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Abstract Bārzdiņš conjectured that only recursively enumerable classes of func-
tions can be learned robustly. This conjecture, which was finally refuted
by Fulk, initiated the study of notions of robust learning. The present
work surveys research on robust learning and focuses on the recently in-
troduced variants of uniformly robust and hyperrobust learning. Proofs
are included for the (already known) results that uniformly robust Ex-
learning is more restrictive than robust Ex-learning, that uniformly
robustly Ex-learnable classes are consistently learnable, that hyperro-
bustly Ex-learnable classes are in Num and that some hyperrobustly
BC-learnable class is not in Num.

1. Introduction

The general setting of function learning is the following: Given a set S
of functions, a learner simultaneously reads data f(0), f(1), . . . on the
function to be learned and outputs hypotheses e0, e1, . . . such that these
descriptions converge in some abstract sense to an explanation of the
observed function f , whenever f ∈ S. Gold [11] made this informal set-
ting more precise by requiring syntactical convergence in the case that
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f ∈ S: Almost all ek output by the learner are the same program e for
the function f .

Taking this as a starting point, learning theorists gave a large vari-
ation of learning paradigms in order to capture more precisely the in-
tuitive notion of learning. But while the formalization of the intuitive
notion of computing by recursive functions and equivalent concepts like
Turing machines has turned out to be unique, the development in learn-
ing theory is more parallel to the one in complexity theory: there is a
large family of important notions including Gold’s notion of “explana-
tory learning” (Ex-learning) discussed above. One main line of research
in inductive inference is to compare and evaluate these various notions
of learning.

One of Bārzdiņš’ main concerns with respect to the development of in-
ductive inference was the question, to which extent the notions and also
the considered learning problems are natural. Most natural learning
problems S have an enumeration f0, f1, . . . such that S ⊆ {f0, f1, . . .}
and the mapping e, x→ fe(x) is total and recursive in both parameters.
Such classes can be learned by enumeration: the learner searches for the
first e such that fe is consistent with the input and outputs a canonical
program for fe.

Of course, not all learnable classes are of this form. It is almost a
standard homework for computer science students to produce a pro-
gram which outputs its own code. This principle is used in the defini-
tion SD = {f : f = ϕf(0)} of the class of self-describing functions. The
class SD is learnable but not in Num, that is, SD is not contained in
a recursively enumerable class of total functions. As the learning part
consists only mapping the input f(0) f(1) . . . f(n) to f(0), this example
looks a bit like cheating and it is obviously not very natural. One might
ask, whether one can come up with a more natural example. Bārzdiņš
thought that the answer is negative and that there are no naturally de-
fined Ex-learnable classes outside Num.

Therefore, Bārzdiņš was looking for a framework of learning, which
does not permit such obvious coding and enforces that learnable classes
are naturally defined or at least subclasses of naturally defined learnable
classes. His approach is to postulate that not only S itself but also all
variants of S obtained by general recursive operators have to be Ex-
learnable. The class SD does not satisfy this condition as Θ(SD) =
REC, where REC is the class of all total recursive functions and the
operator Θ is given by the simple equation Θ(f)(x) = f(x + 1). So
Bārzdiņš intention is that the notion of Robust Learning captures all
naturally defined learnable classes and Bārzdiņš’ Conjecture states: Ev-
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ery robustly learnable class is already in Num. Although first incidence
supported Bārzdiņš’ Conjecture, Fulk [10] was able to disprove it – see
Section 3 for more details.

On a philosophical side, Herman Weyl [26] started to describe the fa-
mous Erlangen program on founding geometry algebraically due to Felix
Klein as follows: “If you are to find deep properties of some object, con-
sider all the natural transformations that preserve your object (i.e. under
which the object remains invariant).” Since general recursive operators
(or other types of operators) can be looked upon as natural transfor-
mations, it is interesting to consider robust identification from a purely
philosophical point of view too.

Case [4] was concerned whether coding tricks really occur in nature.
As it turns out that they occur quite frequent not only in inductive in-
ference but also in recursion theory and other branches of mathematics.
Case thinks, that perhaps the real world may actually have some of its
parts coded in other of its parts. As he essentially pointed out, such
a view is consistent with both certain Eastern metaphysical principles
and Leibniz’ Monadology. So, one might conclude that coding is not so
unnatural as it seemed to be when Bārzdiņš formulated his conjecture.

Although Fulk [10] had settled the main question, the field of robust
learning has received much more attention recently. The failure of
Bārzdiņš’ Conjecture motivated to introduce and investigate several
modified approaches.

Uniformly robust learning, as outlined in Section 4, postulates that
one can compute a learner for Θ(S) from any program for Θ. Jain, Smith
and Wiehagen [14] introduced this notion and showed that also for this
restrictive variant, Bārzdiņš’ Conjecture fails. Furthermore, the coun-
terexample for both notions, robust and uniformly robust learning, can
be taken to consist of functions f which are topologically self-describing
by having that the first non-zero value at a place x > e where e is
the minimal program of f . This result questioned the intention that
robust learning makes coding tricks impossible. On the other hand,
uniformly robustly Ex-learnable classes turned out to be natural in the
way that they are always consistently learnable [6]. Note that a consis-
tent learner might be partial, but for every f ∈ S where S is the class
to be learned, and for every n, a consistent learner outputs on input
f(0)f(1) . . . f(n) a function which is defined and coincides with f on the
arguments 0, 1, . . . , n. Taking this result as a starting point, Section 5
gives an overview on the connections between robustness and the various
notions of consistency.
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Hyperrobust learning, considered in Section 6, turned out to satisfy
Bāzdiņš’ Conjecture for Ex-learning. Several further results support the
naturalness of the definition. Hyperrobust BC-learning does not collapse
to Num [20] and the corresponding class is an alternative example for
Jain’s result [12] that robust BC-learning is more powerful than robust
EX-learning.

Section 7 compares the team hierarchies for hyperrobust and standard
versions of Ex-learning. On the one hand the Non-Union Theorem
(which states that there are Ex-learnable classes whose union is even
not BC-learnable) cannot be generalized to hyperrobustly Ex-learnable
classes. On the other hand there is a class which can be hyperrobustly
Ex-learned by a team of two learners but not by a single one.

Finally Section 8 gives some sample result from applying robustness
notions to the scenario where a learner receives, in addition to the data
on the function to be learned, also the data on a related function.

2. Function Identification

The basic learning model of inductive inference was introduced by Gold
[11]: a class S of recursive functions is learnable iff there is a partial
recursive machine M which maps strings of natural numbers to numbers
such that

Given any function f ∈ S, M is defined on input f(0)f(1) . . . f(n)
and outputs a number en;

Almost all en are the same number e;

The number e is an index for f , that is, ϕe = f .

Here the indices are chosen with respect to any fixed acceptable number-
ing ϕ. It does not matter which acceptable numbering is chosen since all
acceptable numberings can be translated into another via total recursive
functions. Examples of acceptable numberings are the numbering of all
Turing machines and the numbering of all those programs in common
programming languages with variables using natural numbers but not
having a “maxint-bound” and using exactly one input and at most one
output. Note that an acceptable numbering always contains also partial
recursive functions; following a common convention, a “recursive func-
tion” is a function ϕe which is total and a “partial recursive function” is
any function ϕe, whether total or not. So “partial recursive” indicates
that the function is permitted to be undefined somewhere but it is not
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required to be undefined somewhere.
Gold [11] showed that the class of all total recursive functions is not

learnable, that is, for every recursive learner M there is a recursive
function f not learned by M . So one of the central topics of inductive
inference became the search for the boundaries of learning and for fur-
ther learning criteria, which were compared to the already existing ones.
The main criteria are the following.

Definition 2.1 (Learning Criteria) [1, 2, 3, 8, 11, 15, 17, 19, 28, 29].
Let S be a class of total recursive functions. S is learnable with respect
to one of the following criteria iff there is a partial recursive machine M
with the corresponding properties.

Ex-learning: if f ∈ S then M(f(0)f(1) . . . f(n)) is defined for all n
and there is an index e of f such that M(f(0)f(1) . . . f(n)) = e for al-
most all n.

Exk-learning: if f ∈ S then there is an n such thatM(f(0)f(1)...f(m))
is defined iff m > n and there are at most k numbers m′ > n with
M(f(0)f(1) . . . f(m′)) 6= M(f(0)f(1) . . . f(m′ + 1)). That is, there are
at most k mind changes by M during the process of learning f .

Confident learning: M is a total Ex-learner for S and M converges on
every, even non-recursive, function f . That is, given any total f , there
is an index e with M(f(0)f(1) . . . f(n)) = e for almost all n.

Consistent learning: M Ex-learns S and, for every f ∈ S and for
every n, M(f(0)f(1) . . . f(n)) is defined and outputs a program e such
that, for m = 0, 1, . . . , n, ϕe(m)↓= f(m).

