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Abstract

This paper deals with two problems: 1) what makes languages to be learnable in the
limit by natural strategies of varying hardness; 2) what makes classes of languages to be the
hardest ones to learn. To quantify hardness of learning, we use intrinsic complexity based
on reductions between learning problems. Two types of reductions are considered: weak
reductions mapping texts (representations of languages) to texts, and strong reductions
mapping languages to languages. For both types of reductions, characterizations of com-
plete (hardest) classes in terms of their algorithmic and topological potentials have been
obtained. To characterize the strong complete degree, we discovered a new and natural
complete class capable of “coding” any learning problem using density of the set of rational
numbers. We have also discovered and characterized rich hierarchies of degrees of com-
plexity based on “core” natural learning problems. The classes in these hierarchies contain
“multidimensional” languages, where the information learned from one dimension aids to
learn other dimensions. In one formalization of this idea, the grammars learned from the
dimensions 1, 2, . . . , k specify the “subspace” for the dimension k + 1, while the learning
strategy for every dimension is predefined. In our other formalization, a “pattern” learned
from the dimension k specifies the learning strategy for the dimension k + 1. A number of
open problems is discussed.
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1 Introduction

There are two major objectives our paper attempts to achieve:
a) to discover what makes languages to be learnable in the limit by natural strategies of

varying hardness;
b) to discover what makes classes of languages to be the hardest ones to learn.
The theory of learning languages in the limit, which has been quite advanced over the last

three decades, suggests several ways to quantify hardness (complexity) of learning. The most
popular among them are:

a) counting the number of mind changes [BF72, CS83, LZ93] the learner makes before
arriving to the final hypothesis;

b) measuring the amount of (so-called long-term) memory the learner uses [Kin94, KS95];
c) reductions between different learning problems (classes of languages) and respective de-

grees of so-called intrinsic complexity [FKS95, JS96, JS97].
There have been several other notions of complexity of learning considered in the literature

(for example see [Gol67, DS86, Wie86]).
The first two approaches above reveal quite interesting complexity hierarchies among learn-

able classes of languages ([CS83, LZ93, KS95]). However, a large number of interesting and
very different natural classes of learnable classes falls into the category that requires more than
uniformly bounded finite number of mind changes, as well as maximum (linear) amount of long-
term memory. As it is demonstrated in our paper, intrinsic complexity of language learning,
based on the idea of reductions, is perfectly suitable for quantifying hardness of many such nat-
ural classes of languages. It can be also successfully utilized to characterize the whole degrees
of learnability based on these natural classes.

There are two different approaches to formalizing the concept of intrinsic complexity based
on reductions between classes of languages [JS96]. In general terms, a major part of any
reduction of one learning problem to another one is a mapping (an operator) that maps a
language of the first learning problem to a language of the second one. A language is usually
presented to a learner in form of a text, an infinite sequence of all elements of the language
(possibly, with repetitions). Any non-empty language can be represented by many different
texts. If a reduction may translate different texts of the same language to texts of different
languages, we call such a reduction weak. If a reduction is required to translate all texts of the
input language to texts of the same language, we call such a reduction strong. Roughly, a weak
reduction translates texts to texts, while a strong reduction translates languages to languages.
The paper [JS96] reveals significant differences between degrees of intrinsic complexity based
on weak and, respectively, strong reductions.

For both types of reductions, we have obtained characterizations of complete degrees in
terms of their algorithmic and topological potentials. For the case of strong reductions, we
discovered a new natural complete class capable of “coding ” (in the limit) any learning problem
using density of the set of rational numbers. For weak reducibility, we were able to use the
fact that the complete degree contains the class FINITE of all finite sets. The characterization
for the weak complete degree is very different from any other characterization obtained in
the paper - it is based on a requirement of density in terms of Baire topology. Note that a
characterization of the complete degree of intrinsic complexity for function learning formulated
in similar terms was obtained in [KPSW99]. The main difference between our characterization
of weak complete degrees and the characterization for function learning in [KPSW99] is the
requirement of standardizability (see Definition 5) for the hardest classes of languages. This
notion, introduced quite long time ago in [Kin75, Fre91, JS94], for different purposes, turned
out to be surprisingly useful for the characterization of all degrees in our paper.
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For both types of reductions, we have also discovered and characterized rich structures of
classes of languages, each of which requires its own specific type of learning strategy. Languages
in these classes can be represented in “multidimensional” form, where the information obtained
from learning one “dimension” aids in learning other “dimensions”. We suggest and discuss
several possibilities to formalize such “aid” and the ways it can be used. In the given paper,
we concentrate on two following formalizations:

a) the grammars learned from the “dimensions” L1, L2, . . . , Lk specify the “subspace” con-
taining the “sublanguage” Lk+1;

b) the grammar learned from the “dimension” Lk codes a “pattern” that specifies a learning
strategy for the class of languages containing Lk+1.

For the first formalization, we have obtained the complete picture of degrees of complexity
for the classes of “multidimensional” languages based on combinations of probably the most
important known natural classes of learnable languages: INIT,COINIT,SINGLE,COSINGLE
(see Definition 6). Classes that can be defined under the second formalization turn out to
be very complex. Yet we have shown that all of them are incomplete. The general problem
whether such classes form a complexity hierarchy remains open.

In short, our major accomplishments are:
1) discovery of the fact that any language learning problem can be algorithmically coded

using sets {x | 0 ≤ x ≤ r} of rational numbers;
2) characterizations of hardest learning problems in terms of their topological and algorith-

mic potentials;
3) discovery of a complex hierarchy of degrees of “multidimensional” languages; being inter-

esting in its own right, this hierarchy can be used as a scale for quantifying hardness of learning
complex concepts (for instance, it has been applied to quantify hardness of learning complex
geometrical concepts in [JK99]).

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. The symbol N denotes the set of
natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper
subset, superset, and proper superset, respectively. D0, D1, . . . , denotes a canonical recursive
indexing of all the finite sets [Rog67, Page 70]. We assume that if Di ⊆ Dj then i ≤ j (the
canonical indexing defined in [Rog67] satisfies this property). Cardinality of a set S is denoted
by card(S). The maximum and minimum of a set are denoted by max(·),min(·), respectively,
where max(∅) = 0 and min(∅) = ∞. L1∆L2 denotes the symmetric difference of L1 and L2,
that is L1∆L2 = (L1 − L2) ∪ (L2 − L1). For a natural number a, we say that L1 =a L2, iff
card(L1∆L2) ≤ a. We say that L1 =∗ L2, iff card(L1∆L2) < ∞. Thus, we take n < ∗ < ∞,
for all n ∈ N . If L1 =a L2, then we say that L1 is an a-variant of L2.

We let 〈·, ·〉 stand for an arbitrary, computable, bijective mapping from N × N onto N
[Rog67]. We assume without loss of generality that 〈·, ·〉 is monotonically increasing in both of
its arguments. We define π1(〈x, y〉) = x and π2(〈x, y〉) = y. 〈·, ·〉 can be extended to n-tuples
in a natural way (including n = 1, where 〈x〉 may be taken to be x). Projection functions
π1, . . . , πn corresponding to n-tuples can be defined similarly (where the tuple size would be
clear from context). Due to the above isomorphism between Nk and N , we often identify the
tuple (x1, · · · , xn) with 〈x1, · · · , xn〉.

By ϕ we denote a fixed acceptable programming system for the partial computable functions
mapping N to N [Rog67, MY78]. By ϕi we denote the partial computable function computed by
the program with number i in the ϕ-system. Symbol R denotes the set of all recursive functions,
that is total computable functions. By Φ we denote an arbitrary fixed Blum complexity measure
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[Blu67, HU79] for the ϕ-system. A partial recursive function Φ(·, ·) is said to be a Blum
complexity measure for ϕ, iff the following two conditions are satisfied:

(a) for all i and x, Φ(i, x)↓ iff ϕi(x)↓.
(b) the predicate: P (i, x, t) ≡ Φ(i, x) ≤ t is decidable.
By convention we use Φi to denote the partial recursive function λx.Φ(i, x). Intuitively,

Φi(x) may be thought as the number of steps it takes to compute ϕi(x).
By Wi we denote domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted (or

equivalently, generated) by the ϕ-program i. We also say that i is a grammar for Wi. Symbol E
will denote the set of all r.e. languages. Symbol L, with or without decorations, ranges over E .
By L, we denote the complement of L, that is N − L. Symbol L, with or without decorations,
ranges over subsets of E . By Wi,s we denote the set {x < s | Φi(x) < s}.

A class L ⊆ E is said to be recursively enumerable (r.e.) [Rog67], iff L = ∅ or there
exists a recursive function f such that L = {Wf(i) | i ∈ N}. In this latter case we say that
Wf(0),Wf(1), . . . is a recursive enumeration of L. L is said to be 1–1 enumerable iff (i) L is finite
or (ii) there exists a recursive function f such that L = {Wf(i) | i ∈ N} and Wf(i) 6= Wf(j), if
i 6= j. In this latter case we say that Wf(0),Wf(1), . . . is a 1–1 recursive enumeration of L.

A partial function F from N to N is said to be partial limit recursive, iff there exists a
recursive function f from N ×N to N such that for all x, F (x) = limy→∞ f(x, y). Here if F (x)
is not defined then limy→∞ f(x, y), must also be undefined. A partial limit recursive function F
is called (total) limit recursive function, if F is total. For example, the characteristic function
of any recursively enumerable, non-recursive set is, by definition, not a recursive function, but
this function is clearly limit recursive. ↓ denotes defined or converges. ↑ denotes undefined or
diverges.

We now present concepts from language learning theory. The next definition introduces the
concept of a sequence of data.

Definition 1 (a) A sequence σ is a mapping from an initial segment of N into (N ∪{#}). The
empty sequence is denoted by Λ.

(b) The content of a sequence σ, denoted content(σ), is the set of natural numbers in the
range of σ.

(c) The length of σ, denoted by |σ|, is the number of elements in σ. So, |Λ| = 0.
(d) For n ≤ |σ|, the initial sequence of σ of length n is denoted by σ[n]. So, σ[0] is Λ.

Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and γ, with
or without decorations, range over finite sequences. We denote the sequence formed by the
concatenation of τ at the end of σ by σ � τ . Sometimes we abuse the notation and use σ � x
to denote the concatenation of sequence σ and the sequence of length 1 which contains the
element x. SEQ denotes the set of all finite sequences.

Definition 2 [Gol67] (a) A text T for a language L is a mapping from N into (N ∪{#}) such
that L is the set of natural numbers in the range of T .

(b) The content of a text T , denoted by content(T ), is the set of natural numbers in the
range of T ; that is, the language which T is a text for.

(c) T [n] denotes the finite initial sequence of T with length n.

We let T , with or without decorations, range over texts. We let T range over sets of texts.
A class T of texts is said to be r.e. iff there exists a recursive function f , and a sequence

T0, T1, . . . of texts such that T = {Ti | i ∈ N}, and, for all i, x, Ti(x) = f(i, x).

Definition 3 A language learning machine [Gol67] is an algorithmic device which computes a
mapping from SEQ into N .
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We let M, with or without decorations, range over learning machines. M(T [n]) is interpreted
as the grammar (index for an accepting program) conjectured by the learning machine M
on the initial sequence T [n]. We say that M converges on T to i, (written M(T )↓ = i) iff

(
∞
∀ n)[M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language. Below we
define identification in the limit introduced by Gold [Gol67].

