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Abstract. A class of objects is said to be robustly learnable if not only
this class itself is learnable but all of its computable “transformations”
are also learnable. We study robust learning within the framework of
inductive inference. A class of recursive functions is said to be robustly
learnable under a learning criterion I iff all of its images under operators
of a suitable kind are learnable under the criterion I. In this paper we
will do a survey of some of the results in the area.

1 Introduction

Consider the following basic model for learning functions. A learner is fed the
graph of a function f , one element at a time. The learner, as it is receiving
the graph of the function, outputs a sequence of programs as its hypotheses (the
program output at any particular time may be thought of as machine’s conjecture
about how f may be computed). The learner is said to identify (learn) f , just
in case the sequence of programs converges to a program for f . The learner
identifies a class C of functions iff it identifies every function f from the class C.
A class C is identifiable (learnable), if some learner identifies the class.

The above is essentially the paradigm of identification in the limit (called
Ex-identification) introduced by Gold [Gol67] (see the formal definitions in Sec-
tion 2). In this paper we will be concerned only about learners which are com-
putable (and called learning or inductive inference machines) and will mostly
focus on learnability of total functions (though we will briefly consider learnabil-
ity of partial functions).

The theory of learning in the limit has been a focus of study by several
researchers over the last four decades. Researchers have studied modifications of
the model discussed above by relaxing and constraining it in various ways. We
direct the reader to [JORS99] for an introduction to the area.

Let us consider an example. The class of polynomials can be Ex-identified as
follows. The learner, on data (x1, y1), (x2, y2), . . . , (xn, yn), outputs the smallest
degree polynomial f , such that f(xi) = yi, for 1 ≤ i ≤ n. It can be easily verified
that such a learner Ex-identifies all polynomials. Gold [Gol67] also showed that
every recursively enumerable class of recursive functions can be Ex-identified.
This can be done as follows. Suppose C is a recursively enumerable class of
recursive functions. Let p0, p1, . . . be an effective sequence of programs which
compute exactly the functions in C. Now consider the following machine M. On



any finite input data, M outputs pi, where i is the least number such that the
function computed by program pi is consistent with the input data. It is easy
to verify that M acting as above will Ex-identify each function in C. The above
technique is called identification by enumeration.

A question one might ask about learnable classes is: how stable is the property
that a class is learnable? That is, whether the class is still learnable if one makes
small and not so small “transformations” of the class. This ofcourse depends on
the class being learned, and the transformations considered. One may call a class
robustly learnable if all of its transformations (of certain type) are learnable.

In this paper we will do a survey of robust learning within the paradigm of
inductive inference. As this is a survey paper, the results presented here are from
various papers listed in the references. Most of the motivation below is from the
paper [JSW98].

Let us now consider some motivations for studying robust learning. Recall
the identification by enumeration strategy we considered earlier for learning any
recursively enumerable class of functions. The naturalness of this strategy led
Gold to conjecture that any class of functions which can be Ex-identified, can
also be Ex-identified using identification by enumeration — that is, every Ex-
identifiable class is contained in a recursively enumerable class of functions.

The above conjecture of Gold was shown to be false by Bārzdiņš [Bār71a].
This was done using the following class of functions: SD = {f | f(0) is a program
for f}. It is easy to construct a machine that Ex-identifies SD. On the other
hand, it can be shown that SD is not contained in any recursively enumerable
class of recursive functions.

In Gold’s defense, SD and other self-referential classes used to refute his
conjecture seem artificial. In these classes, programs for the input function are
directly “coded” in the graph of the function (for example as f(0) in case of SD

above). To circumvent such artificial self-referential counter-examples, Bārzdiņš
made a more sophisticated version of Gold’s conjecture. He argued that if a
class of functions can be identified only because of the presence of self-referential
property, then there would be an effective transformation that can transform the
class into an unidentifiable one. To see this, in the context of the class SD above,
consider the operator Θ defined as follows: Θ(f) = g, where g(x) = f(x + 1). It
can be shown that Θ(SD) = {Θ(f) | f ∈ SD} = R, the class of all the recursive
functions. Since R is not Ex-identifiable [Gol67], Θ(SD) is not Ex-identifiable.
Essentially, the idea is that if a learning machine can find the self-referential
information, so can an effective transformation, which can then remove such
information from the graph. The notion of an effective transformation can be
made precise in several ways. In the present paper we will mostly be using general
recursive operators, i.e. effective and total mappings from total functions to total
functions (see Definition 6).