Conforming learning: M Ex-learns S and, for every f ∈ S and for
every n, M(f(0)f(1) . . . f(n)) is defined and outputs a program e such
that, for m = 0, 1, . . . , n, either ϕe(m)↑ or ϕe(m)↓= f(m).

Reliable learning: M is a total Ex-learner for S and whenever M con-
verges on some function f to an index e, then e is an index for f ; note
that reliable learners diverge on all nonrecursive functions.

BC-learning: if f ∈ S then M(f(0)f(1) . . . f(n)) is defined for all n
and M(f(0)f(1) . . . f(n)) is a program for f for almost all n; note that
these programs can be different for all n.

Definition 2.2 [24]. Let I be one of the notions from Definition 2.1.
Then S is I-learnable by a team of k learners iff there are k learners
M1,M2, . . . ,Mk such that every f ∈ S is I-learned by at least one of the
learners M1,M2, . . . ,Mk.

Note that one can postulate without loss of generality for the criteria
of Ex-learning, confident learning and BC-learning that the learner M
is even a total recursive function on the strings of natural numbers. As
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one can make any hypothesis of a BC-learner to be consistent (and thus
also conforming) with the data seen so far without loosing any learn-
ing power, a BC-learner is without loss of generality already consistent
and conforming and therefore it does not make sense to introduce these
notions for the BC-case. Furthermore, there are also alternative defini-
tions of reliable learning which are not equivalent to the above one, see
for example [20] for a brief discussion of these criteria in the context of
robust and hyperrobust learning.

Case and Smith [8] published the following characterizations of a re-
stricted version of Ex-learning and of BC-learning, the first character-
ization is due to Leeuwen and Bārzdiņš and the second is due to Pod-
nieks [23].

Theorem 2.3 [8, 23]. A class S is Ex-learnable via an M outputting
(on all inputs) only indices of total functions iff there is a recursive N
such that, for all f ∈ S and for almost all n, N(f(0)f(1) . . . f(n)) =
f(n+ 1).

A class S is BC-learnable iff there is a partial recursive N such that,
for all f ∈ S and for almost all n, N(f(0)f(1) . . . f(n)) ↓= f(n + 1).
Note that even for any fixed f ∈ S the predictor N is permitted to be
undefined on finitely many inputs of the form f(0)f(1) . . . f(n).

A class S is recursively enumerable iff S = {f0, f1, . . .} for a family of
total functions such that the mapping e, x→ fe(x) is recursive. A class
S is defined to be in Num iff it is a subclass of a recursively enumerable
class. These classes have the straight forward learning algorithm given
below.

Remark 2.4 (Learning by Enumeration) [11, 23]. Every class
in Num is Ex-learnable by the following algorithm, called learning by
enumeration: Given a recursive enumeration f0, f1, . . . of functions such
that S ⊆ {f0, f1, . . .}, the learner searches on any input the first fe which
is consistent with the data seen so far and translates the e to an index of
the given acceptable numbering. More precisely, a recursive function h is
chosen such that ϕh(e′) = fe′ for all e′ and the learner outputs, for any
given input f(0)f(1) . . . f(n), the value h(e) where e is the first index
satisfying (∀m ≤ n) [fe(m) = f(m)].

Note that every class S in Num has a recursively enumerable superclass
S′ = {f0, f1, . . .} which is also dense. Here a class S ′ is called dense
iff every data σ is extended by some f ∈ S ′, denoted σ � f : (∀x ∈
domain(σ)) [σ(x) = f(x)]. If learning by enumeration is based on this
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dense superclass S′, then the resulting algorithm is total.
There are various learning-theoretic characterizations for S being in

Num: S is Ex-learnable with a machine outputting only indices of total
functions, S is learnable by enumeration, S has a total-recursive machine
predicting every function in S almost always. This justifies to look
upon Num as being a learning criterion and the study of robust learning
was motivated by Bārzdiņš’ question whether Num captures all natural
learnable classes.

3. Bārzdiņš’ Conjecture

Self-reference combined with coding-tricks gives an elegant way to prove
many separation results in inductive inference as shown in the following
example, in particular for the case of the criterion SD.

Example 3.1 (Classes SD and ASD). The following classes ob-
tained by self-referential coding separate some of the learning criteria
from Definition 2.1.

The class SD = {f : ϕf(0) = f} of all self-describing functions
can be Ex0-learned and can be consistently learned. Thus SD
is also conformingly learnable, confidently learnable, Ex-learnable
and BC-learnable. But SD cannot be learned reliably and is also
not in Num.

The class ASD = {f : ϕf(0) =∗ f} of all almost self-describing
functions f (these are computed at almost all x by the index f(0))
is BC-learnable but not Ex-learnable.

The class {f : (∃e) [ϕe = f ∧ e = max{f(x) : x = 0, 1, . . .} ]} of all
functions f bounded by a constant and computed by the maximum
of its values is Ex-learnable and therefore also BC-learnable. But
it cannot be learned according to any other learning criteria from
Definition 2.1.

A proof for the first statement is provided as a sample for proofs using
the Recursion Theorem. An Ex0-learner for SD just outputs on input
f(0)f(1) . . . f(n) the hypothesis f(0). An Ex0-learner is obviously also
an Ex-learner, BC-learner and confident learner as it makes at most one
hypothesis. Consistency follows from the fact that the unique guess f(0)
is correct whenever the function f is in SD.

To prove that SD is not in Num, assume by way of contradiction that
f0, f1, . . . is a recursive sequence of recursive functions which contains
all the self-describing functions. Let g(x) = fx(x+1)+1. Now consider
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the function h defined by

ϕh(e)(x) =

{

e if x = 0;
g(x− 1) if x > 0.

By Kleene’s recursion theorem, this function h has a fixed point e and
ϕe = ϕh(e) ∈ SD. Let e′ be such that fe′ = ϕe. But then fe′(e

′ + 1) =
g(e′) = fe′(e

′ + 1) + 1, a contradiction. Thus SD is not in Num.
Based on the results by Blum and Blum [3] and Minicozzi [17], one

can indirectly prove that SD is not reliably Ex-learnable. The proof
looks at the union SD ∪ AEZ where the class AEZ from Example 4.5
below is reliably Ex-learnable. On the one hand, SD ∪AEZ is not Ex-
learnable [3]. On the other hand, the union of any two reliably learnable
classes is reliably learnable [3, 17] and thus also Ex-learnable. So, SD
cannot be reliably learnable.

Case and Smith [8] study in detail many applications of self-reference
to separate several learning criteria including the use of ASD to separate
BC-learning from Ex-learning.

Although these proofs are elegant, they have the property of coming up
with example classes which look very artificial. The main idea is that
the coding permits the less pretentious learner to learn while the more
pretentious one has to transform the data obtained in a way which would
enforce the learner to solve some unsolvable problem. For example a
hypothetical Ex-learner for the class ASD would fail because it cannot
detect the finitely many undefined places which the index f(0) might
have. But the BC-learner would, on input f(0)f(1) . . . f(n), output an
index which looks up f(m) in a table for input m ≤ n and computes
ϕf(0)(m) for m > n. After seeing sufficiently many examples, all places
where ϕf(0) is undefined or wrong are overwritten by entries in the table
and from then on, each hypothesis is correct.

Besides the elegance of the proofs, a further reason to use self-describing
function classes for separation results is that many candidates S for such
a separation have already a self-describing subclass S ′ which witnesses
the same separation but has the learning algorithm already “built in”.
This principle is just stated for the case of the second criterion being
Num.

Proposition 3.2. If S is closed under finite variants and if S is not
in Num, then S ∩ SD is in Ex0 but not in Num.

Proof. Wiehagen [27] observed that for every function f there is a
self-describing function g such that f(x) = g(x) for all x > 0. Thus S
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satisfies

S = {f : (∃g ∈ SD ∩ S) (∀x > 0) [f(x) = g(x)]}

and whenever SD ∩ S is in Num, so is S. It follows that SD ∩ S is not
in Num. But as SD is Ex0, so is its subclass SD ∩ S.

Bārzdiņš’ idea was to postulate that not only the class S itself but also
every transformed class Θ(S) should be learnable. Taking the class of
suitable permitted operators Θ, the resulting notion of robust learning
was intended to meet the following requirements.

Every class S in Num should also be robustly learnable.

If the learnability of S depends essentially on coding, then Θ(S)
should be non-learnable for a suitable Θ. That is, only natural
classes should be robustly learnable.

Bārzdiņš conjectured that these two requirements would be met by per-
mitting all general recursive operators Θ and that only classes in Num
are robustly learnable.

Indeed one had also considered many other classes of operators, but
none of these classes was able to satisfy both requirements. Clearly all
permitted operators have to be recursive, but the question was whether
to tolerate or not that some total functions are mapped to partial ones.