Definition 4 [Gol67, CS83] Suppose a ∈ N ∪ {∗}.
(a) M TxtExa-identifies a text T just in case (∃i | Wi =a content(T )) (

∞
∀ n)[M(T [n]) = i].

(b) M TxtExa-identifies an r.e. language L (written: L ∈ TxtExa(M)) just in case M
TxtExa-identifies each text for L.

(c) M TxtExa-identifies a class L of r.e. languages (written: L ⊆ TxtExa(M)) just in
case M TxtExa-identifies each language from L.

(d) TxtExa = {L ⊆ E | (∃M)[L ⊆ TxtExa(M)]}.

For a = 0, we often write TxtEx instead of TxtEx0.
Other criteria of success are finite identification [Gol67], behaviorally correct identification

[Fel72, OW82, CL82], and vacillatory identification [OW82, Cas88]. In the present paper, we
only discuss results about TxtExa-identification.

The following definition is a generalization of the definition of limiting standardizability
considered in [Kin75, Fre91, JS94].

Definition 5 Let a ∈ N ∪ {∗}. A class L of recursively enumerable sets is called a-limiting
standardizable iff there exists a partial limiting recursive function F such that

(a) For all i such that Wi =a L for some L ∈ L, F (i) is defined.
(b) For all L,L′ ∈ L, for all i, j such that Wi =a L and Wj =a L′,

F (i) = F (j) ⇔ L = L′.

[Kin75, Fre91, JS94] L is called limiting standardizable iff L is 0-limiting standardizable.

Thus, informally, a class L of r.e. languages is limiting standardizable if all the infinitely
many grammers i ∈ N of each language L ∈ L can be mapped (“standardized”) in the limit
to some unique grammar (natural number). Notice that it is not required that this “standard
grammar” must be a grammar of L again. However, standard grammars for different languages
from L have to be pairwise different.

The following basic classes of languages will be used frequently in the following.

Definition 6 SINGLE = {L | (∃i)[L = {i}]}.
COSINGLE = {L | (∃i)[L = N − {i}]}.
INIT = {L | (∃i)[L = {x | x ≤ i}]}.
COINIT = {L | (∃i)[L = {x | x ≥ i}]}.
FINITE = {L | L is a finite subset of N}.

3 Weak and Strong Reductions

We first present some technical machinery.
We write σ ⊆ τ if σ is an initial segment of τ , and σ ⊂ τ if σ is a proper initial segment

of τ . Likewise, we write σ ⊂ T if σ is an initial finite sequence of text T . Let finite sequences
σ0, σ1, σ2, . . . be given such that σ0 ⊆ σ1 ⊆ σ2 ⊆ · · · and limi→∞ |σi| = ∞. Then there is a
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unique text T such that for all n ∈ N , σn = T [|σn|]. This text is denoted by
⋃

n σn. Let T
denote the set of all texts, that is, the set of all infinite sequences over N ∪ {#}.

We define an enumeration operator (or just operator), Θ, to be an algorithmic mapping
from SEQ into SEQ such that for all σ, τ ∈ SEQ, if σ ⊆ τ , then Θ(σ) ⊆ Θ(τ). We further
assume that for all texts T , limn→∞ |Θ(T [n])| = ∞. By extension, we think of Θ as also defining
a mapping from T into T such that Θ(T ) =

⋃
n Θ(T [n]).

A final notation about the operator Θ. If for a language L, there exists an L′ such that
for each text T for L, Θ(T ) is a text for L′, then we write Θ(L) = L′, else we say that Θ(L)
is undefined. The reader should note the overloading of this notation because the type of the
argument to Θ could be a sequence, a text, or a language; it will be clear from the context
which usage is intended.

We let Θ(T ) = {Θ(T ) | T ∈ T }, and Θ(L) = {Θ(L) | L ∈ L}.
We also need the notion of an infinite sequence of grammars. We let α, with or without

decorations, range over infinite sequences of grammars. From the discussion in the previous
section it is clear that infinite sequences of grammars are essentially infinite sequences over
N . Hence, we adopt the machinery defined for sequences and texts over to finite sequences of
grammars and infinite sequences of grammars. So, if α = i0, i1, i2, i3, . . ., then α[3] denotes the
sequence i0, i1, i2, and α(3) is i3. Furthermore, we say that α converges to i if there exists an
n such that, for all n′ ≥ n, in′ = i.

We say that an infinite sequence α of grammars is TxtExa-admissible for text T just in case
α witnesses TxtExa-identification of text T . So, if α = i0, i1, i2, . . . is a TxtExa-admissible
sequence for T , then α converges to some i such that Wi =a content(T ); that is, the limit i of
the sequence α is a grammar for an a-variant of the language content(T ).

We now formally introduce our reductions.

Definition 7 [JS96] Let a ∈ N ∪ {∗}. Let L1 ⊆ E and L2 ⊆ E be given. Let T1 = {T |
T is a text for L ∈ L1}. Let T2 = {T | T is a text for L ∈ L2}. We say that L1 ≤TxtExa

weak L2

just in case there exist operators Θ and Ψ such that for all T ∈ T1 and for all infinite sequences
α of grammars the following hold:

(a) Θ(T ) ∈ T2 and
(b) if α is a TxtExa-admissible sequence for Θ(T ), then Ψ(α) is a TxtExa-admissible

sequence for T .
We say that L1 ≡TxtExa

weak L2 iff L1 ≤TxtExa

weak L2 and L2 ≤TxtExa

weak L1.

Intuitively, L1 ≤TxtExa

weak L2 just in case there exists an operator Θ that transforms texts for
languages in L1 into texts for languages in L2 and there exists another operator Ψ that behaves
as follows: if Θ transforms text T (for a language in L1) to text T ′ (for a language in L2), then
Ψ transforms TxtExa-admissible sequences for T ′ into TxtExa-admissible sequences for T .
Thus, informally, the operator Ψ has “to work” only on TxtExa-admissible sequences for such
texts T ′. In other words, if α is a sequence of grammars which is not TxtExa-admissible for any
text T ′ in {Θ(T ) | content(T ) ∈ L1}, then Ψ(α) can be defined arbitrarily. This property will
be used implicitly at all places below where we have to define operators Ψ witnessing (together
with operators Θ) some reducibility. Note that this approach both simplifies the corresponding
definitions and preserves the computability of the so defined operators.

If L1 ≤TxtExa

weak L2 then, intuitively, the problem of TxtExa-identifying L2 is at least as hard
as the problem of TxtExa-identifying L1, since the solvability of the former problem implies
the solvability of the latter one. That is, given any machine M2 which TxtExa-identifies L2,
it is easy to construct a machine M1 which TxtExa-identifies L1. To see this suppose Θ and
Ψ witness L1 ≤TxtExa

weak L2. M1(T ), for a text T is defined as follows. Let pn = M2(Θ(T )[n]),
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and α = p0, p1, . . .. Let α′ = Ψ(α) = p′0, p
′
1, . . .. Then let M1(T ) = limn→∞ p′n. Consequently,

L2 may be considered as a “hardest” problem for TxtExa-identification if for all classes L1 ∈
TxtExa, L1 ≤TxtExa

weak L2 holds. If L2 itself belongs to TxtExa, then L2 is said to be complete.
We now formally define these notions of hardness and completeness for the above reduction.

Definition 8 [JS96] Let a ∈ N ∪ {∗}. Let L ⊆ E be given.
(a) If for all L′ ∈ TxtExa, L′ ≤TxtExa

weak L, then L is ≤TxtExa

weak -hard .
(b) If L is ≤TxtExa

weak -hard and L ∈ TxtExa, then L is ≤TxtExa

weak -complete.

It should be noted that if L1 ≤TxtExa

weak L2 by operators Θ and Ψ, then there is no requirement
that Θ maps all texts for each language in L1 into texts for a unique language in L2. If we
further place such a constraint on Θ, we get the following stronger notion.

Definition 9 [JS96] Suppose a ∈ N ∪ {∗}. Let L1 ⊆ E and L2 ⊆ E be given. We say that
L1 ≤TxtExa

strong L2 just in case there exist operators Θ,Ψ witnessing that L1 ≤TxtExa

weak L2, and for
all L1 ∈ L1, there exists an L2 ∈ L2, such that (∀ texts T for L1)[Θ(T ) is a text for L2].

We say that L1 ≡TxtExa

strong L2 iff L1 ≤TxtExa

strong L2 and L2 ≤TxtExa

strong L1.

We can similarly define ≤TxtExa

strong -hardness and ≤TxtExa

strong -completeness.

Proposition 1 ([JS96]) ≤TxtExa

weak , ≤TxtExa

strong are reflexive and transitive.

The above proposition holds for most natural learning criteria. It is also easy to verify the next
proposition stating that strong reducibility implies weak reducibility.

Proposition 2 [JS96] Suppose a ∈ N ∪ {∗}. Let L ⊆ E and L′ ⊆ E be given. Then L ≤TxtExa

strong

L′ ⇒ L ≤TxtExa

weak L′.

Proposition 3 (based on [JS97]) Suppose a ∈ N ∪ {∗}. Suppose L ≤TxtExa

strong L′, via Θ and Ψ.
Then, for all L,L′ ∈ L, L ⊆ L′ ⇒ Θ(L) ⊆ Θ(L′).

We will be using Proposition 3 implicitly when we are dealing with strong reductions. Since, for
L ≤TxtExa

strong L′ via Θ and Ψ, for all L ∈ L, Θ(L) is defined (= some L′ ∈ L′), when considering
strong reductions, we often consider Θ as mapping sets to sets instead of mapping sequences
to sequences. This is clearly without loss of generality, as one can easily convert such Θ to Θ
as in Definition 9 of strong-reduction.

4 A Natural Strongly Complete Class and a Characterization
of Strongly Complete Classes

In this section we exhibit a natural class which is ≤TxtExa

strong -complete for all a ∈ N (see Theo-
rem 2). Corollary 1 to Theorem 2 then shows an even simpler class, RINIT0,1 defined below,
as ≤TxtEx

strong -complete. We also characterize the ≤TxtExa

strong -complete degree, for all a ∈ N , in
Theorem 3.

Let rat denote the set of all non-negative rational numbers. For s, r ∈ rat, let rats,r =
{x ∈ rat | s ≤ x ≤ r}. For allowing us to consider r.e. sets of rational numbers, let coderat(·)
denote an effective bijective mapping from rat to N .

Definition 10 Suppose r ∈ rat0,1.
Let Xr = {coderat(x) | x ∈ rat and 0 ≤ x ≤ r}.
Let Xcyl

r = {coderat(2w + x) | x ∈ rat, w ∈ N and 0 ≤ x ≤ r}.
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Notice that the factor 2 in the definition of Xcyl
r is used for technical reasons only – since 1

belongs to both rat0,1 and {1 + x | x ∈ rat0,1}.

Definition 11 Suppose s, r ∈ rat0,1 and s < r.
Let RINITs,r = {Xw | w ∈ rats,r}.
Let RINITcyl

s,r = {Xcyl
w | w ∈ rats,r}.

