η′. η is
non-conforming with η′ iff there exists an x such that η(x)↓ 6= η′(x)↓. η 6∼ η′

denotes that η is non-conforming with η′.

For r ∈ N , r-extension of η denotes the function f defined as follows:

f(x) =
{
η(x), if x ∈ domain(η);
r, otherwise.

For a finite set S of programs, we let Union(S) denote the partial recur-
sive function: Union(S)(x) = ϕp(x), for the first p ∈ S found such that
ϕp(x)↓ using some standard dovetailing mechanism for computing ϕp’s. When
programs q1, q2, . . . , qn for partial recursive functions η1, η2, . . . , ηn are im-
plicit, we sometimes abuse notation and use Union({η1, η2, . . . , ηn}), to denote
Union({q1, q2, . . . , qn}).
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f, g, h, F and H, with or without subscripts, superscripts, primes and the like,
range over total functions. R denotes the class of all recursive functions, i.e.,
total computable functions with arguments and values from N . T denotes
the class of all total functions. R0,1 (T0,1) denotes the class of all recursive
functions (total functions) with range contained in {0, 1}. C and S, with or
without subscripts, superscripts, primes and the like, range over subsets of
R. P denotes the class of all partial recursive functions over N . ϕ denotes a
fixed acceptable programming system. ϕi denotes the partial recursive function
computed by program i in the ϕ-system. Note that in this paper all programs
are interpreted with respect to the ϕ-system. We let Φ be an arbitrary Blum
complexity measure [Blu67] associated with the acceptable programming sys-
tem ϕ; many such measures exist for any acceptable programming system
[Blu67]. We assume without loss of generality that Φi(x) ≥ x, for all i, x. ϕi,s
is defined as follows:

ϕi,s(x) =
{
ϕi(x), if x < s and Φi(x) < s;
↑, otherwise.

For a given partial computable function η, we define MinProg(η) = min({i |
ϕi = η}).

A class C ⊆ R is said to be recursively enumerable iff there exists an r.e. set
X such that C = {ϕi | i ∈ X}. For any non-empty recursively enumerable
class C, there exists a recursive function f such that C = {ϕf(i) | i ∈ N}.

A class C is said to be h-bounded iff for all f ∈ C, for all but finitely many x,
f(x) ≤ h(x). A class C is bounded iff it is h-bounded for some recursive h. A
class C is unbounded iff it is not h-bounded for any recursive h.

The following functions and classes are commonly considered below. Zero is
the everywhere 0 function, i.e., Zero(x) = 0, for all x ∈ N . CONST = {f |
(∀x)[f(x) = f(0)]} denotes the class of constant functions. FINSUP = {f |
(∀∞x)[f(x) = 0]} denotes the class of all recursive functions of finite support.

2.1 Function Identification

We first describe inductive inference machines. We assume that the graph of
a function is fed to a machine in canonical order.

For f ∈ R and n ∈ N , we let f [n] denote f(0)f(1) . . . f(n − 1), the finite
initial segment of f of length n. Clearly, f [0] denotes the empty segment. SEG
denotes the set of all finite strings, {f [n] | f ∈ R ∧ n ∈ N}. SEG0,1 = {f [n] |
f ∈ R0,1∧n ∈ N}. We let σ, τ and γ, with or without subscripts, superscripts,
primes and the like, range over SEG. Λ denotes the empty sequence. We
assume some computable ordering of elements of SEG. σ < τ , if σ appears
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before τ in this ordering. Similary one can talk about least element of a subset
of SEG.

For a finite string σ and finite or infinite string β, we let σ · β denote the
concatenation of σ and β. We identify σ = a0a1 . . . an−1 with the partial
function

σ(x) =
{
ax, if x < n;
↑, otherwise.

Similarly a total function g is identified with the infinite sequence
g(0)g(1)g(2) . . .. Thus, for example, 0∞ = Zero.

Let |σ| denote the length of σ. If |σ| ≥ n, then we let σ[n] denote the prefix
of σ of length n. σ ⊆ τ denotes that σ is a prefix of τ . An inductive inference
machine (IIM) [Gol67] is an algorithmic device that computes a (possibly
partial) mapping from SEG into N . Since the set of all finite strings, SEG,
can be coded onto N , we can view these machines as taking natural numbers
as input and emitting natural numbers as output. We say that M(f) converges
to i (written: M(f)↓ = i) iff (∀∞n)[M(f [n]) = i]; M(f) is undefined if no such
i exists. M0,M1, . . . denotes a recursive enumeration of all the IIMs. The next
definitions describe several criteria of function identification.

Definition 1 [Gol67] Let f ∈ R and S ⊆ R.

(a) M Ex-identifies f (written: f ∈ Ex(M)) just in case there exists a pro-
gram i for f such that M(f)↓ = i.

(b) M Ex-identifies S iff M Ex-identifies each f ∈ S.
(c) Ex = {S ⊆ R | (∃M)[S ⊆ Ex(M)]}.

By the definition of convergence, only finitely many data points from a function
f have been observed by an IIM M at the (unknown) point of convergence.
Hence, some form of learning must take place in order for M to learn f . For this
reason, hereafter the terms identify, learn and infer are used interchangeably.

Definition 2 [Bar74b,CS83] Let f ∈ R.

(a) M Bc-identifies f (written: f ∈ Bc(M)) iff, for all but finitely many
n ∈ N , M(f [n]) is a program for f .

(b) M Bc-identifies S iff M Bc-identifies each f ∈ S.
(c) Bc = {S ⊆ R | (∃M)[S ⊆ Bc(M)]}.

Definition 3 [Bar74a] M is said to be consistent on f iff, for all n, M(f [n])↓
and f [n] ⊆ ϕM(f [n]).

Definition 4 [Wie78] M is said to be conforming on f iff, for all n, M(f [n])↓
and f [n] ∼ ϕM(f [n]).
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Definition 5 (a) [Bar74a] M Cons-identifies f iff M is consistent on f , and
M Ex-identifies f .

(b.1) [Bar74a] M Cons-identifies C iff M Cons-identifies each f ∈ C.

(b.2) Cons = {C | (∃M)[M Cons-identifies C]}.

(c.1) [JB81] M RCons-identifies C iff M is total, and M Cons-identifies C.

(c.2) RCons = {C | (∃M)[M RCons-identifies C]}.

(d.1) [WL76] M T Cons-identifies C iff M is consistent on each f ∈ T , and
M Cons-identifies C.

(d.2) T Cons = {C | (∃M)[M T Cons-identifies C]}.

Note that for M to Cons-identify a function f , it must be defined on each
initial segment of f . Similarly for Conf -identification below.

Definition 6 (a) [Wie78] M Conf-identifies f iff M is conforming on f , and
M Ex-identifies f .

(b.1) [Wie78] M Conf-identifies C iff M Conf -identifies each f ∈ C.

(b.2) Conf = {C | (∃M)[M Conf -identifies C]}.

(c.1) M RConf-identifies C iff M is total, and M Conf -identifies C.

(c.2) RConf = {C | (∃M)[M RConf -identifies C]}.

(d.1) [Ful88] M T Conf-identifies C iff M is conforming on each f ∈ T , and
M Conf -identifies C.

(d.2) T Conf = {C | (∃M)[M T Conf -identifies C]}.

Definition 7 [OSW86] M is confident iff for all total f , M(f)↓.

M Confident-identifies C iff M is confident and M Ex-identifies C.

Confident = {C | (∃M)[M Confident-identifies C]}.

Definition 8 [Min76,BB75] M is reliable iff M is total, and for all total f ,
M(f)↓ ⇒M Ex-identifies f .

M Reliable-identifies C iff M is reliable and M Ex-identifies C.

Reliable = {C | (∃M)[M Reliable-identifies C]}.
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Definition 9 NUM = {C | (∃C ′ | C ⊆ C ′ ⊆ R)[C ′ is recursively enumerable]}.

For references on inductive inference within NUM, the set of all recur-
sively enumerable classes and their subclasses, the reader is referred to
[Gol67,BF74,FBP91].

We let I and J range over identification criteria defined above.

The following theorem relates the criteria of inference discussed above.

Theorem 10 [WL76,WZ95,Bar74a,Bar74b,BB75,Wie76,Wie78,Ful88,Gra86]

(a) NUM ⊂ T Cons = T Conf ⊂ RCons ⊂ RConf ⊂ Conf ⊂ Ex ⊂ Bc.

(b) RCons ⊂ Cons ⊂ Conf .

(c) RConf 6⊆ Cons.

(d) Cons 6⊆ RConf .

(e) T Cons ⊂ Reliable ⊂ Ex.

(f) Reliable 6⊆ Conf .

(g) RCons 6⊆ Reliable.

(h) NUM 6⊆ Confident.

(i) Confident 6⊆ Conf .

(j) Confident 6⊆ Reliable.

Proof. (a) and (b): NUM ⊂ T Cons ⊂ Cons was shown by [WL76].
T Cons ⊂ RCons ⊂ Cons was shown by [WZ95]. Cons ⊂ Ex was shown by
[Bar74a,BB75,Wie76]. Cons ⊂ Conf ⊂ Ex was done by [Wie78]. T Cons =
T Conf was shown by [Ful88]. Ex ⊂ Bc was done by [Bar74b] (see also
[CS83]).

RCons ⊂ RConf and RConf ⊂ Conf follow from parts (c) and (d).

Part (c) follows from proof of Conf − Cons 6= ∅ in [Wie78]. We are not
sure if anyone has explicitly shown part (d), but it follows as a corollary to
Theorem 35.

T Cons ⊆ Reliable follows from definition. Reliable − T Cons 6= ∅ was
shown by [Gra86]; it also follows from part (f). Reliable ⊂ Ex was shown by
[BB75]. Thus, part (e) follows.
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For part (f), consider the class C = FINSUP∪{f | ϕf(0) = f ∧ (∀x)[Φf(0)(x) ≤
f(x+ 1)]}. Clearly, C ∈ Reliable. Also since FINSUP ⊆ C, if C ∈ Conf , then
C ∈ T Conf = T Cons. Now suppose by way of contradiction that M T Cons-
identifies C. Then by Kleene recursion theorem [Rog67] there exists an e such
that ϕe may be described as follows.

ϕe(x) =


e, if x = 0;
Φe(x− 1), if x > 0, and

M(ϕe[x] · Φe(x− 1)) 6= M(ϕe[x]);
Φe(x− 1) + 1, otherwise.

It is easy to verify that ϕe is total. Since M is consistent on all inputs, for
each f [x], there exists at most one y, such that M(f [x]) = M(f [x] · y). Thus,
by definition of ϕe, for all x > 0, M(ϕe[x]) 6= M(ϕe[x+ 1]).

Let SD = {f ∈ R | ϕf(0) = f}. It was shown by [BB75], that SD 6∈ Reliable.
Since SD ∈ RCons ∩Confident, part (g) and (j) follow.

For (h), consider FINSUP. Clearly, FINSUP ∈ NUM. Now, suppose
FINSUP ⊆ Ex(M). Then, for all σ, there exists τ such that σ ⊆ τ , and
M(σ) 6= M(τ). It follows that there exists an infinite sequence σi, i ∈ N such
that σi ⊂ σi+1, and M(σi) 6= M(σi+1). Thus, M makes infinite number of
mind changes on

⋃
i σi. Thus M is not confident. (h) follows.

For part (i), let C = {f | [ϕf(0) = f ∧ (∀x > 0)[f(x) 6= 0]] or [(∃y)[(∀x >
y)[f(x) = 0] ∧ (∀x | 0 < x ≤ y)[f(x) 6= 0]]]}.

It is easy to verify that C ∈ Confident. Suppose by way of contradiction that
M Conf -identifies C. We consider two cases:

Case 1: There exists an f [n] such that, for x with 0 < x < n, f(x) 6= 0 and
[M(f [n])↑ or f [n] 6∼ ϕM(f [n])].

In this case, let g = f [n]0∞. Clearly, g ∈ C, but M does not Conf -identify
g.

Case 2: Not Case 1.

In this case, by Kleene recursion theorem [Rog67], there exists an e such
that ϕe may be defined as follows.

ϕe(x) =


e, if x = 0;
1, if x > 0 and

M(ϕe[x] · 1) 6= M(ϕe[x]);
2, otherwise.

By hypothesis of the case, ϕe is total and a member of C. Suppose M(ϕe)↓.
Let n be such that for all x > n, M(ϕe[x]) = M(ϕe[n]). But then, by
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definition of ϕe, for all x > n, ϕe(x) = 2, and M(ϕe[x] ·1) = M(ϕe[x]). This,
by hypothesis of the case, implies that M does not Ex-identify ϕe.

2.2 Operators

Definition 11 [Rog67] A recursive operator is an effective total mapping, Θ,
from (possibly partial) functions to (possibly partial) functions, which satisfies
the following properties:

(a) Monotonicity: For all functions η, η′, if η ⊆ η′ then Θ(η) ⊆ Θ(η′).
(b) Compactness: For all η, if (x, y) ∈ Θ(η), then there exists a finite function
α ⊆ η such that (x, y) ∈ Θ(α).

(c) Recursiveness: For all finite functions α, one can effectively enumerate (in
α) all (x, y) ∈ Θ(α).