If one only requires that functions in S are mapped to total functions,
then one could take the class S of all constant functions where the con-
stant c is an index of a total function. If one then takes the operator
defined by

Θ(f)(x) = ϕf(0)(x)

one would have that Θ(S) is the class of all recursive functions which is
not learnable. On the other hand, even this weak requirement does not
destroy all coding tricks as the following example shows.

Example 3.3 (Class TSD). Jain, Smith and Wiehagen [14] introduced
the class

TSD = {f : (∃e) [f = ϕe ∧ (∀x ≤ e) [f(x) = 0] ] }

of topologically self-describing functions. This class satisfies the follow-
ing: Let Θ be a recursive operator mapping every function in TSD to a
total one. Then Θ(TSD) is Ex-learnable as sketched below.

The class TSD contains 0∞, so the learner conjectures Θ(0∞) until
some x is found with Θ(f)(x) 6= Θ(0∞)(x). Now one can compute the
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maximum argument y of the function 0∞ evaluated by Θ in order to
compute Θ(0∞)(x). It follows that f(z) 6= 0 for some z ≤ y. Therefore,
provided that f ∈ S, it holds that f = ϕe for some e ≤ y. From this
information one can compute an upper bound bΘ,y for the minimal index
of Θ(f) and having this bound it is possible to find a program for Θ(f)
in the limit.

It follows that it does not give any advantage to consider operators
which fail to map some total (not necessarily recursive) functions to
partial functions. So the main goals for a suitable notion of robust
learning became the following one: classes in Num should be mapped
to classes in Num and the concept should be as easy as possible, as the
easiest concept is often the most natural one among a choice of several
acceptable concepts to formalize a notion. Thus, one can define robust
learning as below. Here a general recursive operator is an operator which
is recursive and which maps every total function to a total one.

Definition 3.4 (Robust Learning) [31]. Fix a learning criterion I
from Definition 2.1. A class S is robustly learnable with respect to the
criterion I iff for every general recursive operator Θ the class Θ(S) is
learnable with respect to the criterion I.

Since one can choose Θ to be the identity mapping every f to itself, every
robustly learnable class is also learnable (for any criterion I of learning
considered). As already mentioned in Example 3.3, the class TSD is
robustly Ex-learnable but not in Num, therefore Bārzdiņš’ Conjecture
is refuted.

Theorem 3.5 [10, 14]. There is a robustly Ex-learnable class which is
not in Num.

Furthermore, one can ask whether all naturally defined Ex-learnable
classes are also robustly Ex-learnable. Blum and Blum [3] considered
the following class which on the one hand has a natural definition but
on the other hand is not robustly Ex-learnable in the case that the
complexity measure used in the definition is a interpolating complexity
measure. Recall that a complexity measure Φ associated to the given
acceptable numbering ϕ is defined by the following properties.

Φe(x) is defined iff ϕe(x) is defined.

The set {(e, x, t) : Φe(x)↓≤ t} is recursive.
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A complexity measure Φ is interpolating iff one can find for every i
and every string σ a j such that Φj(x) = σ(x) for x ∈ domain(σ) and
Φj(x) = Φi(x) for all other x.

Example 3.6 (Class BB) [25]. Let Φ be an interpolating complexity
measure for the acceptable numbering ϕ. Using that Φe(e) < ∞ iff e
is in the diagonal halting problem K, Blum and Blum [3] defined the
following approximations to K:

ψe(x) =







1 if Φx(x) ≤ Φe(x) and Φe(x) <∞;
0 if Φx(x) > Φe(x) and Φe(x) <∞;
↑ if Φe(x) = ∞.

Note that ψe is total whenever Φe is total. Now they defined the class

BB = {ψe : Φe is total and increasing}

and showed that this class is Ex-learnable. Stephan and Zeugmann [25]
reinvestigated the class and showed that BB is neither robustly Ex-
learnable nor in Num.

One of the main topics of the research on robust learning was also the
question whether Bārzdiņš’ Conjecture holds for further criteria of learn-
ing, namely whether for a given criterion I every class learnable with
respect to I is also in Num. Zeugmann [31] published Bārzdiņš’ Con-
jecture and showed as an intermediate result that the notion of reliable
learning satisfies this conjecture. The notion of reliable learning was
introduced by Minicozzi [17] and intended to model that the learner is
never misleading in the limit as it either converges to a correct program
or diverges by outputting infinitely many different hypotheses.

Theorem 3.7 [31]. If a class S is robustly reliably learnable then S is
in Num.

Proof. Let T be an infinite binary recursive tree without infinite
recursive branches and let σ0, σ1, . . . be a recursive enumeration of all of
its leaves. Now one applies the general recursive operator Θ to S where
Θ is given by

Θ(f) = σf(0)σf(1)σf(2) . . .

which maps f to that {0, 1}-valued functions whose course of values is
given by the infinite string σf(0)σf(1)σf(2) . . . and considers any reliable
learner M for Θ(S). Recall that M is required to be total. Furthermore,
without loss of generality, M is increasing, that is, whenever M(τ) 6=
M(η) and τ � η, then M(τ) < M(η). Note that this property can



12

be obtained by using a padding function which is a recursive function
p such that p(e, n) is an index of the same function as e and satisfies
p(e, n) > n. Now consider uniformly recursive binary trees

Uτ = {η ∈ {0, 1}∗ : τ � η ∧M(τ) = M(η)}

where τ ranges over all strings in {0, 1}∗. The set of all τ where Uτ is
finite is recursively enumerable since whenever Uτ is finite then there
is a level l > |τ | such that Uτ ∩ {0, 1}l = ∅. Thus one can define the
following functions gτ by taking the value of that case which is found
first to hold:

gτ (x) =

{

ϕM(τ)(x) if ϕM(τ)(x)↓≤ 1;
0 if Uτ is finite.

Every function gτ is total. If Uτ is finite then the second condition
guarantees gτ to terminate. If Uτ is infinite then Uτ has an infinite
branch g by König’s Lemma. M converges on this infinite branch to
M(τ) and sinceM is reliable, M(τ) is a program for this total function g.
Furthermore, whenever M learns some function g, then there is a τ � g
such that M(τ) is already the final value for g and g is an infinite branch
of Uτ , so g = gτ for this τ . For every gτ , consider the function fτ where

fτ (x) = yx ⇔ (∃y0, y1, . . . , yx−1) [σy0
σy1

. . . σyx
� gτ ].

Note that the definition cannot be ambiguous since σi 6� σj whenever
i 6= j. Furthermore, T has no infinite recursive branch and thus every
recursive function gτ cannot be on any shifted version σT of the tree
T . Thus one can show inductively that gτ is not on σy0

σy1
. . . σyx

T and
therefore find an yx+1 with σy0

σy1
. . . σyx

σyx+1
� gτ . One can further-

more verify that this process can be done uniformly for all gτ and that
thus the class S′ of all fτ is a recursively enumerable family. Since for
every f ∈ S, M learns Θ(f), every f ∈ S satisfies Θ(f) = gτ for some
τ ∈ {0, 1}∗. Thus f = fτ for this τ . Thus S ⊆ S′ and S is in Num.

4. Uniformly Robust Learning

Quite often it may be useful to consider not only whether one can ro-
bustly identify a class, but whether one can effectively get a machine to
learn every “transformed” class, using the description of the transforma-
tion. For example, if one can learn a certain type of geometric figure, one
might expect to be able to learn its transformations via some operations
such as rotation, scaling and so on, effectively from the parameters of
the transformations. This motivates the consideration of uniform robust
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learning.
In the context of uniform robust learning this means that the im-

ages (under general recursive operators) of S are not only learnable, but
one can effectively find a machine to learn them. For this strengthened
version of robust learning, one looks into two directions: (i) Are there
nontrivial examples which are uniformly robustly learnable with respect
to a given criterion I? (ii) Is uniformly robust learning with respect
to I different from classical robust learning with respect to I? Before
investigating this, the formal definition is given.

Definition 4.1 [14]. Fix a learning criterion I from Definition 2.1. A
class S is uniformly robustly learnable with respect to the criterion I iff
there exists a recursive function g such that, for all e such that Θe is
general recursive, Mg(e) learns Θe(S) with respect to the criterion I.

Remark 4.2 [14]. For the notion of learning with a constant bound
on the number of mind changes, uniformly robust learning is very re-
strictive. If S is uniformly robustly Exk-learnable then S is finite and
contains less than 2k+1 functions. In contrast to this, a class is robustly
Ex0-learnable iff it is finite and some infinite class is even robustly Ex1-
learnable.

Remark 4.3 [6]. The class of topologically self-describing functions
TSD from Example 3.3 is uniformly robustly confidently learnable and
thus also uniformly robustly Ex-learnable. But TSD is not in Num.