Our main goal in this section is to show that the class RINIT0,1 is complete. Informally, we
have to demonstrate that every language learning problem can be effectively coded as a sequence
of increasing rationals that stabilizes to one rational in the interval [0, 1]. More specifically, we
code by rationals the sequence of hypotheses outputted by a (modified) learning device being
fed an arbitrary text of a learnable language. First, we prove a simple technical Proposition 4
that gives us opportunity to algorithmically generate sequences of rationals that tend to get
closer to each other still keeping previously chosen distances between them; these sequences
are necessary for coding. Using Theorem 1 gives us opportunity to use learning machines
M that have special properties: their outputs do not depend on arrangement and order of
language elements in the input. Using such a machine Proposition 7 allows us to construct a
“learning device” H that stabilizes its conjectures on certain “full locking sequences” for the
underlying languages. Using the functions provided by Proposition 4, one can map sequences
of conjectures produced by H on inputs stabilizing to “full locking sequences” to sequences of
rationals stabilizing to a rational representing a language in RINIT0,1.

In some cases below, in the pairing function we will be using finite sets as arguments (for
example 〈S, l〉). This is for ease of notation: 〈S, l〉 should be understood as 〈x, l〉, where x is a
canonical code [Rog67] for the finite set S (i.e. Dx = S).

Proposition 4 There exist recursive functions F and ε from rat0,1 to rat0,1 such that,
(i) for all x ∈ rat0,1, ε(x) > 0, and
(ii) for all rationals, x, y, where 0 ≤ x < y ≤ 1,

F (x) + ε(x) < F (y).

Moreover, F (1) + ε(1) ≤ 1.

Proof. Let q0, q1, . . ., be some 1–1 recursive enumeration of all the rational numbers between
0 and 1 (both inclusive), such that q0 = 0 and q1 = 1.

We define, inductively on i, F (qi) and ε(qi).
Let F (0) = 1/8 and ε(0) = 1/8. Let F (1) = 7/8, ε(1) = 1/8.
Induction Hypothesis: Suppose we have defined F (qi) and ε(qi), for i ≤ k. Then for all

j, j′ ≤ k, [qj < qj′ ⇒ F (qj) + ε(qj) < F (qj′)]. Note that the induction hypothesis is clearly true
for k = 1.

Now suppose that F (qi) and ε(i) have been defined for i ≤ k.
We now define F (qk+1) and ε(qk+1) as follows.
Let p1 = max({qi | i ≤ k ∧ qi < qk+1}). Let p2 = min({qi | i ≤ k ∧ qi > qk+1}).
By induction hypothesis, F (p1) + ε(p1) < F (p2).
Let F (qk+1) = F (p1)+ ε(p1)+ [F (p2)− (F (p1)+ ε(p1))]/3, and ε(qk+1) = [F (p2)− (F (p1)+

ε(p1))]/3.
It is easy to verify that the induction hypothesis is satisfied. The proposition follows.

Intuitively, one may consider x → [F (x), F (x)+ε(x)] as a mapping from rat0,1 to nontrivial
closed intervals of rationals (within [0, 1]) such that intervals do not overlap, and the interval
for smaller rational is below the interval for larger rational.
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Fix F , ε as in the above proposition.
For S ∈ FINITE, let code(S) =

∑
x∈S 2−x−1. Note that 0 ≤ code(S) < 1.

Note that, if min(S − S′) < min(S′ − S), then code(S) > code(S′) (here min(∅) = ∞).
For S ∈ FINITE and l ∈ N , let G(〈S, l〉) = F (code(S)) + ε(code(S))− ε(code(S))

l+2 .

Proposition 5 G is a recursive mapping from N to rat0,1. Moreover, if min(S − S′) <
min(S′ − S) or S = S′ and l > l′, then G(〈S, l〉) > G(〈S′, l′〉).

Proof. Follows from definition of G.

Definition 12 [Ful90, BB75] A machine M is said to be rearrangement independent iff for all
σ, τ ∈ SEQ, if content(σ) = content(τ), and |σ| = |τ |, then M(σ) = M(τ).

A machine M is said to be order independent iff for all texts T and T ′, if content(T ) =
content(T ′), then either both M(T ) and M(T ′) are undefined, or both are defined and M(T ) =
M(T ′).

Note that rearrangement independent machines base their output only on the content and
length of the input. Thus for l ≥ card(S), we define βS,l as the lexicographically least σ of
length l such that content(σ) = S.

Theorem 1 (based on [Ful90]) Suppose a ∈ N ∪ {∗} and L ∈ TxtExa. Then there exists a
rearrangement independent and order independent machine M such that L ⊆ TxtExa(M).

Definition 13 [Ful90, BB75] σ ∈ SEQ is said to be a stabilizing sequence for M on L, iff
content(σ) ⊆ L, and for all τ such that σ ⊆ τ and content(τ) ⊆ L, M(σ) = M(τ).

σ ∈ SEQ is said to be a TxtExa-locking sequence for M on L, iff σ is a stabilizing sequence
for M on L, and WM(σ) =a L.

Lemma 1 (based on [BB75, JORS99]) Suppose a ∈ N ∪ {∗}. If M TxtExa-identifies L, then
there exists a stabilizing sequence for M on L, and every stabilizing sequence for M on L is a
TxtExa-locking sequence for M on L.

Definition 14 Suppose M is a rearrangement independent and order independent learning
machine. Let S ∈ FINITE and l ∈ N .
(a) 〈S, l〉 is said to be a full-stabilizing-sequence for M on L iff:

(i) l > max(S),
(ii) (∀x < l)[x ∈ L ⇔ x ∈ S],
(iii) βS,2l is a stabilizing sequence for M on L.

(b) Suppose a ∈ N ∪ {∗}. 〈S, l〉 is said to be a TxtExa-full-locking-sequence for M on L, iff
〈S, l〉 is a full-stabilizing-sequence for M on L, and WM(βS,2l) =a L.

Intuitively, 〈S, l〉 is a full-stabilizing-sequence (TxtExa-full-locking-sequence) for M on L,
if βS,2l is a stabilizing sequence (TxtExa-locking sequence) for M on L, and βS,2l contains
exactly the elements in L which are less than l.

Proposition 6 Suppose a ∈ N ∪ {∗} and M is a rearrangement independent and order in-
dependent machine, which TxtExa-identifies L. Then there exists a full-stabilizing-sequence
for M on L. Moreover, every full-stabilizing-sequence for M on L is a TxtExa-full-locking-
sequence for M on L.
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Proof. Suppose M TxtExa-identifies L. Suppose σ is a stabilizing-sequence for M on L. Let
l = 1 + max({|σ|} ∪ content(σ)), and S = {x | x < l ∧ x ∈ L}. It follows that βS,2l is also
a stabilizing-sequence for M on L. Thus, 〈S, l〉 is a full-stabilizing-sequence for M on L. The
second part of the proposition follows from Lemma 1.

Definition 15 We say that 〈S, l〉 is the least full-stabilizing-sequence for M on L, iff 〈S, l〉 is a
full-stabilizing-sequence for M on L which minimizes l.

Proposition 7 Suppose M is a rearrangement independent and order independent machine.
Then, there exists a recursive function H mapping SEQ to N , such that

(i) For all σ ∈ SEQ, if H(σ) = 〈S, l〉, then max(S) < l.
(ii) For all σ ⊆ τ , G(H(τ)) ≥ G(H(σ)).
(iii) For all texts T , H(T ) = limn→∞ H(T [n]) converges to the least full-stabilizing-sequence

for M on content(T ), if any.

Proof. Define H(σ) as follows:
For l ≤ 1 + max(content(σ) ∪ {|σ|}), let Sσ

l = content(σ) ∩ {x | x < l}.
Let H(σ) = 〈Sσ

l , l〉, for the least l ≤ 1 + max(content(σ) ∪ {|σ|}), such that

(∀τ | βSσ
l ,2l ⊆ τ ∧ content(τ) ⊆ content(σ) ∧ |τ | ≤ |σ|)[M(βSσ

l ,2l) = M(τ)]

Note that there exists an l as above, since l = 1 + max(content(σ) ∪ {|σ|}), satisfies the
requirements.

Using Proposition 5, we claim that H satisfies the properties above. (i) is trivially true.
Clearly, H(T ) converges to the least full-stabilizing-sequence for M on content(T ), if any. Thus,
(iii) is satisfied. Now we consider the monotonicity requirement (ii). Suppose σ ⊆ τ . Suppose
H(σ) = 〈Sσ

l , l〉 and H(τ) = 〈Sτ
l′ , l

′〉.
(1) Clearly, Sσ

w ⊆ Sτ
w, for all w.

(2) If l′ < l, then Sτ
l′ must be a proper superset of Sσ

l′ (otherwise 〈Sτ
l′ , l

′〉 would have been a
candidate for consideration as full-stabilizing-sequence even for input σ). Thus, G(〈Sτ

l′ , l
′〉) >

G(〈Sσ
l , l〉), by Proposition 5.

(3) If l′ ≥ l, then Sτ
l′ ⊇ Sσ

l . Thus, G(〈Sτ
l′ , l

′〉) ≥ G(〈Sσ
l , l〉), by Proposition 5.

Theorem 2 For any a ∈ N , RINITcyl
0,1 is ≤TxtExa

strong -complete.

Proof. Clearly RINITcyl
0,1 ∈ TxtEx ⊆ TxtExa.

Suppose L ∈ TxtExa. Let M be a rearrangement independent and order independent
machine which TxtExa-identifies L.

Let H be as in Proposition 7.
Let Θ be defined as follows.
Let Θ(σ) = Xcyl

G(H(σ)). Note that for L ∈ TxtExa(M), Θ(L) = Xcyl
G(〈S,l〉), where 〈S, l〉, is the

least full-stabilizing-sequence for M on L (by Proposition 7).
Ψ is defined as follows. Suppose a sequence α of grammars converges to a grammar p. (If

there is no such p, then it does not matter what Ψ outputs on sequence α). Suppose x ∈ rat0,1

is the maximum rational number (if any) such that coderat(2w + x) ∈ Wp, for at least 2a + 1
different w ∈ N . (If there is no such x, then it does not matter what Ψ outputs on sequence
α). Suppose S ∈ FINITE, l ∈ N (if any) are such that x = G(〈S, l〉). (If there are no such S,
l, then it does not matter what Ψ outputs on sequence α). Then, Ψ(α) converges to M(βS,2l).
It is easy to verify that Θ and Ψ witness that TxtExa(M) ≤TxtExa

strong RINITcyl
0,1.

12



This completes the proof of Theorem 2.

Corollary 1 RINIT0,1 is ≤TxtEx
strong -complete.

Proof. By Theorem 2, RINITcyl
0,1 is ≤TxtEx

strong -complete. Now we show that RINITcyl
0,1 ≤TxtEx

strong

RINIT0,1 as follows.
Define Θ as follows. Θ(X) = X ∩ rat0,1.
Let Ψ be defined as follows. Suppose a sequence α of grammars converges to a grammar p.

Then, Ψ(α) converges to a grammar for {coderat(2w+x) | w ∈ N ∧ x ∈ rat0,1 ∧ coderat(x) ∈
Wp}. It is easy to verify that Θ and Ψ witness that RINITcyl

0,1 ≤TxtEx
strong RINIT0,1.

Why RINIT0,1 is complete and, say, INIT is not? From the first glance, strategies learning
both classes seem to be identical: being fed the input text, pick the largest number in it to
represent the language to be learned. However, there is a subtle difference. Numbers in any
language in INIT can be listed in the ascending order, while for the rationals in languages
from RINIT0,1 this is not possible. Learning, say, the language {0, 1, 2, 3, 4, 5, 6}, being fed the
number 3, we need at most three “mind changes” to arrive at the correct hypothesis. On the
other hand, learning the language X2/3, we always choose the largest number in the input as
our conjecture, however, 1/2 being such a number in the initial fragment of the input does not
impact in any way the number of mind changes that will yet occur before we arrive at the final
conjecture 2/3 – it depends entirely on the input. This lack of any conceivable bound on the
number of remaining mind changes differentiates RINIT0,1 from all other, non-complete, classes
observed in our paper.