Definition 12 [Rog67] A recursive operator Θ is called general recursive iff
Θ maps all total functions to total functions.

For each recursive operator Θ, we can effectively (from Θ) find a recursive
operator Θ′ such that,

(d) for each finite function α, Θ′(α) is finite, and its canonical index can be
effectively determined from α; furthermore if α ∈ SEG then Θ′(α) ∈ SEG,
and

(e) for all total functions f , Θ′(f) = Θ(f).

This allows us to get a nice effective sequence of recursive operators.

Proposition 13 [JSW01] There exists an effective enumeration, Θ0,Θ1, . . .,
of recursive operators satisfying condition (d) above such that, for all recursive
operators Θ, there exists an i ∈ N satisfying:

for all total functions f , Θ(f) = Θi(f).

Since we will be mainly concerned with the properties of operators on total
functions, for diagonalization purposes, one can restrict attention to operators
in the above enumeration Θ0,Θ1, . . ..

Definition 14 [Ful90,JSW01]

RobustEx = {C | (∀ general recursive operators Θ)[Θ(C) ∈ Ex]}.

UniformRobustEx = {C | (∃g ∈ R)(∀e | Θe is general recursive)[Θe(C) ⊆
Ex(Mg(e))]}.
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One can similarly define RobustI and UniformRobustI, for other criteria
I of learning considered in this paper.

2.3 Some Useful Propositions

Proposition 15 [JSW01,Zeu86] NUM = RobustNUM

Corollary 16 (a) NUM ⊆ RobustT Cons ⊆ RobustReliable.

(b) NUM ⊆ UniformRobustT Cons.

Proof. (a) follows immediately from Proposition 15 and Theorem 10(a,e).

In order to show (b) recall that, by Proposition 15, for any recursively enumer-
able class C and any general recursive operator Θe, Θe(C) is again recursively
enumerable and, hence, can be Ex-learned using identification by enumeration,
see [Gol67]. Moreover, given C, this identification by enumeration strategy can
be computed uniformly in e. Recall that identification by enumeration already
works consistently, see [Gol67]. Finally, notice that this strategy can easily and
uniformly be made to work consistently on all total functions.

We say that f =∗ g iff card({x | f(x) 6= g(x)}) is finite. We say that C ⊆ R
is closed under finite variations iff for all f, g ∈ R such that f =∗ g, f ∈ C iff
g ∈ C.

Proposition 17 [OS02] Suppose C is closed under finite variations. Then
C ∈ RobustEx iff C ∈ NUM.

Proposition 18 T Cons 6⊆ RobustEx.

Proof. Let C = {f | (∃i)[Φi ∈ R ∧ f =∗ Φi]}. It is easy to verify that
C ∈ T Cons. However, as C is closed under finite variations, using Proposi-
tion 17, we have C ∈ RobustEx iff C ∈ NUM. As {Φi | Φi ∈ R} 6∈ NUM,
proposition follows.

The following result was shown in [Gra86].

Lemma 19 [Gra86] Suppose S ∈ Reliable, and S is bounded. Then S ∈
NUM.

Corollary 20 Suppose S ∈ T Cons, and S is bounded. Then S ∈ NUM.

Proof. This follows immediately from Lemma 19 and Theorem 10(e).
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Proposition 21 [FW79] Let Se = {ϕi ∈ R | i ≤ e}. Then, there exists a
recursive h such that, for any e, Se ⊆ Ex(Mh(e)). Moreover, this Mh(e) also
witnesses that Se ∈ Cons.

Corollary 22 Let Se = {ϕi ∈ R | i ≤ e}. There exists a recursive h such that,
if Θj is a general recursive operator, then Θj(Se) ⊆ Ex(Mh(e,j)). Moreover,
this Mh(e,j) also witnesses that Θj(Se) ∈ Cons.

3 Robust Learning and Consistency

The main result of this section is UniformRobustEx ⊆ Cons, see Theo-
rem 23. Hence, all the uniformly robustly Ex-learnable classes are contained
in the “lower part” Cons of Ex; recall that Cons is a proper subset of Ex, see
[Bar74a,BB75,Wie76]. This nicely relates two surprising phenomena of learn-
ing, namely the robustness phenomenon and the inconsistency phenomenon.
On the other hand, despite the fact that every uniformly robustly Ex-learnable
class is located in that lower part of Ex, UniformRobustEx contains “al-
gorithmically rich” classes, since, by Corollary 34, UniformRobustEx ⊃
NUM.

Theorem 23 UniformRobustEx ⊆ Cons.

Proof. Suppose C ∈ UniformRobustEx, and g is a recursive function such
that, for all i, if Θi is general recursive, then Θi(C) ⊆ Ex(Mg(i)). Without loss
of generality we may assume that each Mg(i) is total.

Then, by Kleene recursion theorem [Rog67], there exists an e such that Θe

may be described as follows. For ease of presentation, Θe(f [m]) may be infinite
for some f,m (and thus it does not satisfy the invariant (d) we assumed (see
discussion around Proposition 13) on the enumeration Θ0,Θ1, . . .; this can be
easily handled by appropriately slowing down Θe).

Θe(Λ) = Λ.

Θe(f [n+1]) =



Θe(f [n]), if Θe(f [n]) is infinite;
Θe(f [n]) · f(n) · 0∞, if for all m,

Θe(f [n]) · f(n) 6⊆ ϕMg(e)(Θe(f [n])·f(n)·0m),m;
Θe(f [n]) · f(n) · 0m, if m is the least number such that

Θe(f [n]) · f(n) ⊆ ϕMg(e)(Θe(f [n])·f(n)·0m),m.

It is easy to verify that Θe is general recursive.

Claim 24 (a) If Θe(f [n]) is finite, and a 6= b, then Θe(f [n] ·a) 6∼ Θe(f [n] · b).
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(b) If Θe(f [n]) and Θe(h[m]) are both finite, then f [n] ∼ h[m] iff Θe(f [n]) ∼
Θe(h[m]).

(c) If Θe(f [n+ 1]) is finite, then Θe(f [n]) · f(n) ⊆ ϕMg(e)(Θe(f [n+1])).

(d) For all p, n, there exists at most one f [n+1], such that Θe(f [n])·f(n) ⊆ ϕp.

(e) If Θe(f [n+ 1]) is infinite, then Mg(e) does not Ex-identify Θe(f).

(f) For all f ∈ C, for all n, Θe(f [n]) is finite.

Proof. (a), (c) follow from construction. (b) follows from part (a). Part (d)
follows from part (b).

For part (e), suppose Θe(f [n+1]) is infinite. Without loss of generality assume
that n is least such that Θe(f [n+1]) is infinite. Then, Θe(f) = Θe(f [n+1]) =
Θe(f [n]) · f(n) · 0∞. But, for all m, Θe(f [n]) · f(n) 6⊆ ϕMg(e)(Θe(f [n])·f(n)·0m),m.
Thus, either Mg(e) diverges on Θe(f), or Θe(f [n]) · f(n) 6⊆ ϕMg(e)(Θe(f)). Thus,
Mg(e) does not Ex-identify Θe(f).

(f) follows as corollary to part (e). 2

Let prog be a recursive function such that ϕprog(p) is defined as follows.

ϕprog(p)(x)
1. Search for f [x+1] such that Θe(f [x+1]) is finite, and Θe(f [x]) ·f(x) ⊆ ϕp.

(* Note that by Claim 24(d), there exists at most one f [x + 1] satisfying
above. Moreover, if p ∈ {Mg(e)(Θe(h[x + 1])) | Θe(h[x + 1]) is finite },
then there exists one such f [x+ 1], by Claim 24(c). *)

2. If and when such an f [x+ 1] is found, then output f(x).
End

Claim 25 If Θe(f [n]) is finite, then f [n] ⊆ ϕprog(Mg(e)(Θe(f [n]))).

Proof. If n = 0, then claim trivially holds. If n > 0, then by Claim 24(c),
Θe(f [n − 1]) · f(n − 1) ⊆ ϕMg(e)(Θe(f [n])). Thus, by definition of prog and
Claim 24(d), f [n] ⊆ ϕprog(Mg(e)(Θe(f [n]))). 2

We now define M as follows:

M(f [m]) =
{
prog(Mg(e)(Θe(f [m]))), if Θe(f [m]) is finite;
↑, otherwise.

It follows from Claim 24(f) and Claim 25 that M is consistent on each f ∈ C.
Since Mg(e) converges on Θe(f) for each f ∈ C, it follows that M converges on
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each f ∈ C. Thus, it follows by consistency of M that M Ex-identifies each
f ∈ C. It follows that C ∈ Cons.

Note that the proof of Theorem 23 shows that given any recursive g, one can
effectively construct an M such that, for any C, if

for all e such that Θe is general recursive, Θe(C) ⊆ Ex(Mg(e))

then M Cons-identifies C. Thus we have that UniformRobustEx ⊆
UniformRobustCons. Since the reverse inclusion holds by definition, it fol-
lows that,

Corollary 26 UniformRobustEx = UniformRobustCons.

Now we investigate the links between boundedness and uniform robust
learnability of classes of functions. As a consequence, we derive that
UniformRobustEx contains algorithmically rich classes, see Corollary 34
below.

Theorem 27 Suppose S ∈ UniformRobustCons. If there exists an x such
that max({f(x) | f ∈ S}) =∞, then S ∈ NUM.

Proof. There is an infinite recursive binary tree without an infinite recursive
branch where each node σ is either branching (having successors σ ·0 and σ ·1)
or a leaf (having no successors). Such a tree can be obtained by starting with
full binary tree, and then removing σ from this tree iff there exists a j < |σ|/2
such that σ[2j] ⊆ ϕj,|σ|.

Let this tree be named T and let τ0, τ1, . . . be a one-one recursive enumeration
of its leaves; note that the length of each τk is at least 1.

Claim 28 For any g ∈ R0,1, there exists a unique f (which is recursive) such
that g = τf(0) · τf(1) · τf(2) . . .. Furthermore a program for f can be computed
effectively from g.

Proof. We inductively define gi and ni (gi will be recursive). Let g0 = g.
Suppose gi has been defined. Then we define ni and gi+1 as follows. Since gi is
recursive, gi is not an infinite branch of T . Let ni be such that τni

⊆ gi (note
that ni is unique). Let gi+1 be such that gi = τni

· gi+1.

It is easy to verify that each gi is recursive, and ni can be effectively found
from g and i. Let f(i) = ni. Proposition is now easy to verify. 2

For any recursive g, let Imag(g) denote the unique f such that g = τf(0) ·τf(1) ·
τf(2) . . .. By above proposition, program for Imag(g) can be found effectively
from program for g.
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We now continue with the proof of the theorem. Let S and x be as given in
the hypothesis. Suppose g is a recursive function such that, for all e such that
Θe is general recursive, Mg(e) Cons-identifies Θe(S).

Let Ui = {σ ∈ SEG0,1 |Mg(i)(σ)↓ ∧ σ ⊆ ϕMg(i)(σ)}.

Note that Ui is r.e. Fix some uniform (in i) enumeration of Ui. Let σi,t denote
the least σ not enumerated in Ui within t steps. Note that σi,t can be effectively
computed from i, t.

By implicit use of Kleene recursion theorem [Rog67], there exists an e such
that

Θe(f) = σe,f(x) · τf(0) · τf(1) . . .

Note that Θe is general recursive.

Claim 29 Ue = SEG0,1.

Proof. Suppose by way of contradiction that SEG0,1−Ue 6= ∅. Let σ be the
least element of SEG0,1 −Ue. Thus, Mg(e)(σ)↑ or ϕMg(e)(σ) does not extend σ.
Thus Mg(e) does not Cons-identify any extension of σ.

Let t be large enough so that all elements of Ue which are less than σ have
been enumerated in Ue within t steps. Then, for any f ∈ S, such that f(x) > t,
σe,f(x) = σ. Thus, Θe(f) extends σ. Therefore, Mg(e) does not Cons-identify
Θe(f) (since Mg(e) does not Cons-identify any extension of σ).

A contradiction to Mg(e) Cons-identifying Θe(S). 2

It follows that Mg(e) T Cons-identifies Θe(S). Since Θe(S) ⊆ R0,1, it follows
by Corollary 20 that Θe(S) ∈ NUM.

Thus there exists a recursively enumerable family, f0, f1, . . . of recursive func-
tions in R0,1 such that Θe(S) ⊆ {fi | i ∈ N}.

Let gi,n = fi(n)fi(n+ 1)fi(n+ 2) . . ..

Thus, {gi,n | i, n ∈ N} is recursively enumerable. Suppose f ∈ S, and fk =
Θe(f). Then, clearly, Imag(gk,n) = f , for n = |σe,f(x)|. It follows that S ⊆
{Imag(gi,n) | i, n ∈ N}. Hence S ∈ NUM.

Corollary 30 Suppose S ∈ UniformRobustEx. If there exists an x such
that max({f(x) | f ∈ S}) =∞, then S ∈ NUM.

Proof. This follows immediately from Corollary 26 and Theorem 27.
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Definition 31 A function F is 1-generic iff, for every recursively enumerable
set A ⊆ SEG, one of following holds:

(a) There exists an x such that F [x] ∈ A or

(b) There exists an x such that for all σ ∈ A, F [x] 6⊆ σ.

