
On the Intrinsic Complexity of Learning Recursive
Functions

Sanjay Jain† and Efim Kinber‡ and Christophe Papazian†† and Carl Smith†‡ and Rolf Wiehagen‡‡

†School of Computing, National University of Singapore, Singapore 119260, Email:

sanjay@comp.nus.edu.sg; and ‡Computer Science Department, Sacred Heart University,

Fairfield, CT 06432–1000, U.S.A., Email: KinberE@sacredheart.edu; and ††Département de
Mathématique et d’Informatique, Ecole Normale Supérieure de Lyon, F-69364 Lyon Cedex

07, France, Email: cpapazia@ens-lyon.fr; and †‡Department of Computer Science,
University of Maryland, College Park, MD 20742, U.S.A., Email: smith@cs.umd.edu; and
‡‡Fachbereich Informatik, Universität Kaiserslautern, D-67653 Kaiserslautern, Germany,

Email: wiehagen@informatik.uni-kl.de

The intrinsic complexity of learning compares the difficulty of learning

classes of objects by using some reducibility notion. For several types of

learning recursive functions, both natural complete classes are exhibited

and necessary and sufficient conditions for completeness are derived. Infor-

mally, a class is complete iff both its topological structure is highly complex

while its algorithmic structure is easy. Some self-describing classes turn out

to be complete.

Furthermore, the structure of the intrinsic complexity is shown to be much

richer than the structure of the mind change complexity, though in gen-

eral, intrinsic complexity and mind change complexity can behave “orthog-

onally”.

1. INTRODUCTION

The problem of learning infinite objects from growing finite samples of their

behavior has attracted much attention in recent decades. In inductive inference

the objects to be learned are recursive functions, i.e. computable functions being

everywhere defined on the set N of natural numbers. The finite samples given to the

learning machine are just initial segments of the infinite sequence of all the values of

the corresponding function. The machine is said to learn that function if when fed

increasing initial segments, it eventually produces a program of the corresponding

function and never changes its mind thereafter. A machine learns a class of functions

if it learns every function from that class. This is basically the concept of learning

in the limit introduced in [Gol67]. Other criteria for learning have been studied,

see the surveys [KW80], [AS83], [CS83], [OSW86], [Fre91], [GS95], [JORS99].

In studying any model of learning, two fundamental aspects must be addressed;

the qualitative aspect, i.e. which object classes are learnable and which are not,

and the quantitative aspect, i.e. how complex are the learning tasks. There has

been prior work on trying to get at the complexity of learning, see for example

[Gol67], [JB81], [CS83], [DS86], [FBP91]. Our work is different in that we use

reducibilities as in both recursion theory [Rog67] and complexity theory [GJ79].

The main idea of the so-called intrinsic complexity introduced in [FKS95] is to

compare the complexity of learning problems. This is achieved by adopting some

formal notion of reducibility between learning problems. Namely, if for classes U, V

of recursive functions to be learned, U is reducible to V , then, informally, U is at

most as hard to learn as V is. Clearly, with every notion of reducibility comes a

notion of completeness. A class V is complete for some learning type, if all the

classes U from that type are reducible to V . Our main goal consists of exhibiting

natural classes which turn out to be complete and characterizing completeness.

Surprisingly, the characteristic conditions do not depend much on the concrete

learning type under consideration. Informally, these properties consist in being both

“topologically complex” and “algorithmically easy”. On the one hand, it seems

reasonable that high topological complexity can make learning difficult. On the

other hand, the fact that high topological complexity has to be combined only with

low algorithmic complexity may seem surprising and, in a sense, counterintuitive.

We give some explanation of this fact below, when we will have the corresponding

proofs at hand.

Furthermore, we study the relationship between intrinsic complexity and mind

change complexity. Under some natural conditions greater mind change complexity

is shown to imply greater intrinsic complexity. Moreover, these conditions are

necessary to this end. In general, intrinsic complexity and mind change complexity

behave “orthogonally” to each other.

In [JS96], [JS97a], [JS97b] the approach of intrinsic complexity was studied for

language identification. The problem of characterizing complete classes was not

addressed in these papers. There has been one prior study of reductions between

learnable classes, see [PW90]. However, this approach differs from the approach of

intrinsic complexity in a fundamental way (see [FKS95] for a more detailed discus-

sion). The rest of this paper is organized as follows. In Section 2 the necessary

notation and definitions will be given, including the formalization of the approach

of intrinsic complexity. In Section 3 some natural function class and its derivatives

are shown to be complete for several learning types. Section 4 is devoted to derive

the corresponding characterizations of completeness for these learning types. In

Section 5 the intrinsic complexity is compared with the mind change complexity.

Finally, in Section 6 we summarize our results and discuss some of their conse-

quences as well as possible future work.

2. PRELIMINARY DEFINITIONS AND NOTATION

For sets A, B, A ⊆ B and A ⊂ B will denote inclusion and proper inclusion,

respectively. A \ B = {x|x ∈ A, x /∈ B} denotes the difference of A and B. ∅

stands for the empty set. By card A, the cardinality of A will be denoted. For

A ⊆ N, max A and min A will stand for the maximum of A and the minimum of

A, respectively. The set of all finite sequences of natural numbers is denoted by N
∗.

2

INTRINSIC COMPLEXITY 3

Let R denote the set of all (total) recursive functions of one argument. For f ∈ R

and n ∈ N, let fn = (f(0), f(1), . . . , f(n)) be the initial segment of f up to n. For

any functions f, g ∈ R and n ∈ N, let f =n g iff fn = gn, i.e. if f and g coincide

up to n; and f 6=n g otherwise. Let fn v g iff f =n g. In this case we say also

that the function g extends the initial segment fn, or that g is an extension of fn.

Analogously, fn v gm iff n = min{n, m} and f =n g. At several places below

we will identify a recursive function with the infinite sequence of its values. Thus,

for example, 0∞ stands for the everywhere zero function and 0i10∞ stands for the

function f such that f(x) = 1, if x = i, and f(x) = 0 otherwise. Furthermore,

let dist(f, g) = card {x|f(x) 6= g(x)} denote the distance between f and g. The

following classes of recursive functions will be used frequently in the sequel:

- the class FINSUP = {f |f ∈ R, dist(f, 0∞) < ∞} of the functions of finite

support, i.e. the class of all recursive functions that have a non-zero value at no

more than finitely many arguments,

- the subclasses FINSUPm = {f |f ∈ R, 1 ≤ dist(f, 0∞) ≤ m + 1} of FINSUP for

any m ∈ N; note that 0∞ /∈ FINSUPm by definition.

Let U ⊆ R and f ∈ R. Then f is called an accumulation point of U iff for any

n ∈ N, there exists a function g ∈ U such that g =n f but g 6= f . Notice that f can

belong to U or not. U is called dense iff U is non-empty and, for any f ∈ U, f is

an accumulation point of U . Clearly, any dense class must be infinite. U is called

discrete iff U does not contain any accumulation point of U .

Discrete and dense classes are opposites of each other in the very strong sense that

discrete sets contain no accumulation points and dense sets contain only accumula-

tion points. However, one can show how to build large collections of accumulation

points only from discrete sets. We proceed by example. Notice that we will rely on

this example in Section 4.

Let Fi denote the largest subset of FINSUP containing only functions that have

exactly i + 1 support points. The classes Fi are discrete. For example, F0 contains

the functions with exactly one support point and can be graphically represented in

a fashion suggestive of an effective enumeration, f0, f1, · · ·, see Figure 1. Each row

of Figure 1 represents a function and the xth value in that row contains the value of

the function on argument x. Notice the regularity of Figure 1. For every x, there

is a j such that

fj(y) =
{

1 if y = x

0 otherwise.

In fact, j is easily calculated from only x.

j = x +
x−1
∑

k=1

k =
x2 + x

2

We have used the convention that if x − 1 < 1 then the sum evaluates to 0. Let

h denote the function that takes x to x2+x
2 .

Suppose σ is the length n initial segment of 0∞. Notice further that fh(n) agrees

with σ, but fh(n) 6= 0∞. We have just shown (even effectively) that 0∞ is an

accumulation point of F0.

4 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

F0 0 1 2 3 4 5 · · ·

f0 1 0 0 0 0 0 · · ·

f1 0 1 0 0 0 0 · · ·

f2 2 0 0 0 0 0 · · ·

f3 0 0 1 0 0 0 · · ·

f4 3 0 0 0 0 0 · · ·

f5 0 2 0 0 0 0 · · ·

f6 0 0 0 1 0 0 · · ·

f7 4 0 0 0 0 0 · · ·

f8 0 3 0 0 0 0 · · ·

f9 0 0 2 0 0 0 · · ·

f10 0 0 0 0 1 0 · · ·

...
...

...
...

...
...

...
. . .

FIG. 1. The class F0

Suppose now that k > 0 and f ∈ Fk−1. Then f has exactly k support points. Let

σ be the length n + 1 initial segment of f , where n is an arbitrary natural number.

Then σ has exactly i support points, for some i ≤ k. Define g = σ1k−i+10∞.

So g has the i support points from σ and exactly k − i + 1 others. Hence, g ∈

Fk. Furthermore, g =n f by definition of g. Finally, g 6= f , since f has fewer

support points. Consequently, f is an accumulation point of Fk. Since f was

chosen somewhat arbitrarily, we have established that, for all k > 0, any function

in Fk−1 is an accumulation point of Fk.

A non-empty class U ⊆ R is called recursively enumerable (r.e.) iff there is a

universal recursive function u of U ; i.e. u is a recursive function of two arguments

enumerating exactly the class U, {ui|i ∈ N} = U where ui = λxu(i, x). Then u is

called a (recursive) numbering of U . Furthermore, if f ∈ U and ui = f then i is

called a u-index (or a u-number) of f . Note that every infinite r.e. class possesses

a one-one numbering u, i.e. a numbering such that ui 6= uj for any i 6= j, see

[Kum95]. Clearly, FINSUP and all the classes FINSUPm, m ∈ N, are r.e.