So one knows that the uniformly robust version of confident learning is
not trivial. The following result of Case, Jain, Stephan and Wiehagen [6]
separates the uniform robust and robust versions of confident learning,
this separation is much more involved than the previous results and the
proof is therefore omitted.

Theorem 4.4 [6]. There is a class S which is robustly confidently
learnable but not uniformly robustly confidently learnable.

Of course, the most interesting question is whether the robust and uni-
form robust versions of Ex-learning and BC-learning are different. In-
deed, Case, Jain, Stephan and Wiehagen [6] constructed a class S which
separates both notions simultaneously. Before constructing that class,
the below variant of the Non-Union Theorem [2, 3] is given as it is a tool
used in the proof.

Example 4.5 (Class AEZ). Let

AEZ = {f : (∀∞x) [f(x) = 0]}
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denote the class of all almost everywhere zero functions. This class is
an example of a dense class in Num.

Example 4.6 (Non-Union Theorem). Let AEZ be as above and
let TSD be the class of all topological self-describing functions from
Example 3.1.

Both classes, AEZ and TSD, are uniformly robust Ex-learnable but
their union AEZ ∪ TSD is not BC-learnable [2, 3, 14]. Therefore the
Non-Union Theorem extends to the notions of robust and uniformly
robust Ex-learning and BC-learning.

Concerning team-learning as defined in Definition 2.2, it should be
noted that AEZ ∪TSD is an example of a class robustly learnable by a
team of two Ex-learners but not being in Ex.

Theorem 4.7 [6]. There is a class S which is robustly Ex-learnable
but not uniformly robustly BC-learnable. So the notions of robust Ex-
learning and robust BC-learning are more general than their uniformly
robust counterparts.

Proof. A more detailed proof is found in the paper of Case, Jain,
Stephan and Wiehagen [6].

One first constructs finite functions σx for all x such that one can com-
pute the σx as strings in the limit from x. Then one takes a sequence
a0, a1, . . . and chooses, for each n, finitely many recursive functions f
extending σan

and puts these functions into S. The basic idea is to
take these functions in an adversary manner for uniformly robust BC-
learners, while on the other hand the classes remain “almost uniformly
Ex-learnable” which means that one can take an uniform Ex-learner
which learns all but finitely many functions in Θe(S) and then makes a
non-uniform upgrade in order to cover these finitely many functions as
well.

The technical part in the construction of S is the inductive construc-
tion of the finite functions σx. The goal is that, for all e ≤ x, Θe either
maps all or no functions extending σx to Θe(0

∞). The σx are constructed
in stages s as follows.

One uses two auxiliary partial-recursive two-place functions ψ, ϑ
which are initialized as being undefined everywhere at the begin-
ning and are used for book-keeping which Θe have already been
addressed. Furthermore, σx,0 = 0x1 before stage 0.

At stage s: If there is an e ≤ x, y ≤ s and τ � σx,s such that τ ∈
{0, 1}s, ψ(e, x) is still undefined and the computations Θe(τ)(y),
Θe(0

∞)(y) converge within s steps to different values,
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– Then take least such e and let ψ(e, x) = y and σx,s+1 = τ
for corresponding y and τ . Furthermore let ϑ(e, x) be the
largest argument z of the function 0∞ queried during the
computation of Θe(0

∞)(ψ(e, x)).

– Else all values ψ(e, x) and ϑ(e, x) remain unchanged and also
σx,s+1 = σx,s.

Now the sequence of the an is defined inductively by letting a0 = 0 and
letting an+1 be the sum of an + 1 and all values ϑ(e, x) where e, x ≤ an

and ϑ(e, x) is defined. This is a finite sum and so an+1 exists.
Now let h be a function dominating every total recursive function.

For every n there is an operator, whose index is called en, doing the
following.

Θen
(f) =

{

g if f = σa2n
· g or f = σa2n+1

· g for some g;
0∞ otherwise.

For every e′ ≤ h(en) there is by the Non-Union Theorem a function
gn,e′ ∈ AEZ∪TSD which the e′-th learner Me′ does not BC-learn. Now
put for each n and each e′ ≤ h(en) the following function into S:

If gn,e′ ∈ AEZ then put σa2n
· gn,e′ into S;

If gn,e′ ∈ TSD then put σa2n+1
· gn,e′ into S.

In the following it is shown that the resulting class is robustly Ex-learn-
able but not uniformly robustly BC-learnable.

Claim 1. S is not uniformly robust BC-learnable.
For every recursive function h′ there is an n such that h′(en) < h(en).

It follows from the construction that Mh′(en) does not BC-learn gn,h′(en)

and that this function is in Θen
(S). So there is no recursive function

h′ witnessing that S would be uniformly robustly BC-learnable, hence
non-learnability is established.

Claim 2. The class Θe(S) is Ex-learnable whenever Θe is a general
recursive operator.

Let Θe be a given general recursive operator and let f ∈ S be a
function such that Θe(f) should be learned.

Let {f0, f1, . . . , fk} be the set of all Θe(f
′) such that either f ′ = 0∞

or f ′ ∈ S ∧ f ′ � σan
for some n < e. Finding this set is the non-uniform

part of the learning algorithm. The learner searches for the least l such
that fl is consistent with the data seen so far and if this finite search
terminates the learner outputs a hypothesis for fl.

Otherwise, none of the functions {f0, f1, . . . , fk} is consistent with
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the input. Let n be the number with σan
� f . Note that n ≥ e,

ψ(an, e) is defined and Θe(f)(ψ(an, e)) 6= Θe(0
∞)(ψ(an, e)) as Θe(f) /∈

{f0, f1, . . . , fk}. If e ≤ m < n then either ψ(am, e) is not defined or
Θe(0

∞)(ψ(am, e)) is computed relative to 0∞ by only asking queries
up to ϑ(am, e), thus the values Θe(0

∞)(ψ(am, e)) and Θe(f)(ψ(am, e))
coincide. Therefore one can find n in the limit by searching for the first
number m ≥ e such that ψ(am, e) is defined and witnesses that Θe(f)
and Θe(0

∞) are different.
As AEZ and TSD are uniformly robustly Ex-learnable and as one

can compute an index for the general recursive operator mapping g to
Θe(τ ·g) from τ , one can, for every input Θe(f)(0)Θe(f)(1) . . .Θe(f)(m),
work with approximations nm, an,m and σan,m,m to n, an, σan

and run as
a subalgorithm the algorithm to learn Θe(σan,m,m · AEZ) if nm is even
and the algorithm to learn Θe(σan,m,m · TSD) if nm is odd. As these
approximations coincide with the correct values for almost all m, the
resulting algorithm coincides with the algorithm to learn Θe(σan

·AEZ)
or Θe(σan

· TSD), respectively, for almost all m. It follows that Θe(f)
is Ex-learned.

A further important question is whether the requirement of robustness
is so strong that every robustly BC-learnable class is already (non-
robustly) Ex-learnable. Jain [12] answered this question negatively, the
class BWT from Example 6.13 is a witness for the following Theorem.

Theorem 4.8 [12]. There is a class which is uniformly robustly BC-
learnable but not Ex-learnable.

5. Robust Learning and Consistency

This section deals with the relations between robust learning on the one
hand and notions of consistency on the other hand. The main topic of
this section is the surprising implication that every uniformly robustly
Ex-learnable class is also consistently learnable. After that, a closer look
will be given to the investigation of variants of the criterion of consistent
learning.

Theorem 5.1 [6]. If a class is uniformly robustly Ex-learnable, then it
is also consistently learnable.

Proof. Suppose that S is uniformly robustly Ex-learnable and that
g is a recursive function witnessing this in the sense that whenever Θe

is a general recursive operator then Mg(e) is an Ex-learner for Θe(S).
Without loss of generality one can assume that each Mg(e) is total. Using
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Kleene’s recursion theorem [18], there exists an operator Θe such that
Θe(f(0)f(1) . . . f(n)) is defined inductively for n = 0, 1, . . . by using the
preceding string σ = λ for n = 0 and σ = Θe(f(0)f(1) . . . f(n − 1)) for
n > 0 and by taking Θe(f(0)f(1) . . . f(n)) according of the first of the
three cases below to apply.

Θe(f(0)f(1) . . . f(n)) = σ if σ is already infinite.

Θe(f(0)f(1) . . . f(n)) = σ ·(f(n)+1)·0s for the first s such that, for
e′ = Mg(e)(σ ·(f(n)+1)·0s), for allm in the domain of σ ·(f(n)+1),
ϕe′(m) outputs (σ · (f(n) + 1))(m) within s steps.

Θe(f(0)f(1) . . . f(n)) = σ · (f(n) + 1) · 0∞ if there is no such s in
the previous case.

The dot is used here to denote string-concatenation in places where
one might otherwise misunderstand it. Note that Θe(f(0)f(1) . . . f(n))
being infinite does not mean that an infinite function is computed in
finite time but it means that the values of the function Θe(f) does not
depend on the values of f beyond n. It is easy to check that Θe is a
general recursive operator.