It can be shown that there exists a limiting recursive 1-generic F .

Theorem 32 There is S ∈ UniformRobustEx such that S is unbounded.

Proof. Let F be a limiting recursive 1-generic function.

Claim 33 For all general recursive operators Θ, one of (a) or (b) is satisfied.

(a) There exists a σ ⊆ F such that (∀f ⊇ σ)[Θ(F ) = Θ(f)], or

(b) Θ(F ) is not recursive.

Proof. Suppose Θ(F ) is recursive. Let A = {σ | Θ(σ) 6∼ Θ(F )}. Then, A is
recursively enumerable. Moreover, for all σ ∈ A, σ 6⊆ F . Thus, by definition
of 1-generic function, there exists an x such that, for all σ ∈ A, F [x] 6⊆ σ. It
follows that for any f extending F [x], Θ(f) = Θ(F ). Part (a) follows. 2

Now define S as follows. Let

ηi,r(x) =
{
F (x), if x < r;
ϕi(x), otherwise.

S = {ηi,r | i < r and ηi,r ∈ R}.

Clearly, S is unbounded (since for all recursive h, there exists an i, such that
ϕi ∈ R and ϕi(x) > h(x) infinitely often. Thus ηi,r ∈ S, for all but finitely
many r, but ηi,r is not h-bounded).

We show that S ∈ UniformRobustEx. Note that there is a recursively
enumerable approximation G0, G1, . . . of total recursive functions to F .

Let h be as in Corollary 22. By parameterized s-m-n theorem, let g be a
recursive function such that Mg(e) may be defined as follows.

Mg(e)(f [n])
1. If there is a k ≤ n such that Θe(Gk) ⊇ f [n], then output a canonical index

for Θe(Gk) for the least such k.
2. Otherwise let m be least number such that Θe(Gn[m]) 6∼ f [n]. Let η′i,r
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denote the function:

η′i,r(x) =
{
Gn(x), if x < r;
ϕi(x), otherwise.

Let m′ be such that, for all i, r ≤ m, there exists a program j ≤ m′ for
η′i,r.

Output Mh(m′,e)(f [n]).
End

We claim that Mg(e) Ex-identifies Θe(S). To see this, suppose f ∈ Θe(S).

Case 1: There exists a k such that Θe(Gk) = f .

In this case by step 1 of the construction of Mg(e), we have that Mg(e)

Ex-identifies f .

Case 2: Not Case 1.

In this case we first claim that Θe(F ) 6= f . If this were not the case, then
since f is recursive, by Claim 33 there would exist an m such that, for all
g ⊇ F [m], Θe(g) = f . Since for all but finitely many k, F [m] ⊆ Gk, we
would have Case 1 (that is, Θe(Gk) = f).

Thus, for all but finitely many n, Mg(e) executes step 2 on input f [n], and
m as computed in step 2 is the least number such that Θe(F [m]) 6∼ f , and
F [m] ⊆ Gn.

But then, by construction of S, there exists an i < r ≤ m, such that ηi,r ∈ S
and f = Θe(ηi,r).

But then, for all but finitely many n, the value m′ as defined in Mg(e)(f [n])
converges (as n goes to ∞) and is a bound on a program for ηi,r. It follows
that Mh(m′,e) and thus Mg(e) Ex-identifies f .

Above cases prove the theorem.

Corollary 34 UniformRobustEx ⊃ NUM.

Proof. The inclusion follows from Corollary 16(b) and Theorem 10(a). The
proper inclusion now follows from Theorem 32, since every class from NUM
is bounded.
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Fig. 1. Robust Learning and Consistency/Conformity

4 Robustly Rich and Robustly Poor Learning

In this section, we show for several learning types that they are “robustly
rich”; that is, these types contain classes being both robustly learnable and
not contained in any recursively enumerable class. Notice that in proving these
types robustly rich below, in general, we show some stronger results, namely,
we robustly separate (or even uniformly robustly separate) the corresponding
types from some other types, thereby strengthening known separations in a
(uniformly) robust way. From these separations, the corresponding richness
results follow easily by applying Theorem 10. On the other hand, there are
also “robustly poor” learning types; that is, every robustly learnable class
of these types is contained in a recursively enumerable class. Some further
robustly poor types will be exhibited in Section 5.

A summary of results relating robust consistent and conforming learning is
shown in Figure 1. Note that the relationship between Cons and RobustConf
is open at this point (along with whether RobustCons is a proper subset of
RobustConf).

Besides the results given in Figure 1, we also give results involving confident
learning in this section.
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Theorem 35 UniformRobustCons 6⊆ RConf . (Moreover the non-
inclusion can be witnessed using a class from R0,1.)

Proof. Let F be a limiting recursive function which dominates every re-
cursive function, and F (x) < F (x + 1), for all x. Let Fs(·) denote recursive
approximation of F .

Let C = {f ∈ R0,1 | (∃e)[f(e) = 1, (∀x < e)[f(x) = 0], and (∃j ≤ F (e))[ϕj =
f ]]}.

Claim 36 C ∈ UniformRobustEx.

Proof. Let h be as in Corollary 22. Let g be a recursive function such that
Mg(e) may be defined as follows.

Mg(e)(f [n])
1. If Θe(Zero[n]) ∼ f [n], then output a standard program for Θe(Zero).
2. Else let m be least number such that Θe(0

m) 6∼ f [n].
Output Mh(Fn(m),e)(f [n]).

End

Suppose Θe is general recursive. Then we claim that Mg(e) Ex-identifies Θe(C).
To see this, suppose f ∈ Θe(C). If f = Θe(Zero), then clearly, by step 1, Mg(e)

Ex-identifies f .

If f 6= Θe(Zero), then let m be least number such that f 6∼ Θe(Zero[m]).
Thus, if f = Θe(η), then η(x) 6= 0, for some x < m. Therefore, by definition
of C, there exists a j ≤ F (m), such that f = Θe(ϕj). Now it follows from
definition of h in Corollary 22 that Mh(F (m),e) Ex-identifies f , and thus Mg(e)

Ex-identifies f . 2

Thus C ∈ UniformRobustCons by Corollary 26.

We now show that C 6∈ RConf . Assume by way of contradiction that C ∈
RConf as witnessed by M.

Claim 37 For all but finitely many j, for all σ extending 0j1, if M(σ · 0) =
M(σ · 1), then ϕM(σ·0)(|σ|)↑.

Proof. Let f be such that for j ∈ N , ϕf(j) is defined as follows:

Search for a σ ∈ SEG0,1 extending 0j1, such that M(σ · 0) = M(σ · 1), and
ϕM(σ·0)(|σ|)↓. If and when such a σ is found, let ϕf(j) be (1 .− ϕM(σ·0)(|σ|))-
extension of σ.
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Note that for all but finitely many j, f(j) ≤ F (j). Let j0 be such that for all
j ≥ j0, f(j) ≤ F (j).

Thus, for all j ≥ j0, if there exists a σ extending 0j1 such that M(σ · 0) =
M(σ · 1), and ϕM(σ·0)(|σ|)↓, then ϕf(j) is total and belongs to C, and M is not
conforming on ϕf(j). A contradiction to M RConf -identifying C.

Thus, for all j ≥ j0, for all σ extending 0j1, if M(σ · 0) = M(σ · 1), then
ϕM(σ·0)(|σ|)↑. 2

Now for σ ∈ SEG0,1 define fσ as follows:

fσ(x) =


σ(x), if x < |σ|;
1, if M(fσ[x] · 1) = M(fσ[x]), and

M(fσ[x] · 0) 6= M(fσ[x]);
0, otherwise.

Clearly, fσ is total for each σ ∈ SEG0,1.

Claim 38 For all but finitely many j, for all g ∈ C such that 0j1 ⊆ g, there
exists a τ such that g = fτ .

Proof. Consider j such that,

for all σ ∈ SEG0,1 extending 0j1, if M(σ · 0) = M(σ · 1), then ϕM(σ·0)(|σ|)↑.

Note that all but finitely many j satisfy the above condition (by Claim 37).
Now suppose 0j1 ⊆ g ∈ C. Let τ ⊇ 0j1 be such that τ ⊆ g, and for all τ ′,
τ ⊆ τ ′ ⊆ g, M(τ) = M(τ ′). Then, it follows that fτ = g. 2

From the above claim it follows that C is in NUM (since, for any j, there are
only finitely many functions in C with prefix 0j1).

However, C 6∈ NUM, since {f ∈ R | ϕj = f and 0j1 ⊆ f} ⊆ C, but
{f ∈ R | ϕj = f and 0j1 ⊆ f} 6∈ NUM.

Corollary 39 UniformRobustCons ⊃ NUM.

Proof. The inclusion follows from Corollary 16(b) and Theorem 10(a,b).
The proper inclusion now follows from Theorem 35 and Theorem 10(a).

Note that the class S used in proof of Theorem 32, is also not in RConf . So
we can have an alternative proof for above theorem using the S in proof of
Theorem 32. However, our current proof is useful for some other results in the
paper.
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We now consider robust separation of RCons and T Cons, see Theorem 44
below. We first show the following proposition and lemma.

Proposition 40 Suppose Θk is general recursive. Then for all n, there ex-
ists an m such that, if τ ∈ SEG0,1, and |τ | ≥ m, then domain(Θk(τ)) ⊇
{0, 1, . . . , n− 1}.

Proof. This follows from König’s Lemma and general recursiveness of Θk.

Lemma 41 There exists a recursive p such that (a) to (e) are satisfied.

(a) ϕp(i)(i) = 1 and ϕp(i)(x) = 0, for x < i.

(b) ϕp(i) ∈ R0,1 or ϕp(i) ∈ SEG0,1.

(c) For all i, for all k ≤ i, either:

(i) Θk(ϕp(i)) 6∼ Θk(Zero) Or
(ii) for all f ∈ R0,1 such that ϕp(i) ⊆ f , [Θk(f) ∼ Θk(Zero)].

(d) For all k such that Θk is general recursive, for all i, j ≥ k such that i 6= j,
Either,

(i) Θk(ϕp(i)) ∼ Θk(Zero) Or
(ii) Θk(ϕp(j)) ∼ Θk(Zero) Or
(iii) Θk(ϕp(i)) 6∼ Θk(ϕp(j)) Or
(iv) for all f, g ∈ R0,1 such that ϕp(i) ⊆ f and ϕp(j) ⊆ g, [Θk(f) ∼ Θk(g)].

(e) C = {ϕp(i) | i ∈ N,ϕp(i) ∈ R} 6∈ NUM.

Proof. By operator recursion theorem [Cas74], there exists a recursive p such
that ϕp(i) may be described as follows.

Initially, we let ϕp(i)(x) = 0, for x < i, and ϕp(i)(i) = 1. Let ϕsp(i) denote the
portion of ϕp(i) defined before stage s. It will always be the case that domain
of ϕsp(i) is an initial segment of N .

For all i, for all k ≤ i, let I(i, k, s) denote the predicate Θk(ϕ
s
p(i)) 6∼ Θk(Zero[s]).

Intuitively I(i, k, s) being true denotes that Θk(ϕp(i)) has been made noncon-
forming with Θk(Zero). Clearly, if I(i, k, s) is true, then I(i, k, s + 1) is also
true.

Initially, let Diag(i) = ∅, for each i ∈ N . Intuitively, Diag(i) denotes a collec-
tion of j such that in the construction we have made ϕp(i) 6= ϕϕi(j). Clearly,
Diag(i) is monotonically non-decreasing.

22



Intuitively, in stages below, if s mod 3 = 0, then we try to work on satisfying
(c), if s mod 3 = 1, then we work on satisfying (d) and if s mod 3 = 2, then
we work on satisfying (e). Let xsi denote the least x not in the domain of ϕsp(i).
Go to stage 0.

Stage s
If s mod 3 = 0, then
1. For i ≤ s Do,

2. If there exists a k ≤ i, and τ ∈ SEG0,1, such that following are
satisfied

2.1. Θk(ϕ
s
p(i)) ∼ Θk(Zero[s]), and

2.2. ϕsp(i) ⊆ τ and |τ | ≤ s, and
2.3. Θk(τ) 6∼ Θk(Zero[s]),
Then pick least such k and a corresponding τ and make ϕs+1

p(i) =
τ .

EndFor
3. Go to stage s+ 1.
If s mod 3 = 1, then
4. If there exist k, i, j ∈ N and τ, γ ∈ SEG0,1, such that the following

are satisfied
4.1. k ≤ i < j ≤ s, and
4.2. I(i, k, s) and I(j, k, s) are both true, and
4.3. Θk(ϕ

s
p(i)) ∼ Θk(ϕ

s
p(j)), and

4.4. |τ | ≤ s and |γ| ≤ s, and
4.5. ϕsp(i) ⊆ τ , ϕsp(j) ⊆ γ, and
4.6. Θk(τ) 6∼ Θk(γ),
Then for least such triple (i, j, k), (in some ordering of all triples), pick

one such corresponding τ and γ, and make ϕs+1
p(i) = τ and ϕs+1

p(j) = γ.
5. Go to stage s+ 1.
If s mod 3 = 2 then
6. For i ≤ s Do

7. Let j be the least number not in Diag(i).
8. If Φi(j) ≤ s and Φϕi(j)(x

s
i ) ≤ s,

Then let ϕp(i)(x
s
i ) = 1 .− ϕϕi(j)(x

s
i ), and Diag(i) = Diag(i) ∪

{j}.
Endfor

9. Go to stage s+ 1.
End stage s

Clearly, (a) and (b) of claim hold.

