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ABSTRACT

This paper proves that “promise classes” are so fragilely structured
that they do not robustly (i.e. with respect to all oracles) possess Turing-
hard sets even in classes far larger than themselves. In particular, this
paper shows that FewP does not robustly possess Turing hard sets for
UP ∩ coUP and IP ∩ coIP does not robustly possess Turing hard sets for
ZPP. It follows that ZPP, R, coR, UP∩coUP, UP, FewP∩coFewP, FewP,
and IP ∩ coIP do not robustly possess Turing complete sets. This both
resolves open questions of whether promise classes lacking robust down-
ward closure under Turing reductions (e.g., R, UP, FewP) might robustly
have Turing complete sets, and extends the range of classes known not to
robustly contain many-one complete sets.
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1 Introduction

Complete languages have long been a useful tool in complexity theory. Much of

our knowledge about NP comes from studying the NP-complete set SAT (see,

e.g., [28]). Most common complexity classes—NP, coNP, PSPACE, etc.—have

many-one complete setsa that help us study them. Sipser noted, however, that

some classes may lack complete sets [35]. His paper sparked much research

into which classes robustly [33,18] (i.e., with respect to all oracles [4]) possess

complete languages, and what strengths of completeness results (e.g., many-one

or Turing) can be obtained. The crucial property of classes such as NP and

PSPACE that causes them to robustly possess many-one complete sets is the

existence of a recursive enumeration of machines covering the languages in the

class.b However several natural classes, such as UP, R, and BPP, do not have

any obvious recursive enumeration of machines covering the class. This raises

the possibility that these classes may not robustly possess complete sets.

Sipser showed that R and NP ∩ coNP do not robustly possess many-one

complete languages [35]. Hartmanis and Hemachandra showed that UP—

unambiguous polynomial time (Section 2)—does not robustly possess many-one

complete languages, and noted that if UP does have complete languages then

UP has complete languages with an unusually simple form—the intersection of

SAT with a set in P [18]. In related work, Regan [30] proved that a class C that

is closed downward under ≤p
m and admits padding has a constructively valid

programming system [Qk]∞k=1 over a sufficiently strong logic F if and only if C

has a complete set under ≤p
m. It is also known that these classes tend to have

different positive relativization [21] results than classes that robustly possess

complete sets.

One way of strengthening the above theorems would be to show that these

classes do not robustly possess complete sets even with respect to reducibilities

more flexible than many-one reductions, e.g., k-truth-table, positive truth-table,

truth-table, and ultimately Turing reductions [26]. This would show that the

structure of these classes differs markedly from that of P, NP, PSPACE, and

so on. Gurevich showed that NP ∩ coNP has many-one complete languages

if and only if it has Turing complete languages ([17], see also [20]). Ambos-

aThroughout this paper, we are concerned only with polynomial-time reducibilities.
bThat is : let {Ti} be any standard naming of Turing machines; there exists a recursively

enumerable set A such that (1) PSPACE = {L(Ti) : i ∈ A} and (2) each Ti, i ∈ A, runs in
polynomial space.



Spies’s elegant generalization of this states that for any class C closed under

Turing reductions, C has Turing complete sets if and only if C has many-one

complete sets [3]. In particular, it follows, from the result of Sipser [35], that

NP∩ coNP does not robustly possess Turing complete sets [17]. Similarly, since

PBPP = BPP [39], from [18]’s proof that BPP does not robustly possess many-

one complete sets it follows that BPP does not robustly possess Turing complete

sets.

Since UP ∩ coUP and ZPP are closed downward under Turing reductions

([39] for the ZPP case), Ambos-Spies’s result mentioned yields: UP∩ coUP and

ZPP have Turing complete sets if and only if they have m-complete sets.

However, Ambos-Spies’s result does not apply to R, UP, FewP, FewP ∩

coFewP, or to other classes not known to be closed under Turing reductions.

Furthermore, the technique used to show that R and UP do not robustly

possess many-one complete languages was an indirect proof [35,18], that does

not seem to generalize to Turing completeness.

In fact, classes such as R, UP, and FewP, have a complex structure. Machines

for these classes must incorporate a promise (e.g., never having more than one

accepting computation path), and thus these classes have been referred to as

“promise classes” [21]. This paper shows that this promise structure precludes

such promise classes as R, UP, and FewP from robustly possessing even Turing

complete sets; our proofs exploit the promise-induced limited combinatorial

control of probabilistic and nondeterministic machines to corrupt candidates

for Turing completeness. Indeed, the promises are so exacting that quite large

classes do not robustly contain sets that are hard for these classes (or even for

subclasses of these classes).