Theorem 3 For any a ∈ N and any L ∈ TxtExa, L is ≤TxtExa

strong -complete iff there exists a
recursive function H from rat0,1 to N such that:

(a) {WH(r) | r ∈ rat0,1} ⊆ L.
(b) If 0 ≤ r < r′ ≤ 1, then WH(r) ⊂ WH(r′).
(c) {WH(r) | r ∈ rat0,1} is a-limiting standardizable.

Proof. For the whole proof, for q ∈ rat0,1, let Tq denote a text, obtained effectively from q,
for Xcyl

q .

⇒: Suppose L is ≤TxtExa

strong -complete. Then, RINITcyl
0,1 ≤TxtExa

strong L, say via Θ, Ψ.
Define H and E as follows.
WH(q) = content(Θ(Tq)), for q ∈ rat0,1. Clearly, {WH(r) | r ∈ rat0,1} ⊆ L.
E defined below will witness the a-limiting standardizability of {WH(r) | r ∈ rat0,1}. E(p)

is defined as follows. Suppose αp = p, p, p, . . .. Suppose Ψ(αp) converges to w. Then E(p) =
maximum rational number r ∈ rat0,1 (if any) such that, for at least 2a + 1 different natural
numbers m, coderat(2m + r) ∈ Ww.

It is easy to verify that H satisfies parts (a) and (b) of the theorem and E witnesses the
a-limiting standardizability as required in part (c).

⇐: Suppose that H is as given in the theorem, and E witnesses the a-limiting standardiz-
ability as given in condition (c) of the theorem.

Then, define Θ and Ψ witnessing RINITcyl
0,1 ≤TxtExa

strong L as follows.
Θ(L) =

⋃
{WH(q) | coderat(q) ∈ L ∧ q ∈ rat0,1}.

Let pq denote a grammar (obtained effectively from q), for content(Θ(Tq)).
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Define Ψ as follows. Suppose a sequence α of grammars converges to a grammar i. Then,
Ψ(α) converges to a grammar for Xcyl

q , such that E(i) = E(pq) (if there is any such q ∈ rat0,1).
It is easy to verify that Θ and Ψ witness that RINITcyl

0,1 ≤TxtExa

strong L. Since RINITcyl
0,1 is

≤TxtExa

strong -complete by Theorem 2, we have that L is also ≤TxtExa

strong -complete.

5 Strong Degrees and Their Characterizations

In this section we establish and characterize a rich structure of degrees of strong reducibility (or,
simply, strong degrees), where every degree represents some natural type of learning strategies
and reflects topological and algorithmic structures of the languages within it.

Our characterizations of degrees are of two types. Characterizations of the first type, (see
Theorems 4, 6, 8, 10, 12, 16, 21) specify language classes in and below a given degree. Every
such characterization specifies a class of natural strategies learning all languages in the given
degree and failing to learn (at least some) languages in the degrees above or incomparable with
the given degree. In certain sense, such a characterization establishes the scope of learnability
defined by the degree.

Characterizations of the second type (see Theorems 5, 7, 9, 11, 13, 17, 22) specify algorith-
mic and set-theoretical restrictions on all classes of languages in a given degree and all degrees
above imposed by learnability of hardest classes in the given degree.

Every class L of languages observed in this paper naturally specifies all classes in the strong
degree of this class (that is, all classes that are strongly reducible to the given class, and to
which the given class is strongly reducible). We will denote the strong degree of a class L of
languages using the same name as for the class L itself (for example, INIT will stand both for
the class L = INIT, as well as for the whole degree of all classes of languages which are ≡TxtEx

strong

to INIT). Which connotation is being used will be always clear from the context.
The structure of degrees developed in this section can be represented in the form of a

complex directed graph. The lowest, or, rather, starting points of our hierarchies, are the
degrees SINGLE,COSINGLE, INIT, and COINIT, that contain well-known classes of languages
learnable by some “simplest” strategies. All of these degrees are proven in [JS96] to be pairwise
different.

A natural class of languages to consider is also FINITE. However, this class was shown in
[JS96] to be in the same strong degree as INIT. The paper [JS96] contains a number of other
natural classes of languages, all of which belong to the degrees SINGLE,COSINGLE, INIT, or
COINIT. This enables us to concentrate on classes SINGLE,COSINGLE, INIT, and COINIT
as the “backbone” of our hierarchy.

There certainly exist some other classes and degrees that can be deemed “natural”. Two
examples of such classes are

FINITEn = {L | L ⊆ N, card(L) ≤ n}

and

COCFINUPn = {L | N − L = {i, i + 1, . . . , i + j} for some j < n}.

(COCFINUPn is the short-cut for “co-(contiguous FINITE up to n)”). The corresponding
strong degrees form natural growing hierarchies relative to n. However, these classes just
“stretch” SINGLE and, respectively, COSINGLE to “up to n” elements. These hierarchies may
deserve separate exploration, but we leave them beyond the scope of this paper, concentrating
on classes not impacted by uniform bounds on mind changes.
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We let BASIC = {INIT,COINIT,SINGLE,COSINGLE}.
We begin with characterizations of degrees SINGLE, INIT,COINIT,COSINGLE.

Theorem 4 L ≤TxtEx
strong SINGLE iff there exist F , a partial recursive function from FINITE×N

to N , and G, a partial limit recursive mapping from N to N , such that
(a) For any language L ∈ L,

(i) there exists a finite S ⊆ L, and j ∈ N such that F (S, j)↓; and
(ii) for all S, S′ ⊆ L, for all j, j′ ∈ N , [[F (S, j)↓ and F (S′, j′)↓] ⇒ F (S, j) =
F (S′, j′)].

For L ∈ L, we abuse notation slightly and let F (L) = F (S, j), such that S ⊆ L, j ∈ N and
F (S, j)↓.

(b) For all L ∈ L, G(F (L)) converges to a grammar for L.

Proof. (Only if direction) Suppose L ≤TxtEx
strong SINGLE via Θ and Ψ. Define F and G as

follows.
F (S, j) = min(

⋃
{content(Θ(τ)) | |τ | ≤ j and content(τ) ⊆ S}) (where min(∅) is undefined).

Define G(w) as follows: Let p be a grammar for {w}. Let G(w) = limit (if any) of Ψ(αp),
where αp = p, p, p, . . ..

It is easy to verify that F,G satisfy requirements (a) and (b) of the theorem.

(If direction) Suppose F , G are given as in the theorem. Define Θ as follows.
Θ(L) = {F (S, j) | S is finite, S ⊆ L, j ∈ N, and F (S, j)↓}.
Define Ψ as follows. Suppose a sequence α of grammars converges to a grammar p. Then,

Ψ(α) converges to G(min(Wp)) (if defined).
It is easy to verify that Θ, Ψ witness that L ≤TxtEx

strong SINGLE.

Theorem 5 SINGLE ≤TxtEx
strong L iff there exists a recursive function H such that

(a) {WH(i) | i ∈ N} ⊆ L,
(b) WH(i) 6= WH(j), for i 6= j, and
(c) {WH(i) | i ∈ N} is limiting standardizable.

Proof. For the whole proof, let Ti denote a text, obtained effectively from i, for {i}.

(Only if direction) Suppose SINGLE ≤TxtEx
strong L via Θ, Ψ.

Define H and E as follows.
WH(i) = content(Θ(Ti)).
E(p) is defined as follows. Suppose αp = p, p, p, . . .. Suppose Ψ(αp) converges to w. Then

E(p) = min(Ww) (if any).
It is easy to verify that H satisfies requirements (a) and (b) of the theorem, and E witnesses

that requirement (c) is satisfied.

(If direction) Suppose that H, E are given such that H satisfies requirements (a) and (b) in
the theorem and E witnesses the satisfaction of requirement (c).

Define Θ as follows.
Θ(L) =

⋃
i∈L WH(i).

Let pi denote a grammar (obtained effectively from i), for content(Θ(Ti)).
Define Ψ as follows. Suppose a sequence α of grammars converges to a grammar q. Then,

Ψ(α) converges to a grammar for {i}, such that E(q) = E(pi) (if there is any such i).
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It is easy to verify that Θ and Ψ witness that SINGLE ≤TxtEx
strong L.

Notation and definitions below provide us with terminology and apparatus for characteri-
zations of INIT and COINIT.

Definition 16 F , a partial recursive mapping from FINITE×N to N , is called an up-mapping
iff for all finite sets S, S′, for all j, j′ ∈ N :

If S ⊆ S′ and j ≤ j′, then F (S, j)↓ ⇒ [F (S′, j′)↓ ≥ F (S, j)].

For an up-mapping F and L ⊆ N , we abuse notation slightly and let F (L) denote
limS→L,j→∞ F (S, j) (where by S → L we mean: take any sequence of finite sets S1, S2, . . .,
such that Si ⊆ Si+1 and

⋃
Si = L, and then take the limit over these Si’s).

Note that F (L) may be undefined in two ways:
(1) F (S, j) may take arbitrary large values for S ⊆ L, and j ∈ N , or
(2) F (S, j) may be undefined for all S ⊆ L, j ∈ N .

Definition 17 F , a partial recursive mapping from FINITE×N to N , is called a down-mapping
iff for all finite sets S, S′ and j, j′ ∈ N ,

If S ⊆ S′ and j ≤ j′, then F (S, j)↓ ⇒ [F (S′, j′)↓ ≤ F (S, j)].

For a down-mapping F and L ⊆ N , we abuse notation slightly and let F (L) =
limS→L,j→∞ F (S, j).

The following results characterize strong degrees below and above INIT and COINIT.

Theorem 6 L ≤TxtEx
strong INIT iff there exist F , a partial recursive up-mapping, and G, a partial

limit recursive mapping from N to N , such that for all L ∈ L,
(a) F (L)↓ < ∞.
(b) G(F (L)) converges to a grammar for L.

Proof. (Only if direction) Suppose L ≤TxtEx
strong INIT via Θ and Ψ. Define F and G as follows.

F (S, j) = max(
⋃
{content(Θ(τ)) | |τ | ≤ j and content(τ) ⊆ S}). Clearly, F is a partial

recursive up-mapping.
Define G(w) as follows. Let p be a grammar for {x | x ≤ w}. Let G(w) = limit (if any) of

Ψ(αp), where αp = p, p, p, . . ..
It is easy to verify that F,G satisfy requirements (a) and (b) of the theorem.

(If direction) Suppose F (a partial recursive up-mapping) and G (a partial limit recursive
mapping) satisfying requirements (a) and (b) in the theorem are given.

Define Θ as follows.
Θ(L) = {x | (∃ finite S ⊆ L)(∃j)[x ≤ F (S, j)↓]}.
Define Ψ as follows. Suppose a sequence α of grammars converges to a grammar p. Then,

Ψ(α) converges to G(max(Wp)) (if defined).
It is easy to verify that Θ, Ψ witness that L ≤TxtEx

strong INIT.