We now consider (c). Consider any i = i0, and k = k0 ≤ i0. If ϕp(i0) is
total, then (c) clearly holds. So suppose ϕp(i0) is in SEG0,1. Suppose by way
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of contradiction that Θk0(ϕp(i0)) ∼ Θk0(Zero), and there exists an extension
f ∈ R0,1 of ϕp(i0) such that Θk0(f) 6∼ Θk0(Zero). Then there exists a finite
τ , ϕp(0) ⊆ τ ⊆ f and an n such that Θk0(τ) 6∼ Θk0(Zero[n]). Thus for some
stage s > max(|τ |, n, i0) and s mod 3 = 0, in step 2 of stage s, ϕp(i0) would be
extended so as to make Θk0(ϕp(i0)) 6∼ Θk0(Zero). A contradiction.

Thus (c) is satisfied.

We now consider (d). Consider i = i0, j = j0, and k = k0 ≤ min(i0, j0).
Without loss of generality assume i0 < j0. Suppose lims→∞ I(i0, k0, s) and
lims→∞ I(j0, k0, s) are both true (otherwise (d) trivially holds). Suppose by
way of contradiction that Θk0(ϕp(i0)) ∼ Θk0(ϕp(j0)) and there exist total f, g ∈
R0,1 such that ϕp(i0) ⊆ f , ϕp(j0) ⊆ g, and Θk0(f) 6∼ Θk0(g). Let n be such
that Θk0(f [n]) 6∼ Θk0(g[n]). Let s be large enough such that I(i0, k, s) and
I(j0, k, s) are both true, [ϕsp(i0) = ϕp(i0) or ϕsp(i0) ⊇ ϕp(i0)[n]] and [ϕsp(j0) = ϕp(j0)

or ϕsp(j0) ⊇ ϕp(j0)[n]]. Thus, for any s′ > s such that s′ mod 3 = 1, (i0, j0, k0)
would be possible candidate in step 4, and for large enough s′ it will be the
smallest triple satisfying 4.1–4.6. Thus, it would be ensured that Θk0(ϕp(i0)) 6∼
Θk0(ϕp(j0)).

Thus (d) holds.

For (e), first note that ϕp(i) may be modified in stages s mod 3 = 0 only finitely
often, since there are only finitely many k ≤ i. Similarly, for each k ≤ i, ϕp(i)
may be modified in stages s mod 3 = 1 only finitely often, since if I(i, k, s),
then there exists a finite n such that Θk(ϕp(i)) 6∼ Θk(Zero[n]), and thus, only
j < n can satisfy (4.3). It follows that for all i, for all but finitely many stages,
if s mod 3 6= 2, then ϕsp(i) = ϕs+1

p(i) .

Now suppose by way of contradiction that C ∈ NUM. Let i be such that ϕi is
total, and C ⊆ {ϕϕi(j) | j ∈ N} ⊆ R. Then, consider ϕp(i). It is clear that ϕp(i)
is total (due to step 6–8). Also, Diag(i) contains every j eventually. Thus, for
all j, ϕp(i) 6= ϕϕi(j), and hence ϕp(i) 6∈ {ϕϕi(j) | j ∈ N}. A contradiction.

Thus (e) holds.

Corollary 42 Suppose p is as in Lemma 41. Suppose Θk is general recursive
operator. Then given any i and n, exactly one of (a) and (b) below holds, and
one can effectively determine which of (a) and (b) holds.

(a) Θk(ϕp(i)) 6∼ Θk(Zero[n]).

(b) For all f ∈ R0,1 extending ϕp(i), Θk(f) ∼ Θk(Zero[n]).

Proof. By Lemma 41(c), we have:
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(i) Θk(ϕp(i)) 6∼ Θk(Zero) or

(ii) For all f ∈ R0,1 such that ϕp(i) ⊆ f , [Θk(f) ∼ Θk(Zero)].

If (ii) holds, then clearly, (b) of corollary holds. So suppose (i) holds. It follows
that either Θk(ϕp(i)) 6∼ Θk(Zero[n]) or Θk(ϕp(i)) ⊇ Θk(Zero[n]). If Θk(ϕp(i)) 6∼
Θk(Zero[n]) then (a) holds, and if Θk(ϕp(i)) ⊇ Θk(Zero[n]) then (b) holds.

We now show how to effectively determine which of (a) and (b) holds.

Note that if (a) holds, then there exists a t such that Θk(ϕp(i),t) 6∼ Θk(Zero[n]).
If (b) holds, then either

(iii) Θk(ϕp(i)) ⊇ Θk(Zero[n]) or

(iv) ϕp(i) is finite and for all τ ∈ SEG0,1 such that ϕp(i) ⊆ τ , Θk(τ) ∼
Θk(Zero[n]).

Thus, if (b) holds, then there exists a t such that

(iii’) Θk(ϕp(i),t) ⊇ Θk(Zero[n]) or

(iv’) For all τ ∈ SEG0,1 such that |τ | = t and ϕp(i),t ∼ τ , Θk(τ) ⊇ Θk(Zero[n])

(where (iv’) follows from (iv) using Proposition 40).

Thus, if (b) holds, we can effectively find a witness for it.

It follows that one can determine effectively which of (a) and (b) holds.

Corollary 43 Suppose p is as in Lemma 41. Suppose Θk is general recursive
operator. Then given any i, j and n, exactly one of (a), (b) and (c) holds, and
one can effectively determine which of (a), (b) and (c) holds.

(a) [ For all f ∈ R0,1, such that ϕp(i) ⊆ f , Θk(f) ∼ Θk(Zero[n])] or [ For all
g ∈ R0,1, such that ϕp(j) ⊆ g, Θk(g) ∼ Θk(Zero[n])];

(b) [Θk(ϕp(i)) 6∼ Θk(Zero[n]) and Θk(ϕp(j)) 6∼ Θk(Zero[n])] and there exists an
x < n, such that Θk(ϕp(i))(x) 6= Θk(ϕp(j))(x),

(c) [Θk(ϕp(i)) 6∼ Θk(Zero[n]) and Θk(ϕp(j)) 6∼ Θk(Zero[n])] and for all f ∈ R0,1

extending ϕp(i), for all g ∈ R0,1 extending ϕp(j), Θk(f)[n] = Θk(g)[n].

Proof. Note that using Corollary 42 one can effectively determine whether
(a) holds or Θk(ϕp(i)) 6∼ Θk(Zero[n]) and Θk(ϕp(j)) 6∼ Θk(Zero[n]). We now
show that if (a) does not hold then one of (b) or (c) holds, and one can
effectively determine which one.
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By Lemma 41(d), if (a) does not hold then we must have

(iii) Θk(ϕp(i)) 6∼ Θk(ϕp(j)) or

(iv) For all f, g ∈ R0,1 such that ϕp(i) ⊆ f and ϕp(j) ⊆ g, [Θk(f) ∼ Θk(g)].

If (iii) holds, then clearly, either (b) of corollary holds or both Θk(ϕp(i))
and Θk(ϕp(j)) have domain a superset of {0, 1, . . . , n − 1} and Θk(ϕp(i))[n] =
Θk(ϕp(j))[n], and thus (c) is satisfied. Moreover witness for both of above cases
can be effectively found (since in first case there exist x < n and t such that
Θk(ϕp(i),t)(x) 6= Θk(ϕp(j),t)(x), and in second case there exists a t such that
domains of Θk(ϕp(i),t) and Θk(ϕp(j),t), are supersets of {0, 1, . . . , n − 1} and
Θk(ϕp(i),t)[n] = Θk(ϕp(j),t)[n] ).

So suppose (iv) holds. Then clearly, (c) of corollary holds. Thus, by Proposi-
tion 40, there exists a t such that

(iv’) For all τ such that |τ | = t and ϕp(i),t ∼ τ , for all γ such that |γ| = t and
ϕp(j),t ∼ γ,

Θk(τ) ∼ Θk(γ), and domain of both Θk(τ) and Θk(γ) is a superset of
{0, . . . , n− 1}.

Thus, we have a witness for (c) holding.

It follows that one can determine effectively which of (a), (b) or (c) holds.

Theorem 44 RobustRCons 6⊆ T Cons. (Moreover the non-inclusion can
be witnessed using a class from R0,1.)

Proof. Let p be as in Lemma 41.

Let C = {ϕp(i) | i ∈ N ∧ ϕp(i) ∈ R}. Then, by part (b) of Lemma 41, C ⊆ R0,1,
and, by part (e), C 6∈ NUM. Thus, by Corollary 20, C 6∈ T Cons.

We now show that C ∈ RobustRCons. To show this, suppose Θk is a general
recursive operator. We need to show that Θk(C) ∈ RCons.

Let S = {ϕp(i) ∈ C | i ≤ k}.

Define M as follows:

M(g[m])
1. If g[m] ∼ Θk(Zero), then output a standard program for Θ(Zero).
2. Else If g[m] ∼ Θk(f), for some f ∈ S, then output a standard program for

one such Θk(f).
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3. Else let n be such that Θk(Zero[n]) 6∼ g[m].
(* Note that if g ∈ Θk(C), and we are at this point of the construction,

then g must be Θk(ϕp(i)), for some i such that k ≤ i < n. *)
4. Using Corollary 42 determine A = {i | k ≤ i < n ∧ Θk(ϕp(i)) 6∼

Θk(Zero[n])}.
(* Note that by Corollary 42, for k ≤ i < n, and i 6∈ A — either ϕp(i) is

not total or Θk(ϕp(i)) ∼ Θk(Zero[n]) 6∼ g[m] — thus, g 6= Θk(ϕp(i)). *)
5. Let B be a subset of A such that:

for i ∈ A−B, there exists an x < m such that Θk(ϕp(i))(x) 6= g(x);
for distinct i, j ∈ B, for all f, h ∈ R0,1 such that f ⊇ ϕp(i) and
h ⊇ ϕp(j), Θk(f)[m] = Θk(h)[m].

(* Note that, by Corollary 43, there exists such a B, and one such B can
be effectively found. *)

(* Note that elements in A−B can be safely ignored. *)
6. Output (standard) program for Union({Θk(ϕp(i)) | i ∈ B}).
End

We claim that above M RCons-identifies Θk(C).

Clearly, M is defined on each initial segment. Suppose g ∈ Θk(C). To see that
M Cons-identifies g we argue as follows.

If g = Θk(Zero) or if g = Θk(ϕp(i)), for some i ≤ k, then clearly by steps 1
and 2, M is consistent on g and Ex-identifies g.

If g 6= Θk(Zero), then let n be least value such that g 6∼ Θk(Zero[n]). Thus, g
must be one of Θk(ϕp(i)), for i < n. We have already handled the case i ≤ k,
so assume k < i < n for the following.

We first show that M is consistent on these g. Note that steps 1 and 2 are
clearly consistent with the input. So we only consider m such that M(g[m]) in
above construction reaches step 3. For these m, by construction of A, if i 6∈ A,
then either ϕp(i) is not total, or Θk(ϕp(i)) is conforming with Θk(Zero[n]) and
thus not equal to g. Similarly, if i ∈ A−B, then ϕp(i) is not total or Θk(ϕp(i))
is nonconforming with g.

Now, since g ∈ Θk(C), there exists an i ∈ B such that Θk(ϕp(i)) = g, and since
for all i′, j′ ∈ B, Θk(ϕp(i′)) and Θk(ϕp(j′)) do not differ on {0, 1, . . . ,m − 1},
we have that g[m] ⊆ Union({Θk(ϕp(i)) | i ∈ B}). Thus, M is consistent on g.

To show that M Ex-identifies g, note that B is monotonically non-increasing
(with respect to g[m]). Also the limiting (with respect to m) value of B satisfies
the property:

for any i, j ∈ B, for any f, h ∈ R0,1 such that ϕp(i) ⊆ f and ϕp(j) ⊆ h,
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[Θk(f) ∼ Θk(h)].

Using the fact that g = Θk(ϕp(i)) for some i ∈ B, it immediately follows that
M Ex-identifies g.

Corollary 45 RobustRCons ⊃ NUM.

Proof. The inclusion follows from Corollary 16(b) and Theorem 10(a). The
proper inclusion now follows from Theorem 44 and Theorem 10(a).

We now show that RConf and RCons can be separated robustly, see The-
orem 49 below. A portion of the proof is similar to that in Theorem 44. We
need the following modification of Lemma 41.

Lemma 46 There exists a recursive p such that (a) to (e) are satisfied.

(a) ϕp(i)(i) = 1 and ϕp(i)(x) = 0, for x < i.

(b) ϕp(i) ∈ R0,1 or ϕp(i) ∈ SEG0,1.