Section 3 proves that FewP does not robustly possess Turing hard sets for

UP ∩ coUP. Section 4 proves that IP ∩ coIP does not robustly possess Turing

hard sets for ZPP.c It immediately follows from the above results that ZPP, R,

coR, UP ∩ coUP, UP, FewP ∩ coFewP, FewP, and IP ∩ coIP do not robustly

cRecently, Shamir [34,27] has shown that IP=PSPACE. Thus in the real world IP = coIP =
IP ∩ coIP = PSPACE. It follows that Theorem 4.1 does not hold for A = ∅, i.e., IP ∩ coIP,
does have Turing hard languages for ZPP, R, coR and BPP. Thus Theorem 4.1 gives another
example of oracle result which does not hold in the real world (though some of its corollaries
may still be true in the real world). However, IP is not robustly equal to PSPACE [11].
Shamir’s non-relativizing technique is not known to apply to classes other than those having to
do with interactive proofs (though sometimes the connection to interactive proofs is somewhat
disguised [9]), and in particular is not known to apply to BPP. Theorem 4.1 thus suggests
the inability of a certain broad body of techniques to resolve the problem of whether, in the
real world, BPP has Turing hard sets for ZPP, R, and coR.



possess Turing complete sets.

2 Preliminaries

Let N denote the set of natural numbers. Σ is an alphabet set, usually {0, 1}.

ε denotes the empty string. A language is a subset of Σ∗. For two sets L1

and L2, L1 4 L2 denotes the set (L1 − L2) ∪ (L2 − L1). ∅ denotes the empty

set. M0, M1, . . . denotes some standard enumeration of polynomial-time deter-

ministic (oracle) Turing machines. N1, N2, . . . denotes some standard enumera-

tion of polynomial-time nondeterministic (oracle) Turing machines. B1, B2, . . .

denotes some standard enumeration of polynomial-time probabilistic (oracle)

Turing machines [13]. We assume that the running time of machine Mi (Ni)

((Bi)) is bounded by deterministic (nondeterministic) ((probabilistic)) time

ri(n) = ni+i. P denotes the class of all languages accepted by some polynomial-

time deterministic Turing machine [22]. NP denotes the class of languages ac-

cepted by polynomial-time nondeterministic Turing machines and coNP denotes

the class of languages whose complements are in NP [22]. L(M) denotes the

language accepted by the machine M . L(MA) denotes the language accepted

by the oracle machine M with the oracle A [4,22].

A denotes the complement of A, i.e., Σ∗ − A. χA denotes the characteristic

function of A. |x| denotes the length of x. A≤n denotes the set of strings in

A with length at most n. 〈·, ·〉 denotes a standard one-to-one, polynomial time

computable and polynomial time invertible pairing of natural numbers (see [5,

31]). Similarly, 〈·, ·, ·〉 denotes a standard one-to-one, polynomial time com-

putable and polynomial time invertible encoding of triples of natural numbers.

We now review the definitions of various complexity classes discussed in this

paper. Implicitly, the relativized version of each of these complexity classes

is defined by allowing the nondeterministic (probabilistic) machine(s) of the

definition access to some oracle.

Definition 2.1 [36]

(Unambiguous Polynomial Time) UP = {L : there is a nondeterministic

polynomial-time Turing machine N such that L = L(N), and for all x, the

computation of N(x) has at most one accepting path}. We say that a machine

N is categorical if it has at most one accepting path for every input.



coUP = {L : L ∈ UP}.

UP captures the power of unambiguous computation; UP is the class of

problems that have (for some NP machine) unique witnesses. That is, if there is

an NP machine N accepting L and for every input x the computation of N(x)

has at most one accepting path (i.e., N is a categorical machine), then we say

L ∈ UP.

Recently, UP has come to play a crucial role in both cryptography and

structural complexity theory. In cryptography, Ko and Grollmann and Selman

have shown that one-way functionsd exist if and only if P 6= UP [23,16], and

one-way functions whose rangee is in P exist if and only if P 6= UP∩ coUP [16].

Thus, we suspect that P 6= UP because we suspect that one-way functions exist.

Curiously—in light of the results in this paper and [18]—Ko has shown that

the operator version of UP does have complete sets [23].

The following definition is a generalization of the class UP where we allow

the nondeterministic machine to have at most polynomially many accepting

paths.

Definition 2.2 [1,2]

FewP = {L : there is a nondeterministic polynomial-time Turing machine

N and a j such that L = L(N), and for all x, the computation of N(x) has at

most |x|j + j accepting paths}.

coFewP = {L : L ∈ FewP}.

We say that NA
i is FewPA-like iff (∀x)[ the number of accepting paths of NA

i

on input x is at most |x|i + i]. Note that we are not claiming that it is easy to

determine whether NA
i is FewPA-like. The following proposition merely reflects

the fact that in many natural enumerations each machine in the enumeration

essentially appears infinitely often, give or take vacuously padding the machine

with unreachable states.

Proposition 2.3 There exists an enumeration N ′
0, N

′
1, . . . of nondeterministic

Turing machines such that, for all i, run time of N ′
i (on inputs of length n) is

bounded by ni + i and

FewP = {L : (∃i)[L = L(N ′
i) and (∀x)[ number of accepting paths of N ′

i on x is

≤ |x|i + i]]}.

dA function f is honest if (∃k)(∀x)[|f(x)|k +k ≥ |x|]. A one-way function is a total, single-
valued, one-to-one, honest, polynomial time computable function f such that f−1 (which will
be a partial function if range(f) 6= Σ∗) is not computable in polynomial time [16].

eRange(f) = {f(i) : i ∈ Σ∗}.