Informally, Bārzdiņš’ conjecture can be stated as follows. If all the projections
of a class of functions under all general recursive operators are identifiable (or,
in other words, if the class is identifiable robustly), then the class is contained
in a recursively enumerable class of recursive functions (and thus, identifiable



by enumeration). [Zeu86] first considered Bārzdiņš’ conjecture. In this paper,
total effective operators (see [Rog67]) rather than general recursive operators
were used. Bārzdiņš’ conjecture was then verified for several learning criteria,
namely Ex0-identification (in which learner is allowed to make only one con-
jecture (which must be correct), see Definition 1), and Reliable-identification
(here the learning machine is not allowed to converge on a total function, which
cannot be learned by the machine, see Definition 15). Fulk [Ful90] showed that
Bārzdiņš’ conjecture as stated above (for general recursive operators) is false by
exhibiting a class of functions which is robustly Ex-identifiable, but not con-
tained in any recursively enumerable class of recursive functions.

Since Gold [Gol67] many criteria of inference have been proposed by re-
searchers all over the world, see for example [AS83, BB75, CS83, Fre91, KW80,
JORS99]. These criteria have usually been accompanied by proofs showing the
differences between the new and old criteria of inference. The proof techniques
used to show separations between the criteria often involve classes with self-
referential properties. The same criticism of the class SD above applies to such
separations. Thus, it is interesting to study whether these separations hold ro-
bustly.

Herman Weyl [Wey52] described the famous Erlangen program on founding
geometry algebraically due to Felix Klein as follows: “If you are to find deep
properties of some object, consider all the natural transformations that preserve
your object (i.e. under which the object remains invariant).” Since general re-
cursive operators (or other types of operators) can be looked upon as natural
transformations, it is interesting to consider robust identification from a purely
philosophical point of view. [AF96] consider a problem in a sense dual to ours.
They search for general recursive operators which map all learnable classes to
learnable classes.

The paper is organized as follows. In section 2 we consider notations and basic
definitions from learning theory. In section 3 we consider results directly related
to Bārzdiņš’ Conjecture. Section 4 deals with results about robust separations. In
section 5 we study uniform robust learning. Section 6 considers a generalization
of robust learning known as hyper robust learning. Section 7 considers other
possible operators, besides the general recursive operators, which may be used
for transformations.

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [Rog67]. N de-
notes the set of natural numbers. ∗ denotes a non-member of N and is assumed
to satisfy (∀n)[n < ∗ < ∞]. Let ∈,⊆,⊂,⊇,⊃, respectively denote the member-
ship, subset, proper subset, superset and proper superset relations for sets. The
empty set is denoted by ∅. We let card(S) denote the cardinality of the set S.
So “card(S) ≤ ∗” means that card(S) is finite. The minimum and maximum of
a set S are denoted by min(S) and max(S), respectively. We take max(∅) to be
0 and min(∅) to be ∞.



〈·, ·〉 denotes a 1-1 computable mapping from pairs of natural numbers onto
natural numbers. π1, π2 are the corresponding projection functions. 〈·, ·〉 is ex-
tended to n-tuples of natural numbers in a natural way. Λ denotes the empty
function. η, with or without decorations1, ranges over partial functions. If η1

and η2 are both undefined on input x, then, we take η1(x) = η2(x). We say that
η1 ⊆ η2 iff for all x in domain of η1, η1(x) = η2(x). For a ∈ N ∪ {∗}, η1 =a η2

means that card({x | η1(x) 6= η2(x)}) ≤ a. η1 6=a η2 means that ¬[η1 =a η2].
If η =a f , then we often call a program for η as an a-error program for f . We
let domain(η) and range(η) respectively denote the domain and range of the
partial function η. η(x)↓ denotes that η(x) is defined. η(x)↑ denotes that η(x)
is undefined. We say that a partial function η is consistent with η′ iff for all
x ∈ domain(η) ∩ domain(η′), η(x) = η(x′). η is inconsistent with η′ iff there
exists an x such that η(x)↓ 6= η′(x)↓.