(c) For all i, for all k ≤ i, Either:

(i) Θk(ϕp(i)) 6∼ Θk(Zero), Or
(ii) for all f ∈ R0,1 such that ϕp(i) ⊆ f , [Θk(f) ∼ Θk(Zero)].

(d) For all k such that Θk is general recursive, for all i, j ≥ k such that i 6= j,
Either:

(i) Θk(ϕp(i)) ∼ Θk(Zero), Or
(ii) Θk(ϕp(j)) ∼ Θk(Zero), Or
(iii) Θk(ϕp(i)) 6∼ Θk(ϕp(j)), Or
(iv) for all f, g ∈ R0,1 such that ϕp(i) ⊆ f and ϕp(j) ⊆ g, [Θk(f) ∼ Θk(g)].

(e) Let C = {ϕp(i) ∈ R |Mi is total } ∪ {r-extension of ϕp(i) |Mi is total and
ϕp(i) is not total and r ∈ {0, 1}}.

Then C 6∈ RCons, and there exists a recursive H such that following two
conditions are satisfied.

(e.1) If Mi is total, then limt→∞H(i, t)↓ = 1 iff ϕp(i) is total, and
limt→∞H(i, t)↓ = 0 iff ϕp(i) is not total.

(e.2) If Mi is not total, then limt→∞H(i, t) is defined. Moreover, if
limt→∞H(i, t) = 0, then ϕp(i) is not total.

Proof. Proof of this lemma is a modification of proof of Lemma 41 where
we make appropriate changes so that condition (e) is satisfied.
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By operator recursion theorem [Cas74], there exists a recursive p such that
ϕp(i) may be described as follows.

Initially, we let ϕp(i)(x) = 0, for x < i, and ϕp(i)(i) = 1. Let ϕsp(i) denote the
portion of ϕp(i) defined before stage s. It will always be the case that domain
of ϕsp(i) is an initial segment of N .

For all i, for all k ≤ i, let I(i, k, s) denote the predicate Θk(ϕ
s
p(i)) 6∼ Θk(Zero[s]).

Intuitively I(i, k, s) being true denotes that Θk(ϕp(i)) has been made noncon-
forming with Θk(Zero). Clearly, if I(i, k, s) is true, then I(i, k, s + 1) is also
true.

Intuitively, in stages below, if s mod 3 = 0, then we try to work on satisfying
(c), if s mod 3 = 1, then we work on satisfying (d) and if s mod 3 = 2, then
we work on satisfying (e). Let xsi denote the least x not in the domain of ϕsp(i).
Go to stage 0.

Stage s
If s mod 3 = 0, then
1. For i ≤ s Do,

2. If there exists a k ≤ i, and τ ∈ SEG0,1, such that following are
satisfied

2.1. Θk(ϕ
s
p(i)) ∼ Θk(Zero[s]), and

2.2. ϕsp(i) ⊆ τ and |τ | ≤ s, and
2.3. Θk(τ) 6∼ Θk(Zero[s]),
Then pick least such k and a corresponding τ and make ϕs+1

p(i) =
τ .

EndFor
3. Go to stage s+ 1.
If s mod 3 = 1, then
4. If there exist k, i, j ∈ N and τ, γ ∈ SEG0,1, such that the following

are satisfied
4.1. k ≤ i < j ≤ s, and
4.2. I(i, k, s) and I(j, k, s) are both true, and
4.3. Θk(ϕ

s
p(i)) ∼ Θk(ϕ

s
p(j)), and

4.4. |τ | ≤ s and |γ| ≤ s, and
4.5. ϕsp(i) ⊆ τ , ϕsp(j) ⊆ γ, and
4.6. Θk(τ) 6∼ Θk(γ),
Then for least such triple (i, j, k), (in some ordering of all triples), pick

one such corresponding τ and γ, and make ϕs+1
p(i) = τ and ϕs+1

p(j) = γ.
5. Go to stage s+ 1.
If s mod 3 = 2 then
6. If Mi(ϕ

s
p(i) · 0) and Mi(ϕ

s
p(i) · 1) both converge within s steps, then

7. If Mi(ϕ
s
p(i) · 0) 6= Mi(ϕ

s
p(i) · 1),
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7.1 then let w ∈ {0, 1} be such that Mi(ϕ
s
p(i) ·w) 6= Mi(ϕ

s
p(i)), and

set ϕp(i)(x
s
i ) = w and go to stage s+ 1.

7.2 else go to stage s+ 1.
Else go to stage s+ 1.

End stage s

Clearly, (a) and (b) of claim hold.

We now consider (c). Consider any i = i0, and k = k0 ≤ i0. If ϕp(i0) is
total, then (c) clearly holds. So suppose ϕp(i0) is in SEG0,1. Suppose by way
of contradiction that Θk0(ϕp(i0)) ∼ Θk0(Zero), and there exists an extension
f ∈ R0,1 of ϕp(i0) such that Θk0(f) 6∼ Θk0(Zero). Then there exists a finite
τ , ϕp(0) ⊆ τ ⊆ f and an n such that Θk0(τ) 6∼ Θk0(Zero[n]). Thus for some
stage s > max(|τ |, n, i0) and s mod 3 = 0, in step 2 of stage s, ϕp(i0) would be
extended so as to make Θk0(ϕp(i0)) 6∼ Θk0(Zero). A contradiction.

Thus (c) is satisfied.

We now consider (d). Consider i = i0, j = j0, and k = k0 ≤ min(i0, j0).
Without loss of generality assume i0 < j0. Suppose lims→∞ I(i0, k0, s) and
lims→∞ I(j0, k0, s) are both true (otherwise (d) trivially holds). Suppose by
way of contradiction that Θk0(ϕp(i0)) ∼ Θk0(ϕp(j0)) and there exist total f, g ∈
R0,1 such that ϕp(i0) ⊆ f , ϕp(j0) ⊆ g, and Θk0(f) 6∼ Θk0(g). Let n be such
that Θk0(f [n]) 6∼ Θk0(g[n]). Let s be large enough such that I(i0, k, s) and
I(j0, k, s) are both true, [ϕsp(i0) = ϕp(i0) or ϕsp(i0) ⊇ ϕp(i0)[n]] and [ϕsp(j0) = ϕp(j0)

or ϕsp(j0) ⊇ ϕp(j0)[n]]. Thus, for any s′ > s such that s′ mod 3 = 1, (i0, j0, k0)
would be possible candidate in step 4, and for large enough s′ it will be the
smallest triple satisfying 4.1–4.6. Thus, it would be ensured that Θk0(ϕp(i0)) 6∼
Θk0(ϕp(j0)).

Thus (d) holds.

For (e), first note that ϕp(i) may be modified in stages s mod 3 = 0 only finitely
often, since there are only finitely many k ≤ i. Similarly, for each k ≤ i, ϕp(i)
may be modified in stages s mod 3 = 1 only finitely often, since if I(i, k, s),
then there exists a finite n such that Θk(ϕp(i)) 6∼ Θk(Zero[n]), and thus, only
j < n, can satisfy (4.3). It follows that for all i, for all but finitely many stages,
if s mod 3 6= 2, then ϕsp(i) = ϕs+1

p(i) .

We now show that C 6∈ RCons. Suppose Mi is total. Let t be such that for
any stage s > t, s mod 3 6= 2, ϕsp(i) = ϕs+1

p(i) . Note that there exists such a stage
t. Now note that in step 6, If clause succeeds infinitely often. If 7.1 is executed
infinitely often, then ϕp(i) is total but Mi makes infinitely many mind changes
on ϕp(i). On the other hand, if 7.2 is executed in any stage s > t, s mod 3 = 2,
then step 7.2 would be executed in every stage s′ > s, s′ mod 3 = 2 (since
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ϕp(i) = ϕsp(i) in this case), ϕp(i) is finite, and Mi is not consistent on at least
one of r-extension of ϕp(i), for r ∈ {0, 1} (since Mi(ϕ

s
p(i) · 0) = Mi(ϕ

s
p(i) · 1)).

Thus again Mi does not RCons-identify C. Thus C 6∈ RCons.

Let H(i, s) = 0, if in stage 3s + 2 above construction executes step 7.2;
H(i, s) = 1 otherwise. It is easy to verify that H satisfies the requirements in
(e).

Corollary 47 Suppose p is as in Lemma 46. Suppose Θk is general recursive
operator. Then given any i and n, exactly one of (a) and (b) below holds, and
one can effectively determine which of (a) and (b) holds.

(a) Θk(ϕp(i)) 6∼ Θk(Zero[n]).

(b) For all f ∈ R0,1 extending ϕp(i), Θk(f) ∼ Θk(Zero[n]).

Proof. By Lemma 46(c), we have:

(i) Θk(ϕp(i)) 6∼ Θk(Zero) or

(ii) For all f ∈ R0,1 such that ϕp(i) ⊆ f , [Θk(f) ∼ Θk(Zero)].

If (ii) holds, then clearly, (b) of corollary holds. So suppose (i) holds. It follows
that either Θk(ϕp(i)) 6∼ Θk(Zero[n]) or Θk(ϕp(i)) ⊇ Θk(Zero[n]). If Θk(ϕp(i)) 6∼
Θk(Zero[n]) then (a) holds, and if Θk(ϕp(i)) ⊇ Θk(Zero[n]) then (b) holds.

We now show how to effectively determine which of (a) and (b) holds.

Note that if (a) holds, then there exists a t such that Θk(ϕp(i),t) 6∼ Θk(Zero[n]).
If (b) holds, then either

(iii) Θk(ϕp(i)) ⊇ Θk(Zero[n]) or

(iv) ϕp(i) is finite and for all τ ∈ SEG0,1 such that ϕp(i) ⊆ τ , Θk(τ) ∼
Θk(Zero[n]).

Thus, if (b) holds, then there exists a t such that

(iii’) Θk(ϕp(i),t) ⊇ Θk(Zero[n]) or

(iv’) For all τ ∈ SEG0,1 such that |τ | = t and ϕp(i),t ∼ τ , Θk(τ) ⊇ Θk(Zero[n])

(where (iv’) follows from (iv) using Proposition 40).

Thus if (b) holds we can effectively find a witness for it.

It follows that one can determine effectively which of (a) and (b) holds.
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Corollary 48 Suppose p is as in Lemma 46. Suppose Θk is general recursive
operator. Then given any i, j and n, exactly one of (a), (b) and (c) holds, and
one can effectively determine which of (a), (b) and (c) holds.

(a) [ For all f ∈ R0,1, such that ϕp(i) ⊆ f , Θk(f) ∼ Θk(Zero[n])] or [ For all
g ∈ R0,1, such that ϕp(j) ⊆ g, Θk(g) ∼ Θk(Zero[n])];

(b) [Θk(ϕp(i)) 6∼ Θk(Zero[n]) and Θk(ϕp(j)) 6∼ Θk(Zero[n])] and there exists an
x < n, such that Θk(ϕp(i))(x) 6= Θk(ϕp(j))(x),

(c) [Θk(ϕp(i)) 6∼ Θk(Zero[n]) and Θk(ϕp(j)) 6∼ Θk(Zero[n])] and for all f ∈ R0,1

extending ϕp(i), for all g ∈ R0,1 extending ϕp(j), Θk(f)[n] = Θk(g)[n].

Proof. Note that using Corollary 47 one can effectively determine whether
(a) holds or Θk(ϕp(i)) 6∼ Θk(Zero[n]) and Θk(ϕp(j)) 6∼ Θk(Zero[n]). We now
show that if (a) does not hold then one of (b) or (c) holds, and one can
effectively determine which one.

By Lemma 46(d), if (a) does not hold then we must have

(iii) Θk(ϕp(i)) 6∼ Θk(ϕp(j)) or

(iv) For all f, g ∈ R0,1 such that ϕp(i) ⊆ f and ϕp(j) ⊆ g, [Θk(f) ∼ Θk(g)].

If (iii) holds, then clearly, either (b) of corollary holds or both Θk(ϕp(i))
and Θk(ϕp(j)) have domain a superset of {0, 1, . . . , n − 1} and Θk(ϕp(i))[n] =
Θk(ϕp(j))[n], and thus (c) is satisfied. Moreover witness for both of above cases
can be effectively found (since in first case there exists a t and x < n such
that Θk(ϕp(i),t)(x) 6= Θk(ϕp(j),t)(x), and in second case there exists a t such
that domains of Θk(ϕp(i),t) and Θk(ϕp(j),t), are supersets of {0, 1, . . . , n − 1}
and Θk(ϕp(i),t)[n] = Θk(ϕp(j),t)[n] ).

So suppose (iv) holds. Then clearly, (c) of corollary holds. Thus, by Proposi-
tion 40, there exists a t such that

(iv’) For all τ such that |τ | = t and ϕp(i),t ∼ τ , for all γ such that |γ| = t and
ϕp(j),t ∼ γ,

Θk(τ) ∼ Θk(γ), and domain of both Θk(τ) and Θk(γ) is a superset of
{0, . . . , n− 1}.

Thus, we have a witness for (c) holding.

It follows that one can determine effectively which of (a), (b) or (c) holds.

Theorem 49 RobustRConf 6⊆ RCons. (Moreover the non-inclusion can
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be witnessed using a class from R0,1.)