Thus we assume, without loss of generality, that our standard enumeration

is one such enumeration. Note that Proposition 2.3 holds robustly. In our

relativizations, this will allow us to, for each possible oracle machine, instantly

discard machine Ni if we notice that NA
i is not FewPA-like in the relativized

world, A, we construct (rather than having to explicitly pair each machine with

every fewness bound).

Definition 2.4 [13]

(Random Polynomial Time) R = {L : there is a probabilistic polynomial-

time Turing machine B such that L = L(B), and for all x, either B(x) has no

accepting paths, or B(x) accepts with probability ≥ 1/2}.

coR = {L : L ∈ R}.

Without loss of generality we can assume that the computation tree of a

machine accepting a language in R is a full binary tree with paths through the

tree corresponding to sequences of coin tosses [5].

R, random polynomial time, is the complexity class that captures the power

of probabilistic computation with one-sided error. When an R machine accepts,

it is always correct; however, when it rejects it may be incorrect. In relativized

worlds, the computational powers of random polynomial time and of unambigu-

ous polynomial time are incomparable, and have both been studied in detail [29,

12,6,10]. We say that BA
i is RA-like, iff (∀x)[ either BA

i on x has no accepting

paths or the probability that BA
i accepts x is at least 1/2].

Definition 2.5 [13] ZPP = R ∩ coR.

The class of languages that are in ZPP are exactly those languages which

can be solved in expected polynomial time [13].

Definition 2.6 [13]

(Bounded Probabilistic Polynomial Time) BPP = {L : there is a probabilistic

polynomial time Turing machine B such that, [x ∈ L ⇒ B(x) accepts with

probability ≥ 2/3] and [x 6∈ L ⇒ B(x) accepts with probability ≤ 1/3]}.

BPP is a complexity class that captures the power of probabilistic compu-

tation with bounded two sided error.

We now discuss interactive proofs [15]. Consider a language L and an input

x. Suppose a prover, P , is trying to convince a polynomial-time, probabilistic,

verifier V , that x indeed belongs to L. During this process, the verifier may ask



certain questions to the prover. We assume that the prover P is deterministic

in the sense that the answer provided by the prover, on any question, depends

only on x, the question asked, and the set of earlier questions asked. However

we do not place any resource bound on the prover. Indeed P itself may be a

non-recursive procedure. After the interaction, the verifier may accept or reject

the input. For the verifier to accept the language L, we would like that in cases

when x belongs to L, the prover should be able to convince the verifier, with

high probability, that x belongs to L. However, if x does not belong to L, then

no prover should be able to convince the verifier, with non-negligible probability,

that x ∈ L.

Definition 2.7 We say that a verifier V accepts L iff:

(∀x 6∈ L)(∀P )[Prob(V with prover P accepts x) ≤ 1/3], and

(∃P )(∀x ∈ L)[Prob(V with prover P accepts x) ≥ 2/3].

Note that for a particular verifier V , there can be at most one L that V accepts.

We denote by L(V ) the language, if any, that the verifier V accepts.

Definition 2.8 [15]

IP = {L : (∃V )[V accepts L]}.

coIP = {L : L ∈ IP}.

We say that V A
i is IPA

i -like iff there exists a language L such that V A
i accepts

L.

Note that a machine may be FewP-like (R-like, IP-like) with respect to some

oracles while not being FewP-like (R-like, IP-like) with respect to other oracles;

these are properties of machine/oracle pairs.

We let V0, V1, . . . be a standard enumeration of all polynomial time verifiers.

We assume that the runtime of verifier Vi, on inputs of length n, is bounded by

ni + i.

It follows immediately from the definitions that (∀A)[RA ⊆ BPPA ⊆ IPA ∩

coIPA].

For background, we first define Turing reductions and completeness in the

real (unrelativized) world.

Definition 2.9 (see [26,5])

1. L1 ≤p
T L2 if L1 ∈ PL2 .



2. L is ≤p
T -hard for C if every set in C Turing reduces to L (i.e., (∀S ∈

C)[S ≤p
T L]). In addition if L ∈ C then we say that L is ≤p

T -complete for

C.

If we wish to discuss Turing completeness in relativized worlds, we must

address the key question: are the Turing reductions allowed access to the oracle?

Definitions 2.10.2 and 2.10.3 answer this question “yes” and “no,” respectively.

For the following definition C stands for one of R, UP, or FewP.

Definition 2.10

1. L1 ≤p, A
T L2 if L1 ∈ PL2⊕A.

2. L is ≤p, A
T -hard for CA if (∀S ∈ CA)[S ≤p, A

T L]. In addition if L ∈ CA

then we say that L is ≤p, A
T -complete for CA.

3. L is ≤p
T -hard for CA if (∀S ∈ CA)[S ≤p

T L]. In addition if L ∈ CA then

we say that L is ≤p
T -complete for CA.