Let ϕ be any acceptable programming system or, equivalently, any Gödel num-

bering of all the partial recursive functions of one argument, see [Rog58], [MY78],

[Smi94]. The natural numbers will then serve as names for programs, and ϕi will

denote the function computed by program i. As above, i is called a ϕ-index or a

ϕ-number of a function f iff ϕi = f . We will use ϕ as the basic hypothesis space for

INTRINSIC COMPLEXITY 5

all the learning types below. Note that this allows the learning machines to work

subsequently in other suitable hypothesis spaces such as in recursive numberings u

as well, since any u-index can be effectively translated into an equivalent ϕ-index.

Gold, in a seminal paper [Gol67], defined the notion called identification in the

limit. This definition concerned learning by algorithmic devices now called inductive

inference machines (IIMs). An IIM inputs the graph of a recursive function, an

ordered pair at a time, and, while doing so, outputs computer programs. Since

we will only discuss the inference of (total) recursive functions, we may assume,

without loss of generality, that the input is received by an IIM in its natural domain

increasing order, f(0), f(1), · · ·. On input from a function f , an IIM M will output

an infinite sequence of programs p0 = M(f0), p1 = M(f1), · · ·. The IIM converges iff

there is a program p such that for all but finitely many i, pi = p. Then we say that

the IIM converges to p. In general, there is no effective way to tell when, and if, an

IIM has converged.

Following Gold, we say that an IIM M EX-identifies a function f (written: f ∈

EX(M)), if, when M is given the graph of f as input, it converges to a program

p that computes f , i.e. ϕp = f . More formally, M is an operator which takes as

input the function f , and outputs the sequence (M(fn))n∈N of programs, denoted

by M(f).

Each IIM will learn some set of recursive functions. The collection of all such sets,

over the universe of effective algorithms viewed as IIMs, serves as a characterization

of the learning power inherent in the Gold model. This collection is symbolically

denoted by EX and is defined rigorously by EX = {U | U ⊆ R, ∃M(U ⊆ EX(M))}.

Note that any r.e. class of recursive functions belongs to EX, see [Gol67].

Now let a ∈ N. Then we say that an IIM M EXa-identifies a function f ∈ R

(written: f ∈ EXa(M)) iff the sequence M(f) converges to a program p such that

dist(ϕp, f) ≤ a; i.e. EXa-learning allows final hypotheses with at most a anomalies.

Let EXa = {U | U ⊆ R, ∃M(U ⊆ EXa(M))}.

We say that an IIM M EX∗-identifies a function f ∈ R (written: f ∈ EX∗(M)) iff

M(f) converges to a program p such that dist(ϕp, f) < ∞; i.e. EX∗-learning allows

final hypotheses with an arbitrary finite number of anomalies. Let EX∗ = {U |

U ⊆ R, ∃M(U ⊆ EX∗(M))}.

In order to define learning with a bounded number of mind changes, notice that

without loss of generality we can allow an IIM to output a special symbol ? for

a while at the beginning of the learning process. ? can be interpreted as “I don’t

know yet”. Clearly, this does not change the limit of the corresponding sequence

M(f). On the other hand, this can save one unnecessary mind change, namely the

very first one, which could be forced by requiring to make M(f 0) a real hypothesis

from N. Also without loss of generality, we can assume that M after producing a

first hypothesis from N will never output ? again. Actually, by simply repeating its

actual hypothesis, M can avoid undesired mind changes without outputting ? again.

This way we can also ensure that M is defined on all possible input segments just by

outputting either ? or a hypothesis from N. Now, for any m ∈ N, we say that an

IIM M EXm-identifies a function f ∈ R (written: f ∈ EXm(M)) iff M(f) converges

to a program p such that ϕp = f and card {n | ? 6= M(fn) 6= M(fn+1)} ≤ m; i.e.

6 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

on the function f , the machine M changes its mind no more than m times. Let

EXm = {U | U ⊆ R, ∃M(U ⊆ EXm(M))}.

Theorem 2.1 shows the relationships between the identification types defined

above.

Theorem 2.1. [CS83]

1. EX0 ⊂ EX1 ⊂ . . . ⊂ EXm ⊂ EXm+1 ⊂ . . . ⊂ EX

2. EX = EX0 ⊂ . . . ⊂ EXa ⊂ EXa+1 ⊂ . . . ⊂ EX∗

In this paper we will be concerned only with the identification types EX, EXa,

EX∗, EXm as defined above. Subsequently, we let I stand for any one of these

types.

Proposition 2.1. There exists an r.e. sequence M0,M1,M2, . . ., of inductive

inference machines such that, for any identification type I considered in this

paper,

for all C ∈ I, there exists an i ∈ N such that C ⊆ I(Mi).

[JORS99] shows the above for I = EX. Essentially, the same proof can be used

for all I considered in this paper. We assume M0,M1,M2, . . . to be one such sequence

of machines.

In the following we need the notion of admissible sequences of hypotheses as

introduced in [FKS95]. Informally, for an identification type I, an I-admissible

sequence for a recursive function f is a sequence of hypotheses which is “successful”

when learning f in the sense of I. For example, an EX-admissible sequence for

f ∈ R is any sequence of programs p0, p1, . . . converging to some p such that ϕp = f .

Clearly, using this notion one could redefine the identification type EX as follows:

U ∈ EX iff there is an IIM M such that for any function f ∈ U, M(f) is an

EX-admissible sequence for f . For the other identification types I, the notion of

I-admissible sequences is defined analogously.

Besides the notion of admissible sequences we need yet the concept of recursive

operators in order to give the basic definition of intrinsic complexity.

Definition 2.1. [Rog67] A recursive operator is an effective total mapping, Θ,

from (possibly partial) functions to (possibly partial) functions, which satisfies the

following properties:

(a) Monotonicity: For all functions η, η′, if η ⊆ η′ then Θ(η) ⊆ Θ(η′).

(b) Compactness: For all η, if (x, y) ∈ Θ(η), then there exists a finite function

α ⊆ η such that (x, y) ∈ Θ(α).

(c) Recursiveness: For all finite functions α, one can effectively enumerate (in α)

all (x, y) ∈ Θ(α).

INTRINSIC COMPLEXITY 7

In this paper we are concerned with the behavior of Θ on total functions only.

Thus, without loss of generality, in (c) above we may additionally assume that Θ(α)

is finite for all finite α, and one can effectively determine card Θ(α) (in addition to

being able to enumerate Θ(α)).

We now present some easy results which will be used several times in the sequel.

These results show that to some extent, recursive operators preserve the structure

of the classes they map. As it will be clear from Lemma 2.1 below, structure

can mean both algorithmic and topological structure. The proof of this lemma is

obvious and therefore omitted.

Lemma 2.1. Let U be any class of recursive functions, and let Θ be any recursive

operator mapping every function from U to a recursive function, i.e. Θ(U) ⊆ R.

Then :

1.If U is r.e., then Θ(U) is r.e.

2.If h ∈ U is an accumulation point of U and Θ is injective, then Θ(h) is an

accumulation point of Θ(U).

3.If U is not discrete and Θ is injective, then Θ(U) is not discrete.

4.If U is dense and Θ is injective, then Θ(U) is dense.

On the other hand, recursive operators can map discrete classes to non-discrete

classes as well. Actually, let U = {0i10∞ | i ∈ N}. Then U is both r.e. and discrete.

Define a recursive operator Θ as follows: Θ(10∞) = 0∞, and Θ(0i10∞) = 0i10∞

for any i > 0. Then Θ is injective and Θ(U) is not discrete, since this class contains

its accumulation point 0∞.

We now come to the basic definition of intrinsic complexity.

Definition 2.2. Suppose I is an identification type and U, V ∈ I. Then U is

said to be I-reducible to V (written: U ≤I V) iff there exist recursive operators Θ

and Ξ such that for any function f ∈ U ,

1. Θ(f) ∈ V ,

2. for any I-admissible sequence σ for Θ(f), Ξ(σ) is an I-admissible sequence

for f .

Notice that unlike [FKS95] in the definition above we do not require Θ to be

injective. This is due to the fact that in learning with anomalies one and the same

sequence can be admissible for infinitely many functions. Consequently, there is

no ultimate need for the operator Θ to be injective. On the other hand, for the

other identification types I considered in this paper, I-reducibility of U to V by

operators Θ and Ξ obviously implies the injectivity of Θ.

Intuitively, if U is I-reducible to V then V is at least as difficult to learn in the

sense of I as U is. Actually, for any IIM M that I-learns V , one can easily construct

8 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

an IIM M
′ that I-learns U as follows: M′(f) = Ξ(M(Θ(f))). Consequently, in that

sense V is most difficult for I-learning if all classes U ∈ I are I-reducible to V .

For an identification type I, a class V ⊆ R is called I-complete iff V ∈ I and

any class U ∈ I is I-reducible to V .

For an identification type I and classes U, V ∈ I, U and V are said to be I-

comparable, I-incomparable, I-equivalent, respectively iff 1) U ≤I V or V ≤I U ,

2) neither U ≤I V nor V ≤I U , 3) U ≤I V and V ≤I U , respectively. Finally,

U <I V iff U ≤I V , but not V ≤I U .

3. NATURAL EXAMPLES OF COMPLETE CLASSES

In this section we will prove some natural classes complete for the types EX,

EXa, EX∗ and EXm. Notice that these classes essentially differ from the so-called

cylinder classes which were used in [FKS95] in order to construct a complete class

for a given identification type I in some uniform way. Informally, to get such

a cylinder class for a type I each recursive function was combined with all the

inductive inference machines which were capable to learn that function in the sense

of I. Thus, these cylinder classes very directly depend on the learning type under

consideration. In contrast, our classes presented below are not distinguished by

such a close and direct relationship to the corresponding learning type. Actually,

all these classes come from a common natural source, namely the class FINSUP of

the functions of finite support, that is, all functions f ∈ R such that card{x|f(x) 6=

0} < ∞, or, equivalently, dist(f, 0∞) is finite. This class itself was shown to be

EX-complete in [FKS95].

Theorem 3.1. [FKS95] FINSUP is EX-complete.