f, g, h, F and G, with or without decorations, range over total functions. R
denotes the class of all recursive functions, i.e., total computable functions with
arguments and values from N . C and S, with or without decorations, range
over subsets of R. P denotes the class of all partial recursive functions over
N . ϕ denotes a fixed acceptable programming system [Rog67]. ϕi denotes the
partial recursive function computed by program i in the ϕ-system. Note that
in this paper all programs are interpreted with respect to the ϕ-system. We
let Φ be an arbitrary Blum complexity measure [Blu67] associated with the
acceptable programming system ϕ; many such measures exist for any acceptable
programming system [Blu67].

A class C ⊆ R is said to be recursively enumerable (r.e.) iff there exists an
r.e. set X such that C = {ϕi | i ∈ X}. For any non-empty recursively enumerable
class C, there exists a recursive function f such that C = {ϕf(i) | i ∈ N}. Zero is
the everywhere 0 function, i.e., Zero(x) = 0, for all x ∈ N .

2.1 Function Identification

We first describe inductive inference machines. We assume, without loss of gen-
erality, that the graph of a function is fed to a machine in canonical order. For
f ∈ R and n ∈ N , we let f [n] denote the finite initial segment {(x, f(x)) | x < n}.
Clearly, f [0] denotes the empty segment. SEG denotes the set of all finite initial
segments, {f [n] | f ∈ R ∧ n ∈ N}. We let σ and τ , with or without decora-
tions, range over SEG. Let |σ| denote the length of σ. We often identify (partial)
functions with their graphs. Thus for example, for σ = f [n] and for x < n,
σ(x) denotes f(x). An inductive inference machine (IIM) [Gol67] is an algorith-
mic device that computes a mapping from SEG into N ∪ {?}. Intuitively, “?”
above denotes the case when the machine may not wish to make a conjecture.
Although it is not necessary to consider learners that issue “?” for identification
in the limit, it becomes useful when the number of mind changes a learner can
make is bounded (see Definition 1 below). In this paper, we assume, without loss
of generality, that once an IIM has issued a conjecture on some initial segment

1 Decorations are subscripts, superscripts, primes, and the like.



of a function, it outputs a conjecture on all extensions of that initial segment.
This is without loss of generality because a machine wishing to emit “?” after
making a conjecture can instead be thought of as repeating its previous con-
jecture. We let M, with or without decorations, range over learning machines.
Since the set of all finite initial segments, SEG, can be coded onto N , we can
view these machines as taking natural numbers as input and emitting natural
numbers or ?’s as output. We say that M(f) converges to i (written: M(f)↓ = i)
iff (∀∞n)[M(f [n]) = i]; M(f) is undefined if no such i exists.

Definition 1. [Gol67, BB75, CS83] Let a, b ∈ N ∪ {∗}. Let f ∈ R, and S ⊆ R.

(a) M Exa
b -identifies f (written: f ∈ Exa

b (M)) just in case there exists an a-
error program i for f such that M(f)↓ = i and card({n |? 6= M(f [n]) 6=
M(f [n + 1])}) ≤ b (i.e., M makes no more than b mind changes on f).

(b) M Exa
b -identifies S iff M Exa

b -identifies each f ∈ S.
(c) Exa

b = {S ⊆ R | (∃M)[S ⊆ Exa
b (M)]}.

Note that in part (a) above, change of conjecture from ? to some i ∈ N is not
considered a mind change.

We often write Exb for Ex0
b , Exa for Exa

∗, and Ex for Ex0
∗. Ex0 is also

referred to as finite identification. By the definition of convergence, only finitely
many data points from a function f have been observed by an IIM M at the
(unknown) point of convergence. Hence, some form of learning must take place
in order for M to learn f . For this reason, hereafter the terms identify, learn and
infer are used interchangeably.