We suggest that Definition 2.10.2 above is the natural notion of relativized

Turing completeness. Adopting it, we prove that there exist oracles A and B

such that ZPPA, RA, IPA∩coIPA have no ≤p,A
T -complete sets and UPB , FewPB

have no ≤p,B
T -complete sets. However, for purposes of completeness results, the

different notions of relativized Turing reductions stand or fall together.

Lemma 2.11

1. For any oracle A, and class C: [FewPA has ≤p, A
T -hard sets for C if and

only if it has ≤p
T -hard sets for C].

2. For any oracle A, and class C: [UPA has ≤p, A
T -hard sets for C if and only

if it has ≤p
T -hard sets for C].

3. For any oracle A, and class C: [RA has ≤p, A
T -hard sets for C if and only

if it has ≤p
T -hard sets for C].

4. For any oracle A, and class C: [IPA ∩ coIPA has ≤p, A
T -hard sets for C if

and only if it has ≤p
T -hard sets for C].

This is true since if B is ≤p, A
T -hard for C then B ⊕ A is ≤p

T -hard for C.

The difference between Definitions 2.10.2 and 2.10.3 is essentially the dif-

ference between “full” (2.10.2) and “partial” (2.10.3) relativization discussed in

[25] and [32, Section 9.3]. [25] describes how this distinction has had a crucial

effect on recent research asking whether all NP-complete sets are polynomially



isomorphic [24,14,19]. However, Lemma 2.11 indicates that in our study of

Turing completeness, we need not be concerned with this distinction.

3 Robust Completeness and Classes of Limited

Ambiguity

This section shows that FewP does not robustly possess Turing hard sets for

UP∩coUP. It follows immediately that there is an oracle A such that UPA and

FewPA lack complete sets with respect to ≤p,A
T , as well as with respect to all

reductions less flexible than ≤p, A
T , such as truth-table reductions [26], bounded

truth-table reductions [26], etc.

Theorem 3.1 There is a recursive oracle A such that FewPA contains no ≤p,A
T -

hard languages for UPA ∩ coUPA.

Corollary 3.2 There is a recursive oracle A such that UPA ∩ coUPA, UPA,

FewPA ∩ coFewPA, and FewPA contain no ≤p,A
T -complete languages.

Proof of Theorem 3.1: We wish to construct A such that for no L ∈ FewPA

is UPA ∩ coUPA ⊆ PL, which suffices by Lemma 2.11. Each L in FewPA is, by

definition, accepted by a nondeterministic machine NA
i , which has its number

of accepting paths on any input bounded by ni + i (see Proposition 2.3). Our

goal is to show that for each i, either:

1. NA
i has more than |x|i + i accepting paths on some input x, or

2. (∃L̂i)[L̂i ∈ UPA ∩ coUPA and L̂i 6∈ PL(NA
i )].

The second condition says that some UPA∩coUPA language does not Turing

reduce to L(NA
i ).

Let L̂i = {1n : (∃k)[(n = (pi)
k) ∧ (∃y)[|y| = n ∧ 1y ∈ A]]}, where pi is the

ith prime.

Let requirement R〈i, j〉 be

R〈i,j〉: (∃x)[x ∈ L̂i 6⇐⇒ x ∈ L(M
L(NA

i )
j )].

In the construction below we will ensure that for each i either:

Req 1 NA
i has more than |x|i + i accepting paths on some input x, or

Req 2 (∀k)[card({y : y ∈ A∧ |y| = (pi)
k +1}) = 1]∧ (∀j)[ requirement R〈i,j〉

is satisfied ].



Note that this is sufficient to ensure that A satisfies the required properties.

If Req 2 is satisfied, then clearly L̂i 6∈ PL(NA
i ). Also the first clause of Req

2 makes sure that for each n = pk
i , there exists exactly one string y, of length

n + 1, which belongs to A; thus for L̂′
i = {1n : (∃k)[(n = (pi)

k) ∧ (∃y)[|y| =

n ∧ 0y ∈ A]]}, where pi is the ith prime, we have

(a) L̂i ∈ UPA,

(b) L̂′
i ∈ UPA,

(c) L̂′
i ∪ L̂i = {1n : (∃k)[n = (pi)

k]}, and

(d) L̂i ∩ L̂′
i = ∅.

Thus we have L̂i ∈ UPA ∩ coUPA.

For each 〈i, j〉, we will seek to find a way of extending the oracle so as to

make NA
i non-FewPA-like. Failing this, we will argue that we can choose our

oracle in such a way as to determine the answers to all oracle queries made

by Mj , and still have the flexibility to diagonalize against L̂i. This step is a

combinatorial argument that machines with few accepting paths that do not

trivially accept must reject on an overwhelming number of oracle extensions.

In stage 〈i, j〉, we either make NA
i non-FewPA-like by adding strings of

length (pi)
k + 1, for some k, to A or without violating the first clause in Req

2 , satisfy requirement R〈i,j〉.

Let A〈i,j〉 denote the set of strings determined to be in A constructed before

stage 〈i, j〉. n〈i,j〉 denotes the length, such that for each string of length at most

n〈i,j〉, membership question (in A) has been decided before stage 〈i, j〉.