We show that the same class FINSUP is complete for all the types EXa, a ∈ N,

as well. Thus, surprisingly, EX contains a class being complete for all the EXa,

despite the fact that EX is a smaller and smaller subset of the EXa. For the types

EX∗ and EXm, m ∈ N, we then prove natural modifications of FINSUP to be

complete.

Theorem 3.2. For any a ∈ N, FINSUP is EXa-complete.

Proof. Let a ∈ N. Then FINSUP ∈ EXa, since FINSUP is r.e., hence FINSUP ∈

EX, and EX ⊆ EXa. In order to show that every class from EXa can be reduced

to FINSUP, we need the following partitioning of the set of all natural numbers

into consecutive intervals of length 2a + 1. For any n ∈ N, let Xa
n denote the

set {(2a + 1)n, (2a + 1)n + 1, ..., (2a + 1)n + 2a} of cardinality 2a + 1. Clearly,

Xa
n ∩ Xa

n′ = ∅ if n 6= n′. Furthermore,
⋃

n≥0 Xa
n = N. Now let U be an arbitrary

class from EXa. Let M be any IIM that identifies U in EXa-style. Without loss of

generality assume that M does not output ? on any input. Then, for any x ∈ N,

find the only n ∈ N such that x ∈ Xa
n and define

INTRINSIC COMPLEXITY 9

Θ(f)(x) =

{

M(fn) + 1, if n = 0 or M(fn) 6= M(fn−1);

0, if n ≥ 1 and M(fn) = M(fn−1).

Clearly, Θ is a recursive operator mapping U to FINSUP, since the machine M

changes its mind only finitely often on any function f ∈ U .

Intuitively, Θ encodes the sequence of hypotheses produced by M on f into the

function Θ(f) in a way that is “robust with respect to anomalies.” Actually, even if

at most a among the 2a + 1 consecutively encoded hypotheses will be “destroyed”

by the maximum of anomalies allowed in EXa-learning the function Θ(f), the

remaining a + 1 “undestroyed” hypotheses will keep the majority. This in turn

suggests the following definition of the operator Ξ. Let σ be any EXa-admissible

sequence for a function Θ(f) where f ∈ U . Then Ξ(σ) can be defined as follows:

• Search for the limit of σ, say j; note that dist(ϕj , Θ(f)) ≤ a, hence ϕj also

belongs to FINSUP, since Θ(f) does,

• search for the maximal n ∈ N such that within the interval Xa
n, the function

ϕj takes a non-zero value at least a + 1 times; note that this interval corresponds

to the final hypothesis produced by M on f ,

• find the only y > 0 such that within Xa
n, the function ϕj takes that value y on

at least a + 1 arguments,

• converge to y − 1.

Clearly, y − 1 is just the final hypothesis produced by the IIM M on the function

f . Consequently, the class U is EXa-reducible to FINSUP by the operators Θ and

Ξ. QED

As we have seen above, the intervals Xa
n of finite length 2a + 1 were sufficient

to overcome the difficulties caused by the anomalies within the final hypotheses

of EXa-learning, when a is a fixed number. Now, for EX∗-learning, we will need

intervals of infinite length instead. In the following definition, the sets of powers of

the prime numbers will play this role of intervals of infinite length. Therefore let

QUASIFINSUP denote the set of all recursive functions f such that:

1. For every x ∈ N, if x is not a power of a prime number, then f(x) = 0.

2. For all but finitely many prime numbers p, f(pk) = 0 for all k ∈ N.

3. For every prime number p, there are y, n ∈ N such that either

f(pk) = y for all k ≥ 1,

or

f(pk) =

{

y, if 1 ≤ k ≤ n;

0, otherwise.

Thus, for any sequence p, p2, p3, . . ., either the values of f are equal on all arguments

from the sequence, or they are equal to a non-zero number on the arguments from

a finite initial segment of the sequence and are zero on the arguments from the rest

of the sequence.

Note that QUASIFINSUP is an r.e. class.

10 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

Theorem 3.3. QUASIFINSUP is EX∗-complete.

Proof. Obviously, QUASIFINSUP is EX∗-learnable, as QUASIFINSUP is r.e.

Now let U be an arbitrary class from EX∗. Let M be any IIM that EX∗-learns U .

Without loss of generality assume that M does not output ? on any input. Let pi

denote the ith prime number, where p0 = 2. Then, for any function f ∈ U and any

x ∈ N, define an operator Θ as follows:

Θ(f)(x) = “Let i ≤ x be the maximal number such that i = 0 or M(f i) 6= M(f i−1).

If x = pk
i for some k ≥ 1, then let Θ(f)(x) = M(f i) + 1. Otherwise, let

Θ(f)(x) = 0.”

Clearly, Θ is a recursive operator mapping U to QUASIFINSUP. Note that for

any function f ∈ U , there is exactly one number i such that Θ(f)(x) 6= 0 for all

x = pk
i , k ≥ 1, namely just that i where the machine M makes its last mind change

on the function f . Moreover, by the definition of Θ, for every other prime p 6= pi,

there can be at most finitely many arguments x = pk with Θ(f)(x) 6= 0. Finally, by

the definition of QUASIFINSUP, for all but finitely many primes p, Θ(f)(x) = 0 for

all x = pk, k ≥ 1. Hence, the number of non-zero values of Θ(f) on the interval of

the powers of pi will eventually exceed the corresponding number of non-zero values

of Θ(f) on any other interval of prime powers. Clearly, this property remains valid

for every function which differs from Θ(f) on at most finitely many arguments,

i.e., especially, for every function ϕj where j is the limit of any EX∗-admissible

sequence for Θ(f). This suggests the following definition of the operator Ξ. Let σ

be any EX∗-admissible sequence for a function Θ(f) where f ∈ U . Then Ξ(σ) can

be defined as follows:

• Search for the limit of σ, say j; note that dist(ϕj , Θ(f)) is finite; hence ϕj has

the property mentioned above,

• search for the only number i such that on the arguments x = pk
i , k ≥ 1, the

function ϕj takes more non-zero values than on the arguments x = pk for any other

prime p 6= pi,

• find the value y that will be taken by ϕj on all but finitely many arguments

x = pk
i , k ≥ 1,

• converge to y − 1.

Clearly, y − 1 is just the hypothesis the machine M converges to on the function

f . Consequently, the class U is EX∗-reducible to QUASIFINSUP by the operators

Θ and Ξ. QED

In order to exhibit classes which are complete for EXm, m ∈ N, we will mod-

ify the standard definition of EXm-completeness by defining the notion of “EX-

completeness for EXm.”

Definition 3.1. Let m ∈ N. A class V of recursive functions is called EX-

complete for EXm iff V ∈ EXm and, for any class U ∈ EXm, U is EX-reducible

to V .

INTRINSIC COMPLEXITY 11

Informally, by definition, EX-completeness for EXm allows all the admissible

sequences to be of “EX-style” rather than “EXm-style”, thus giving the reducing

operators Ξ some more freedom.

Now, recall that for any m, FINSUPm denotes the subclass of FINSUP consisting

of all functions which contain at least one and at most m + 1 non-zero points;

formally,

FINSUPm = {f | f ∈ FINSUP, 1 ≤ card{x | f(x) 6= 0} ≤ m + 1}.

Recall that each of the classes FINSUPm is r.e.

Theorem 3.4. For any m ∈ N, FINSUPm is EX-complete for EXm.

The proof of Theorem 3.4 is pretty analogous to the proof of Theorem 3.1 above

(see [FKS95]) and therefore omitted.

4. CHARACTERIZATIONS OF COMPLETE CLASSES

Now we are going to characterize completeness for all the identification types

EX, EXa, EX∗ and EXm, where a, m ∈ N.

Theorem 4.1. For any class U ∈ EX, U is EX-complete iff U contains an

r.e. dense subclass.

Proof. Necessity: Let U be EX-complete. Then FINSUP is EX-reducible to

U by recursive operators Θ and Ξ. Clearly, Θ(FINSUP) ⊆ U and Θ is injective.

Moreover, FINSUP is r.e. and dense. Consequently, Θ(FINSUP) is r.e. and dense

by Lemma 2.1.

Sufficiency: Let U ∈ EX contain the r.e. dense subclass V . Then it suffices to

show that FINSUP is EX-reducible to V . Actually, since FINSUP is EX-complete

by Theorem 3.1, this would imply that both V and U are EX-complete as well.

We even prove a somewhat more general result namely, that any infinite r.e. class

is EX-reducible to V . Thus, let W be any infinite r.e. class, and let w be any

one-one numbering of W . For any i, j, i 6= j, let xij denote the least number x

such that wi(x) 6= wj(x). Furthermore, let v be any one-one numbering of V . Then

inductively define the operator Θ as follows:

Θ(w0) = v0;

and for any i > 0,

Θ(wi) = “Search for the least w-index k < i such that wk is “most similar” to

wi, i.e., xik = max{xij | j < i}.

Then search for the least v-index m such that both

• vm is “sufficiently similar” to Θ(wk), i.e., vm =xik
Θ(wk);

Comment: This ensures the monotonicity of Θ.

• vm is not in the present range of Θ, i.e., vm /∈ Θ({w0, ..., wi−1});

Comment: This ensures the injectivity of Θ. Note that vm must exist, since V is

dense. Moreover, vm can effectively be found, since V is r.e.

12 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

Define Θ(wi) = vm.”

Clearly, Θ is a recursive operator mapping W injectively to V . Moreover, the

following claim implied by the definition of Θ will be useful to define the second

operator Ξ.

Claim A. Given any v-index m such that vm ∈ Θ(W), one can effectively find

the corresponding w-index i such that Θ(wi) = vm.

Proof of Claim A. Consecutively, for i = 0, 1, 2, . . ., look at the functions Θ(wi),

as defined above, until the right w-index i has been found.

QED Claim A

In order to define the operator Ξ we need yet another technical algorithm which,

in the limit, allows us to translate ϕ-indices into equivalent v-indices.

Claim B. For any r.e. set S of recursive functions, given any numbering s of S

and any ϕ-index j such that ϕj ∈ S, one can effectively produce a sequence of

s-indices converging to an s-index of ϕj .