Definition 2. [Bār74, CS83] Let a ∈ N ∪ {∗}. Let f ∈ R.

(a) M Bca-identifies f (written: f ∈ Bca(M)) iff, for all but finitely many
n ∈ N , M(f [n]) is an a-error program for f .

(b) M Bca-identifies S iff M Bca-identifies each f ∈ S.
(c) Bca = {S ⊆ R | (∃M)[S ⊆ Bca(M)]}.

We often write Bc for Bc0.

Definition 3. NUM = {C | (∃C ′ | C ⊆ C′ ⊆ R)[C′ is recursively enumerable]}.

Some relationships between the above criteria are summarized in the following
theorem.

Theorem4. [CS83, BB75, Bār71a, Gol67]
(a) Let b ∈ N ∪ {∗}. Then, Exb = Ex0

b ⊂ Ex1
b ⊂ Ex2

b ⊂ · · · ⊂ Ex∗
b .

(b) Let a ∈ N ∪ {∗}. Then, Exa
0 ⊂ Exa

1 ⊂ Exa
2 ⊂ · · · ⊂ Exa

∗.
(c) Let a, b, c, d ∈ N ∪ {∗}. Then, Exa

b ⊆ Exc
d iff a ≤ c and b ≤ d.

(d) NUM ⊆ Ex.
(e) Ex0 − NUM 6= ∅.
(f) NUM −

⋃

m∈N Exm 6= ∅.

(g) Ex∗
∗ ⊂ Bc = Bc0 ⊂ Bc1 ⊂ Bc2 ⊂ · · · ⊂ Bc∗.

(h) R ∈ Bc∗.

We let I and J range over identification criteria defined above.



2.2 Operators

Definition 5. [Rog67] A recursive operator is a computable total mapping, Θ,
from (possibly partial) functions to (possibly partial) functions, which satisfies
the following properties:

(a) Monotonicity: For all functions η, η′, if η ⊆ η′ then Θ(η) ⊆ Θ(η′).
(b) Compactness: For all η, if (x, y) ∈ Θ(η), then there exists a finite function

α ⊆ η such that (x, y) ∈ Θ(α).
(c) Recursiveness: For all finite functions α, one can effectively enumerate (in

α) all (x, y) ∈ Θ(α).

Definition 6. [Rog67] A recursive operator Θ is called general recursive iff Θ

maps all total functions to total functions.

For each recursive operator Θ, we can effectively (from Θ) find a recursive
operator Θ′ such that,

(d) for each finite function α, Θ′(α) is finite, and its canonical index can be
effectively determined from α, and

(e) for all total functions f , Θ′(f) = Θ(f).

This allows us to get a nice effective sequence of recursive operators.

Proposition 7. [JSW98] There exists an effective enumeration, Θ0, Θ1, · · · of
recursive operators satisfying condition (d) above such that, for all recursive
operators Θ, there exists an i ∈ N satisfying:

for all total functions f , Θ(f) = Θi(f).

Since we will be mainly concerned with the properties of operators on total
functions, for diagonalization purposes, one can restrict attention to operators
in the above enumeration Θ0, Θ1, . . ..

Definition 8. [Ful90, JSW98] Let I, be an identification criterion.
RobustI = {C | (∀ general recursive operators Θ)[Θ(C) ∈ I]}.

Proposition 9. Suppose I and J are identification criteria. Suppose I ⊆ J.
Then, RobustI ⊆ RobustJ.

3 Bārzdiņš’ Conjecture for specific criteria

Formally one may state Bārzdiņš’ Conjecture (for transformations being general
recursive operators) for an identification criterion I as follows:

Conjecture 10. (Bārzdiņš) Suppose C ⊆ R. If for all general recursive opera-
tors Θ, Θ(C) ∈ I, then C ∈ NUM.



Note that Bārzdiņš himself didn’t explicitly refer to the kind of operators or
transformations to be considered. So one may have different versions of the
conjecture for each possible kind of operators considered. In this section we will
concentrate on general recursive operators.