Proof. Let p,H be as in Lemma 46.

Let C = {ϕp(i) ∈ R | Mi is total } ∪ {r-extension of ϕp(i) | Mi is total and
ϕp(i) is not total and r ∈ {0, 1}}.

Then by part (e) of Lemma 46, C 6∈ RCons.

We now show that C ∈ RobustRConf . To show this, suppose Θk is a general
recursive operator. We need to show that Θk(C) ∈ RConf .

Let S = {ϕp(i) ∈ C | i ≤ k} ∪ {r-extension of ϕp(i) | r ∈ {0, 1}, i ≤ k, and
r-extension of ϕp(i) ∈ C}.

Define M as follows:

M(g[m])
1. If g[m] ∼ Θk(Zero), then output a standard program for Θ(Zero).
2. Else If g[m] ∼ Θk(f), for some f ∈ S, then output a standard program for

one such Θk(f).
3. Else let n be such that Θk(Zero[n]) 6∼ g[m].

(* Note that if g ∈ Θk(C), and we are at this point of the construction,
then g must be Θk(ϕp(i)), or Θk(r-extension of ϕp(i)), for some r ∈ {0, 1},
for some i such that k ≤ i < n. *)

4. Using Corollary 47 determine A = {i | k ≤ i < n ∧ Θk(ϕp(i)) 6∼
Θk(Zero[n])}.

(* Note that by Corollary 42, for k ≤ i < n, and i 6∈ A — either ϕp(i) is
not total or Θk(ϕp(i)) ∼ Θk(Zero[n]) 6∼ g[m] — thus, g 6= Θk(ϕp(i)). *)

5. Let B be a subset of A such that:
for i ∈ A−B, there exists an x < m such that Θk(ϕp(i))(x) 6= g(x);
for distinct i, j ∈ B, for all f, h ∈ R0,1 such that f ⊇ ϕp(i) and
h ⊇ ϕp(j), Θk(f)[m] = Θk(h)[m].

(* Note that, by Corollary 48, there exists such a B, and one such B can
be effectively found. *)

6 For each i ∈ B, such that H(i,m) = 0, let hi denote
0-extension of ϕp(i),m if Θk(0-extension of ϕp(i),m) ⊇ g[m];
1-extension of ϕp(i),m if Θk(1-extension of ϕp(i),m) ⊇ g[m], and Θk(0-

extension of ϕp(i),m) 6⊇ g[m];
Λ if Θk(1-extension of ϕp(i),m) 6⊇ g[m], and Θk(0-extension of ϕp(i),m) 6⊇
g[m].

7. Output (standard) program for Union({Θk(ϕp(i)) | i ∈ B} ∪ {Θk(hi) | i ∈
B,H(i,m) = 0}).

End
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We claim that above M RConf -identifies Θk(C).

Clearly, M is defined on each initial segment. Suppose g ∈ Θk(C). To see that
M Conf -identifies g we argue as follows.

If g = Θk(Zero) or if g = Θk(ϕp(i)), for some i ≤ k, or if g = Θk(r-extension
of ϕp(i)), for r ∈ {0, 1}, for some i ≤ k, then clearly by steps 1 and 2, M is
conforming on g and Ex-identifies g.

If g 6= Θk(Zero), then let n be least value such that g 6∼ Θk(Zero[n]). Thus,
g must be one of Θk(ϕp(i)), for i < n, or g must be Θk(r-extension of ϕp(i)),
r ∈ {0, 1}, for some i < n. We have already handled the case i ≤ k, so assume
k < i < n for the following.

We first show that M is conforming on these g. Note that steps 1 and 2 are
clearly consistent with the input. So we only consider m such that M(g[m]) in
above construction reaches step 3. For these m, by construction of A, if i 6∈ A,
then for all total f extending ϕp(i), Θk(f) is conforming with Θk(Zero[n]) and
thus not equal to g. Similarly, if i ∈ A−B, then for all total f extending ϕp(i),
Θk(f) is nonconforming with g.

Now, since g ∈ Θk(C), there exists an i ∈ B such that Θk(ϕp(i)) = g, or
limt→∞H(i, t) = 0 and ϕp(i) is not total and g = Θk(r-extension of ϕp(i)), for
some r ∈ {0, 1}. Fix one such i.

Now for j ∈ B, j 6= i, for any total extension f of ϕp(i) and any total extension
h of ϕp(j), Θk(f) and Θk(h) do not differ on {0, 1, . . . ,m−1}; thus for all j ∈ B,
Θk(ϕp(j)) is conforming with g[m]. Also, by definition of hj in step 6, we have
that g[m] is conforming with Θk(hj), for all j ∈ B such that H(j,m) = 0.
Thus, M is conforming on g.

To show that M Ex-identifies g, first note that B is monotonically non-
increasing (with respect to g[m]). Also, for all j ∈ B, limt→∞H(j, t)↓ and
if limt→∞H(j, t) = 0, then hj stabilizes as m goes to ∞.

Thus, if g = Θk(ϕp(i)), then clearly, {Θk(ϕp(j)) | j ∈ B} contains g. On the
other hand, if ϕp(i) is not total, and g is Θk(r-extension of ϕp(i)), for some
r ∈ {0, 1}, then g = Θk(hi), for the limiting value of hi (with respect to m).

It follows that, for large enough m, in the definition of M(g[m]),

g ⊆ Union({Θk(ϕp(i)) | i ∈ B} ∪ {Θk(hi) | i ∈ B,H(i,m) = 0}).

Along with conformity of M, above implies that M Ex-identifies g.
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Corollary 50 RobustRConf ⊃ NUM.

Proof. The inclusion follows from Corollary 16(b) and Theorem 10(a). The
proper inclusion now follows from Theorem 49 and Theorem 10(a).

Proposition 51 UniformRobustConfident 6⊆ RConf .

Proof. C used in the proof of Theorem 35 is also in
UniformRobustConfident.

Corollary 52 UniformRobustConfident 6⊆ NUM.

Proof. This follows immediately from Proposition 51 and Theorem 10(a).

Note that by Theorem 10(h), NUM 6⊆ Confident. Thus using Corollary 52,
NUM and Confident are incomparable. The following proposition strength-
ens Corollary 34.

Proposition 53 UniformRobustEx 6⊆ Confident ∪NUM.

Proof. Let F , S be as in the proof of Theorem 32. Thus S ∈
UniformRobustEx and S 6∈ NUM, by proof of Corollary 34.

Now we show that S 6∈ Confident. Suppose that a total-recursive and con-
fident learner M Ex-identifies S. This learner M makes on F only finitely
many mind changes, in particular there exists an n such that, for all n′ > n,
M(F [n′]) = M(F [n]). Now consider the following set B of strings:

B = {τ | τ extends F [n] and M(τ) 6= M(F [n])}.

Since for all σ ∈ B, σ 6⊆ F , by definition of 1-generic function, there exists
an x > n such that for all τ ⊇ F [x], M(τ) = M(F [x]). Thus, M can learn
at most one function extending F [x]. However, by definition of S, there are
infinitely many functions extending F [x] in S. Thus, M cannot witness that
S ∈ Confident.

Zeugmann [Zeu86] proved already the following theorem.

Theorem 54 [Zeu86] RobustReliable = NUM.

Corollary 55 RobustT Cons = NUM.

Proof. This follows immediately from Theorem 54 and Corollary 16(a).

35



5 Robust Learning versus Uniformly Robust Learning

While in robust learning any transformed class is required to be learnable in
the mere sense that there exists a learning machine for it, uniformly learning
requires to get such a machine for the transformed class effectively at hand.
For a number of learning types, we now show that uniformly robust learning
is indeed stronger than robust learning.

Definition 56 A function F is i-generic iff for all sets A ⊆ SEG in Σi, there
exists an x such that either

(a) F [x] ∈ A, or

(b) for all σ ∈ A, F [x] 6⊆ σ.

Proposition 57 There exist a recursive binary tree T and a limiting recur-
sive function mapping τ ∈ SEG0,1 to mτ ∈ SEG0,1 such that following four
properties are satisfied.

(a) For all σ ∈ SEG0,1, mσ ∈ T .

(b) For all σ, τ ∈ SEG0,1, σ ⊂ τ iff mσ ⊂ mτ .

(c) Only infinite branches of T are mg, where g ∈ T0,1 and mg =
⋃
n∈N mg[n].

(d) For all τ ∈ SEG0,1, for all i, j ≤ |τ |, Either

(d.1) Θi(mτ ) 6∼ ϕj, Or

(d.2) for all σ ⊇ τ , σ ∈ SEG0,1, Θi(mσ) ∼ ϕj.

Proof. We first define mτ , for τ ∈ SEG0,1 below in stages. ms
τ denotes the

value ofmτ just before the start of stage s. It will be the case thatms
τ ∈ SEG0,1,

and for all σ, γ ∈ SEG0,1, for all s, σ ⊂ γ iff ms
σ ⊂ ms

γ. Also, mτ = lims→∞m
s
τ↓.

For n ≤ |σ|, let σ[m,n] denote σ(m)σ(m+ 1) . . . σ(n− 1).

Initially, let m0
τ = τ . Go to stage 0.

Stage s
1. Search for τ, σ ∈ SEG0,1, i, j ∈ N such that

|τ |, |σ| ≤ s,
i, j ≤ |τ |,
τ ⊆ σ,
Θi(m

s
τ ) ∼ ϕj,s.

Θi(m
s
σ) 6∼ ϕj,s.

2. If there exist such τ, σ, i, j, then for least such τ , and a corresponding σ let
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ms+1
τ = ms

σ,
for all γ ⊇ τ , ms+1

γ = ms
σγ[|τ |,|γ|].

3. For all γ, such that ms+1
γ is not defined in step 2, let ms+1

γ = ms
γ.

4. Go to stage s+ 1.
End stage s

Since each τ can be chosen in step 2 only finitely often — once for each
pair i, j ≤ |τ | — after each mγ, γ ⊂ τ are stabilized, it is easy to show by
induction on |τ | that ms+1

τ can be defined via step 2 above only finitely often.
Thus, mτ = lims→∞m

s
τ↓.

Let T = {σ | (∃τ)(∃t ≥ |σ|)[σ ⊆ mt
τ ]}.

It is easy to verify that (a) and (b) are satisfied. To see (c), suppose h ∈ T0,1

is not of form mg for any g ∈ T0,1. Let Xh = {τ ∈ SEG0,1 | mτ ⊆ h}. Let
η =

⋃
τ∈Xh

τ . By part (b) if Xh is infinite, then η ∈ T0,1, and h = mη. Thus,
Xh is finite. It follows that, for all τ ∈ SEG0,1 such that |τ | = |η|+ 1, mτ 6⊆ h.
Let w = max({|mτ | | τ ∈ SEG0,1 ∧ |τ | = |η|+ 1}). Then, it follows that h[w]
is not a prefix of any extension of mτ , for any τ of length |η|+ 1.

Let s be such that, for all τ ∈ SEG0,1 such that |τ | ≤ |η| + 1, for all t ≥ s,
mτ = mt

τ . Now, it follows that h[w] 6⊆ mt
τ , for any t ≥ s, and any τ ∈ SEG0,1.

Thus, it follows that h[max(w, s)] 6⊆ mt
τ , for any t ≥ max(w, s), and any

τ ∈ SEG0,1. Thus, h[max(w, s)] 6∈ T . This proves (c).

To see (d), suppose i, j ≤ |τ |, σ ⊇ τ , and Θi(mτ ) ∼ ϕj, but Θi(mσ) 6∼ ϕj.
Then, let s be such that s ≥ max(i, j, |τ |, |σ|) and Θi(mτ ) ∼ ϕj,s, Θi(mσ) 6∼
ϕj,s, and for all t ≥ s, mt

τ = mτ , and mt
σ = mσ. But then for all t ≥ s, τ, σ, i, j

will satisfy the conditions in step 1. Thus, for large enough t > s, τ will be the
least candidate picked in stage t, step 2. Hence, mt

τ 6= mt+1
τ , a contradiction.

Consequently, (d) holds.

Theorem 58 UniformRobustConfident ⊂ RobustConfident.

Proof. Clearly, UniformRobustConfident ⊆ RobustConfident.
We thus only need to show that RobustConfident −
UniformRobustConfident 6= ∅.

Fix T,mτ , τ ∈ SEG0,1 and mg, g ∈ T0,1, as in Proposition 57.

Let F be a {0, 1}-valued 3-generic function.

Let f ′ = mF .

Let S = {f ′[x] · 0∞ | x ∈ N}.
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For rest of proof let σ, τ range over SEG0,1.

Claim 59 For all e such that Θe is general recursive, there exist xe, je such
that ϕje ∈ R, and

(A) (∀τ ⊇ F [xe])[Θe(mτ ) ⊆ ϕje ], or

(B) (∀ϕj ∈ R)(∀τ ⊇ F [xe] | |τ | ≥ max(e, j))[Θe(mτ ) 6∼ ϕj].

Proof. Suppose Θe is general recursive. Let Re = {τ | (∃j)[ϕj ∈ R ∧ (∀σ ⊇
τ)[Θe(mσ) ∼ ϕj]]}.