Proof of Claim B. Given the numbering s, the ϕ-index j and any n ∈ N, define

mn = min {i | i ≤ n, si =n ϕj} ∪ {n}. Thus, smn
is the first function among

s0, s1, ..., sn, if any, which coincides with ϕj up to n. Clearly, mn can be found

effectively, since ϕj and all the si, i ∈ N, are recursive functions. Moreover, ob-

viously, the sequence (mn)n∈N converges to the least s-index of the function ϕj .

QED Claim B

We now are ready to define the operator Ξ. Therefore, let σ be any EX-

admissible sequence of ϕ-indices for any function Θ(f), f ∈ W . Then Ξ(σ) can

be defined as follows:

• Search for the limit of σ, say j; note that ϕj = Θ(f),

• in the limit, find a v-index m of ϕj by applying the algorithm from Claim B,

• find the w-index i such that Θ(wi) = vm by applying the algorithm from Claim

A,

• converge to a ϕ-index of wi.

Clearly, since vm = ϕj = Θ(f), we get wi = f by the injectivity of Θ. This

completes the proof that W is EX-reducible to V by the operators Θ and Ξ. QED

Next, we will present a characterization of EXa-complete classes for any a ∈ N.

Therefore, we need an additional property of r.e. dense classes, namely that all the

functions of such a class can be chosen to have sufficiently large distance from each

other. This property will enable the reducing operators to deal with the anomalies

allowed in EXa-learning. The following lemma just states that all r.e. dense classes

possess this property.

Lemma 4.1. For any d ∈ N, any r.e. dense class contains an r.e. dense subclass

where all the distinct functions have distance at least d.

INTRINSIC COMPLEXITY 13

Proof. We start with the following Claim which, intuitively, states that given an

r.e. dense class W and a function f ∈ W , one can find another function g ∈ W

such that g both “arbitrarily much” coincides with f and “arbitrarily much” differs

from g.

Claim. Let W be any r.e. dense class and let w be any numbering of W . Then,

given any w-index i and any n, m ∈ N, one can effectively find a w-index j such

that wj =n wi and dist(wj , wi) ≥ m.

Proof of Claim. Let W and w as above. Let i, n ∈ N be arbitrarily fixed; set

f = wi. Then we proceed by induction on m. Obviously, for m = 0, j = i suffices.

Now, by induction, suppose that for every p < m, m ≥ 1, one can effectively find

a w-index jp such that wjp
=n f and dist(wjp

, f) ≥ p. Let h = wjm−1
. Clearly,

h =n f and dist(h, f) ≥ m − 1. Let x ≥ n be the least argument such that

card{y | y ≤ x, h(y) 6= f(y)} ≥ m − 1. Since h ∈ W and W is dense, there

must be a function g ∈ W such that g =x h and g 6= h. Moreover, since W is

r.e., a w-index of g can easily be found by searching for the least j ∈ N such that

wj =x h and wj 6= h. Clearly, dist(g, f) ≥ m or dist(h, f) ≥ m. Furthermore, it is

straightforward to effectively fix one of the functions g or h (and, hence, a w-index

of this function) with the desired distance property. This completes the proof of

the Claim. QED Claim

Now let W be any r.e. dense class, and let w be any numbering of W . Fur-

thermore, let d ∈ N be given. Then we can inductively define a numbering v of a

subclass V of W with the desired properties as follows.

Let (is)s∈N denote the sequence 0, 0, 1, 0, 1, 2, 0, 1, 2, 3, . . . in which every natural

number occurs infinitely often. Notice that is < s for any s ≥ 1.

Stage 0.

Define v0 = w0, and go to stage 1.

Stage s, s ≥ 1.

By induction assume that for any v-index i < s, a w-index i′ can effectively be

computed such that vi = wi′ . Also by induction assume that for any distinct

i, j < s, dist(vi, vj) ≥ d. Then effectively find an arbitrary n ≥ s such that for any

distinct i, j < s, card{x|x ≤ n, vi(x) 6= vj(x)} ≥ d, i.e. on their initial segments

of length n the functions enumerated by v so far have pairwise distance at least d.

Now, by applying the Claim above, search for a w-index j such that

wj =n w(is)′(= vis
) and dist(wj , w(is)′) ≥ d.

Define vs = wj , and go to stage s + 1. End of Definition of v

Clearly, V = {vi|i ∈ N} is an r.e. subclass of W . Moreover, by the choice of

both n and vs, each new function vs has distance at least d, from all the previously

enumerated functions vi, i < s, i.e. including vis
. This proves the desired distance

property of V . Finally, by the choice of the sequence (is)s∈N, arbitrarily large

initial segments of each function vi, i ∈ N, will be extended. More exactly, for each

function vi and any x ∈ N, there is some stage s such that is = i, vs =x vi and

14 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

vs 6= vi. Hence vi is an accumulation point of V and, consequently, V is dense.

QED

Then we get the following characterization of EXa-completeness.

Theorem 4.2. For any a ∈ N and for any class U ∈ EXa, U is EXa-complete

iff U contains an r.e. dense subclass.

Proof. Necessity: Let U be any EXa-complete class, a ∈ N. Let V be any r.e.

dense class such that for any distinct functions f, g ∈ V , dist(f, g) > 2a. Note that

V exists by Lemma 4.1. Clearly, V ∈ EX ⊆ EXa, since V is r.e. Consequently,

V is EXa-reducible to U by some operators Θ and Ξ. We claim that Θ has to be

injective. Actually, otherwise distinct functions f, g ∈ V with Θ(f) = Θ(g) would

exist. Hence, for each EXa-admissible sequence for the function Θ(f) = Θ(g), the

operator Ξ had to construct a sequence being EXa-admissible for both functions

f and g. But this is impossible, since dist(f, g) > 2a by the definition of V . This

contradiction proves Θ to be injective. Hence Θ(V) ⊆ U is r.e. and dense by

Lemma 2.1.

Sufficiency: Let U ∈ EXa, a ∈ N, contain an r.e. dense subclass W . Then, by

Theorem 3.2, it suffices to show that FINSUP is EXa-reducible to W . In order to

do this, we need to map the functions from FINSUP to an r.e. dense subclass V of

W where for any distinct functions g, h ∈ V , dist(g, h) > 2a. Note that such a class

V exists by Lemma 4.1. Informally, this additional property of V will enable the

second operator Ξ to identify the functions f ∈ FINSUP from any EXa-admissible

sequence for the function Θ(f). Formally, we need this property in the proof of

Claim B below.

For the following, let w denote any one-one numbering of FINSUP, and let v

denote any one-one numbering of V . Then, since V is both r.e. and dense, the

operator Θ can be defined in the same way as in the proof of Theorem 4.1; again,

Θ is injective. Also, Claim A of that proof remains valid, even with exactly the

same proof.

Claim A. Given any v-index m such that vm ∈ Θ(FINSUP), one can effectively

find the corresponding w-index i such that Θ(wi) = vm.

Proof of Claim A. Consecutively, for i = 0, 1, 2, . . ., look at the functions Θ(wi),

as defined above, until the right w-index i has been found.

QED Claim A

However, in contrast to the sufficiency proof of Theorem 4.1, the operator Ξ

now gets only EXa-admissible sequences for the functions Θ(f) rather than EX-

admissible ones. Hence, we have to modify Claim B in the following way.

Claim B. Given any ϕ-index j such that dist(ϕj , g) ≤ a for some g ∈ V , one can

effectively produce a sequence of v-indices converging to the v-index of g.

Proof of Claim B. First note that the function g ∈ V above is unique due to the

property that the distance of any distinct functions from V exceeds 2a. Second

note that the function ϕj may be undefined on at most a arguments. This leads to

INTRINSIC COMPLEXITY 15

the following algorithm which, intuitively, keeps any v-index s until it will be clear

that dist(ϕj , vs) > a, and hence vs must differ from the function g.

“ Go to stage 0.

Stage s, s ≥ 0.

Output s. Check if there are at least a + 1 arguments x such that ϕj(x)

is defined and ϕj(x) 6= vs(x), in which case go to stage s + 1.”

Clearly, due to the distance property of V , the algorithm above will converge to

the v-index of g. QED Claim B

Then the operator Ξ can be defined analogously to the sufficiency proof of The-

orem 4.1 . Therefore, let σ be any EXa-admissible sequence of ϕ-indices for any

function Θ(f), f ∈ FINSUP. Then define Ξ(σ) as follows:

• Search for the limit of σ, say j; note that dist(ϕj , g) ≤ a for some unique

function g ∈ V ,

• in the limit, find the v-index m of g by applying the algorithm from Claim B,

• find the w-index i such that Θ(wi) = vm by applying the algorithm from Claim

A,

• converge to a ϕ-index of wi.

Clearly, since g = vm = Θ(wi), we get wi = f by the injectivity of Θ. Conse-

quently, FINSUP is EXa-reducible to V (and hence to W) by the operators Θ and

Ξ. QED

In order to characterize EX∗-complete classes in an analogous way as done in

Theorem 4.2 for EXa-complete classes, we would need the following strengthening

of Lemma 4.1: Any r.e. dense class contains an r.e. dense subclass where all the

distinct functions have infinite distance. However, in general, this strengthening is

not valid. Actually, just the r.e. and dense class FINSUP provides a counterexam-

ple, since all the functions from FINSUP have finite distance from each other. On

the other hand, this infinite distance property turns out to be really necessary in

order to deal with EX∗-admissible sequences. Consequently, we have to insert this

property directly into the characterization.

Theorem 4.3. For any class U ∈ EX∗, U is EX∗-complete iff U contains an

r.e. dense subclass where all the distinct functions have infinite distance.

Proof. Necessity: Let U be any EX∗-complete class. Then, by Theorem 3.3,

QUASIFINSUP is EX∗-reducible to U by some operators Θ and Ξ. Let Q denote

the subclass of QUASIFINSUP such that for any function f ∈ Q and any prime p,

the function f takes the same value on all arguments pm, m ≥ 1. We claim that

Θ(Q) will be the desired subclass of U . In order to show this note that Q is r.e.

and dense. Moreover, all the distinct functions from Q have infinite distance.

Claim. For any distinct functions f, g ∈ Q, dist(Θ(f), Θ(g)) = ∞.