First few results below show that Bārzdiņš’ Conjecture holds for several nat-
ural criteria. First we note that any class in NUM is robustly learnable.

Theorem11. (Folklore) RobustNUM = NUM.

Proof. Suppose C ∈ NUM. Let C ′ be recursively enumerable such that C ⊆ C ′.
Then for any general recursive operator Θ, Θ(C) ⊆ Θ(C ′), and Θ(C′) is also
recursively enumerable. Thus, Θ(C) ∈ NUM.

Based on Popper’s refutability principle, the following criteria of inference
was considered in [CNM79, CJNM94]

Definition 12. [CNM79, CJNM94] M is Popperian iff for all f [n], M(f [n]) is
a program for a total function.

PEx = {C ⊆ R | (∃M)[M is Popperian, and C ⊆ Ex(M)]}.

It was shown in [BF72, CS83] that PEx = NUM. Thus,

Theorem13. RobustPEx = PEx = NUM.

Similar result holds for NV (in which machine is supposed to predict the next
value instead of coming up with a program to compute f , [Bār71b, BB75]) since
NV = NUM ([Bār71b, BF72, CS83]).

Zeugmann [Zeu86] showed the following theorem using total effective oper-
ators instead of general recursive operators. [JSW98] showed (using essentially
the same proof as in [Zeu86]) it for general recursive operators.

Theorem14. [Zeu86, JSW98] If C ∈ RobustEx0, then C is finite (and thus
in NUM).

Intuitively, a machine is reliable if it does not converge on a function it does
not identify.

Definition 15. [Min76, BB75] M is reliable if for all total f , M(f)↓ ⇒ M

Ex-identifies f .
M Reliable-identifies C, iff M is reliable and M Ex-identifies C.
Reliable = {C | (∃M)[M Reliable-identifies C]}.

Theorem16. [Zeu86] RobustReliableEx ⊆ NUM.

[KS89] showed that there exists a class in RobustNUM which is not recur-
sively enumerable. Fulk [Ful90] showed that there exists a class in RobustEx

which is not in NUM.

Theorem17. [Ful90] RobustEx − NUM 6= ∅.



Thus, Bārzdiņš’ Conjecture does not hold for Ex-identification. [JSW98] ac-
tually showed that even self-referential classes of certain kind are robustly learn-
able.

Theorem18. [JSW98] Let C = {f ∈ R | ϕmin({x|f(x)6=0}) = f}. Then, C ∈
RobustEx − NUM.

Proof. (from [JSW98]) We first show that C 6∈ NUM. Suppose by way of contra-
diction, C′ is a recursively enumerable superset of C. Let f be a recursive function
such that C′ = {ϕf(i) | i ∈ N}. Now by implicit use of recursion theorem [Rog67],
there exists an e such that,

ϕe(x) =







0, if x < e;
1, if x = e;
ϕf(x−e−1)(x) + 1, if x > e.

Now ϕe ∈ C. However, for each i, ϕe(i + e + 1) = 1 + ϕf(i)(i + e + 1), thus
ϕe 6= ϕf(i). It follows that ϕe 6∈ C′, contradicting C ⊆ C ′. Thus, C is not in
NUM.

We now show that, for any general recursive operator Θ, Θ(C) ∈ Ex.
Suppose Θ is a general recursive operator. Let z be a program for Θ(Zero).

Let ProgUnion be a recursive function, mapping finite sets P of programs to
programs, such that ϕProgUnion(P ) may be defined as follows. Running on input
x, program ProgUnion(P ) searches for a y, using a fixed dovetailing procedure,
such that (x, y) ∈

⋃

i∈P Θ(ϕi); if and when such a y is found, ϕProgUnion(P )(x)
is defined to be y. Define M as follows.