Let A0 = ∅ and n0 = 0 (we let ε 6∈ A). We will have A =
⋃

〈i, j〉 A〈i, j〉. Go

to stage 0.

Stage 〈i, j〉:

1. If i = 0 or j = 0 or

if NA
i has already been made non-FewPA-like, then set

A〈i,j〉+1 = A〈i,j〉 & n〈i,j〉+1 = n〈i,j〉,

and go to stage 〈i, j〉 + 1.

2. Let n = (pi)
l be so large that:

(i) n > n〈i,j〉, and

(ii) 2n > [rj(n)] · [ri(rj(n))] · [ri(rj(n)) + 1] · [ri(rj(n)) + 2]/2.

(Recall that rj(n) = nj + j, the run time of the jth machine.)



3. Let B = {0m : n〈i,j〉 < m ≤ ri(rj(n)) ∧ m 6= n + 1}.

4. If there exists a set S ⊆ {0, 1}n+1 such that N
A〈i,j〉∪S∪B

i is non-FewPA-

like on some string of length at most rj(n) then

let A〈i,j〉+1 = A〈i,j〉 ∪ S ∪ B & n〈i,j〉+1 = ri(rj(n)),

and go to stage 〈i, j〉 + 1.

5. Else

Run machine Mj on 1n using oracle set L(N
A〈i,j〉∪B

i ).

6. If Mj accepts in step 5 above then let z, |z| = n be such that Mj on input

1n using oracle set L(N
A〈i,j〉∪B∪{0z}

i ) still accepts. (We will argue below

that such a z indeed exists.) Let

A〈i,j〉+1 = A〈i,j〉 ∪ B ∪ {0z} & n〈i,j〉+1 = ri(rj(n)),

and go to stage 〈i, j〉 + 1.

(Note that here 1n 6∈ L̂i; thus R〈i,j〉 is satisfied).

7. Else (the computation in step 5 rejects)

Let z, |z| = n be a string such that Mj on input 1n using oracle set

L(N
A〈i,j〉∪B∪{1z}

i ) still rejects. (We will argue below that such a z in-

deed exists.)

Let

A〈i,j〉+1 = A〈i,j〉 ∪ B ∪ {1z} & n〈i,j〉+1 = ri(rj(n)) and

go to stage 〈i, j〉 + 1.

(Note that here 1n ∈ L̂i − L(M
L(NA

i )
j ). Thus requirement R〈i,j〉 has been

satisfied).

End stage 〈i, j〉

Note that if we never find a way of making NA
i non-FewPA-like, then L̂i ∈

UPA ∩ coUPA (because the above procedure puts exactly one string at each

length important to L̂i) and (∀j)[requirement R〈i,j〉 is satisfied] (note that, the

definition of B in step 3, ensures that, for lengths that are not used in the

diagonalization in steps 5–7, the first clause in Req 2 is satisfied). Thus the

requirement Req 2 is satisfied. On the other hand, if we do find a way of

making NA
i non-FewPA-like, then Req 1 is satisfied (even though we do not

need L̂i to be in UPA ∩ coUPA in this case, our construction leaves L̂i finite in

this case and thus in UPA ∩ coUPA). Thus we have met requirements that are

sufficient to ensure that FewPA has no ≤p, A
T -hard languages for UPA ∩ coUPA.



We need to argue that a z (for steps 6 and 7) can indeed be selected. Let

n, B be as in stage 〈i, j〉 (in which the construction reaches step 6 (7)). We claim

that there is a string z, |z| = n, such that the computation of Mj on input 1n

using oracle set, L(N
A〈i,j〉∪B

i ) queries exactly the same strings, getting exactly

the same answers, as does the computation of Mj on input 1n using oracle set,

L(N
A〈i,j〉∪B∪{0z}

i ) (L(N
A〈i,j〉∪B∪{1z}

i )). To see that this is the case, suppose

that the computation of Mj on input 1n using oracle set L(N
A〈i,j〉∪B

i ) queries

strings x1, x2, . . . , xk that are in L(N
A〈i,j〉∪B

i ), and queries strings y1, y2, . . . , ym

that are not in L(N
A〈i,j〉∪B

i ). For 1 ≤ r ≤ k, reserve all strings, of length n + 1,

which are queried by the accepting path of N
A〈i,j〉∪B

i , on input xr, for A (there

are at most k ·[ri(rj(n))] such strings). For y such that |y| ≤ rj(n), let Sy = {w :

N
A〈i,j〉∪B∪{w}

i accepts y∧ |w| = n+1}. We reserve all strings in Syr
, 1 ≤ r ≤ m

for A (by Corollary 3.3 below card(
⋃

1≤r≤m Syr
) ≤ m · [ri(rj(n))] · [ri(rj(n))+1] ·

[ri(rj(n))+2]/2). Since 2n > rj(n) · [ri(rj(n))] · [ri(rj(n))+1] · [ri(rj(n))+2]/2,

not all strings of form 0{0, 1}n and 1{0, 1}n are reserved for A. Thus appropriate

z exists.