Proof of Claim. Assume to the contrary that for some distinct functions f, g ∈ Q,

dist(Θ(f), Θ(g)) is finite. Then there is a sequence σ which is EX∗-admissible for

16 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

both functions Θ(f) and Θ(g). Hence, by definition, Ξ(σ) has to converge to some

index of a function with finite distance from both f and g. But this is impossible,

since f ∈ Q and g ∈ Q are of infinite distance. This contradiction completes the

proof. QED Claim

The Claim above immediately implies that both the operator Θ is injective on Q

and all the distinct functions from Θ(Q) have infinite distance. Moreover, Θ(Q) is

r.e. and dense by Lemma 2.1. Thus, Θ(Q) is the desired subclass of U .

Sufficiency: Informally, this proof follows the same line as the sufficiency proof

of Theorem 4.2 replacing the distance bound of 2a from that proof by the infinite

distance property. The latter leads to some modification of both the statement of

Claim B below and its proof. Furthermore, QUASIFINSUP is used rather than

FINSUP, of course.

Let V be an r.e. dense subclass of U where all the distinct functions have in-

finite distance. Let v be a one-one numbering of V . It suffices to show that

QUASIFINSUP is EX∗-reducible to V . Let w denote any one-one numbering of

QUASIFINSUP. Define the operator Θ mapping QUASIFINSUP to V as in the suf-

ficiency proof of Theorem 4.2, and hence as in the sufficiency proof of Theorem 4.1.

Then Θ is injective.

Claim A. Given any v-index m such that vm ∈ Θ(QUASIFINSUP), one can

effectively find the corresponding w-index i such that Θ(wi) = vm.

Proof of Claim A. Consecutively, for i = 0, 1, 2, . . ., look at the functions Θ(wi),

as defined above, until the right w-index i has been found.

QED Claim A

Claim B. Given any ϕ-index j such that dist(ϕj , g) < ∞ for some g ∈ V , one

can effectively produce a sequence of v-indices converging to the v-index of g.

Proof of Claim B. Note that the function g ∈ V is unique, since all the distinct

functions from V have infinite distance. Moreover, the function ϕj may be unde-

fined on at most finitely many arguments. This leads to the following algorithm

which, intuitively, comes back to each v-index i arbitrarily often and keeps the

present index i as long as no further point of difference between vi and ϕj will be

developed. Therefore, let (is)s∈N denote the sequence 0,1,0,1,2,0,1,2,3,... in which

every natural number occurs infinitely often. For any i ∈ N, set Xi = ∅; intuitively,

Xi will denote the set of all arguments x developed so far on which vi and ϕj are

different. Then the algorithm can be defined as follows.

“ Go to stage 0.

Stage s, s ≥ 0.

Output is. Check if there is an x /∈ Xis
such that ϕj(x) is defined and

ϕj(x) 6= vis
(x), in which case set Xis

= Xis
∪{x} and go to stage s+1.”

Now let m denote the only v-index of the function g. Let i be an arbitrary

number such that i 6= m. Since dist(vi, vm) = ∞, each stage s with is = i entered

by the algorithm above will eventually be left. Hence the algorithm must reach

some stage s such that is = m and Xis
already contains all the arguments x such

that ϕj(x) is defined and ϕj(x) 6= vm(x). Consequently, stage s will never be left,

and the algorithm converges to m. QED Claim B

INTRINSIC COMPLEXITY 17

Now let σ be any EX∗-admissible sequence for any function Θ(f), f ∈ QUASIFINSUP.

Then define Ξ(σ) as follows:

• Search for the limit of σ, say j; note that dist(ϕj , g) is finite for exactly one

function g ∈ V ,

• in the limit, find the v-index m of g by applying the algorithm from Claim B,

• find the w-index i such that Θ(wi) = vm by applying the algorithm from Claim

A,

• converge to a ϕ-index of wi.

Since g = vm = Θ(wi), we get wi = f by the injectivity of Θ. Hence QUASIFINSUP

is EX∗-reducible to V by the operators Θ and Ξ. QED

Finally, we will characterize EX-completeness for EXm. Therefore we have to

modify the notion of density in the following way.

Definition 4.1. Let U ⊆ R and m ∈ N. Then U is called m-dense iff there are

pairwise disjoint infinite classes U0, U1, . . . , Um such that
⋃

i≤m Ui = U , and, for

any i < m, each function from Ui is an accumulation point of Ui+1.

Furthermore, if U is r.e., then U0, U1, . . . , Um are r.e. as well.

A typical example for an m-dense class is just FINSUPm, see the discussion

around Figure 1 in Section 2.

Theorem 4.4. For any m ∈ N and any class U ∈ EXm, U is EX-complete for

EXm iff U contains an r.e. m-dense subclass.

For the proof of Theorem 4.4, the reader is referred to [KPSW99].

The characterization given by Theorem 4.4 is especially easy for m = 0, namely:

For any class U ∈ EX0, U is EX-complete for EX0 iff U contains an infinite

r.e. subclass. This follows immediately from Theorem 4.4 and the definition of

m-density.

We now want to point out a consequence of our completeness characterizations

above, namely that there are classes which are both complete and “self-describing”.

Actually, in [FKS95] it was proved that the standard self-describing class S =

{f |f ∈ R, ϕf(0) = f}, i.e. the class of all recursive functions that, on argument

0, return a program computing themselves, is not EX-complete. However, this

class is EX-complete for EX0. Indeed, by the Recursion Theorem [Rog67], there

is a function g ∈ R such that for any i ∈ N, ϕg(i) = g(i)i∞. Hence, the class

{ϕg(i) | i ∈ N} is an infinite r.e. subclass of S. Consequently, S is EX-complete

for EX0. Moreover, classes which are both complete and self-describing exist at

the bottom of the mind change hierarchy, and also within every level including the

very top level of unbounded mind changes. In order to see the latter point, consider

the class C = {αip|α ∈ N
∗, i ≥ 2, p ∈ R0,1, ϕi = αip}, where R0,1 denotes the set

of all 0-1-valued functions from R. Clearly, C is a self-describing class; in order

to EX-learn this class a learning machine has only to find the last value i ≥ 2

and to converge to this self-describing value. Moreover, C is dense. This easily

18 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

follows from the fact that C is “initially complete”, i.e. for every initial segment

α ∈ N
∗, there is a function in C that is consistent with α. Obviously, every initially

complete class is dense. Furthermore, one can show that C is not contained in any

recursively enumerable class (otherwise, R0,1 would be contained in an r.e. class,

a contradiction). Nevertheless, C contains a subclass D which is both r.e. and

dense. In order to see this note that by use of the Recursion Theorem, for any

α ∈ N
∗, one can uniformly construct an iα ∈ N such that αiα0∞ ∈ C. Hence

the class D = {αiα0∞|α ∈ N
∗} is r.e. Moreover, D is initially complete and

hence dense. Consequently, C is EX-complete by Theorem 4.1. Analogously, one

can show that for any m ≥ 1, the EXm-versions Cm of the class C above, i.e.

Cm = {f | f ∈ C, card {x | f(x) ≥ 2} ≤ m + 1}, are EX-complete for EXm.

5. INTRINSIC COMPLEXITY VERSUS MIND CHANGE

COMPLEXITY

In this section we mainly want to explore how intrinsic complexity and mind

change complexity relate to each other. First we will show that under some natural

conditions, greater mind change complexity implies greater intrinsic complexity,

Theorem 5.1. However, greater mind change complexity does not always imply

greater intrinsic complexity, Theorem 5.2. Thus, mind change complexity and in-

trinsic complexity are in a sense “orthogonal”. Nevertheless, further results, Theo-

rems 5.3 and 5.4, then yield that the structure of the intrinsic complexity is much

richer than the quasi linearly ordered structure of the mind change complexity. In-

formally, these theorems state that on any levels of the mind change hierarchy, there

are classes which are intrinsically “unrelated”. Finally, we prove that in general,

maximal mind change complexity does not imply maximal intrinsic complexity,

Theorem 5.5. This is due to the fact that high mind change complexity does not

always imply high topological complexity, as it would be necessary for maximal

intrinsic complexity by the results of Section 4. Notice that all these results above

can be shown for recursively enumerable function classes, and hence for “natural”

classes.

Note that for mind changes bounded by ordinal numbers (see [FS93]), there are

results similar to those announced above, but we do not include them here because

of the technical machinery which would be necessary to state and to prove these

results. We only want to mention one fact in this respect. In [AJS99] it is shown

(within the framework of learning languages from text) that a class is learnable

with an ordinal mind change bound if this class is learnable by a machine which

converges on any input sequence, even on non-computable ones. Using this result

one can prove that no dense class, in particular no complete class, can be learned

with an ordinal mind change bound. Thus, mind change bounds are always a sign

for incompleteness.

In order to state and to prove the first result of this section we need a few more

notions. Suppose U ∈ EX. If U ∈
⋃

m≥0 EXm, then define mcc(U) = min{m|U ∈

EXm}, where mcc stands for “mind change complexity”. If U ∈ EX\
⋃

m≥0 EXm,

then let mcc(U) = ∗. By definition, m < ∗ for any m ∈ N. Now, let V be any

non-empty class of recursive functions. The class V is called bounded iff for any

function f ∈ V and any n ∈ N, there are at most finitely many values y ∈ N such

INTRINSIC COMPLEXITY 19

that fny v g for some function g ∈ V ; furthermore an upper bound on such y can

be effectively found from fn. That is, for any initial segment fn from V , one can

effectively determine a b such that, for any y > b, no extension of fny belongs to V .

For example, all classes of predicates (i.e. functions taking only the values 0,1) are

bounded. Note that, in definition of bounded class above, we allow {f(0)|f ∈ V }

to be unbounded. Though this is not crucial for our results, it makes some of the

proofs easier. Another consequence of a class being bounded is that the tree formed

by this class is of bounded degree (except, possibly, at the root). This allows to

apply König’s Lemma, as we will do below.

The class V is said to be closed iff V contains all of its accumulation points.