Theorem 7 INIT ≤TxtEx
strong L iff there exists a recursive function H such that

(a) {WH(i) | i ∈ N} ⊆ L,
(b) WH(i) ⊂ WH(i+1), and
(c) {WH(i) | i ∈ N} is limiting standardizable.
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Proof. For the whole proof, let Ti denote a text, obtained effectively from i, for {x | x ≤ i}.

(Only if direction) Suppose INIT ≤TxtEx
strong L via Θ, Ψ.

Define H and E as follows.
WH(i) = content(Θ(Ti)).
E(p) is defined as follows. Suppose αp = p, p, p, . . .. Suppose Ψ(αp) converges to w. Then

E(p) = max(Ww) (if any).
It is easy to verify that H satisfies requirements (a) and (b) of the theorem, and E witnesses

requirement (c) of the theorem.

(If direction) Suppose that H (satisfying requirements (a) and (b) of the theorem), and E
(witnessing requirement (c) of the theorem) are given.

Define Θ as follows.
Θ(L) =

⋃
i∈L WH(i).

Let pi denote a grammar (obtained effectively from i), for content(Θ(Ti)).
Define Ψ as follows. Suppose a sequence α of grammars converges to grammar q. Then,

Ψ(α) converges to a grammar for {x | x ≤ i}, such that E(q) = E(pi) (if there is any such i).
It is easy to verify that Θ and Ψ witness that INIT ≤TxtEx

strong L.

Theorem 8 L ≤TxtEx
strong COINIT iff there exist F , a partial recursive down-mapping and G, a

partial limit recursive mapping from N to N , such that
(a) For any L ∈ L, F (L)↓.
(b) For all L ∈ L, G(F (L)) converges to a grammar for L.

Proof. (Only if direction) Suppose L ≤TxtEx
strong COINIT via Θ and Ψ. Define F and G as

follows.
F (S, j) = min(

⋃
{content(Θ(τ)) | |τ | ≤ j and content(τ) ⊆ S}). Clearly, F is a partial

recursive down-mapping.
Define G(w) as follows: Let p be a grammar for {x | x ≥ w}. Let G(w) = limit (if any) of

Ψ(αp), where αp = p, p, p, . . ..
It is easy to verify that F,G satisfy the requirements (a) and (b) of the theorem.

(If direction) Suppose F (a partial recursive down-mapping), and G (a partial limit recursive
mapping) satisfying requirements (a) and (b) of the theorem are given.

Define Θ as follows.
Θ(L) = {x | (∃ finite S ⊆ L)(∃j)[F (S, j)↓ ≤ x]}.
Define Ψ as follows. Suppose a sequence α of grammars converges to a grammar p. Then

Ψ(α) converges to G(min(Wp)) (if defined).
It is easy to verify that Θ and Ψ witness that L ≤TxtEx

strong COINIT.

Theorem 9 COINIT ≤TxtEx
strong L iff there exists a recursive function H, such that

(a) {WH(i) | i ∈ N} ⊆ L,
(b) WH(i+1) ⊂ WH(i), and
(c) {WH(i) | i ∈ N} is limit standardizable.

Proof. Let Ti denote a text, obtained effectively from i, for {x | x ≥ i}.

(Only if direction) Suppose COINIT ≤TxtEx
strong L via Θ and Ψ.

Define H and E as follows.
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WH(i) = content(Θ(Ti)).
E(p) is defined as follows. Suppose αp = p, p, p, . . .. Suppose Ψ(αp) converges to w. Then

E(p) = min(Ww), if any.
It is easy to verify that H satisfies requirements (a) and (b) of the theorem, and E witnesses

the satisfaction of requirement (c) of the theorem.

(If direction) Now suppose that H, satisfying requirements (a) and (b) of the theorem, and E
witnessing the satisfaction of requirement (c) of the theorem are given.

Define Θ as follows.
Θ(L) =

⋃
i∈L WH(i).

Let pi denote a grammar (obtained effectively from i) for content(Θ(Ti)).
Ψ is defined as follows. Suppose a sequence α of grammars converges to a grammar q. Then,

Ψ(α) converges to a grammar for {x | x ≥ i}, such that E(q) = E(pi) (if there is any such i).
It is easy to verify that Θ, Ψ witness that COINIT ≤TxtEx

strong L.

Definition 18 F , a partial recursive mapping from FINITE ×N to N ×N is called up-to-up-
mapping iff for all finite S, S′, and j, j′ ∈ N :

If S ⊆ S′ and j ≤ j′, then F (S, j)↓ ⇒ [F (S′, j′)↓ and [[π1(F (S, j)) = π1(F (S′, j′)) <
π2(F (S, j)) ≤ π2(F (S′, j′))] or [π1(F (S, j)) < π2(F (S, j)) ≤ π1(F (S′, j′)) < π2(F (S′, j′))]]].

For F , an up-to-up-mapping, and L ⊆ N , we abuse notation slightly and let F (L) = i, if
limS→L,j→∞ π1(F (S, j)) = i, and limS→L,j→∞ π2(F (S, j)) = ∞. If no such i exists, then F (L)
is undefined.

The above definition reflects the most “natural” way the languages in COSINGLE and alike
can be learned: one learns such a language in “chunks” 0, 1, 2, . . . , i− 1, i + 1, . . . , k. While i
has not showed up in the input, the lower bound i (the first component a of (a, b) = F (S, j) in
our definition) stays the same, while the second-lower bound k+1 (the component b) increases.
If i shows up in the input text, then the new lower bound i′ must be at least k + 1.

Theorem 10 L ≤TxtEx
strong COSINGLE iff there exist F , a partial recursive up-to-up-mapping

and G, a partial limit recursive mapping from N to N such that
(a) For all L ∈ L, F (L)↓.
(b) For all L ∈ L, G(F (L)) is a grammar for L.

Proof. (Only if direction) Suppose L ≤TxtEx
strong COSINGLE via Θ and Ψ. Define F and G as

follows.
For any set Z, let min1(Z) = least element in Z, and min2(Z) = second least element in Z.
Define F (S, j) as follows. F (S, j) = (min1(Z),min2(Z)), where Z is complement of⋃

{content(Θ(τ)) | content(τ) ⊆ S and |τ | ≤ j}. Clearly, F is a partial recursive up-to-up-
mapping.

Define G(j) as follows. Let p be a grammar for {j}. Let αp = p, p, p, . . .. Then, G(j)
converges to the limit of Ψ(αp), if any.

It is easy to verify that F,G satisfy the requirements (a) and (b) of the theorem.

(If direction) Suppose F (a partial recursive up-to-up mapping) and G (a partial limit recursive
mapping) are given satisfying requirements (a) and (b) of the theorem.

Define Θ as follows.
content(Θ(σ)) = {x | x < i} ∪ {x | i < x < k},
where i = max({x | (∃y ∈ N, S ⊆ content(σ), j ≤ |σ|)[F (S, j) = (x, y)]}) and k = max({y |

(∃x ∈ N, S ⊆ content(σ), j ≤ |σ|)[F (S, j) = (x, y)]}).
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Define Ψ as follows. Suppose a sequence α of grammars converges to a grammar p. Then
Ψ(α) converges to G(w) (if defined), where w is the minimum element not in Wp (if any).

It is easy to verify that Θ and Ψ witness that L ≤TxtEx
strong COSINGLE.

Note that if L contains two languages L1 and L2 such that L1 ⊂ L2, then L 6≤TxtEx
strong

COSINGLE. This follows from Proposition 3, since all pairs of languages in COSINGLE are
incomparable with respect to ⊂. It follows that INIT and COINIT are not ≤TxtEx

strong -reducible
to COSINGLE.

Theorem 11 COSINGLE ≤TxtEx
strong L iff there exist recursive functions H and G such that the

following properties are satisfied.
(a) {WH(i) | i ∈ N} ⊆ L,
(b) WH(i) 6= WH(j) for i 6= j.
(c) WH(i) =

⋃
j>i WG(i,j),

(d) WG(i,j) ⊆ WG(k,l), if i < j ≤ k < l, or i = k < j < l.
(e) {WH(i) | i ∈ N} is limiting standardizable.

Proof. Let Ti be a text, obtained effectively from i, for {i}.

(Only if direction) Suppose COSINGLE ≤TxtEx
strong L via Θ,Ψ. For any set Z, let min1(Z) denote

the least element in Z, and min2(Z) denote the second least element in Z.
Define H, G, and E as follows.
WH(i) = content(Θ(Ti)).
WG(i,j) =

⋃
{content(Θ(τ)) | content(τ) = {x | x < j and x 6= i}}.

E(p) is defined as follows. Let αp = p, p, p, . . .. Suppose Ψ(αp) converges to w. Then,
E(p) = min(Ww), if any.

It is easy to verify that G, H satisfy requirements (a) to (d) of the theorem, and E witnesses
the satisfaction of requirement (e) of the theorem.

(If direction) Suppose that H,G,E are given such that H and G satisfy requirements (a) to (d)
of the theorem and E witnesses satisfaction of requirement (e) of the theorem.

Define Θ as follows.
Θ(L) =

⋃
{WG(i,j) | i < j ∧ {x < j | x 6= i} ⊆ L}.

Let pi be a grammar (obtained effectively from i) for content(Θ(Ti)).
Define Ψ as follows. Suppose a sequence α of grammars converges to a grammar q. Then

Ψ(α) converges to a grammar for {i}, where E(q) = E(pi) (if there is any such i).
It is easy to verify that Θ,Ψ witness that COSINGLE ≤TxtEx

strong L.

Every class we have observed represents certain strategies of learning in the limit. Now let
us imagine a “multidimensional” language where every “dimension” is being learned using its
specific type of learning strategy, that is SINGLE,COSINGLE, INIT, or COINIT like. If this
idea can be naturally formalized, the following questions can be asked immediately:

1. Are degrees defined by classes of “multidimensional” languages stronger than the degrees
of simple “one-dimensional” classes?

2. Is it possible to characterize these degrees in terms similar to the ones we have used for
“one-dimensional” degrees?

Perhaps, the simplest natural way to formalize the above idea is the following

Definition 19 Let L1,L2 be two classes of languages. Then L1 × L2 = {L1 × L2 | L1 ∈
L1, L2 ∈ L2}.
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This definition can be naturally extended to any finite number of dimensions. For example,
one can naturally define INIT × INIT × COSINGLE, etc.

The following propositions trivially follow from the above definition.

Proposition 8 L1 ≤TxtEx
strong L1 × L2.

Proposition 9 Suppose L1 ≤TxtEx
strong L2. Then L1 × L3 ≤TxtEx

strong L2 × L3.

Proposition 10 L1 × L2 ≡TxtEx
strong L2 × L1.

Proposition 11 (L1 × L2)× L3 ≡TxtEx
strong L1 × (L2 × L3) ≡TxtEx

strong L1 × L2 × L3.

Thus, strong degrees formed using cross product are commutative and associative.
One can easily prove the following facts (we omit most of the proofs) showing that in most

cases the strategies for “simple” classes can be applied to more complex classes. To summarize
the results below, the number of dimensions can be reduced to 2 in case of different classes in
different dimensions, and to 1 in case of the same classes in different dimensions.

Proposition 12 COSINGLE × COSINGLE ≡TxtEx
strong COSINGLE.

Proof. Clearly, COSINGLE ≤TxtEx
strong COSINGLE ×COSINGLE. We will define below Θ and

Ψ witnessing COSINGLE × COSINGLE ≤TxtEx
strong COSINGLE.