Claim 1. If f ∈ S then all Θe(f(0)f(1) . . . f(n)) are defined according
to the second case of the algorithm for Θe.

This is proven by induction. Assume that n is given such that all
Θe(f(0)f(1) . . . f(m)) with m < n are defined according to the second
case. Then Θe(f(0)f(1) . . . f(n)) cannot be defined according to the first
case since the previously defined strings are all finite.

If Θe(f(0)f(1) . . . f(n)) would be defined according to the third case,
this would produce an infinite string. So Mg(e) would have to converge
on this string to an index e′ since Mg(e) Ex-learns this infinite string and
this e′ would be an index for the function given by this infinite string. So
there would be an s such thatMg(e)(Θe(f(0)f(1) . . . f(n−1))(f(n)+1)0s)
outputs e′ and that the function ϕe′ terminates within s steps on the
domain of the string Θe(f(0)f(1) . . . f(n− 1))(f(n) + 1).

Thus the second case of the algorithm applies in contradiction to the
assumption and so for f ∈ S, all strings Θe(f(0)f(1) . . . f(n)) are build
according to the second case from the preceding strings.

Learner. Now one considers the following (consistent) learner N for S.
N(f(0)f(1) . . . f(n)) simulates Θe(f) andMg(e). If Θe(f(0)f(1) . . . f(n))
is defined by the second case in the definition of Θe, then N takes the
index e′ coming up in that second case and outputs h(e′) where h is
defined such

ϕh(e′)(k) = ϕe′(xk) − 1
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where xk is the first x such that the set {y ≤ x : ϕe′(y) ↓> 0} has at
least k + 1 elements.

Note that N is permitted to be undefined on input not belonging to any
f ∈ S. The following Claims 2 and 3 establish that N is a consistent
learner for S.

Claim 2. N is consistent, that is, if f ∈ S then N(f(0)f(1) . . . f(n))
is defined and outputs an index h(e′) which is defined for m ≤ n and
outputs the value f(m) there.

The index e′ used in the second case of the definition of Θe computes
a function which extends a string of the form (f(0) + 1)0∗(f(1) + 1)
0∗ . . . 0∗(f(n) + 1). Thus the function computed by the index h(e′) sat-
isfies ϕh(e′)(m) = f(m) for m = 0, 1, . . . , n and the consistency follows.

Claim 3. N Ex-learns every f ∈ S.
As Mg(e) converges on Θe(f) to some index e′′, the learner N almost

always outputs h(e′′). As N is consistent for f ∈ S, it follows that h(e′′)
extends for infinitely many n the string f(0)f(1) . . . f(n). This implies
that h(e′′) is an index for f and N is an Ex-learner for f .

Conclusion. Claim 3 shows that N Ex-learns S and Claim 2 shows
that all intermediate hypotheses for f(0)f(1) . . . f(n) with f ∈ S exist
and are consistent with the data seen so far. Thus N is a consistent
Ex-learner for S.

The above proof can even be made effective in the sense that one can
construct for every Θd(S) a consistent learner Mg′(d) and so one obtains
that uniformly robustly Ex-learnable classes are also uniformly robustly
consistently learnable. Furthermore, every consistent learner is conform-
ing, so one has the following corollary.

Corollary 5.2. If S is uniformly robustly Ex-learnable then S is con-
forming learnable.

One of the main open questions in the theory of robust learning is
whether the preceding result can be generalized to robust Ex-learning.

Problem 5.3. Is every robustly Ex-learnable class also consistently
learnable?

A further interesting question is to study the relations between robust
learning and the variants of consistent and conforming learning. The
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most restrictive variants are those of globally conforming and globally
consistent learners. These learners have to be total and for every input
y0y1 . . . yn they are defined and output an index e which satisfies for
each x ≤ n either ϕe(x) ↑ or ϕe(x) ↓= yx; for the criterion of global
consistency the first case never and the second case always applies.

It is easy to adapt the proof of Theorem 3.7 to show that every ro-
bustly globally conforming learnable class is in Num. The key idea of
this adaptation is the following. Given such a learner M for the Θ(S)
defined there, every Uτ which contains for a given length more than two
strings indicates that the corresponding index M(τ) does not compute
a total function. Therefore one can define the gτ by checking whether
there is a unique string and outputting 0 if this fails:

gτ (x) =

{

η(x) if η is the unique string of Uτ of length |τ | + x+ 1;
0 if such an η does not exist or is not unique.

The rest of the proof carries over directly. So one has the following.

Corollary 5.4 [6, 31]. If S is robustly globally conforming learnable or
robustly globally consistently learnable then S is in Num.

Between these two extremes for consistent learning, there is the case
where one adds to the standard definition the requirement that the
learner has to be total although it might output inconsistent hypotheses
for inputs not belonging to any function in the class S to be learned.
A similar version can also be considered for conforming learning. These
notions can be separated.

Theorem 5.5 [6]. There is a class which is uniformly robustly Ex-
learnable but which does not have a total conforming learner.

Theorem 5.6 [6]. There is a class S and a recursive function g such
that Mg(e) is a total conforming learner for every class Θe(S) where Θe

is general recursive but S itself does not have a total consistent learner.

Theorem 5.7 [6]. There is a class S and a recursive function g such
that Mg(e) is a total consistent learner for every class Θe(S) where Θe

is general recursive but S is not in Num.

6. Hyperrobust Learning

As even uniformly robust learning does not rule out self-referential cod-
ing, Ott and Stephan [20] introduced the notion of hyperrobust learning.
The key idea is that the learner has to deal not only with one image Θ(S)
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but with a lot of images at the same time without being able to distin-
guish among these. But one cannot take all general recursive operators
at the same time, since every recursive function is the image of the func-
tion 0∞ under a suitable general recursive operator. Therefore Ott and
Stephan [20] defined that a class is hyperrobustly learnable iff there is
one learner learning the image of every function in S under every prim-
itive recursive operator.

It is shown in Theorem 6.3 below that the hyperrobustly learnable
classes remain the same if one takes any larger recursively enumerable
class of general recursive operators instead of the one above. Further-
more, hyperrobust learning is compatible to the standard notion of ro-
bust learning: if S is hyperrobustly learnable then S is also robustly
learnable. Moreover, if S is closed under finite variants then both notions
are equivalent. The set [S] of all images of functions in S under primi-
tive recursive operators is dense for every nonempty class S of functions.
Thus, hyperrobust learning cannot respect any bounds on the number
of mind changes. Therefore, it is not suitable to combine hyperrobust
learning with the notions of Exk-learning and confident learning. How-
ever there are interesting results for Ex-learning, BC-learning and their
team variants.

The notion of hyperrobust learning also has a more intuitive motiva-
tion: Assume that a learner M can learn all axis-parallel rectangles in
the plane. Certainly, one assumes that from M one can build a learner
which infers all rotated rectangles in addition. However, clearly one does
not want to build, for every different rotation Θ, a learner succeeding
just on rectangles mapped by the rotation Θ. Instead, one is interested
in a learner which infers every image of any axis-parallel rectangle under
any rotation Θ. The notion of hyperrobustness reflects this situation
by requiring that one learning machine M learns every image of the
functions in a class S under all primitive recursive operators. Now the
informal definition is made more precise.

Definition 6.1. An operator Θ is called primitive recursive iff there
are primitive recursive functions g1, g2 such that

(∀ total f) [Θ(f)(x) = g1(x, f(0)f(1) . . . f(g2(x)))].

Let I be one of the criteria Ex, BC or their team versions.
A class S is hyperrobustly learnable with respect to the criterion I if

there is one learner M which learns every function in

[S] = {Θ(f) : Θ is primitive recursive and f ∈ S}

with respect to the criterion I.
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As the criteria Ex and BC permit total learners, learners to witness that
[S] is Ex-learnable or BC-learnable will be assumed to be total in the
following. Hyperrobust learning satisfies two simple observations.

Fact 6.2. [S] contains all primitive recursive functions since, for every
primitive recursive function g, there is a primitive recursive operator Θ
which maps every function f to g: Θ(f) = g.

No class S is hyperrobustly learnable with any bound on the number of
mind changes, since [S] is dense and dense classes cannot satisfy mind
change bounds.

These two facts establish a real difference between hyperrobust learn-
ing and robust learning because there are classes of recursive functions
which are robustly learnable with at most one mind change [14]. On
the other hand, for hyperrobust learning, the notions Ex, BC and their
team-variants are the most interesting ones.