Equivalently, for any function f ∈ R, if every initial segment fn, n ∈ N, can be

extended to a function from V , then f itself must belong to V as well. For example,

all of the classes FINSUPm, m ∈ N, are not closed, since, by definition, they all

do not contain their accumulation point 0∞. However, FINSUP0 ∪ {0∞} is closed.

Also FINSUP is not closed, since every recursive function is an accumulation point

of FINSUP; hence, the “closure” of FINSUP would be the set R of all recursive

functions.

Finally, we call the class V decidable iff the set {fn|f ∈ V and n ∈ N} of all the

initial segments of functions from V is decidable. In other words, for an arbitrary

initial segment, one can effectively find out if there is a function from the class

which extends that initial segment.

Theorem 5.1. For any EX-comparable classes U, V such that V is bounded,

closed, and decidable, if mcc(U) < mcc(V) then U <EX V .

Proof. Let U, V be any EX-comparable classes such that V is bounded, closed,

and decidable. For simplicity we below assume that V is “binarily bounded”, i.e.

V is a class of predicates (f(x) ∈ {0, 1} for any f ∈ V and any x ∈ N). Using

the decidability of V the proof can straightforwardly be generalized to arbitrary

bounded classes. Furthermore, let mcc(U) < mcc(V). Consequently, for some

m ∈ N, U ∈ EXm and V ∈ EX\EXm. Since U, V are EX-comparable, it suffices

to prove that V ≤EX U does not hold. Assume to the contrary that V ≤EX U

by operators Θ and Ξ; clearly, Θ must be injective. We will show that this implies

V ∈ EXm, a contradiction.

Suppose that U is EXm-identified by an IIM M. Without loss of generality we

may assume that M makes no more than m mind changes on any input function.

Consider the tree T formed by all the initial segments of functions from V (including

the empty segment λ which forms the root of T) where each initial segment fn,

f ∈ V and n ∈ N, is represented by a node in T . Since V is closed, V consists of

all the infinite branches in T . Also, there is no leaf in T , i.e. every node in T has

at least one child. We call a node fn in T marked iff M(Θ(fn)) 6= M(Θ(fn−1)); for

n = 0, f0 will be marked iff M(Θ(f0)) 6= ?.

Claim A. For any node fn in T and any distinct extensions g, h ∈ V of fn, at

least one of the nodes from {gr|r > n} ∪ {hr|r > n} is marked.

20 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

Proof of Claim A. Otherwise M would not EX-identify at least one of the distinct

(by the injectivity of Θ) functions Θ(g) and Θ(h), a contradiction to V ∈ EX.

QED Claim A

Claim B. Any infinite branch of T has at most m + 1 marked nodes.

Proof of Claim B. This follows immediately from the hypothesis that M changes

its mind at most m times. QED Claim B

The next claim informally says that all branches on at least one side of any node

fn in T cause a mind change before some n′ > n. For proving this claim, we need

that V is bounded, since we apply König’s Lemma.

Claim C. For any node fn in T , there exists n′ > n such that {hn′

|hn′

in T , fn0 v

hn′

and no one of hn+1, hn+2, . . . , hn′

is marked } = ∅

or

{hn′

|hn′

in T , fn1 v hn′

and no one of hn+1, hh+2, . . . , hn′

is marked } = ∅.

Proof of Claim C. Otherwise, by König’s Lemma, both fn0 and fn1 are extended

by infinite branches in T with no marks beyond fn. This contradicts Claim A. QED

Claim C

Now, define a function Prog such that for any marked fn in T , the following

holds:

1. For x ≤ n, ϕProg(fn)(x) = f(x).

2. Suppose ϕProg(fn)(x) has been defined for all x ≤ y (below let ϕy

Prog(fn) be

denoted by gy). Search for n′ > y such that

(2.1) {hn′

|hn′

in T , gy0 v hn′

and no one of

hy+1, hy+2, . . . , hn′

is marked } = ∅, or

(2.2) {hn′

|hn′

in T , gy1 v hn′

and no one of

hy+1, hy+2, . . . , hn′

is marked } = ∅.

In case (2.1) let ϕProg(fn)(y) = 1, and in case (2.2) let ϕProg(fn)(y) = 0.

Intuitively, Prog chooses the branch (if any) which does not seem to cause any mind

change.

3. Go to step 2. End of Definition of Prog

Clearly, by the decidability of V , the function Prog is computable.

Claim D. For any fn in T and any g ∈ V extending fn such that no node from

{gn′

|n′ > n} is marked in T , ϕProg(fn) = g.

Proof of Claim D. This easily follows from Claim C by induction.

QED Claim D

Now define an IIM M
′ as follows:

M
′(fn) =

Prog(fx), where x ≤ n is the maximal number (if any)

such that fx is marked in T

? otherwise.

INTRINSIC COMPLEXITY 21

Clearly, by Claim B, on any function g ∈ V, M′ outputs at most m + 1 hypotheses,

thus making at most m mind changes. Moreover, by Claim D, the final hypothesis

output by M
′ on g is a ϕ-program for g. Consequently, V is EXm-identified by M

′,

a contradiction to V /∈ EXm. QED

Roughly, Theorem 5.1 says that under some natural conditions greater mind

change complexity implies greater intrinsic complexity. On the other hand, the

conditions provided by Theorem 5.1 (boundedness, closedness, and decidability)

turn out to be really necessary, as we will see below. In other words, in general,

greater mind change complexity does not imply greater intrinsic complexity. Ac-

tually, there are classes U, V such that mcc(U) < mcc(V) but V ≤EX U ; see

Theorem 5.2 below. Thus, mind change complexity and intrinsic complexity are in

a sense “orthogonal” to each other.

Theorem 5.2. There are classes U, V ∈ EX such that mcc(U) < mcc(V) but

V ≤EX U .

Proof. Let (Mi)i∈N denote an effective enumeration of IIM’s as in Proposition 2.1.

First, we will define the class V by some explicit diagonalization procedure yielding

among others that mcc(V) > 1. More exactly, V will be the union of classes

Vi, i ∈ N, where each Vi is defined by uniformly diagonalizing against the machine

Mi. Then the class U will be defined just as Θ(V), where Θ simultaneously serves

as the first operator realizing the EX-reduction of V to U = Θ(V). Moreover, this

definition will yield mcc(U) = 1.

Definition of Vi, i ∈ N.

Vi =

{(i + 4)∞} if for all k ∈ N,Mi((i + 4)k) = ?

{(i + 4)k0∞}∪ if k ≥ 1 is the least number such that for

{(i + 4)k0r1∞|r ≥ 1}∪ some j ∈ N, Mi((i + 4)k) = j and, for

{(i + 4)k1r0∞|r ≥ 1} this j, ϕj(k) is undefined or ϕj(k) 6= 0

{(i + 4)k1∞}∪ if k ≥ 1 is the least number such that for

{(i + 4)k0r1∞|r ≥ 1}∪ some j ∈ N, Mi((i + 4)k) = j and, for

{(i + 4)k1r0∞|r ≥ 1} this j, ϕj(k) = 0.

Let V =
⋃

i≥0 Vi.

Notice that V is r.e. by construction. Hence V ∈ EX.

Now we define an operator Θ as follows:

Θ((i + 4)k) = (i + 4)k,

Θ((i + 4)k0r) = Θ((i + 4)k1r) = (i + 4)k0r, for any r ∈ N.

Comment: This definition will not violate the injectivity of Θ on the class V ,

since by definition, for any i ∈ N, at most one of the functions (i + 4)k0∞ and

(i + 4)k1∞ belongs to V . On the other hand, mapping both functions (i + 4)k0∞

and (i+4)k1∞ to the only function (i+4)k0∞ just allows to save one mind change

22 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

in learning Θ(V) compared to learning V itself, as it follows from the proof of Claim

B below.

Θ((i + 4)k0r1s) = (i + 4)k0r2s, for any r, s ≥ 1.

Θ((i + 4)k1r0s) = (i + 4)k0r3s, for any r, s ≥ 1.

Clearly, Θ is a recursive operator which injectively maps the class V to some

class Θ(V) ⊆ R. Define U = Θ(V).

Claim A. V ≤EX U

Proof of Claim A. Let Θ be the operator from the definition of U . The operator

Ξ is defined as follows. Let σ be any EX-admissible sequence for a function g ∈ U

where g = Θ(f), f ∈ V . Then, by definition, ϕw = g where w is the limit of σ.

On σ the operator Ξ searches for w (and finds w in the limit) and evaluates the

function ϕw in order to identify the corresponding function f where g is “coming

from”. The following cases are possible.

Case 1. ϕw behaves as (i + 4)k, k ≥ 1.

Then Ξ outputs a fixed ϕ-program for (i + 4)∞.

Case 2. ϕw behaves as (i + 4)k0r2s, r, s ≥ 1.

Then Ξ outputs a fixed ϕ-program for (i + 4)k0r1∞.

Case 3. ϕw behaves as (i + 4)k0r3s, r, s ≥ 1.

Then Ξ outputs a fixed ϕ-program for (i + 4)k1r0∞.

Case 4. ϕw behaves as (i + 4)k0r, r ≥ 1.

Then Ξ outputs a fixed ϕ-program for (i+4)k0∞. In parallel, Ξ checks if ϕ
Mi((i+4)k)

(k) =

0 in which case Ξ stops outputting the program for (i + 4)k0∞ and outputs a fixed

ϕ-program for (i + 4)k1∞ instead. Comment: Case 4 occurs if f = (i + 4)k0∞ or

f = (i + 4)k1∞. The additional check allows Ξ to find out the “right” function f .

Clearly, the operators Θ and Ξ witness V ≤EX U . QED Claim A

Claim B. mcc(U) ≤ 1

Proof of Claim B. For any i ∈ N, let pi denote a ϕ-program such that

ϕpi
=

(i + 4)∞ , if Mi((i + 4)k) = ? for all k ∈ N,

(i + 4)k0∞ , if k ≥ 1 is the least number such that

Mi((i + 4)k) 6= ?

Now, for all k, r, s ≥ 1, define an IIM M as follows:

M((i + 4)k) = pi,

M((i + 4)k0r) = pi,

M((i + 4)k0r2s) = fixed ϕ-program for (i + 4)k0r2∞,

M((i + 4)k0r3s) = fixed ϕ-program for (i + 4)k0r3∞.