M(σ)
1. If Θ(Zero) is consistent with σ, then output z, the program for Θ(Zero).
2. Otherwise let n be the least number such that Θ(Zero[n]) is inconsistent with

σ.
(* Note that this implies that the input function, if from Θ(C), is one of

Θ(ϕi), i ≤ n. *)
3. Let P = {i | i ≤ n ∧ Θ(ϕi) (as enumerated in |σ| steps) is consistent with

σ}.
4. Output ProgUnion(P ).
End

Now consider any input function f ∈ Θ(C). If f is consistent with Θ(Zero),
then M Ex-identifies f due to step 1. If f is not consistent with Θ(Zero), then
let n be least number such that Θ(Zero[n]) is inconsistent with f . Now f must
be one of Θ(ϕi), i ≤ n, due to the definition of C. Thus steps 3, 4 ensure that
M Ex-identifies f .

The theorem follows.

The above theorem can in some sense be considered as second order refuta-
tion of Bārzdiņš’ Conjecture, since not only does it refute Bārzdiņš’ Conjecture,



it does so using ‘self-referential’ classes, for which it was widely believed that
Bārzdiņš’ Conjecture is true.

Recently [CJSW00] have also considered the Bārzdiņš’ Conjecture for some
other criteria of learning such as consistent learning. Here the answer depends
on which type of consistency is considered. We refer the reader to the above
paper for details.

4 Robust Separations

As mentioned in the introduction, many of the separations among learning cri-
teria in inductive inference use self referential tricks. So in a similar spirit to
Bārzdiņš’ Conjecture, it would be interesting to consider which of these separa-
tion results hold robustly. Besides this, other factors as discussed in the intro-
duction, also justify studies about whether the separations in inductive inference
hold robustly or not. First we see the following two results from [Ful90] which
show that some of the hierarchies of inductive inference do not hold robustly.

Theorem19. [Ful90] For all a ∈ N ∪ {∗}, RobustExa = RobustEx.

Proof. For any function f , let fcyl(〈x, y〉) = f(x). For any class C ⊆ R, let
Ccyl = {fcyl | f ∈ C}.

The following three facts can be easily shown.
(1) If Ccyl ∈ Exa, then Ccyl ∈ Ex.
(2) Ccyl ∈ Ex iff C ∈ Ex.
(3) There exists a general recursive operator which maps C to Ccyl.
Now suppose S ∈ RobustExa. We then show that S ∈ RobustEx. To

see this, consider any general recursive operator Θ. Thus, C = Θ(S) ∈ Exa.
Thus Ccyl ∈ Exa, using (3) and the fact that general recursive operators are
closed under composition. Thus, Ccyl ∈ Ex using (1). Hence, C = Θ(S) ∈ Ex

using (2). Since, Θ was arbitrary general recursive operator, we have that S ∈
RobustEx.

Theorem20. [Ful90] For all a ∈ N , RobustBca = RobustBc.

Note that R ∈ Bc∗, and hence RobustBc∗. It was shown in [Jai99, OS99]
that Bc and Ex are separated robustly.

Theorem21. [Jai99, OS99] RobustBc− Ex 6= ∅.

Though the anomaly hierarchy does not stand robustly, the mind change
hierarchy does stand robustly, as shown by the following theorem from [JSW98].

Theorem22. [JSW98] RobustExn+1 − Exn 6= ∅.

Smith [Smi82] studied learning by a team of machines, and showed a hier-
archy based on number of members in a team. Next theorem shows that team
hierarchy for learning holds robustly.



Definition 23. [Smi82] (a) M′
1,M

′
2, . . . ,M

′
n, TeamnEx-identifies f (written

f ∈ TeamnEx(M′
1, . . . ,M

′
n), iff at least one of the n machines, Ex-identifies f .

(b) M′
1,M

′
2, . . . ,M

′
n, TeamnEx-identifies C, iff C ⊆ TeamnEx(M′

1,M
′
2, . . . ,M

′
n).

(c) TeamnEx = {C | (∃M′
1, . . . ,M

′
n)[C ⊆ TeamnEx(M′

1, . . . ,M
′
n)]}.

Theorem24. [JSW98] RobustTeamn+1Ex − TeamnEx 6= ∅.

Similar result holds for Team Bc learning.
Robustness idea can be similarly applied to several other notions in learning.