We now bound the size of Sy as defined above. In Corollary 3.3 below we

argue that size of Sy is bounded, if, NA
i could not be made non-FewPA-like in

step 4 of the above construction. This Corollary uses a combinatorial lemma

(Lemma 3.4) proved below.

Corollary 3.3 For y such that |y| ≤ rj(n) and N
A〈i,j〉∪B

i rejects y,

card(Sy) ≤ [ri(rj(n))] · [ri(rj(n)) + 1] · [ri(rj(n)) + 2]/2.

Proof of Corollary 3.3: Let m = card(Sy) and r, r′ = ri(rj(n)) + 1. Also let

C1, C2, . . . , Cm be the m elements of Sy, and Dk be the set of strings queried

in the (lexicographically least) accepting path of N
A〈i,j〉∪B∪{Ck}

i (y). Note that

Ck ∈ Dk (since N
A〈i,j〉∪B

i (y) has no accepting paths). Clearly conditions (a)

and (c) of Lemma 3.4 below are satisfied. To show that (b) is satisfied suppose,

by way of contradiction, that there exists a subset T of {1, 2, . . . , m} of size r′

such that (∀k′, k′′ ∈ T )[k′ 6= k′′ ⇒ Ck′ 6∈ Dk′′ ]. Now, for each k, k′ ∈ T , k′ 6= k,

since Ck′ 6∈ Dk, the lexicographically least accepting path of N
A〈i,j〉∪B∪Ck

i (y) is

an accepting path for N
A〈i,j〉∪B∪{Ck′′ : k′′∈T}

i (y). Moreover each of these paths

are distinct (since Ck ∈ Dk − Dk′ , for distinct k, k′). Thus Ni, on input y,

with oracle A〈i,j〉 ∪ B ∪ {Ck : k ∈ T} has at least r′ accepting paths. This is

a contradiction to the fact that Ni could not be made non-FewPA-like. Thus

C, D satisfy the conditions of Lemma 3.4, and hence card(Sy) ≤ [ri(rj(n))] ·



[ri(rj(n)) + 1] · [ri(rj(n)) + 2]/2. 2

2 (Theorem 3.1)

Lemma 3.4 Let r, r′ be given. Let Ck, 1 ≤ k ≤ m, be strings and Dk, 1 ≤ k ≤

m, be sets of strings. If Ck, Dk satisfy a),b) and c) then m ≤ (r′−1) ·r(r+1)/2.

a) (∀k, l)[k 6= l ⇒ Ck 6= Cl],

b) (∀T ⊆ {1, 2, . . . , m} : card(T ) = r′)[(∃k′, k′′ ∈ T )[k′ 6= k′′ ∧Ck′ ∈ Dk′′ ]].

c) (∀k)[Cardinality of Dk is at most r − 1].

Proof of Lemma 3.4: Let P (r, r′) = max{m : exists a sequence C1, . . . , Cm of

strings and a sequence D1, . . . , Dm of sets of strings, satisfying clauses (a) to (c)

in the lemma }. We prove by induction on n that P (n, n′) ≤ (n′−1) ·n(n+1)/2.

Clearly, P (1, n′) = n′ − 1. Suppose P (n, n′) ≤ (n′ − 1) · n(n + 1)/2. We prove

that P (n + 1, n′) ≤ (n′ − 1)(n + 1)(n + 2)/2. Let C, D be such that conditions

of the lemma are satisfied with r = n + 1, r′ = n′. Now consider a maximal set

T ⊆ {1, 2, . . . , m}, such that, [(∀k′, k′′ ∈ T : k′ 6= k′′)[Ck′ 6∈ Dk′′ ]]. Clearly,

card(T ) ≤ n′ − 1.

Also for all k ∈ {1, 2, . . . , m} − T , either

(1) Ck is in Dk′ for some k′ in T or

(2) Ck′ is in Dk for some k′ in T

Let T ′ = {k : k ∈ {1, 2, . . . , m} − T ∧ ¬(∃k′ ∈ T )[Ck ∈ Dk′ ]}. Since, there

are atmost n ∗ card(T ) elements, k ∈ {1, 2, . . . , m} − T , for which there exists

a k′ ∈ T such that Ck ∈ Dk′ , cardinality of T ′ is atleast m − (n + 1) ∗ card(T ).

Now define new sequences C ′ and D′ as follows. Let i1, i2, . . . , icard(T ′) be

such that {i1, i2, . . . , icard(T ′)} = T ′. For j ∈ {1, 2, . . . , card(T ′)}, let C ′
j = Cij

and D′
j = Dij

− {Ck : k ∈ T}. It is easy to see that D′
j is a proper subset of

Dij
. Note that C ′ and D′ now satisfy the inductive hypothesis with r = n, and

r′ = n′. From the above analysis we have, m ≤ (n + 1) ∗ card(T ) + card(T ′) ≤

(n + 1) ∗ (n′ − 1) + P (n, n′) ≤ (n′ − 1)(n + 1)(n + 2)/2. The lemma follows. 2

An anonymous referee has pointed out that Corollary 3.3 also follows from

the following claim, which gives a slightly weaker bound than that of Lemma 3.4

but is easier to prove.