Then, on any function from U , the machine M makes at most one mind change.

Furthermore, by the definition of U and the pi’s, M clearly EX-identifies U . Hence

U ∈ EX1 and mcc(U) ≤ 1. QED Claim B

Obviously, mcc(U) = 1, but for proving the theorem mcc(U) ≤ 1 suffices.

INTRINSIC COMPLEXITY 23

Claim C. mcc(V) > 1.

Proof of Claim C. Assume to the contrary that V ∈ EX1(Mi) for some i ∈ N.

Then there must be a least number k ≥ 1 such that Mi((i+4)k) 6= ?, since otherwise

Mi would not identify the function (i + 4)∞ ∈ Vi ⊆ V . Let j = Mi((i + 4)k). Now

the following cases are possible.

Case 1. Mi((i + 4)k0r) 6= Mi((i + 4)k) for some r.

Then Mi fails to EX1-identify all but at most one of the functions from

{(i + 4)k0t1∞|t ≥ r} ⊆ V .

Case 2. Not Case 1, i.e. Mi((i + 4)k0r) = Mi((i + 4)k) for all r ∈ N.

Case 2.1. ϕj(k) is undefined or ϕj(k) 6= 0.

Then Mi fails to EX-identify the function (i + 4)k0∞ ∈ V .

Case 2.2. ϕj(k) = 0.

Then Mi either fails to EX-identify the function (i + 4)k1∞ ∈ V , or (in case Mi

makes a mind change on (i + 4)k1s for some s ≥ 1) Mi fails to EX1-identify all but

at most one of the functions from {(i + 4)k1t0∞|t ≥ s}. QED Claim C

The theorem immediately follows from Claims A, B and C. QED

We proceed with some remarks concerning Theorem 5.2 and its consequences.

First notice that the classes U, V were built “near the bottom” of the EXm-

hierarchy. However, by correspondingly modifying the proof, the same effect can be

proved on any higher level of this hierarchy. Next notice that the class V and, by

Lemma 2.1, also the class U = Θ(V) are both r.e. Hence these classes are in a sense

“natural”. Furthermore, note that the class V is bounded and decidable, but not

closed. In other words, V misses exactly one of the conditions from Theorem 5.1,

which results in that Theorem 5.1 does not remain valid then. Analogously, we can

show that Theorem 5.1 will no longer be true, if one of the other two conditions is

violated. Thus, the three conditions provided by Theorem 5.1, i.e. boundedness,

closedness, and decidability of V , turn out to be really necessary for making this

result hold. Hence, in this sense, Theorem 5.1 is optimal.

Notice that Theorem 5.1 is also “optimal” concerning another detail, namely in

assuming that the classes U, V are EX-comparable. Actually, in general, mcc(U) <

mcc(V) does not imply U ≤EX V (even if V is bounded, closed, and decidable),

as our next result will show immediately for “arbitrarily different” levels of the

EXm-hierarchy.

Theorem 5.3. For any m ∈ N, there exist r.e. classes V ∈ EXm+1 \ EXm and

U ∈ EX1 such that U is not EX-reducible to V .

Proof. Let m ∈ N. Let (Mi)i∈N be an effective enumeration of IIMs as in Propo-

sition 2.1. Then, for any i ∈ N, by straightforward diagonalization against Mi, one

can uniformly generate a finite class Vi of recursive functions such that

1. card Vi ≤ m + 2,

2. for any f ∈ Vi, f(0) = i and dist(f, i∞) ≤ m + 1,

3. Vi /∈ EXm(Mi).

24 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

Let V =
⋃

i∈N
Vi. Obviously, V is r.e. and V ∈ EXm+1 \ EXm. Note that V

does not possess any accumulation point. Now consider the class U = {0r10∞|r ∈

N} ∪ {0∞}. Clearly, U is r.e. and U ∈ EX1. However, U contains its accumulation

point 0∞. Consequently, U is not EX-reducible to V by Lemma 2.1. QED

Clearly, since the classes Vi from the proof of Theorem 5.3 above are all finite

and functions from different Vi differ on input 0, the class V =
⋃

i≥0 Vi is bounded,

closed and decidable, thus fulfilling these conditions of Theorem 5.1. Nevertheless,

this does not guarantee that U ≤EX V holds. In a sense, Theorem 5.3 may be

interpreted in that the structure of the intrinsic complexity is much richer than the

quasi linearly ordered structure of the mind change complexity. Our next result

emphasizes this point of view by stating that each level m > 0 of the mind change

hierarchy contains r.e. classes which turn out to be EX-incomparable.

Theorem 5.4. For any m > 0, there are r.e. EX-incomparable classes U, V ∈

EXm \ EXm−1.

Proof. We will consider only the m = 1 case . The construction can be easily

extended to any m > 1. Let U = {0i10∞ | i ∈ N} ∪ {0∞}. Obviously, U is r.e.

Furthermore, U ∈ EX1 and U /∈ EX0. The latter follows from the fact that U is

not discrete, since it contains its accumulation point 0∞. On the other hand, any

class from EX0 must be discrete, see [FW79]. Now, let K = {x | ϕx(x) is defined}

be the halting set. Let V = {k0∞ | k ∈ N} ∪ {k0i10∞ | k ∈ K, ϕk(k) halts in

exactly i steps}. Clearly, V is both r.e. and discrete. Moreover, V ∈ EX1 and

V /∈ EX0, where the latter follows by a similar argument as below. Actually, any

IIM that would EX0-learn the class V could be used to decide K, a contradiction.

Since V is discrete while U is not, U cannot be EX-reduced to V by Lemma 1

(Clause 3). Now assume to the contrary that V is EX-reducible to U . Let Θ be

the first reducing operator. As Θ is injective, we have Θ(k0∞) 6= 0∞ for all but,

may be, one k ∈ N. Then the following algorithm can be used to decide the halting

set K: “For any k ∈ N, find the minimal j ∈ N such that Θ(k0j) = 0i1 for some

i ∈ N. Then k ∈ K iff ϕk(k) terminates in at most j steps.” Indeed, if ϕk(k) would

terminate in t > j steps then, by the monotonicity of Θ, Θ(k0t10∞) = Θ(k0∞), a

contradiction to the injectivity of Θ. Consequently, V is not EX-reducible to U .

QED

In a sense, Theorem 5.4 above shows that, as far as learning functions from fi-

nite samples is concerned, “poor” topological structure (the class V is discrete)

and relatively “high” algorithmic complexity (the class V simulates the halting

problem) cannot be traded for “rich” topological structure (the class U contains

an accumulation point) and “low” algorithmic complexity (the class U has a com-

putable numbering that provides complete finite descriptions for every function in

the class).

Note that Theorem 5.4 does not remain valid for EX0. Actually, recall that

all infinite r.e. classes from EX0 are EX-complete for EX0, as it directly follows

from Theorem 4.4. Thus, these classes are equivalent rather than incomparable.

INTRINSIC COMPLEXITY 25

Consequently, EX0 is a “singular point” among all the identification types EXm,

m ∈ N, with respect to the properties exhibited by Theorems 5.3 and 5.4.

Finally, we want to point out another difference between mind change complexity

and intrinsic complexity. Informally, we will show that in general, maximal mind

change complexity does not imply maximal intrinsic complexity. More exactly,

we will exhibit a class U from EX \
⋃

m≥0 EXm, i.e. with unbounded and hence

“maximal” mind change complexity. Moreover, U itself is r.e. On the other hand, U

is far from being of maximal intrinsic complexity, i.e. far from being EX-complete.

Actually, U does not only not contain any dense subclass (as it would be necessary

for being EX-complete by Theorem 4.1), but U even does not contain (even does

not possess!) any accumulation point.

Theorem 5.5. There is an r.e. class U of recursive functions such that

1.U ∈ EX\
⋃

m≥0 EXm,

2.U is not EX-complete.

Proof. We need a slight generalization of the idea used in the proof of Theo-

rem 5.3. Therefore, let 〈., .〉 denote any effective bijection of all the pairs of natural

numbers onto the natural numbers. Let (Mi)i∈N be any effective enumeration of the

IIMs as in Proposition 2.1. Then, for any i, m ∈ N, by straightforward diagonaliza-

tion against the IIM Mi, one can uniformly generate a finite class Ui,m of recursive

functions such that

(a) card Ui,m ≤ m + 2,

(b) for any function f ∈ Ui,m, f(0) = 〈i, m〉 and dist(f, 〈i, m〉∞) ≤ m + 1,

(c) Ui,m /∈ EXm(Mi).

Now define U =
⋃

i≥0,m≥0 Ui,m.

Clearly, U is r.e., since all of the finite classes Ui,m are uniformly effectively

generable. Hence U ∈ EX, by [Gol67]. On the other hand, due to condition (c), U

cannot be EXm-learnable for any m ∈ N.

Moreover, by condition (b), for every natural number y (= 〈i, m〉 for some unique

i, m ∈ N), there are only finitely many functions f ∈ U such that f(0) = y. Hence

the class U does not possess any accumulation point. Thus, U cannot contain a

dense subclass. Consequently, by Theorem 4.1, U cannot be EX-complete. QED

On the other hand, maximal intrinsic complexity always implies maximal mind

change complexity. Actually, it is very easy to show that any dense class cannot be

identified with a bounded number of mind changes.

6. CONCLUSIONS

We wanted to find out what makes classes of recursive functions most difficult

to learn or, in a formal sense, complete within the framework of intrinsic com-

plexity [FKS95]. Informally, the characteristic properties for completeness consist

26 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

in being both “topologically complex” and “algorithmically easy”. Here topologi-

cally complex means being dense, i.e. consisting of accumulation points only, and

algorithmically easy means being recursively enumerable. Actually, the common

structure of all of our completeness characterizations is roughly the following: A

class is complete if and only if this class contains a recursively enumerable dense

subclass.

On the one hand, it seems intuitively clear that the density of a class can make

this class difficult to learn. It is well-known that not only density but already

the presence of a single accumulation point can make learning impossible at all.