The definition of the mapping S → [S] and thus the definition of
hyperrobustness are based on the class of primitive recursive operators.
The decision to choose the class of primitive recursive operators may
seem to be just arbitrary and one may wonder how other choices for the
class of operators affect the notion of hyperrobustness. The next result
justifies the definition: If in the definition of hyperrobust learning, the
class of primitive recursive operators is replaced by a larger recursively
enumerable class of general recursive operators, then one still gets the
same learning notion. So the definition of hyperrobust learning does
not depend on the actual choice of the class of operators as long as this
class is “sufficiently rich” (for example, if the class contains all primi-
tive recursive operators, or, all polynomial time computable operators).
Clearly, if the class of operators contains only the identity operator, then
hyperrobust and ordinary Ex-learning coincide and so, “sufficiently rich”
is a necessary and natural postulate.

Theorem 6.3 [20]. If S is hyperrobustly Ex-learnable or hyperrobustly
BC-learnable and U is any recursively enumerable class of general re-
cursive operators, then also the class

{Θ(f) : f ∈ S ∧ Θ ∈ U}

is Ex-learnable or BC-learnable, respectively.

Corollary 6.4. If S is hyperrobustly learnable with respect to some
criterion I, then S is also robustly learnable with respect to the same
criterion I.
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Theorem 6.5 [20]. If S is closed under finite variants then S is hyper-
robustly learnable with respect to a criterion I iff S is robustly learnable
with respect to the same criterion I.

Corollary 6.4 and Theorem 6.5 show that hyperrobust learning is a nat-
ural generalization of robust learning: it is equivalent to first taking the
closure under all finite variants and then applying a suitable general re-
cursive operator Θ.

Intuitively, the notion of robustness was designed to prevent coding
tricks: for example, if f(2x) is a program for f for almost all x, then
the general recursive operator mapping f to f(1)f(3)f(5) . . . destroys
this coding trick. Such coding tricks are called numerical since the self-
referential information is directly contained in the numerical values of
the function.

Recall that Jain, Smith and Wiehagen [14] showed that the class TSD
of the topologically self-describing functions is uniformly robustly Ex-
learnable. So these topological coding cannot be destroyed by using
a single general recursive operator. However, topological coding is de-
stroyed by adding all finite variants of the functions in S to the class to
be learned. Combining these two methods, that is, considering robust
learning of classes closed under finite variants, one might hope that no
coding tricks are left. Indeed, this hope is confirmed by the following
characterization result which shows that the hyperrobustly Ex-learnable
classes coincide with the classes in Num. So the next result gives a
further learning-theoretic characterization for Num.

Theorem 6.6 [20]. A class S is hyperrobustly Ex-learnable iff it is
in Num.

Proof. One direction is straightforward: If S is in Num, so is [S].
That is, if S ⊆ {f0, f1, . . .} for an enumeration f0, f1, . . . of total func-
tions, then [S] is contained in the enumeration of all ge,e′ = Ψe(fe′),
where Ψ0,Ψ1, . . . is an enumeration of all primitive recursive operators.

For the converse direction, let M be an Ex-learner for [S]. Further-
more, one considers now the operator Θe from the proof of Theorem 5.1
where one uses M in place of the Mg(e) there. The operator Θe con-
structed there is primitive recursive and as primitive recursive operators
are closed under composition, it holds that Θe([S]) ⊆ [S]. ThusM learns
Θe([S]) and one has that [S] is consistently learnable via some N . As
[S] is dense, the learner N has to be total and to be consistent on every
input. Therefore, N is a globally consistent learner. Furthermore, one
can choose the tree T in the proof of Theorem 3.7 such that the resulting
Θ is also primitive recursive. As a consequence, Θ([S]) ⊆ [S] and N is a
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consistent Ex-learner for Θ([S]). As a globally consistent learner is also
reliable, it follows from the proof of Theorem 3.7 that Θ([S]) and thus
also [S] and S are in Num.

As hyperrobust Ex-learning is equivalent to Num, it remains to inves-
tigate how hyperrobust BC-learning behaves. The next result shows
that hyperrobustly BC-learnable classes share one property of classes in
Num, namely that they are bounded in the following sense.

Definition 6.7. A class S is bounded if there is a total recursive
function g which dominates every f ∈ S:

(∀f ∈ S) (∃x) (∀y ≥ x) [f(y) ≤ g(y)].

Theorem 6.8 [20]. If S is hyperrobustly BC-learnable, then S is
bounded.

Proof. It is convenient to represent the BC-learner as a machine M
which predicts the function to be learned almost everywhere but which
may, for each function in the class to be learned, be undefined at finitely
many places, see Theorem 2.3.

Now one defines inductively, for every f , the following function Θ(f) =
limx σx starting with σ0 = λ and using Ms(σx) as a notation for the
result of M(σx) after s computational steps (which is either undefined
or M(σx)):

σx+1 =

{

σx1 if Ms(σx)↓= 0 for some s ≤ f(0) + f(1) + . . .+ f(x);
σx0 otherwise.

Since Θ is a primitive recursive operator, M has to infer Θ(f) for every
f ∈ S. But whenever Θ(f)(x) is 1, then M has made a prediction
mistake and so, Θ(f) takes only finitely often a value different from 0.
Since, by Fact 6.2, M has to infer every primitive recursive function, M
learns, in particular, all functions of the form σ0∞. Thus, the following
function g is recursive:

g(x) = max{min{s : (∃t < s) [Ms(σ0t)↓= 0]} : σ ∈ {0, 1}x}.

Whenever f(x) > g(x) then one finds within f(x) steps some t < f(x)
such that M(σx0t) ↓= 0. So, if σx+t = σx0t, then σx+t+1 = σx0t1, in
particular σx+t+1 6= σx0t+1. Thus there is a y ∈ {x, x+1, . . . , x+t} such
that σy+1 = σy1. This happens only if M(σy) ↓= 0 and so M makes a
false prediction on Θ(f) beyond x. But since M infers Θ(f), there exist
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at most finitely many x with f(x) > g(x). Therefore, g dominates f .
Since the construction of g does not depend on the actual choice of f , g
dominates every function in S.

Ott and Stephan [20] showed that there are classes S not in Num which
are hyperrobustly BC-learnable. A major tool in this research is the use
of recursively bounded recursive trees [18, I, page 509]; these trees are
called bounded recursive trees from now on. These trees are a general-
ization of binary recursive trees: for a bounded recursive tree T one can
compute for every σ ∈ T a complete list of the immediate successors in
T . In general, this is impossible even if σ has only finitely many succes-
sors. But it holds when some recursive function b bounds the size of the
set of successors; that is, when a ≤ b(|σ|) for all σa ∈ T . So, one can
define a bounded recursive tree as a recursive function c which associates
with every σ ∈ T a finite and explicit list of all nodes σa ∈ T . If c is
primitive recursive then T is called a bounded primitive recursive tree.

Recall that a learning machine M is said to be reliable if, for any input
function f , M either converges to a correct program for f or outputs
infinitely often a signal for divergence, which, in the case of Ex-learning,
can simply be a mind change. Producing semantic mind changes alone
is not sufficient to get a reliable version of BC-learning that differs from
ordinary BC, as the following fact shows. This fact is based on two ob-
servations: First, behavioural correct learners can be made consistent.
That is, the new consistent learner outputs for every input a hypothesis
which is correct on the data seen so far [2, 9]. Second, consistent learners
either converge semantically to the desired function or make infinitely
many semantic mind changes.

Fact 6.9. For every BC-learnable class S there is a BC-learner for S
which, on any total function f , either converges semantically to programs
for f or makes infinitely many semantic mind changes.

Since Fact 6.9 states that BC-learners can be made semantically diver-
gent on functions not learned, the analogue of reliable learning for BC
must signal divergence more explicitly. A suitable definition is the follow-
ing: The reliable BC-learner indicates divergence either by outputting a
special value like “?”, or, by making a definitely wrong prediction where
the underlying BC-learner is given by a partial recursive predictor as in
Theorem 2.3.

Definition 6.10. M is a reliable BC-learner if, for every total function
f , either M BC-learns f by predicting almost always the correct value
(that is, for almost all x, M(f(0)f(1) . . . f(x))↓= f(x+1)) orM diverges
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on f by outputting infinitely often either “?” or a defined but wrong
prediction.

Zeugmann [31] observed that robustly reliably Ex-learnable classes are
just those in Num. Together with Theorem 6.6, one obtains the following
equivalence.

Fact 6.11. For a bounded class S the following three statements are
equivalent.

S is in Num;

S is reliably Ex-learnable;

S is hyperrobustly Ex-learnable.

The central question of the following results in this section is: to what
extent can the equivalence of the statements above be transferred to BC?
The next characterization of bounded reliably BC-learnable classes is an
important tool to attack this question.

Theorem 6.12 [20]. A bounded class S is reliably BC-learnable iff
there is a recursively enumerable family T0, T1, . . . of bounded recursive
trees such that every tree has only finitely many infinite branches and
every f ∈ S is an infinite branch of such a tree.