Claim 3.5 Suppose C1, . . . , Cm and D1, . . . , Dm satisfying a), b), c) as in

Lemma 3.4 are given. Then for some constant c, m ≤ crr′(r′ − 1).



Proof of Theorem 3.1 can easily be extended to prove that Few [8], a general-

ization of FewP, does not robustly posses Turing hard languages for UP∩ coUP

(see also [37]).

4 Robust Completeness and Probabilistic Classes

In this section we prove that IP ∩ coIP does not robustly possess Turing hard

sets for ZPP. It immediately follows that there exist relativized worlds in which

ZPP, R, IP ∩ coIP and BPP do not have Turing complete sets.

Theorem 4.1 There is a recursive oracle A such that IPA ∩ coIPA does not

contain any ≤p,A
T -hard sets for ZPPA.

Corollary 4.2 There is a recursive oracle A such that ZPPA, RA, coRA, NPA∩

coNPA and IPA ∩ coIPA contain no ≤p,A
T -complete languages.

Proof of Theorem 4.1: We wish to construct A such that for no L ∈ IPA ∩

coIPA is ZPPA ⊆ PL (this suffices by Lemma 2.11). For each L ∈ IPA ∩ coIPA

there exist Va and Vr such that V A
a is IPA-like, V A

r is IPA-like, L = L(V A
a ) and

L = L(V A
r ). Our goal is to show that for each i, j, either:

1. [V A
i is not IPA-like

∨
V A

j is not IPA-like
∨

[L(V A
i ) 6= L(V A

j )]] OR

2. (∃L̂i ∈ ZPPA)[L̂i 6∈ PL(V A
i )].

Let L̂i = {1n : (∃k)[(n = (pi)
k) ∧ (∃y)[|y| = n ∧ 1y ∈ A]]}, where pi is the ith

prime.

Let requirement R〈i, j, k〉 be

R〈i, j, k〉: (∃x)[x ∈ L̂i 6⇐⇒ x ∈ L(M
L(V A

i )
k )].

For b ∈ {0, 1} let b denote 1 − b. In the construction below we will ensure

that for each i, j either:

Req 3 [[V A
i is not IPA-like ]

∨
[V A

j is not IPA-like ]
∨

[L(V A
i ) 6= L(V A

j )]] OR

Req 4

[(∀k)(∃b ∈ {0, 1})[card({y : by ∈ A ∧ |y| = (pi)
k}) = 0 ∧ card({y : by ∈

A ∧ |y| = (pi)
k}) > 2(pi)

k−1] and (∀k)[ requirement R〈i,j,k〉 is satisfied ]].

Note that this is sufficient to ensure that A satisfies the required properties.

For each 〈i, j, k〉, we will seek to find a way of extending the oracle to make

either V A
i non-IPA-like or V A

j non-IPA-like or L(V A
i ) 6= L(V A

j ). Failing this, we



will argue that R〈i,j,k〉 can be satisfied. This step is a combinatorial argument

exploiting the IPA-like properties of V A
i and V A

j .

In stage 〈i, j, k〉, we either:

satisfy Req 3 by adding strings of length (pi)
l + 1, for some l, to A or

without violating the first clause of Req 4 , satisfy requirement R〈i, j, k〉.

Let A〈i, j, k〉 denote the set A constructed before stage 〈i, j, k〉. Let n〈i,j,k〉 de-

note the length, such that for each string of length at most n〈i,j,k〉, membership

question (in A) has been decided before stage 〈i, j, k〉.

Let A0 = ∅ and n0 = 0 (we let ε 6∈ A). We will have A =
⋃

〈i, j, k〉 A〈i, j, k〉.

Go to stage 0.

Stage 〈i, j, k〉:

1. If i = 0 or j = 0 or k = 0 or

if V A
i has already been made non-IPA-like or V A

j has already been made

non-IPA-like or for some x it is already known that x 6∈ L(V A
i ) 4 L(V A

j )

then let

A〈i,j,k〉+1 = A〈i,j,k〉 & n〈i,j,k〉+1 = n〈i,j,k〉,

and go to stage 〈i, j, k〉 + 1.

2. Otherwise, let n = (pi)
l be so large that:

(i) n > n〈i,j,k〉, and

(ii) 2n > 6 · [rk(n)] · [ri(rk(n)) + rj(rk(n))].

3. Let B = {0{0, 1}m : n〈i,j,k〉 ≤ m < ri(rk(n)) + rj(rk(n)) ∧ m 6= n}.

4. If there exists a set S ⊆ {0, 1}n+1 such that [V
A〈i,j,k〉∪B∪S

i or V
A〈i,j,k〉∪B∪S

j is

non-IPA-like on some string of length at most rk(n)], or [ for some string

of length at most rk(n), x 6∈ (L(V
A〈i,j,k〉∪B∪S

i )4L(V
A〈i,j,k〉∪B∪S

j ))], then

let A〈i,j,k〉+1 = A〈i,j,k〉 ∪ S ∪ B, & n〈i,j,k〉+1 = ri(rk(n)) + rj(rk(n)),

and go to stage 〈i, j, k〉 + 1.