Actually, this is true for learning superfinite classes of languages in the limit from

text (see [Gol67]), as well as for finite learning of recursive functions (see [FW79]).

On the other hand, we feel that some explanation is needed for the counterin-

tuitive fact that the property of high topological complexity has to be combined

with the property of low algorithmic complexity, namely recursive enumerability, in

order to yield completeness. Here recursive enumerability is said to be a property

of low algorithmic complexity, since being r.e. is kind of being “well-structured”

rather than more or less “unstructured”, what one could expect when the most dif-

ficult learning situations are to be described. One might argue that density yields

already so much difficulty that it needs some compensation in order to keep the

class learnable at all. But this is at best half the truth, since, clearly, the recursive

enumerability of the characteristic subclass ensures the learnability of this subclass,

but in general this cannot guarantee the learnability of the whole complete class.

A better explanation stems from the fact that our complete example classes from

Section 3 have to be reducible to an arbitrary complete class. Recall that all these

concrete complete classes are r.e. themselves. Hence, by Lemma 1 (Clause 1), any

reducing operator transmits this recursive enumerability to some subclass of any

complete class; moreover, by Lemma 1 (Clause 4), any injective reducing operator

transmits the density to the same subclass of the corresponding complete class. A

final, substantial explanation of the fact above is the following. In order to be a

complete class, every class from the corresponding learning type must be mapped

to this class by some recursive operator. But to be able to do this the operator

must “know” which functions of the complete class it may choose as its “targets”.

One possibility of formalizing this “knowledge” consists just in getting the operator

acquainted with a suitable recursively enumerable subclass of the complete class.

Thus, informally, knowing such an r.e. subclass enables the operator “to hit the tar-

get”. Conversely, one can provide technical evidence that the non-existence of such

an r.e. subclass results just in “missing the target”. Actually, by (non-effectively)

diagonalizing against all the recursive operators, one can construct a subclass of

FINSUP which, though still being dense, cannot be complete, since no injective

recursive operator is able to map even the trivial class of all constant functions to

that class. Interestingly, a similar effect of being both topologically difficult and

algorithmically easy has been exhibited recently in the framework of classifying

languages, see [CKSS97, Ste96].

A consequence of our completeness characterizations is the fact that there are

classes which are both complete and “self-describing”. Recall that it was commonly

believed that self-describing classes are easy to learn. Specifically, the self-describing

INTRINSIC COMPLEXITY 27

class C = {αip | α ∈ N
∗, i ≥ 2, p ∈ R0,1, ϕi = αip} turned out to be EX-complete.

Notice that this class is not only equally hard to learn as the class FINSUP in a

formal sense (both classes are EX-complete), but also in the following intuitive

sense. When learning FINSUP one never can know if and when all the points of

finite support have been found; analogously, when learning the class C one never

can know if and when the last value exceeding 1 has been found. One might wish to

further argue that learning the class C at all is “artificially/unnaturally easy”, since,

for any function from C, it suffices to find one only suitable value of that function in

order to know the whole function. This is formally correct. But, consider the class

of all polynomials on the reals. This class has an analogous property! Actually, for

any polynomial of degree n, an arbitrarily small interval, more exactly, finitely many

points, even arbitrary n + 1 of the denumerably many ones suffice to recreate (to

learn) the whole function. Hardly, anyone would call the polynomials an artificial

or unnatural class therefore. Naturally, we cannot exclude that for some approach

to the complexity of learning, all the self-describing classes are really easy to learn.

Answering this question in a rigorous way would require to formalize the notion of

self-description, though.

In general, each approach to formalize the notion of complexity of learning will

focus on specific features of this broad and diverse notion and will also have its

specific implications. In this sense, we feel it quite justified to study further ap-

proaches to this notion which may more or less differ from the approach of intrinsic

complexity. Slight modifications of the present approach could consist in allowing

the first reducing operator to be limit-recursive when learning in the limit is consid-

ered, or to require that this operator is “length-preserving” in a reasonable sense.

On the other hand, the approach by Nessel [Nes98] formalizing the complexity of

learning also in a reducibility fashion strongly differs from our approach by show-

ing that in that approach the class FINSUP is not only not complete, but it has

even minimal complexity. This is due to the fact that there the learning of “basic

rules” is considered as the main goal (the basic rule for the whole class FINSUP

is one and the same, namely the everywhere zero function, and learning a single

function is intuitively of minimal complexity, since it can be thought to be known

a priori), whereas collecting the finitely many and “arbitrarily chaotic” exceptions

on which any function of FINSUP may differ from this basic rule is not taken into

the complexity account by definition. Also, in contrast to our r.e. property in the

context of intrinsic completeness as considered above, we cannot exclude that for

other approaches just some kind of high algorithmic complexity will turn out to be

necessary for a class to belong to the most difficult to learn ones. Thus, it would be

desirable to study alternative approaches to the complexity of learning as well in

order to yield a more complete picture and thus further deepen our understanding

of the diverse nature of this important notion.

ACKNOWLEDGMENTS

We thank the referees for several helpful comments which improved the presentation

of the paper.

The first author was supported by NUS grant number RP3992710. The sec-

ond author was supported by the URCG grant of Sacred Heart University. The

28 JAIN, KINBER, PAPAZIAN, SMITH AND WIEHAGEN

fourth author was partly supported by the National Science Foundation under grant

CCR-9732692. The fourth and the fifth author would like to thank the Deutsche

Forschungsgemeinschaft (DFG) for supporting a guest professorship of the fourth

author at the University of Kaiserslautern.

REFERENCES

AJS99. A. Ambainis, S. Jain, and A. Sharma, Ordinal mind change complexity of language iden-
tification. Theoretical Computer Science 220 (1999) 323–343.

AS83. D. Angluin and C. H. Smith, Inductive inference: theory and methods. Computing Surveys
15 (1983) 237–269.

CKSS97. J. Case, E. Kinber, A. Sharma, and F. Stephan, On the classification of computable
languages. STACS 97, 14th Annual Symposium on Theoretical Aspects of Computer Science
pp. 225–236, Lecture Notes in Computer Science 1200, Springer Verlag, 1997.

CS83. J. Case and C. H. Smith, Comparison of identification criteria for machine inductive infer-
ence. Theoretical Computer Science 25 (1983) 193–220.

DS86. R. P. Daley and C. H. Smith, On the complexity of inductive inference. Information and
Control 69 (1986) 12–40.

FBP91. R. Freivalds, J. Bārzdiņš, and K. Podnieks, Inductive inference of recursive functions:
complexity bounds. Baltic Computer Science, Lecture Notes in Computer Science 502 (1991)
111–155.

Fre91. R. Freivalds, Inductive inference of recursive functions: qualitative theory. Baltic Computer
Science, Lecture Notes in Computer Science 502 (1991) 77–110.

FKS95. R. Freivalds, E. Kinber, and C. H. Smith, On the intrinsic complexity of learning. Infor-
mation and Computation 123 (1995) 64–71.

FS93. R. Freivalds and C. Smith, On the role of procrastination in machine learning. Information
and Computation 107 (1993) 237–271.

FW79. R. Freivalds and R. Wiehagen, Inductive inference with additional information. Journal of
Information Processing and Cybernetics (EIK) 15 (1979) 179–185.

GJ79. M. R. Garey and D. S. Johnson, Computers and Intractability. Freeman and Company, New
York, 1979.

GS95. W. Gasarch and C. Smith, Recursion theoretic models of learning: some results and intu-
itions. Annals of Mathematics and Artificial Intelligence 15 (1995) 151–166.

Gol67. E. M. Gold, Language identification in the limit. Information and Control 10 (1967) 447–
474.

JB81. K. P. Jantke and H.-R. Beick, Combining postulates of naturalness in inductive inference.
Journal of Information Processing and Cybernetics (EIK) 17 (1981) 465–484.

JORS99. S. Jain, D. Osherson, J. S. Royer and A. Sharma, Systems that Learn. Second edition,
MIT Press, Cambridge, 1999.

JS96. S. Jain and A. Sharma, The intrinsic complexity of language identification. Journal of Com-
puter and System Sciences 52 (1996) 393–402.

JS97a. S. Jain and A. Sharma, The structure of intrinsic complexity of learning. Journal of Sym-
bolic Logic 62 (1997) 1187–1201.

JS97b. S. Jain and A. Sharma, Elementary formal systems, intrinsic complexity, and procrastina-
tion. Information and Computation 132 (1997) 65–84.

KPSW99. E. Kinber, C. Papazian, C. Smith, and R. Wiehagen, On the intrinsic complexity of
learning infinite objects from finite samples. Technical Report LSA-99-01E, Centre for Learning
Systems and Applications, Department of Computer Science, University of Kaiserslautern,
1999.

Kum95. M. Kummer, A learning-theoretic characterization of classes of recursive functions. Infor-
mation Processing Letters 54 (1995) 205–211.

KW80. R. Klette and R. Wiehagen, Research in the theory of inductive inference by GDR math-
ematicians – a survey. Information Sciences 22 (1980) 149–169.

INTRINSIC COMPLEXITY 29

MY78. M. Machtey and P. Young, An Introduction to the General Theory of Algorithms. North-
Holland, New York, 1978.

Nes98. J. Nessel, Birds can fly . . . Proceedings of the Eleventh Annual Conference on Computa-
tional Learning Theory, pp. 56–63, ACM Press, 1998.

OSW86. D. Osherson, M. Stob, and S. Weinstein, Systems that Learn. MIT Press, Cambridge,
1986.

PW90. L. Pitt and M. K. Warmuth, Prediction-preserving reducibility. Journal of Computer and
System Sciences 41 (1990) 430–467.

Rog58. H. Rogers Jr., Gödel numberings of partial recursive functions. Journal of Symbolic Logic
23 (1958) 331–341.

Rog67. H. Rogers Jr., Theory of Recursive Functions and Effective Computability. McGraw Hill,
New York, 1967.

Smi94. C. Smith, A Recursive Introduction to the Theory of Computation. Springer, 1994.

Ste96. F. Stephan, On one-sided versus two-sided classification. Technical Report 25/1996, Math-
ematical Institute, University of Heidelberg, 1996.