Proof. (⇒): Assume that g bounds S and M is a partial recursive
predictor for S which in addition signals infinitely often divergence on
every function f which M does not learn. Now let the tree Tσ contain
all prefixes of σ plus all η � σ such that

η(x) ≤ g(x) for all x ∈ domain(η) − domain(σ) and

there are no τ, a with σ � τa ≺ η and M|η|(τ)↓ 6= a,

where, of course, the special symbol “?” is different from a.
Clearly, the trees Tσ form a recursively enumerable family of trees

bounded by g. Assume now that Tσ has infinitely many infinite branches.
As a consequence of König’s Lemma and the fact that Tσ is finitely
branching, there is an infinite branch f which is not isolated. So for every
x there is an y > x and a further infinite branch h of Tσ such that f and
h both agree on 0, 1, . . . , y but differ on y + 1. Then it cannot happen
that M(f(0)f(1) . . . f(y)) predicts f(y + 1) or h(y + 1) since otherwise
either f or h would not be an infinite branch of Tσ. Furthermore, M does
also not signal divergence for any input f(0)f(1) . . . f(x) with x ≥ |σ|
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since then f could not be an infinite branch of Tσ. This contradicts the
assumption that M is a reliable BC-learner and therefore no tree Tσ has
infinitely many infinite branches.

For every f ∈ S, there is a prefix σ � f such that M predicts f
correctly after seeing σ and all x with f(x) > g(x) are in domain(σ).
Then it follows from the definition that f is an infinite branch of Tσ.
Direction (⇒) is completed.

(⇐): Let T0, T1, . . . be a recursively enumerable family of bounded re-
cursive trees such that every tree has only finitely many infinite branches
and every function in S is a branch of such a tree. Without loss of gen-
erality, the family is dense in the sense that for every σ there is a tree
containing σ. This can be achieved by adding all finite trees of the form
{τ : τ � σ} to the list. The new family is still recursively enumerable
and the class of functions on trees in the family remains the same. Let
T [τ ] denote all nodes of the tree T which are comparable to τ . Now the
reliable BC-learner works as follows:

M(σ) finds the first tree Te with σ ∈ Te.

If there is a recent change of the tree, that is, if there is e′ < e with
τ ∈ Te′ for all τ ≺ σ, then M(σ) = ? in order to signal divergence.

Otherwise M(σ) searches for an a such that Te[σb] is finite for all
b 6= a and M(σ) = a, if such an a is found.

The first step of the algorithm is well-defined since every σ is a node of
some tree Te.

If f is not an infinite branch of any tree Te, then, during the inference
of f , M signals infinitely often divergence, since M has to change the
trees infinitely often.

If f is an infinite branch of some tree then there is a first such tree Te

in the enumeration. For sufficiently large σ = f(0)f(1) . . . f(x), f is the
only infinite branch of Te[σ] and σ /∈ Te′ for any e′ < e. Now f(x + 1)
is the unique value a with Te[σa] being infinite. Since the trees Te are
uniformly bounded recursive trees, a suitable search algorithm finds the
value f(x + 1). Therefore, M correctly predicts f almost everywhere;
that is, M(f(0)f(1) . . . f(x))↓= f(x+ 1) for almost all x.

So, for every function f , M either BC-learns f (in the prediction
model) or M signals infinitely often divergence.

Example 6.13 (Class BWT). Case, Kaufmann, Kinber and Kum-
mer [7] showed that there is a recursively enumerable family {T0, T1, . . .}
of binary recursive trees of width two such that the class

BWT = {f : (∃e) [f is infinite branch of Te] }
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is not Ex-learnable. This class BWT is reliably BC-learnable. So BWT
witnesses that for bounded classes, the concept of reliable BC-learning
is also a proper generalization of Num.

As one can show that BWT is even uniformly robustly BC-learnable,
one gets an alternative proof for Jain’s separation of uniformly robust
BC-learning from Ex-learning in Theorem 4.8.

Together with the next result one obtains that the three notions from
Fact 6.11 become all different for BC: Num is properly included in
bounded reliable BC, which is properly included in hyperrobust BC.

Theorem 6.14 [20]. If S is a bounded and reliably BC-learnable class
then S is also hyperrobustly BC-learnable. But the converse implication
does not hold.

So, the main theorems of this section showed that there is a class S which
is hyperrobustly BC-learnable but not hyperrobustly Ex-learnable.

Theorem 6.15 [20]. There is a hyperrobustly BC-learnable class which
is not hyperrobustly Ex-learnable.

Zeugmann [31] showed that a class S is robustly reliably Ex-learnable
iff S is in Num. One can deduce from it that S is robustly reliably Ex-
learnable iff S is bounded. Zeugmann’s diagonalization strategy for this
result can be transferred to the case where reliably BC-learnable classes
are considered. That is, an unbounded reliably BC-learnable class is not
robustly reliably learnable.

Theorem 6.16 [20]. A reliably BC-learnable class S is also robustly
reliably learnable iff S is bounded.

7. Team-Learning and the Union-Theorem

Bārzdiņš [2, 3] showed that there are explanatorily learnable classes
S1, S2 such that their union is not explanatorily learnable. This re-
sult can be easily generalized to the fact that there are unions of n + 1
learnable classes which are not contained in the union of n learnable
classes [24]. Pitt and Smith [21, 22] showed that these unions can also
be characterized in terms of probabilistic learners and teams of learners.
That is, the following statements are equivalent for Ex-learning as well
as for BC-learning.

S is contained in the union of n learnable classes.
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Some probablistic machine learns S with some probability p where
p > 1

n+1 .

A (h, k)-team with h
k
> 1

n+1 learns S in the sense that there are k
learners such that, for every f ∈ S, at least h of them learn f .

Note that the probability and the fraction h
k

of successful machines in

the team have to be greater than 1
n+1 , since a team of k = h · (n + 1)

learners, where h learners have to succeed, can already infer the union of
n+ 1 learnable classes: the first h learners follow the algorithm to learn
S1, the second h learners follow the algorithm to learn S2, . . ., the last
h learners follow the algorithm to learn Sn+1. Recall that Example 4.5
stated that the classes AEZ and TSD are both uniformly robustly Ex-
learnable while their union AEZ ∪ TSD is not BC-learnable. Thus the
Non-Union Theorem holds for the criteria of robust and uniformly ro-
bust Ex-learning and BC-learning.

For hyperrobust Ex-learning, one can show that this connection be-
tween team-learning on the one side and unions on the other side no
longer holds. The hyperrobustly Ex-learnable classes are closed under
union but teams of n + 1 hyperrobust Ex-learners are more powerful
than teams of n learners. An intuitive explanation for this fact is that if
[S1 ∪ S2] needs a team of two Ex-learners then so does [S1] or [S2]. So,
the closure operation does not permit to split a class of functions into
two classes which are really easier to learn.

Fact 7.1. If S1 and S2 are hyperrobustly Ex-learnable, so is S1 ∪ S2.

The result follows from the equivalence of hyperrobust Ex-learning and
Num and from the fact that Num is closed under union. Note that the
corresponding question for BC-learning is open.

Problem 7.2. If S1 and S2 are hyperrobustly BC-learnable, is S1 ∪ S2

also hyperrobustly BC-learnable?

The next result establishes that the team hierarchies for hyperrobust
Ex-learning and hyperrobust BC-learning are proper. This stands, for
the Ex-case, in contrast to the collapse of the union-hierarchy.

Theorem 7.3 [20]. The team hierarchies for hyperrobust Ex-learning
and hyperrobust BC-learning are proper.

Proof. This proof needs the notion of the rank of a tree T which
measures the embeddability of complete binary trees into T as follows:



A Tour of Robust Learning 29

The rank of a tree T is the maximal k for which there is a finite function
g with domain

⋃

k′≤k{0, 1}
k′

such that the range of g is a subset of T
and g(σ) � g(τ) ⇔ σ � τ for all strings σ, τ in the domain of g. If there
is, for every k, such a function g then the rank of T is ∞.

Let Sk be the set of all functions which are infinite branches of some
bounded primitive recursive tree of rank up to k; there is a uniformly
recursive enumeration of these trees, in the sense that one can not only
check whether σ ∈ Te but also compute an explicit list of the immediate
successors of σ in Te if σ ∈ Te.

Given f , the learning algorithm first finds (in the limit) a tree T such
that f is an infinite branch of T . Having found this tree T , one uses
the algorithm of Case, Kaufmann, Kinber and Kummer [7]. Knowing
an index of the tree and having a primitive recursive function majoriz-
ing all infinite branches, their algorithm learns the function by a team
of k + 1 Ex-learners or k BC-learners, respectively. This team-size is
optimal. The class Sk is closed; that is, [Sk] = Sk. So, it follows that Sk

is learnable by a team of hyperrobust learners of size k (BC) and k + 1
(Ex), respectively, but not by a smaller team.