[CJSW00] consider robust learning for criteria involving consistency. [CJO+98]
apply robustness to learning with context.

5 Uniform Robust Learning

Quite often it may be useful to consider not only whether one can robustly
identify a class, but whether one can effectively get a machine to learn every
“transformed” class, using the description of the transformation. For example,
if one can learn a certain type of geometric figure, one might expect to be
able to learn its transformations via some operations such as rotation, scaling
etc, effectively from the parameters of the transformations. This motivates the
consideration of uniform robust learning.

In our context, uniform robust learning means that the images (under general
recursive operators) of C are not only learnable, but one can effectively find a
machine to learn them. For this strengthened version of robust learning, there
have been both positive and negative results. For example, for Ex-learning with
a bounded number of mind changes, uniformly robust learning is possible only
for finite classes (with restricted cardinality). On the other hand, for standard
Ex-learning uniform robust learning seems be achievable in several cases.

Definition 25. [JSW98] A class C ∈ UniformRobustEx, iff there exists a
recursive function g such that, for all e such that Θe is general recursive, Θe(C) ⊆
Ex(Mg(e)).

UniformRobustI can be defined similarly for other criteria of inference.
Following theorem shows that uniform robust learning is very restrictive for
learning with bounded mind changes.

Theorem26. [JSW98] C ∈ UniformRobustExn ⇒ C is finite.

In fact it can be shown [CJSW00] that C ∈ UniformRobustEx iff card(C) <

2n+1. Thus, robust and uniform robust Exn-learning are separated.
Clearly, since for any general recursive operator Θ and any C ∈ NUM, one

can effectively (in index for Θ and effective enumeration of C) find an enumera-
tion of Θ(C), one has

Theorem27. [JSW98] NUM = UniformRobustNUM.



The next two theorems show the strength of uniform robust Ex-learning.
Recall the self referential class considered in Theorem 18. The following theorem
shows that it is uniformly robustly learnable.

Theorem28. [JSW98] C = {f ∈ R | ϕmin({x|f(x)6=0}) = f} ∈ UniformRobustEx.

It is not known at present whether robust and uniform robust Ex-learning
are separated.

The next theorem shows the power of uniform robust learning (with respect
to Bārzdiņš’ Conjecture) for learning partial functions.

A text is a mapping from N to N 2 ∪ {#}. A text T is for partial function η

if range(T ) − {#} = η.

Definition 29. [BB75]

(a) M BlumEx-identifies η (written: η ∈ BlumEx(M) iff for each text T for
η, there is an i such that M(T )↓ = i and η ⊆ ϕi.

(b) M BlumEx-identifies a class S of partial functions, iff M BlumEx-identifies
each η ∈ S.

Theorem30. [JSW98] There exist a class C ⊆ R, C 6∈ NUM and a recursive
function G such that, for all k, Θk(C) ⊆ BlumEx(MG(k)).

6 Hyper Robust Learning

Ott and Stephan [OS99] considered a generalized version of robust learning and
uniform robust learning. In this they required that the image of C under every
primitive recursive operator be learnable by the same machine. The choice of
primitive recursive operators above is not crucial, as one can choose any large
enough recursively enumerable class of general recursive operators. First let us
consider the definition of primitive recursive operator.

A general recursive operator Θ is said to be primitive recursive, if there exist
two primitive recursive functions g and h such that Θ(f)(x) = g(x, f(0)f(1) · · · f(h(x))),
for all x.

Definition 31. [S] = {Θ(f) | f ∈ S, Θ is primitive recursive }.

We now consider hyper robust learning.

Definition 32. [OS99] S is hyper robustly I learnable (written S ∈ HyperRobustI)
if [S] ∈ I.

The following theorem shows that choice of primitive recursive operators in
the definition of hyper robust learning is not crucial, but we could choose any
larger recursively enumerable class of operators.

Theorem33. [OS99] Let Θ0, Θ1, . . . be any recursively enumerable class of gen-
eral recursive operators. Suppose [S] ∈ HyperRobustEx. Then there exists a
M such that M Ex-identifies {Θi(f) | f ∈ C, i ∈ N}.