Let Li = {x | x 6= i}. Let σ be any initial fragment of a text of a language L ∈ COSINGLE×
COSINGLE. Then Θ(σ) = {〈i, j〉 | 〈i, k〉 ∈ content(σ) for some k or 〈m, j〉 ∈ content(σ) for
some m}. It is easy to verify that Θ(Li × Lj) = L〈i,j〉.

Ψ is defined as follows. Suppose a sequence α of grammars converges to a grammar p. and
〈i, j〉 is the least element (if any) not in Wp. Then Ψ(α) converges to a grammar for Li×Lj . It is
easy to verify that Θ and Ψ witness that COSINGLE ×COSINGLE ≤TxtEx

strong COSINGLE.

The following propositions can be similarly proved.

Proposition 13 INIT × INIT ≡TxtEx
strong INIT.

Proposition 14 COINIT × COINIT ≡TxtEx
strong COINIT

Proposition 15 For any L ∈ BASIC, SINGLE × L ≡TxtEx
strong L.

The above results show that SINGLE in any combination with other classes can be removed,
and any subsequence L × L × . . . × L (for the same class L) can be reduced to L. Since
COSINGLE ≤TxtEx

strong INIT, using Proposition 13, Proposition 8 and Proposition 9 we obtain

Proposition 16 INIT × COSINGLE ≡TxtEx
strong COSINGLE × INIT ≡TxtEx

strong INIT

Thus, the only classes that remain to be considered are INIT × COINIT ≡TxtEx
strong COINIT ×

INIT and COINIT × COSINGLE ≡TxtEx
strong COSINGLE × COINIT. We will consider only

INIT×COINIT below. The results for COINIT×COSINGLE can be formulated and obtained
similarly.

Proposition 17 INIT × COINIT 6≤TxtEx
strong INIT and INIT × COINIT 6≤TxtEx

strong COINIT.
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Proof. Proposition easily follows from Proposition 8 and the fact that none of INIT,COINIT
is strong reducible to the other [JS96].

Now we characterize degrees below and above INIT ×COINIT in terms “combining” those
for INIT and COINIT. Similar results can be obtained for COINIT × COSINGLE.

Definition 20 F , a partial recursive mapping from FINITE × N to N × N , is called an
up×down-mapping iff the following conditions hold:

For all finite sets S, S′ ⊆ N and j, j′ ∈ N ,
If S ⊆ S′ and j ≤ j′, Then, F (S, j)↓ ⇒ [F (S′, j′)↓ and π1(F (S, j)) ≤ π1(F (S′, j′)) and

π2(F (S, j)) ≥ π2(F (S′, j′))].

For F , an up×down-mapping, and L ⊆ N , we abuse notation slightly and let F (L) = (i, j),
where i = limS→L,j→∞ π1(F (S, j)), and j = limS→L,j→∞ π2(F (S, j)). (F (L) is undefined if no
such i and j exist).

Theorem 12 L ≤TxtEx
strong INIT × COINIT iff there exist F , a partial recursive up×down-

mapping, and G, a partial limit recursive mapping from N ×N to N such that
(a) For all L ∈ L, F (L)↓.
(b) For all L ∈ L, G(F (L)) converges to a grammar for L.

Proof. (Only if direction) Suppose L ≤TxtEx
strong INIT × COINIT, via Θ and Ψ. Define F,G as

follows.
F (S, j) = (i, k), where
i = max({x | (∃τ | content(τ) ⊆ S ∧ |τ | ≤ j)(∃y)[〈x, y〉 ∈ content(Θ(τ))]}), and k =

min({y | (∃τ | content(τ) ⊆ S ∧ |τ | ≤ j)(∃x)[〈x, y〉 ∈ content(Θ(τ))]}). Clearly, F is a partial
recursive up×down-mapping.

G((i, k)) is defined as follows. Let p be a grammar for {x | x ≤ i} × {y | y ≥ k}. Let
αp = p, p, p, . . .. Then G((i, k)) converges to the limit (if any) of Ψ(αp).

It is easy to verify that F,G satisfy requirements (a) and (b) of the theorem.

(If direction) Suppose F (a partial recursive up×down-mapping) and G (a partial limit recursive
mapping) satisfying requirements (a) and (b) of the theorem are given.

Define Θ as follows.
Θ(L) = {〈x, y〉 | (∃i, k)(∃S ⊆ L)(∃j)[F (L, j) = (i, k) ∧ x ≤ i ∧ y ≥ k]}.
Ψ is defined as follows. Suppose a sequence α of grammars converges to a grammar p.

Then Ψ(α) converges to G((i, k)) (if defined), where i = max({x | (∃y)[〈x, y〉 ∈ Wp]}), and
k = min({y | (∃x)[〈x, y〉 ∈ Wp]}).

It is easy to verify that Θ and Ψ witness that L ≤TxtEx
strong INIT × COINIT.

Theorem 13 INIT × COINIT ≤TxtEx
strong L iff there exists a recursive function H such that

(a) {WH(i,j) | i, j ∈ N} ⊆ L, and WH(i,j) 6= WH(i′,j′), for (i, j) 6= (i′, j′),
(b) WH(i,j) ⊂ WH(i+1,j),
(c) WH(i,j) ⊃ WH(i,j+1), and
(d) {WH(i,j) | i, j ∈ N} is limiting standardizable.

Proof. Let Ti,j be a text, obtained effectively from i and j, for {〈x, y〉 | x ≤ i ∧ y ≥ j}.

(Only if direction) Suppose INIT × COINIT ≤TxtEx
strong L via Θ and Ψ.

Let WH(i,j) = content(Θ(Ti,j)).
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E(p) is defined as follows. Suppose αp = p, p, p, . . .. and Ψ(αp) converges to q (if it con-
verges). Then, E(p) converges to 〈i, k〉 (if any) such that

i = max({x | (∃y)[〈x, y〉 ∈ Wq]}), and k = min({y | (∃x)[〈x, y〉 ∈ Wq]}).
It is easy to verify that H satisfies requirements (a) to (c) of the theorem and E witnesses

that requirement (d) in the theorem is satisfied.

(If direction) Suppose that H, satisfying requirements (a) to (c) of the theorem, and E
witnessing the satisfaction of requirement (d) of the theorem are given.

Define Θ and Ψ as follows:
Θ(L) =

⋃
〈i,k〉∈L WH(i,k).

Let pi,j be a grammar (obtained effectively from i and j) for content(Θ(Ti,j)). Define Ψ as
follows. Suppose a sequence α of grammars converges to a grammar q. Then, let Ψ(α) converge
to a grammar for {〈x, y〉 | x ≤ i ∧ y ≥ j}, where (i, j) (if any) is such that E(q) = E(pi,j).

It is easy to verify that Θ and Ψ witness that INIT × COINIT ≤TxtEx
strong L.

In the above definition of “multidimensional” languages (and respective classes), we assume
that every “dimension” is being learned separately. However, as we have shown, there are only
two new degrees that can be obtained this way.

Now we consider a more complex way to form “multidimensional” languages. Our approach
is based on the following idea: the learner knows in advance to which of the classes from
BASIC every “dimension” Lk of an “n-dimensional” language L belongs; however, to learn the
“dimension” Lk+1, one must first learn the codes i1, . . . , ik of the grammars for the languages
L1, . . . , Lk; then Lk+1 is the (k + 1)-“projection” {xk+1 | 〈i1, . . . , ik, xk+1, xk+2, . . . , xn〉 ∈ L}
(in case of Lr ∈ COSINGLE, instead of ir any number ir + m,m > 0 would be used, as this
special case calls for; for explanation see discussion of learning strategy for (COSINGLE, INIT)
below).

For example, suppose it is known that the languages Lk (of the k-th “dimension”) are from
the class COINIT. Then, for any Lk, the number i such that Lk = {j | j ≥ i} can be viewed
as a legitimate description of this language. Then this i = ik, together with i1, i2, . . . , ik−1

found on the previous phases of the learning process and together with some fixed in advance
“pattern” (say, INIT) (specifying an appropriate learning strategy) can be used to learn the
“dimension” Lk+1.

“Patterns” specifying classes of languages in different “dimensions” can be of any nature, as
long as they provide sufficient information making the class learnable. In our first formalization
of this idea below, we limit “patterns” to come from BASIC .

Before we give the general definition for the classes that formalizes the above idea, we
demonstrate how to define some classes of “two-dimensional” languages based on the classes
from BASIC . We hope that these definitions and the following discussion will make the general
definition and related results and proofs more transparent.

Definition 21 (COINIT, INIT) = {L | there exist i, j ∈ N such that L = {〈a, b〉 | a > i, or
[a = i and b ≤ j]}}.

(INIT,COINIT) = {L | there exist i, j ∈ N such that L = {〈a, b〉 | a < i, or [a = i and
b ≥ j]}}.

(INIT, INIT) = {L | there exist i, j ∈ N such that L = {〈a, b〉 | a < i, or [a = i and b ≤ j]}}.
(COINIT,COINIT) = {L | there exist i, j ∈ N such that L = {〈a, b〉 | a > i, or [a = i and

b ≥ j]}}.
(COSINGLE, INIT) = {L | there exist i, j ∈ N such that L = {〈a, b〉 | a < i, or [a > i and

b ≤ j]}}.
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Figure 1: LCOINIT,INIT
i,j

To justify our definition, we briefly discuss the “natural” strategies that learn the classes
defined above.

Consider a language L ∈ (COINIT, INIT) (see figure 1, where i, j denote the parame-
ters/descriptors of the language L). To learn a language in this class, one first uses a COINIT-
like strategy, and once the first “descriptor” i of the language has been learned, “changes its
mind” to a INIT-like strategy to learn the second “descriptor” j. More specifically, imagine the
area representing a language in (COINIT, INIT): it consists of the infinite rectangle containing
all points 〈a, b〉 with a > i for some i (apparently, the rectangle is open upword and to the
right) and a string of points 〈i, b〉, b ≤ j just left of the rectangle. The learner first tries to
determine the left border i of the rectangle. If some 〈r, b〉 shows up in the input, r + 1 can be
discarded as a candidate for such i; accordingly, r+1 cannot represent the “column” containing
the second “dimension” of the language, and, consequently, all pairs 〈r + 1, b〉, b ∈ N belong
to L, which makes this part of the language easily learnable by COINIT-type strategy (only
the first “dimension” matters). Once i has been identified (in the limit), the learner, using
the “column” 〈i, ·〉, may start to learn the parameter j. Here, if some pair 〈i, s〉 showed up
in the input, s − 1 can be discarded as a candidate for the parameter j. All discarded pairs
〈a, b〉 can be viewed as the “terminating” part of the language in question, while 〈i, j〉 can be
viewed as its “propagating” part (“propagating” means “the part of the language representing
its description, subject to possible change in the limit”).

Similar considerations can be applied to (INIT,COINIT), (INIT, INIT), and
(COINIT,COINIT).