Note that the above classes Sk are also uniformly robustly Ex-learnable
by teams of k + 1 Ex-learners and uniformly robustly BC-learnable by
teams of k BC-learners. So these classes witness that the hierarchies
are also proper for robust and uniformly robust Ex-learning and BC-
learning.

Furthermore, for hyperrobust Ex-learning, one can even show that
there exists a proper team hierarchy within the class of all hyperrobustly
BC-learnable functions. The n-th level of this hierarchy is given by the
class of all infinite branches of bounded primitive recursive trees of width
up to n; that is, of trees which have in every depth at most n nodes.

8. Learning Aided by Context

Learning aided by context means that the learner receives not only the
data of the function to be learned but also the data of some further
f ∈ S and might try to exploit this further data-source for the learning
process. Case, Jain, Ott, Sharma and Stephan [5] investigated robust
notions of learning aided by context. The straight forward definition
would be that S is Ex-learnable aided by context iff for every f ∈ S and
every g ∈ S − {f} the learner M converges on input f, g to an index
for f . But it turned out that this notion coincides with standard Ex-
learning. Therefore the alternative version where the context is selected
is the more interesting one.
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Definition 8.1. A class S is learnable aided by context iff there is a
mapping assigning to every f ∈ S a context gf ∈ S and S has a total
Ex-learner M (taking as input, two functions) such that for all f ∈ S,
M converges on input f and context gf to an index e for f :

(∀∞n) [M(f(0)f(1) . . . f(n), gf (0)gf (1) . . . gf (n)) = e ∧ f = ϕe].

Furthermore, S is robustly Ex-learnable aided by context iff for every
general recursive operator Θ there is an M Ex-learning every Θ(f) from
input Θ(f) and context Θ(gf ).

It was shown that many but not all classes are robustly Ex-learnable
aided by context.

Theorem 8.2 [5]. If S has a dense and recursively enumerable subclass
then S can be robustly Ex-learned aided by context. In particular the
class of all recursive functions is robustly Ex-learnable aided by context.
But on the other hand there is an infinite class which is not robustly
Ex-learnable aided by context.

The further investigations about learning aided by context dealt with the
question, how learnability is affected if some requirements are imposed
on the mapping f → gf . The first result shows that for many classes the
context becomes useless if it is required that the context is generated by
a general recursive operator.

Theorem 8.3 [5]. If S is closed under finite variants and S is robustly
Ex-learnable aided by context via a mapping f → gf computed via a
general recursive operator Θ then S is already robustly Ex-learnable.

In the following the hyperrobust variant of the notion of Ex-learning
aided by context is introduced. Note that it is important that one re-
quires Ex-learning only if f and gf are transformed by the same primitive
recursive operator.

Definition 8.4 [20]. A class S is hyperrobustly Ex-learnable aided by
context if there exist a learnerM and, for every f ∈ S, a context function
gf ∈ S such that, for every primitive recursive operator Θ, M Ex-learns
the function Θ(f) from the data-stream of the pair (Θ(f),Θ(gf )). Sim-
ilarly one defines the notion of hyperrobust BC-learning.

The next result shows that for Ex-learning this notion collapses to Num.
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Theorem 8.5 [20]. If a class S is hyperrobustly Ex-learnable from se-
lected context then S is already hyperrobustly Ex-learnable and therefore
S is in Num.

Proof. The general idea of the proof is to split S into two classes S1

and S2 and to show that both [S1] and [S2] are in Num. This implies
that S is in Num, too. Assume that M hyperrobustly learns S from
selected context.

Let S1 be the class of all functions f ∈ S such that M learns f from
the context f itself. Correspondingly, S2 denotes the class of all f ∈ S
such that for all contexts g ∈ S from which M infers f , it holds that
g 6= f .

For any f ∈ S and any primitive recursive operator Θ, the learner M
Ex-infers Θ(f) from Θ(f) itself plus the image of the context under Θ.
So, simulating M by adding the context Θ(f) to Θ(f) itself, one obtains
an Ex-learner for [S1]. As a consequence, [S1] and the generating class
S1 are both in Num.

For any f ∈ S2, for the context g of f and for any primitive recursive
operator Θ, there is a further primitive recursive operator Θ′ such that
Θ′(f) = Θ(f) and Θ′(g) = 0∞. This implies that M Ex-learns Θ(f)
from the context 0∞. Again one can simulate the learner by adding just
the context 0∞ to the input function. Thus, it follows that [S2] and S2

are in Num, too.
For any two classes in Num, their union is also in Num. In particular,

the union S of S1 and S2 is in Num, which completes the proof.

For BC-learning, the corresponding question seems to be more difficult
and is linked to Open Problem 7.2. If the answer to that problem is that
hyperrobust BC is not closed under union, then selected context offers
a real support for hyperrobust BC-learning.

Proposition 8.6 [20]. A class is hyperrobustly BC-learnable aided
by selected context iff it is contained in the union of two hyperrobustly
BC-learnable classes.

Proof. The proof of Theorem 8.5 for Ex can be transferred to BC such
that [S] is shown to be the union [S1]∪ [S2] of two BC-learnable classes
[S1] and [S2]. Only the last argument that the union of classes in Num
is again in Num cannot be transferred to the BC-case since Problem 7.2
is still open.

For the converse direction, let the hyperrobustly BC-learnable classes
S1 and S2 be given. Now, one assigns to every f ∈ S1 the context f itself
and to every f ∈ S2 − S1 some fixed context g ∈ S1. Let M1 and M2
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be the BC-learners for the classes [S1] and [S2]. Now the context-aided
BC-learner M follows the output of M1 as long as the function and the
context are equal and changes to the output of M2 when the context
differs from the function itself. More precisely, for input σ, τ of the same
length:

M(σ, τ) =

{

M1(σ) if σ = τ ;
M2(σ) otherwise.

Now let h = Θ(f) be the function to be learned. If the context equals h
then either f ∈ S1 or Θ maps f and its context g to the same function.
In the first case, the algorithm is correct since M1 BC-learns [S1]. In
the second case, h = Θ(g) and h is again in [S1] since g ∈ S1. Thus, M1

is again a correct algorithm. If the context is different from h, then the
original context must be different from f and f ∈ S2. It follows that
h = Θ(f) is in [S2]. M outputs almost always the guesses of M2 and
thus M BC-learns h in this case, too.

9. Conclusion

Although self-referential coding is an elegant proof-method, the result-
ing classes used as witnesses to separate some learning criteria look ar-
tificial. So Bārzdiņš asked whether there are really naturally defined
classes which are learnable but not already learnable by enumeration.
To formalize this, Bārzdiņš proposed the notion of robust learning and
conjectured that every robustly learnable class is already in Num; as a
consequence every natural learnable class would already be in Num.

Zeugmann [31] published intermediate results on the way to solve
Bārzdiņš’ Conjecture and showed that it holds for the notion of reliable
learning. Fulk [10] refuted Bārzdiņš’ Conjecture and showed that there
are robustly Ex-learnable classes which are not in Num. Later Jain,
Smith and Wiehagen [14] found even a class defined with a topological
version of self-referential coding which is robustly Ex-learnable. Jain
[12] extended this line of research by giving an example of a robustly
BC-learnable class which cannot be Ex-learned. Similar robust separa-
tions for several notions of consistency followed [6].

There were several attempts to tighten the notion of robust learning
such that all types of coding were ruled out. In the case of uniformly
robust learning the approach failed. In the case of hyperrobust learning,
the approach succeeded for Ex-learning by collapsing this notion to Num,
so that Bārzdiņš’ Conjecture holds for this more restrictive variant of ro-
bustness. Furthermore, hyperrobust BC-learning turns out to contain
some classes outside Num without applying self-reference. It has been
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shown that uniformly robust learning and robust learning are different
for the criteria of confident learning, Ex-learning and BC-learning.

Although much work has been done, several interesting open problems
remain.

(1) Is there a more appropriate way to model learnability in a nat-
ural way? On the one hand, the notions of robust and uniform
robust Ex-learning cannot prevent all coding tricks. On the other
hand, the three notions of robust, uniformly robust and hyper-
robust learning all fail to learn the quite natural class BB from
Example 3.6 which was introduced by Blum and Blum [3, 25].

(2) Is every robustly Ex-learnable class also consistently learnable? It is
a surprising result that this holds for uniformly robust Ex-learning
[6] but all attempts to generalize it have failed so far.

(3) Does the Union-Theorem hold for hyperrobust BC-learning? The
characterization that the hyperrobust Ex-learnable classes are ex-
actly the classes in Num implies as a corollary the Union-Theorem.
As this proof-method cannot be applied in the case of hyper-
robust BC-learning, there is a certain chance that the union of
some hyperrobustly BC-learnable classes is not hyperrobustly BC-
learnable.
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