The above result also holds for Bc-learning instead of Ex-learning. Clearly, by
above theorem HyperRobustEx ⊆ RobustEx. It can also be shown that
HyperRobustEx ⊆ UniformRobustEx.

Definition 34. S is said to be bounded iff there exists a recursive h such that
for all f ∈ S, for all but finitely many x, f(x) ≤ h(x).

Theorem35. [OS99] If S ∈ HyperRobustEx, then S is bounded.

We now consider an interesting connection between classes which are robustly
identifiable and closed under finite variants, with classes that are hyperrobustly
identifiable.

Theorem36. [OS99] Suppose S is closed under finite variants. Then S ∈
HyperRobustEx iff S ∈ RobustEx.

The following theorem shows that hyper robust learning satisfies Bārzdiņš’
Conjecture.

Theorem37. [OS99] HyperRobustEx = NUM.

Corollary 38. [OS99] If S is closed under finite variants and S ∈ RobustEx,
then S ∈ NUM.

Thus, in some sense if learnability (in Ex-sense) does not depend on “finite
variations” and also does not use “coding”, then identification by enumeration
is the only method of learning.

However, such a result does not hold for Bc learning.

Theorem39. [OS99] HyperRobustBc − NUM 6= ∅.

A surprising result in hyper robust learning is that, though hyperrobust learn-
ing is closed under union, hyperrobust team hierarchy stands. The result is sur-
prising because the reason and motivation for team learning came from the
non-union theorem of Blum and Blum [BB75].

Theorem40. [OS99] HyperRobustTeamn+1Ex−HyperRobustTeamnEx 6=
∅.

Similarly, hyper robust team hierarchy for Bc-learning also stands (though it is
not known at present whether HyperRobustBc is closed under union or not).

7 Other robustness criteria

The operators we have considered in this survey have been general recursive
operators. As mentioned earlier, other kinds of operators may be used instead of
general recursive operators. We briefly consider some of the alternatives. Some
of the results of this survey are sensitive to which kind of operators are used.
We refer the reader to papers cited for details.



Definition 41. [Rog67] An operator Θ mapping partial functions to partial
functions is called effective, if there exists a computable function f such that,
for all i, ϕf(i) = Θ(ϕi).

Definition 42. [Rog67] An operator Θ is total, if it maps every total function
to a total function.

Zeugmann [Zeu86] considered robustness under total effective operators. This
was actually the first formalization of robust learning.

Note that reason for considering total operators (in total effective and gen-
eral recursive operators) was that total operators map total functions to total
functions, thus giving us Θ(C) ⊆ R.

This suggests the following alternative. One may allow all recursive operators
which map all functions in the class C under consideration to total functions.
This gives rise to the following robustness notion.

Definition 43. [JSW98] RecRobustI = {C ⊆ R | C ∈ I ∧ (∀ recursive
operators Θ | Θ(C) ⊆ R)[Θ(C) ∈ I]}.

One of the problems with above definition is that RecRobustI is not closed
under subset! Due to this one has a funny situation that a class may be RecRobust-
ly learnable, but some of its subsets are not! Since this situation is not desirable,
the above robustness notion is not much interesting.

Another possibility is to consider all recursive operators, but only require
learnability of total functions in Θ(C). This gives rise to the following definition.

Definition 44. RRobustI = {C ⊆ R | C ∈ I ∧ (∀ recursive operators Θ)[Θ(C)∩
R ∈ I]}.

Above notion is closed under subset. However, note that the class of constant
functions, {f | (∀x)[f(x) = f(0)]} 6∈ RRobustEx. Thus, NUM 6⊆ RRobust.
This casts some doubts about the interestingness of the above notion.

Alternatively, one may consider learnability of partial functions as done in
Definition 29 and Theorem 30, which allows one to consider all recursive opera-
tors.

It is not clear which of the above approaches is the “best” if any. Possibly,
each approach is justified, if it gives interesting results.

Due to the natural appeal of robust learning we expect that in future many
more interesting results on robust learning will be studied.
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