To learn a language L ∈ (COSINGLE, INIT), the learner again first tries to identify the i
specifying the first component. At any moment, the learner keeps a “chunk” {0, 1, 2, . . . , i −
1, i + 1, . . . , n} (provided by the input text) that suggests the given i as the description for
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the language L. The numbers r < i are already discarded as possible “candidates” for the
description i; accordingly, the language in question contains all pairs 〈r, b〉, thereby the “rows”
〈r, ·〉 cannot be used to learn the second “dimension”, while this part of the language can be
easily learned itself by COSINGLE-type strategy (only the first “dimension” matters). While
r ∈ {i + 1, . . . , n} obviously can also be discarded as possible “candidates” for i, their status is
different: they are used to learn the second parameter j, because pairs 〈i, b〉 are “prohibited”
from the language L by the definition of the class COSINGLE. Still, if a pair 〈r, s〉 with r > i
shows up in the input, s − 1 is discarded as a possible conjecture for j; thus, the “column”
〈r, j〉 with r > i is considered to be the “propagating” part of the language L representing the
current candidate for its description (this approach is formally somewhat different from the one
used for classes such as (COINIT, INIT), where the “rows” i rather than r > i are used to learn
the second “dimension”, but it is naturally dictated by the specifics of the class COSINGLE:
the “descriptor” i is not present in the language, so we consider all s > i as “representatives”
of the “descriptor” in the language L).

In some sense, any language L in the above classes consists of two parts:
1. Terminating part T (L) consisting of the discarded “conjectures”.
2. Propagating part P (L) consisting of those pairs in L that represent the current hypothesis-

“descriptor” of L.
Now we are ready to give the general definition of “multidimensional” classes formalizing

the above approach.
Let R be any subset of N . To make our definition as general as possible, we consider the

following variants of SINGLE,COSINGLE, INIT,COINIT relative to any such R (we give the
variant only for INIT; similar variant for other classes in BASIC can be defined similarly):

INIT.R = {L | there exists i ∈ R such that L = {k | k ≤ i}}.
For any tuples X and Y , let X · Y stand for the concatenation of X and Y (that is, X · Y

is the tuple, where the first tuple is appended by the components of the second tuple).
Recall that BASIC = {SINGLE,COSINGLE, INIT,COINIT}.

Definition 22 Suppose k ≥ 1. Let Q ∈ BASICk. Let I ∈ Nk. Then inductively on k, we
define the languages LQ

I and T (LQ
I ) and P (LQ

I ) as follows.
If k = 1, then
(a) if Q = (SINGLE) and I = (i), then

T (LQ
I ) = ∅, P (LQ

I ) = {〈i〉}, and LQ
I = T (LQ

I )
⋃

P (TQ
I ).

(b) if Q = (COSINGLE) and I = (i), then
T (LQ

I ) = {〈x〉 | x < i}, P (LQ
I ) = {〈x〉 | x > i}, and LQ

I = T (LQ
I )

⋃
P (LQ

I ).
(c) if Q = (INIT) and I = (i), then

T (LQ
I ) = {〈x〉 | x < i}, P (LQ

I ) = {〈i〉}, and LQ
I = T (LQ

I )
⋃

P (LQ
I ).

(d) if Q = (COINIT) and I = (i), then
T (LQ

I ) = {〈x〉 | x > i}, P (LQ
I ) = {〈i〉}, and LQ

I = T (LQ
i )

⋃
P (LQ

i ).
Now suppose we have already defined LQ

I for k ≤ n. We then define LQ
I for k = n + 1

as follows. Suppose Q = (q1, . . . , qn+1) and I = (i1, . . . , in+1). Let Q1 = (q1) and Q2 =
(q2, . . . , qn+1). Let I1 = (i1) and I2 = (i2, . . . , in+1). Then,

T (LQ
I ) = {X · Y ∈ Nn+1 | X ∈ T (LQ1

I1
), or [X ∈ P (LQ1

I1
) and Y ∈ T (LQ2

I2
)]},

P (LQ
I ) = {X · Y ∈ Nn+1 | X ∈ P (LQ1

I1
) and Y ∈ P (LQ2

I2
)}, and

LQ
I = T (LQ

I )
⋃

P (LQ
I ).

For ease of notation we often write LQ
(i1,i2,...,ik) as LQ

i1,i2,...,ik
.
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Definition 23 Let Q ∈ BASICk and R = R1×R2× · · · ×Rk ⊆ Nk, for k ≥ 1. Then the class
LQ,R is defined as

LQ,R = {LQ
I | I ∈ R}.

For technical convenience, for Q = (), I = (), R = {I}, we also define T (LQ
I ) = ∅, P (LI

Q) =
{〈〉}, and LQ

I = T (LQ
I )

⋃
P (LQ

I ), and LQ,R = {LQ
I }.

Note that we have used a slightly different notation for defining the classes LQ,R (for example
instead of (INIT, INIT), we now use L(INIT,INIT),N2

). This is for clarity of notation.
Also, our main interest is for Ri’s being N , though it doesn’t matter as long as Ri is

an infinite recursive subset of N (or contains an infinite recursive subset) as the following
proposition shows. The usage of general R is more for ease of proving our theorems.

Proposition 18 Suppose k ≥ 1. Let Q ∈ BASICk. Let R = R1 × R2 × · · · × Rk, where each
Ri is an infinite recursive subset of N . Then, LQ,R ≡TxtEx

strong LQ,Nk
.

For ease of notation, if R = N |Q|, we drop R from LQ,R, using just LQ.
One can easily see that the definitions of the “pair”-type classes comply with the general

definition. The immediate question is which of the Q ∈ BASIC∗ represent different strong
degrees.

Proposition 19 Suppose Q = (COSINGLE,COSINGLE), and Q′ = (COSINGLE). Then
LQ ≤TxtEx

strong LQ′
.

Proof. Define Θ and Ψ as follows:
content(Θ(τ)) = {〈i, j〉 | 〈i, j〉 ≤ |τ | ∧ [(∃y)[〈i, y〉 ∈ content(τ)] ∨ [〈i+1, j〉 ∈ content(τ)]]}.

It is easy to verify that Θ(LQ
i,j) = LQ′

〈i,j〉.
Now let Ψ be defined as follows. Suppose a sequence α of grammars converges to a grammar

p, and 〈i, j〉 = min({〈x, y〉 | 〈x, y〉 6∈ Wp}). Then, Ψ(α) converges to a grammar for LQ
i,j . It is

easy to verify that Θ and Ψ witness that LQ ≤TxtEx
strong LQ′

.

Proposition 20 Suppose Q = (COSINGLE, INIT), and Q′ = (INIT). Then LQ ≤TxtEx
strong LQ′

.

Proof. Define Θ and Ψ as follows.
Let content(Θ(σ)) contain 〈i, j〉 iff for all 〈k, l〉 < 〈i, j〉 EITHER
(a) there exists x, such that 〈k, x〉 in content(σ) OR
(b) there exists a x > k, there exists a y > l such that 〈x, y〉 ∈ content(σ).
Intuitively above Θ reduces LQ

i,j to LQ′

〈i,j〉.
Now let Ψ be defined as follows. Suppose a sequence α of grammars converges to a grammar

p and 〈i, j〉 is the maximum element in Wp. Then Ψ(α) converges to a grammar for LQ
i,j . It is

easy to verify that Θ and Ψ witness that LQ ≤TxtEx
strong LQ′

.

Proposition 21 Suppose X ∈ BASIC. Suppose Q = (SINGLE), and Q′ = (X). Then
LQ ≤TxtEx

strong LQ′
.

Proof. Obvious.

Proposition 22 Suppose Q = (COSINGLE,SINGLE), and Q′ = (COSINGLE). Then
LQ ≤TxtEx

strong LQ′
.
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Proof. Follows using Proposition 19 and 21.

Proposition 23 Suppose X ∈ BASIC. Suppose Q = (SINGLE, X), and Q′ = (X). Then
LQ ≤TxtEx

strong LQ′
.

Proof. We only show the case for X = INIT. Other cases can be similarly proved. Define Θ
and Ψ as follows.

Let content(Θ(σ)) contain 〈i, j〉 iff there exists a 〈k, l〉 ≥ 〈i, j〉 such that 〈k, l〉 ∈ content(σ).
Intuitively above Θ reduces LQ

i,j to LQ′

〈i,j〉.
Now let Ψ be defined as follows. Suppose a sequence α of grammars converges to a grammar

p, and 〈i, j〉 is the maximum element in Wp. Then Ψ(α) converges to a grammar for LQ
i,j . It

follows that LQ ≤TxtEx
strong LQ′

.

Proposition 24 (Based on [JS96]) Suppose Q = (COSINGLE), and Q′ = (INIT). Then
LQ ≤TxtEx

strong LQ′
.

The following proposition can essentially be proved along the lines of above propositions.

Proposition 25 Suppose
Q1 = (q1, . . . , qk, qk+1, . . . , ql, ql+1, . . . , qn), and Q′

1 = (q1, . . . , qk, q
′, ql+1, . . . , qn), where each

qiand q′ ∈ BASIC. Suppose in one of the Propositions 19 to 24 above, we have shown that, for
Q = (qk+1, . . . , ql) and Q′ = (q′), LQ ≤TxtEx

strong LQ′
.

Then, LQ1 ≤TxtEx
strong LQ′

1.

Thus for Q’s with components from BASIC , for the study of ≤TxtEx
strong -reduction one may

assume without loss of generality that COSINGLE is never followed by COSINGLE, INIT, or
SINGLE; and SINGLE is not followed by any X ∈ BASIC .

Proposition 26 (Based on [JS96]) Suppose Q = (COSINGLE), R = R1, Q′ = (COINIT),
and R′ = R′

1, where R1 and R′
1 are infinite subsets of N . Then LQ,R 6≤TxtEx

strong LQ′,R′
.

Proposition 27 (Based on [JS96]) Suppose Q = (COINIT), R = R1, Q′ = (INIT) and
R′ = R′

1, where R1 and R′
1 are infinite subsets of N . Then LQ,R 6≤TxtEx

strong LQ′,R′
.

Proposition 28 (Based on [JS96]) Suppose Q = (INIT), R = R1, Q′ = (COSINGLE) and
R′ = R′

1, where R1 and R′
1 are infinite subsets of N . Then LQ,R 6≤TxtEx

strong LQ′,R′
.

Proposition 29 Suppose X ∈ {INIT,COINIT}. Q = (X, SINGLE), R = R1 ×R2, Q′ = (X)
and R′ = R′

1, where R1, R2 and R′
1 are infinite subsets of N . Then LQ,R 6≤TxtEx

strong LQ′,R′
.

Proof. We consider the case of X = INIT. The proof can be easily modified to work for
X = COINIT. Suppose by way of contradiction Θ and Ψ witness that LQ,R ≤TxtEx

strong LQ′,R′
.

Let i1 be the minimal element in R1. Consider LQ
i1,i2

such that i2 ∈ R2. Now Θ(LQ
i1,i2

) must
be different for different i2. It follows that

⋃
i2∈R2

Θ(LQ
i1,i2

) must be {〈x〉 | x ∈ N}. Note that
for i′1 ∈ R1, and i2, i

′
2 ∈ R2, i′1 > i1, LQ

i′1,i′2
⊇ LQ

i1,i2
. Thus, Θ(LQ

i′1,i2
) 6∈ LQ′,R′

, for any i′1 > i1,

i′1 ∈ R1, and i2 ∈ R2 (since {〈x〉 | x ∈ N} ⊆ Θ(LQ
i′1,i2

)). Proposition follows.
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Definition 24 We say that a sequence Q = (q1, q2, . . . , qk) is a subsequence of Q′ =
(q′1, q

′
2, . . . , q

′
l), iff there exist i1, i2, . . . , ik such that 1 ≤ i1 < i2 < . . . < ik ≤ l, and for

1 ≤ j ≤ k, qj = q′ij .