Note that Re ∈ Σ3. Thus, since F is 3-generic, there exists an xe such that
either

(a) F [xe] ∈ Re, or

(b) for all τ ∈ Re, F [xe] 6⊆ τ .

In other words, either

(a’) there exists a j such that ϕj ∈ R, and, for all σ ⊇ F [xe], Θe(mσ) ⊆ ϕj, or

(b’) for all ϕj ∈ R, for all τ ⊇ F [xe], there exists a σ ⊇ τ such that [Θe(mσ) 6∼
ϕj].

By Proposition 57, (b’) above is equivalent to

(b”) for all ϕj ∈ R, for all τ ⊇ F [xe], such that |τ | ≥ max(e, j), [Θe(mτ ) 6∼ ϕj].

Now (a’) is same as (A) and (b”) is same as (B). 2

For Θe being general recursive, fix xe, je as in Claim 59.

Let Fe = {σ0∞ | σ ⊆ mF [xe]}.

Let Ge = {σ0∞ | σ ⊇ mF [xe]}.

Note that S ⊆ Fe ∪ Ge.

Claim 60 Suppose Θe is general recursive. Then, for all f ∈ Θe(S)−[Θe(Fe)∪
{ϕje}], there exists an n such that, for all σ ∈ T , such that σ ⊇ mF [xe] and
|σ| = n, f 6∼ Θe(σ).

Proof. Suppose f ∈ Θe(S)− [Θe(Fe) ∪ {ϕje}].

We first claim that,
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(P1) for some m > xe, for all τ ⊇ F [xe] such that |τ | ≥ m, Θe(mτ ) 6∼ f .

To see this, first note that by Claim 59,

(A) For all τ ⊇ F [xe], Θe(mτ ) ⊆ ϕje , or

(B) (∀ϕj ∈ R)(∀τ ⊇ F [xe] | |τ | ≥ max(e, j))[Θe(mτ ) 6∼ ϕj].

In case (B), (P1) immediately follows by taking m = max(MinProg(f), e). In
case (A), since f 6= ϕje , by König’s Lemma and general recursiveness of Θe,
(P1) follows.

Now, by Proposition 57(c) and König’s Lemma, there exist only finitely many
σ ∈ T such that σ ⊇ mF [xe], but σ does not extend any mτ , with τ ⊇ F [xe],
|τ | ≥ m. Thus, there exists an n > m, such that for all σ ∈ T with σ ⊇ mF [xe]

and |σ| = n, f 6∼ Θe(σ). 2

Claim 61 For all e, such that Θe is general recursive, Θe(S) ∈ Confident.

Proof. Let h be as in Corollary 22. Consider the following M.

M(g[n])
1. If for some f ∈ Θe(Fe) ∪ {ϕje}, f [n] = g[n], then output a standard

program for f .
2. Else If there exists a σ ∈ T , such that |σ| = n, σ ⊇ mF [xe], Θe(σ) ∼ g[n],

then output M(g[n− 1]) (if n = 0, then M(g[n]) = 0).
3. If for all σ ∈ T , such that |σ| = n, and σ ⊇ mF [xe], [Θe(σ) 6∼ g[n]], then

Let p be a bound on the programs for {σ0∞ | σ ∈ SEG0,1, |σ| < m}, where
m > xe is the least number such that for all σ ∈ T with |σ| = m and
σ ⊇ mF [xe], Θe(σ) 6∼ g[n].

Output Mh(p,e)(g[n]).
End

We claim that M Confident-identifies Θe(S). To see this, first note that M
Ex-identifies each g ∈ Θe(Fe)∪{ϕje}. If g 6∈ Θe(Fe)∪{ϕje}, then we consider
two cases.

(Note that, if M(g[n]) executes step 3, then M(g[n+ 1]) also executes step 3.)

Case 1: For all n, M(g[n]) never reaches step 3.

In this case trivially M is confident on g. Moreover, by Claim 60, g 6∈
Θe(S)− [Θe(Fe) ∪ {ϕje}].

Case 2: For all but finitely many n, M(g[n]) executes step 3.
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Then, for all n such that M(g[n]) reaches step 3, m as computed in step 3
of the algorithm for M, would be the least number such that, for all σ ∈ T
with |σ| = m and σ ⊇ mF [xe], Θe(σ) 6∼ g. It follows that values of m and
p as computed by M converge. Thus M is confident on g. Moreover, by
definition of S, if g ∈ Θe(S), then g must be from {Θe(σ0∞) | |σ| < m}.
Thus, Mh(p,e) and hence M Ex-identifies g.

From above cases it follows that M Confident-identifies Θe(S). 2

Claim 62 C 6∈ UniformRobustConfident.

Proof. Suppose by way of contradiction that there exists a recursive g such
that, for all e, if Θe is general recursive, then Mg(e) Confident-identifies
Θe(S). Without loss of generality assume that Mg(e) is total for all e.

Then, by implicit use of Kleene recursion theorem [Rog67], there exists an e
such that Θe may be defined as follows. For ease of presentation, Θe(f [m]) may
be infinite for some f,m (and thus it does not satisfy the invariant (d) we as-
sumed (see discussion around Proposition 13) on the enumeration Θ0,Θ1, . . .;
this can be easily handled by appropriately slowing down Θe).

Θe(Λ) = Λ.

Θe(f [n+1]) =



Θe(f [n]), if Θe(f [n]) is infinite;
Θe(f [n]) · f(n) · 0∞, if for all m,

Θe(f [n]) · f(n) 6⊆ ϕMg(e)(Θe(f [n])·f(n)·0m),m;
Θe(f [n]) · f(n) · 0m, if m is the least number such that

Θe(f [n]) · f(n) ⊆ ϕMg(e)(Θe(f [n])·f(n)·0m),m.

It is easy to verify that Θe is general recursive. Recall that f ′ = mF . We now
consider two cases.

Case 1: For some n, Θe(f
′[n+ 1]) is infinite.

Let n be maximum such that Θe(f
′[n]) is finite. Thus, Θe(f

′[n+1]) is infinite,
and Θe(f

′) = Θe(f
′[n]) ·f ′(n) ·0∞ = Θe(f

′[n+1] ·0∞) ∈ Θe(S). However, by
definition of Θe, Θe(f

′[n]) · f ′(n) 6⊆ ϕMg(e)(Θe(f ′[n])·f ′(n)·0m),m, for all m. Thus,
Mg(e)(Θe(f

′[n+1]·0∞)) diverges, or Θe(f
′[n])·f ′(n) 6⊆ ϕMg(e)(Θe(f ′[n]·f ′(n)·0∞)).

It follows that Mg(e) does not Ex-identify Θe(f
′[n + 1] · 0∞) ∈ Θe(S). A

contradiction.

Case 2: For all n, Θe(f
′[n]) is finite.

In this case first note that for all h 6= f ′, Θe(h) 6= Θe(f
′). To see this, let

y be the least number such that h(y) 6= f ′(y). Now it is easy to verify that
Θe(f

′[y]·f ′(y)) ⊆ Θe(f
′) and Θe(f

′[y]·h(y)) ⊆ Θe(h). Thus, Θe(f
′) 6= Θe(h).
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Thus, by Claim 59, it follows that Θe(f
′) is non-recursive (otherwise, for all

mh such that h extends F [xe], we would have Θe(f
′) = Θe(mh) – a contra-

diction to above proof that for all mh 6= f ′, Θe(f
′) 6= Θe(mh)).

Now, for all n, Θe(f
′[n]) · f ′(n) ⊆Mg(e)(Θe(f

′[n + 1])). Thus, either Mg(e)

diverges on Θe(f
′), or Θe(f

′) is recursive. Since it was shown above that
Θe(f

′) is nonrecursive, it follows that Mg(e) diverges on Θe(f
′), a contradic-

tion to Mg(e) being confident.

From above cases it follows that S 6∈ UniformRobustConfident. 2

Theorem follows from Claims 61 and 62.

For identification with mind changes, we assume M to be a mapping from
SEG to N ∪ {?}. This is to avoid biasing the number of mindchanges made
by the machine [CS83].

Definition 63 [Gol67,BB75,CS83] Let b ∈ N ∪ {∗}. Let f ∈ R.

(a) M Exb-identifies f (written: f ∈ Exb(M)) just in case M Ex-identifies
f , and card({n |? 6= M(f [n]) 6= M(f [n + 1])}) ≤ b (i.e., M makes no more
than b mind changes on f).

(b) M Exb-identifies S iff M Exb-identifies each f ∈ S.
(c) Exb = {S ⊆ R | (∃M)[S ⊆ Exb(M)]}.

In the following, we present characterizations for RobustEx0, see Proposi-
tion 64; for UniformRobustExn for any n ∈ N , see Corollary 68; and for⋃
n∈N UniformRobustExn, see Corollary 70. As a consequence, we derive

that all the types Exn, n ∈ N , are uniformly robustly poor. Furthermore, for
all the types Exn, n ∈ N , uniformly robust learning turns out to be stronger
than robust learning, see Corollary 71.

Proposition 64 [Zeu86,JSW01] For any C ⊆ R, C ∈ RobustEx0 iff C is
finite.

Thus, the type Ex0 of learning without any mind change is robustly poor,
since every finite class is recursively enumerable.

Proposition 65 For any n ∈ N and C ⊆ R with card(C) < 2n+1, C ∈
UniformRobustExn.

Proof. Suppose C = {f0, f1, . . . , fm−1} with m < 2n+1. Then, one can show
C ∈ UniformRobustExn as follows. There exists a recursive g such that
Mg(e) may be defined as follows.

For any f , let S(f [l]) = {i < m | f [l] ∼ Θe(fi[l])}.
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For S ⊆ {i | i < m}, let Maj(S) denote a program such that

ϕMaj(S)(x) =

{
y, if card({i ∈ S | Θe(fi)(x) = y}) > card(S)

2
;

↑, otherwise.

Now define Mg(e)(f [l]) as follows.

Mg(e)(f [l]) =


Mg(e)(f [l − 1]), if card(S(f [l])) = 0;
Maj(S(f [s])), if 2k ≤ card(S(f [l])) < 2k+1, and

s is the least number such that
2k ≤ card(S(f [s])) < 2k+1.

For any f , for i ≤ n, let si be minimal number, if any, such that
card(S(f [si])) < 2i+1. (If for all l, card(S(f [l])) ≥ 2i+1, then si = ∞). Let
s−1 =∞.

Note that for all l such that si ≤ l < si−1, Mg(e)(f [l]) = Maj(S[si]). Thus,
Mg(e) makes at most n mind changes. Furthermore, for f ∈ C, let i be the mini-
mum number such that si 6=∞. Then, card({j | j ∈ S(f [si]) ∧ Θe(fj) ∼ f}) ≥
2i. Thus, Maj(S(f [si])) is a program for Θe(f). Thus, Mg(e) Ex-identifies f .
The proposition follows.

The following proposition is a modification of similar proposition in [JSW01].

Proposition 66 For any Me and n ∈ N , one can effectively define pe,ni ,
i < 2n+1, such that Me does not Exn-identify {ϕpe,ni

| i < 2n+1}.

Proof. We give below a description of total functions F e,n
i effectively in

i, e, n. It will be the case that programs pe,ni for F e,n
i can be obtained effectively

from i, e, n.

Without loss of generality assume that Me(Λ) =?.

For all binary strings α of length at most n, we define Hα as follows.

HΛ = 0j, where j = min({x |Me(0
x) 6=?}).

For a binary string β of length less than n and b ∈ {0, 1}, let Hβ·b be defined
as follows:

If Hβ is infinite, then Hβ·b = Hβ; otherwise, let Hβ·b = Hβ · b · 0j, where
j = min({x |Me(Hβ) 6= Me(Hβb0

x)}).

It is easy to verify that Hβ ⊆ Hβ·b, and if Hβ is finite, then Me on Hβ has
made at least |β| mind changes. Now suppose (n+1)-bit binary representation
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of i is b0b1 · · · bn. Then define

F e,n
i =

{
Hb0b1...bn−1 , if Hb0,b1...bn−1 is infinite;
Hb0b1...bn−1 · bn · 0∞, otherwise.

It is easy to verify that programs pe,ni for F e,n
i can be obtained effectively from

i, e, n.

We claim that Me cannot Exn-identify {F e,n
i | i < 2n+1}. To see this, note that

if HΛ is infinite, then Me does not identify any element of {F e,n
i | i < 2n+1}.

Otherwise, let β be the longest string of length at most n such that Hβ is
finite. Then, consider the following cases:

Case 1: |β| = n.

In this case, Me on Hβ has already made n mind changes. Suppose i and
i′ respectively have binary representation of β · 0 and β · 1. Now, Me can
Exn-identify at most one of F e,n

i and F e,n
i′ , since both start with Hβ.

Case 2: |β| < n.

In this case, Me(Hβ) = Me(Hβ · 1 · 0∞) = Me(Hβ · 0 · 0∞). Suppose i and i′

respectively have (n+1)-bit binary representation β ·0·0n−|β| and β ·1·0n−|β|.
Then, F e,n

i = Hβ · 0 · 0∞ and F e,n
i′ = Hβ · 1 · 0∞, and thus, Me does not

Ex-identify at least one of F e,n
i , F e,n

i′ .