5. Else if M
L(V

A〈i,j,k〉∪B

i
)

k accepts 1n then let S be a maximal subset of 0{0, 1}n

such that M
L(V

A〈i,j,k〉∪B∪S

i
)

k still accepts 1n.

(We will argue below that card(S) > 2n/2)

Let A〈i,j,k〉+1 = A〈i,j,k〉 ∪ S ∪ B & n〈i,j,k〉+1 = ri(rk(n)) + rj(rk(n)),

and go to stage 〈i, j, k〉 + 1.

(Note that here requirement R〈i,j,k〉 is satisfied.)



6. Else, let S be a maximal subset of 1{0, 1}n such that M
L(V

A〈i,j,k〉∪B∪S

i
)

k (1n)

still rejects.

(We will argue below that card(S) > 2n/2)

Let A〈i,j,k〉+1 = A〈i,j,k〉 ∪ S ∪ B & n〈i,j,k〉+1 = ri(rk(n)) + rj(rk(n)),

and go to stage 〈i, j, k〉 + 1.

(Note that here requirement R〈i,j,k〉 is satisfied.)

End stage 〈i, j, k〉.

We claim that for steps 5 and 6, card(S) ≤ 2n−1 is not possible. We prove

this for step 5 (the proof for step 6 is similar). Let T be the set of questions

asked by Mk with the oracle A〈i,j,k〉∪B∪S. Let Pi be the prover corresponding

to V
A〈i,j,k〉∪B∪S

i and Pj be the prover corresponding to V
A〈i,j,k〉∪B∪S

j , which

make the verifiers accept their respective languages. Now, since S is maximal,

for each string w in 0{0, 1}n − S, there exists a string, wq ∈ T , such that, wq ∈

L(V
A〈i,j,k〉∪B∪S

i ) 6⇐⇒ wq ∈ L(V
A〈i,j,k〉∪B∪S∪{w}

i ). Thus, if wq ∈ L(V
A〈i,j,k〉∪B∪S

i )

then V
A〈i,j,k〉∪B∪S

i with prover Pi must query w with probability ≥ 1/3 (since

probability of acceptance of wq by Vi changes from ≥ 2/3 to ≤ 1/3 when w is

added to the oracle). Similarly, if wq ∈ L(V
A〈i,j,k〉∪B∪S

j ) then V
A〈i,j,k〉∪B∪S

j with

prover Pj must query w with probability ≥ 1/3 (since probability of acceptance

of wq by Vj changes from ≥ 2/3 to ≤ 1/3 when w is added to the oracle). Since,

Vi (respectively Vj) queries at most ri(rk(n)) strings (respectively rj(rk(n))

strings) in each path, Vi (on input wq) can query at most 3ri(rk(n)) strings

(respectively Vj can query at most 3rj(rk(n)) strings) with probability ≥ 1/3.

Thus there can be at most card(T ) · 3 · [ri(rk(n)) + rj(rk(n))] strings such as

w. Thus 2n − card(S) ≤ 3 · rk(n) · [ri(rk(n)) + rj(rk(n))], which along with the

conditions for n in step 2, implies card(S) > 2n/2.

Now note that if we never find a way of satisfying Req 3 (in step 4) then

L̂i ∈ ZPPA (because of the number of strings placed into the oracle by the

construction, at steps 5 and 6 and in B at each stage, at each length important

to L̂i) and (∀j)[requirement R〈i,j,k〉 is satisfied]. Thus the requirement Req

4 is satisfied. Thus we have met requirements that are sufficient to ensure the

theorem. 2



Class (C) C does not robustly possess C does not robustly possess

many-one complete sets Turing complete sets

NP ∩ coNP [35] [17]

IP ∩ coIP Corollary 4.2 Corollary 4.2

BPP [18] [18] plus [3]

R [35] Corollary 4.2

coR [35] Corollary 4.2

ZPP Corollary 4.2 Corollary 4.2

FewP Corollary 3.2 Corollary 3.2

FewP ∩ coFewP Corollary 3.2 Corollary 3.2

UP [18] Corollary 3.2

coUP [18] Corollary 3.2

UP ∩ coUP Corollary 3.2 Corollary 3.2

Table 1: Results on Robust Completeness

5 Conclusion

This paper showed that many promise classes do not robustly possess Turing

complete sets, and, indeed, even much bigger classes do not contain hard sets for

promise classes. Our proofs exploit the combinatorial limitations of machines

that attempt to be FewP-like or IP-like. Table 1 summarizes the results of this

and earlier papers on complete sets for promise classes. It remains an open

problem at present whether there exist relativized worlds in which R or UP or

FewP have Turing complete languages but not many-one complete languages;

our intuition is that such worlds exist. Relatedly, Watanabe and Tang [38] have

shown that if certain conditions hold then m-complete sets and T-complete sets

differ in PSPACE. Also, there is a relativized world in which the boolean hierar-

chy contains bounded truth-table complete sets but not k-truth-table complete

sets [7].
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