The proposition follows from above cases.

Proposition 67 For any n ∈ N and C ⊆ R with card(C) ≥ 2n+1, C 6∈
UniformRobustExn.

Proof. Suppose f0, f1, ..., f2n+1−1 are 2n+1 distinct functions in C. Let m be
such that, for all i, j with 0 ≤ i < j < 2n+1, fi[m] 6= fj[m].

Let pe,ni be as in Proposition 66.

Suppose by way of contradiction that g is such that for all e, if Θe is general
recursive, then Mg(e) Exn-identifies Θe(C).

Then by Kleene recursion theorem [Rog67], there exists an e such that Θe may
be described as follows.

Θe(f) =

{
ϕ
p
g(e),n
i

, if f [m] = fi[m], for some i < 2n+1;

Zero, otherwise.

Clearly, then by Proposition 66, Mg(e) does not Exn-identify Θe(C). A con-
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tradiction.

Corollary 68 For any n ∈ N and C ⊆ R, C ∈ UniformRobustExn iff
card(C) < 2n+1.

Clearly, Corollary 68 yields that all the types Exn, n ∈ N , are uniformly
robustly poor.

Corollary 69 For any n ∈ N , RobustEx0 6⊆ UniformRobustExn.

Proof. This follows immediately from Propositions 64 and 67.

Corollary 70 RobustEx0 =
⋃
n∈N UniformRobustExn.

Proof. This follows immediately from Proposition 64 and Corollary 68.

Corollaries 69 and 70 above give a situation which is quite rare in the sense
that in most cases if one can diagonalize against each of In, one would expect
to be able to diagonalize against

⋃
n∈N In.

Corollary 71 For any n ∈ N , UniformRobustExn ⊂ RobustExn.

Proof. Since RobustEx0 ⊆ RobustExn, we have RobustExn −
UniformRobustExn 6= ∅ by Corollary 69.

The following Propositions 72 and 73 are needed in proving Theorem 75 below.
From this theorem, we then derive that uniformly robust learning is stronger
than robust learning for each of the types Cons,Ex and Bc.

Proposition 72 There exists a K-recursive sequence of initial segments,
σ0, σ1, . . . ∈ SEG0,1, such that for all e ∈ N , the following are satisfied.

(a) 0e1 ⊆ σe.

(b) For all e′ ≤ e, if Θe′ is general recursive, then either Θe′(σe) 6∼ Θe′(0
|σe|)

or for all f ∈ T0,1 extending σe, Θe′(f) = Θe′(0
∞).

Proof. We define σe (using oracle for K) as follows. Initially, let σ0
e = 0e1.

For e′ ≤ e, define σe
′+1
e as follows: if there exists an extension τ ∈ SEG0,1 of

σe
′
e , such that Θe′(τ) 6∼ Θe′(0

|τ |), then let σe
′+1
e = τ ; otherwise, let σe

′+1
e = σe

′
e .

Now let σe = σe+1
e as defined above. It is easy to verify that the proposition

is satisfied.
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Proposition 73 There exists an infinite increasing sequence a0, a1, . . . of nat-
ural numbers such that for A = {ai | i ∈ N}, the following properties are
satisfied for all k ∈ N .

(a) The complement of A is recursively enumerable relative to K.

(b) ϕak is total.

(c) For all e ≤ ak such that ϕe is total, ϕe(x) ≤ ϕak+1
(x) for all x ∈ N .

(d) For σe as defined in Proposition 72, |σak | ≤ ak+1.

Proof. The construction of ai’s is done using movable markers (using oracle
for K). Let asi denote the value of ai at the beginning of stage s in the con-
struction. It will be the case that, for all s and i, either asi = as+1

i , or as+1
i > s.

This allows us to ensure property (a). The construction itself directly imple-
ments properties (b) to (d). Let pad be a 1–1 padding function [Rog67] such
that for all i, j, ϕpad(i,j) = ϕi, and pad(i, j) ≥ i+ j.

We assume without loss of generality that ϕ0 is total. Initially, let a0
0 = 0, and

a0
i+1 = pad(0, |σa0i |) (this ensures a0

i+1 ≥ |σa0i | > a0
i ). Go to stage 0.

Stage s
1. If there exist a k, 0 < k ≤ s, and x ≤ s such that:

(i) ϕas
k
(x)↑ or

(ii) for some e ≤ ask−1, [(∀y ≤ s)[ϕe(y)↓] and ϕe(x) > ϕas
k
(x)]

2. Then pick least such k and go to step 3. If there is no such k, then for all
i, let as+1

i = asi , and go to stage s+ 1.
3 For i < k, let as+1

i = asi .
4. Let j be the least number such that

(i) (∀y ≤ s)[ϕj(y)↓] and
(ii) for all e ≤ ask−1, if for all y ≤ s, ϕe(y)↓, then for all y ≤ s,
ϕj(y) ≥ ϕe(y).

Let as+1
k = pad(j, |σas

k−1
|+ s+ 1).

5. For i > k, let as+1
i = pad(0, |σas+1

i−1
|+ s+ 1).

6. Go to stage s+ 1.
End stage s

We claim (by induction on k) that lims→∞ a
s
k↓ for each k. To see this, note that

once all the ai, i < k, have stabilized, step 4 would eventually pick a j such
that ϕj is total, and for all e ≤ ak−1, if ϕe is total then ϕe ≤ ϕj. Thereafter
ak would not be changed.

We now show the various properties claimed in the proposition. One can enu-
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merate A (using oracle for K) using the following property: x ∈ A iff there
exists a stage s > x such that, for all i ≤ x, asi 6= x. Thus (a) holds. (b) and
(c) hold due to the check in step 1. (d) trivially holds due to padding used for
definition of asi for all s.

Definition 74 Suppose h ∈ R. Let Bh = {ϕe | ϕe ∈ R ∧ (∀∞x)[Φe(x) ≤
h(x)]}.

Intuitively, Bh denotes the class of recursive functions whose complexity is
almost everywhere bounded by h. We assume without loss of generality that
FINSUP ⊆ Bϕ0 . Thus for ai as in Proposition 73, FINSUP ⊆ Bϕai

, for all i.

Theorem 75 RobustCons 6⊆ UniformRobustBc.

Proof. Fix σ0, σ1, . . . as in Proposition 72, and a0, a1, . . . as in Proposition 73.

Let Gk = Bϕak
∩ {f | σak ⊆ f}.

The main idea of the construction is to construct the diagonalizing class by
taking at most finitely many functions from each Gk.

Let Θbk be defined as

Θbk(f [n]) =


Λ, if n < |σak |;
f(|σak |)f(|σak |+ 1) . . . f(n− 1), if σak ⊆ f [n];
f [n], otherwise.

Note that Θbk is general recursive.

Claim 76
⋃
i≥k Θbk(Gi) 6∈ Bc.

Proof. Suppose by way of contradiction that M Bc-identifies
⋃
i≥k Θbk(Gi).

Then, clearly M must Bc-identify FINSUP (since FINSUP ⊆ Θbk(Gk)). Thus,
for all τ ∈ SEG0,1, there exists an n such that, for allm ≥ n, ϕM(τ0m)(|τ |+m) =
0. Thus, there exists a recursive function g such that, for all τ ∈ SEG0,1 satis-
fying |τ | ≤ n, ϕM(τ0g(n))(|τ |+ g(n)) = 0. Now for each τ , define fτ inductively

by letting η0 = τ , ηn+1 = ηn · 0g(|ηn|) · 1 and fτ =
⋃
n ηn. Note that M does

not Bc-identify any fτ . Also, fτ is uniformly (in τ) computable and thus
{fτ | τ ∈ SEG0,1} ⊆ Bh, for some recursive h. Thus, for sufficiently large j,
{fτ | τ ∈ SEG0,1} ⊆ Bϕaj

. Thus, for almost all j > k, fσaj ∈ Gj = Θbk(Gj).

Since M does not Bc-identify fσaj , claim follows. 2

Let g′ be a function dominating all K ′-recursive functions. For each k ∈ N
and e ≤ g′(k), let fk,e denote a function in

⋃
i≥kGi, such that Me does not

Bc-identify Θbk(fk,e).
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Let S = {fk,e | k ∈ N, e ≤ g′(k)}. Let Fk = S ∩ Gk. It is easy to verify that
Fk is finite (since fk,e 6∈

⋃
i<kGi).

Claim 77 S 6∈ UniformRobustBc.

Proof. Suppose by way of contradiction that h is a recursive function such
that Mh(e) Bc-identifies Θe(S). Note that bk can be recursively computed
using oracle for K. Thus, h(bk) can be recursively computed using oracle for
K. Hence, for all but finitely many k, h(bk) ≤ g′(k). Consequently, Mh(bk)

does not Bc-identify Θbk(fk,h(bk)) ∈ Θbk(S). A contradiction. 2

Claim 78 S ∈ RobustCons.

Proof. Suppose Θ = Θk is general recursive. We need to show that Θk(S) ∈
Cons. Let A = {ai | i ∈ N}. Since A is r.e. in K, there exists a recursive
sequence c0, c1, . . ., such that each a ∈ A, a > ak, appears infinitely often in
the sequence, and each a 6∈ A or a ≤ ak, appears only finitely often in the
sequence. Let σe,t ∈ SEG0,1 be such that σe,t ⊇ 0e1, and σe,t can be obtained
effectively from e, t, and limt→∞ σe,t = σe. Note that there exist such σe,t due
to K-recursiveness of the sequence σ0, σ1, . . ..

Note that there exists a recursive h such that, if ϕe is recursive then, Mh(e)

Cons-identifies Θ(Bϕe). Fix such recursive h.

Let F = {0∞}∪F0∪F1∪ . . .∪Fk. F and Θ(F ) are finite sets of total recursive
functions.

Define M as follows.

M(f [n])
1. If for some g ∈ Θ(F ), g[n] = f [n], then output a canonical program for

one such g.
2. Else, let t ≤ n be the largest number such that Θ(σct,n) ∼ f [n], and

Θ(σct,n) 6∼ Θ(0∞).
Dovetail the following steps until one of them succeeds. If steps 2.1 or 2.2

succeed, then go to step 3. If step 2.3 succeeds, then go to step 4.
2.1 There exists an s > n, such that cs 6= ct, and Θ(σcs,s) ∼ f [n], and

Θ(σcs,s) 6∼ Θ(0∞).
2.2 There exists an s > n, such that σct,s 6= σct,n.
2.3 Mh(ct)(f [n])↓, and f [n] ⊆ ϕMh(ct)

(f [n]).
3. Output a program for f [n]0∞.
4. Output Mh(ct)(f [n]).
End
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It is easy to verify that whenever M(f [n]) is defined, f [n] ⊆ ϕM(f [n]). Also, if
f ∈ Θ(F ), then M Cons-identifies f .

Now, consider any f ∈ Θ(S) − Θ(F ). Note that there exists a unique i > k
such that f ∼ Θ(σai) and Θ(σai) 6∼ Θ(0∞) (due to definition of σaj ’s). Fix
such i. Also, since f 6= Θ(0∞), there exist only finitely many e such that
f ∼ Θ(0e1).

We first claim that M(f [n]) is defined for all n. To see this, note that if ct 6= ai
or σct,n 6= σai , then step 2.1 or step 2.2 would eventually succeed. Otherwise,
since f ∈ Θ(Fi) ⊆ Θ(Bϕai

), step 2.3 would eventually succeed (since Mh(ai)

Cons-identifies Θ(Bϕai
)).

Thus, it suffices to show that M Ex-identifies f . Let r be such that f 6∼ Θ(0r).
Let m and n > m be large enough such that (i) to (iv) hold.

(i) f [n] 6∼ Θ(0r).

(ii) cm = ai, and for all s ≥ m, σai,s = σai,m.

(iii) For all e < r and t > m, if e 6∈ A or e ≤ ak, then ct 6= e.

(iv) For all e < r and t > m, if e ∈ A− {ai} and e > ak, then Θ(σe,t) 6∼ f [n]
or Θ(σe,t) ∼ Θ(0∞).

Note that there exist such m,n. Thus, for all n′ ≥ n, in computation of
M(f [n′]), ct would be ai, and step 2.1 and step 2.2 would not succeed. Thus
step 2.3 would succeed, and M would output Mh(ai)(f [n′]). Thus M Ex-
identifies f , since Mh(ai) Ex-identifies f . 2

Theorem follows from above claims.

Corollary 79 UniformRobustCons ⊂ RobustCons.

UniformRobustEx ⊂ RobustEx.

UniformRobustBc ⊂ RobustBc.

6 Conclusion

In this paper we investigated, for many learnability criteria, whether there are
rich function classes which are robustly or uniformly robustly learnable under
these criteria.
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Furthermore, we showed that every uniformly robustly Ex-learnable class is
also consistently learnable. It remains an open problem whether the adverb
“uniformly” can be dropped: Is every robustly Ex-learnable class also consis-
tently learnable?

In addition, we explored the relationship between robust and uniformly robust
variants of several learnability criteria. Specifically, we separated robust Ex-
learning from its uniformly robust counterpart, solving an open problem from
[JSW01].
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