Definition 25 Suppose Q,Q′ ∈ BASIC∗. Q is said to be a pseudo-subsequence of Q′ iff there
exists a Q′′, which is subsequence of Q′ such that Q′′ can be obtained from Q by substituting
some COSINGLEs in Q with INIT, and some SINGLEs in Q with COSINGLE, INIT, or
COINIT.

Proposition 30 Suppose Q,Q′ ∈ BASIC∗. Suppose Q is a pseudo-subsequence of Q′. Then,
LQ ≤TxtEx

strong LQ′
.

Proof. Follows from Definition 25 and Proposition 21, Proposition 24 and Proposition 25.

Proposition 31 Suppose Q = (q1, q2, . . . , qk) and Q′ = (q′1, q
′
2, . . . , q

′
l), where each qi, q

′
i ∈

BASIC. If Q is not a pseudo-subsequence of Q′, L(q1) ≤TxtEx
strong L(q′1), and L(q2) 6≤TxtEx

strong L(q′1),
then QQ obtained from Q by dropping q1, is not a pseudo-subsequence of Q′.

Proof. Suppose the hypothesis. Suppose by way of contradiction that QQ is a pseudo-
subsequence of Q′. Let QQ′′ = (q′′2 , q′′3 , . . . , q′′k) be obtained from QQ by replacing some SINGLEs
by INIT,COINIT or COSINGLE, and replacing some COSINGLEs by INIT, such that QQ′′

is a subsequence of Q′. Clearly, q′′2 6= q′1 (since otherwise L(q2) ≤ L(q′1)). Thus, QQ′′ is a subse-
quence of (q′2, q

′
3, . . . , q

′
l). It follows that (q′1, q

′′
2 , q′′3 , . . . , q′′k) is a subsequence of Q′. Thus, Q is a

pseudo-subsequence of Q′ (since one may obtain (q′1, q
′′
2 , q′′3 , . . . , q′′k) from Q by replacing q1 by

q′1, in addition to the replacements done in going from QQ to QQ′′). This is a contradiction to
the hypothesis of the Proposition.

Theorem 14 Suppose Q = (q1, . . . , qk) ∈ BASICk and Q′ = (q′1, . . . , q
′
l) ∈ BASIC l, with the

property that COSINGLE is never followed by COSINGLE, INIT, or SINGLE; and SINGLE
is not followed by any X ∈ BASIC. Let R = R1 × R2 × · · · × Rk, R′ = R′

1 × R′
2 × · · · × R′

l,
where each Ri, R′

i is an infinite subset of N . If Q is not a pseudo-subsequence of Q′ then
LQ,R 6≤TxtEx

strong LQ′,R′
.

(Here if k = 0, then we take R = {()}. Similarly, if l = 0, then we take R′ = {()}.)

Proof. We prove the theorem by double induction (first on k and then on l). For k = 0 or
l = 0 the theorem clearly holds. Suppose by induction that the theorem holds for k ≤ m, l ∈ N ,
and for k = m + 1, l ≤ r. We then show that the theorem holds for k = m + 1 and l = r + 1.
Suppose by way of contradiction that Θ (with Ψ) witnesses that LQ,R ≤TxtEx

strong LQ′,R′
.

We consider the following cases:
Case 1: q1 = SINGLE
In this case k = 1. Thus, Q′ must be (). Thus, clearly, LQ,R 6≤TxtEx

strong LQ′,R′
.

Case 2: q1 = COSINGLE.
Case 2.1: q′1 = INIT or COSINGLE.
In this case k ≥ 2. Also, q2 cannot be SINGLE,COSINGLE or INIT by hypothesis of the

theorem. Thus, q2 must be COINIT. Thus, by definition of pseudo-subsequence we know that
QQ obtained from Q by dropping q1 from Q is not a pseudo-subsequence of Q′. Thus, we are
done by induction hypothesis.

Case 2.2: q′1 = SINGLE.
In this case Q′ = (SINGLE). Since COSINGLE 6≤TxtEx

strong SINGLE, we have LQ 6≤TxtEx
strong LQ′

.
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Case 2.3: q′1 = COINIT.
Consider σ, which minimizes i such that 〈i, . . .〉 ∈ content(Θ(σ)). Let j be the maximum

number such that 〈j, . . .〉 ∈ content(σ). It follows that, for any j′ > j, j′ ∈ R1, Θ(LQ
j′,...) (for

any value of other parameters) is of the form LQ′

i,... (for some value of other parameters). Thus,
Θ (with Ψ) essentially witnesses that LQ,RR ≤TxtEx

strong LQQ′,RR′
, where RR is obtained from R by

replacing R1 by R1−{x | x ≤ j}, QQ′ is obtained from Q′ by dropping q′1 and RR′ is obtained
from R′ by dropping R′

1. Now we are done by induction hypothesis.
Case 3: q1 = INIT.
Case 3.1: q′1 = COSINGLE or SINGLE.
In case of q′1 = SINGLE, we are done (since INIT 6≤TxtEx

strong SINGLE). Thus, only the case

q′1 = COSINGLE remains. Fix i ∈ R1. Suppose Θ(LQ
(i,0,0,0,...)) = LQ′

(j,...) (for some value of other

parameters). Note that LQ
i1,... (for any value of other parameters) is a superset of LQ

i,0,0,..., for

all i1 > i, i1 ∈ R1. Thus, Θ(LQ
i1,...) (for any value of other parameters) is of form LQ′

j,... (for some
value of other parameters), for all i1 > i, i1 ∈ R1. Thus, Θ (along with Ψ) essentially witnesses
that LQ,RR ≤TxtEx

strong LQQ′,RR′
, where RR is obtained from R by replacing R1 by R1−{x | x ≤ i},

and QQ′ is obtained from Q′ by dropping q′1 and RR′ is obtained from R′ by dropping R′
1. Now

we are done by induction hypothesis.
Case 3.2: q′1 = COINIT.
Consider σ, which minimizes i such that 〈i, . . .〉 ∈ content(Θ(σ)). Let j be the maximum

number such that 〈j, . . .〉 ∈ content(σ). It follows that, for any j′ > j, j′ ∈ R1, Θ(LQ
j′,...) (for

any value of other parameters) is of the form LQ′

i,... (for some value of other parameters). Thus,
Θ (with Ψ) essentially witnesses that LQ,RR ≤TxtEx

strong LQQ′,RR′
, where RR is obtained from R

by replacing R1 by R1 − {x | x ≤ j}, and QQ′ is obtained from Q′ by dropping q′1 and RR′ is
obtained from R′ by dropping R′

1. Now we are done by induction hypothesis.
Case 3.3: q′1 = INIT.
In this case k ≥ 2.
Case 3.3.1: q2 = SINGLE. In this case Q must be (INIT,SINGLE) and Q′ = (INIT). Thus,

LQ,R 6≤TxtEx
strong LQ′,R′

.
Case 3.3.2: q2 = COSINGLE or INIT.
Fix i1 ∈ R1, and consider

⋃
i2∈R2,... Θ(LQ,R

i1,i2,...). If this set contains 〈i′1, . . .〉, for arbitrarily
large i′1, then we are done (since then Θ cannot reduce Lii1,0,0,... to a language in LQ′,R′

for any
ii1 > i1).

So let i′1 be the maximum value such that some element of form 〈i′1, . . .〉 is in⋃
i2∈R2,... Θ(LQ

i1,i2,...).
Let σ be such that content(σ) ⊆ {〈i1, x2, . . . , xk〉 | (∀j : 2 ≤ j ≤ k)[xj ∈ N ]}, and Θ(σ)

contains an element of form 〈i′1, . . .〉. Let i2 be the maximum value such that some element
of form 〈i1, i2, . . .〉 is in content(σ). It follows that, for all ii2 > i2, ii2 ∈ R2, Θ(LQ

i1,ii2,...) (for

any value of other parameters) is of form LQ′

i′1,... (for some value of other parameters). Thus,

Θ (along with Ψ) essentially witnesses that LQQ,RR ≤TxtEx
strong LQQ′,RR′

, where QQ is obtained
from Q by dropping q1, QQ′ is obtained from Q′ by dropping q′1, RR′ is obtained from R′ by
dropping R′

1 and RR is obtained from R by dropping R1 plus changing R2 to R2−{x | x ≤ i2}.
Now we are done by induction hypothesis.

Case 3.3.3: q2 = COINIT.
In this case, QQ obtained from Q by dropping q1 is not a pseudo-subsequence of Q′ (by

Proposition 31). Thus we are done by induction hypothesis.
Case 4: q1 = COINIT. This case is very similar to Case 3. We give the analysis for
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completeness sake.
Case 4.1: q′1 = COSINGLE or SINGLE or INIT.
Let i be minimum value such that Θ(LQ

...) = LQ′

i,..., for some values of the parameters. Let

j ∈ R1 be such that Θ(LQ
j,...) = LQ′

i,..., for some values of the parameters. It follows that for all

j′ > j, j′ ∈ R1, Θ(LQ
j′,...) (for any value of other parameters) is of form LQ′

i,... (for some value of
other parameters).

Thus, Θ (with Ψ) essentially witnesses that LQ,RR ≤TxtEx
strong LQQ′,RR′

, where RR is obtained
from R by replacing R1 by R1 − {x | x ≤ j}, and QQ′ is obtained from Q′ by dropping q′1 and
RR′ is obtained from R′ by dropping R′

1. Now we are done by induction hypothesis.
Case 4.2: q′1 = COINIT.
In this case k ≥ 2.
Case 4.2.1: q2 = SINGLE. In this case Q must be (COINIT,SINGLE) and Q′ = (COINIT).

Thus, LQ,R 6≤TxtEx
strong LQ′,R′

.
Case 4.2.2: q2 = COSINGLE or INIT.
In this case, QQ obtained from Q by dropping q1 is not a pseudo-subsequence of Q′ (by

Proposition 31). Thus we are done by induction hypothesis.
Case 4.2.3: q2 = COINIT. Fix i1 ∈ R1, and consider Θ(LQ

i1,...) = LQ′

i′1,.... If i′1 achieves
arbitrary large value (for some values of other parameters) then we are done (since then Θ
cannot reduce Lii1,0,0,... to a language in LQ′,R′

, for any ii1 > i1).
So let i′1 be maximum value such that for some value of other parameters, Θ(LQ,R

i1,i2,...) =

LQ′,R′

i′1,... . It follows that, for all ii2 > i2, Θ(LQ,R
i1,ii2,...) (for any value of other parameters) is of

form LQ′,R′

i′1,... (for some value of other parameters). Thus, Θ (along with Ψ) essentially witnesses

that LQQ,RR ≤TxtEx
strong LQQ′,RR′

, where QQ is obtained from Q by dropping q1, QQ′ is obtained
from Q′ by dropping q′1, RR′ is obtained from R′ by dropping R′

1 and RR is obtained from
R by dropping R1 plus changing R2 to R2 − {x | x ≤ i2}. Now we are done by induction
hypothesis.

Theorem 15 (Q-hierarchy Theorem) Suppose Q = (q1, . . . , qk) ∈ BASICk and Q′ =
(q′1, . . . , q

′
l) ∈ BASIC l, with the property that COSINGLE is never followed by COSINGLE,

INIT, or SINGLE; and SINGLE is not followed by any X ∈ BASIC. Then, LQ ≤TxtEx
strong LQ′

iff Q is a pseudo-subsequence of Q′.

Proof. Follows from Proposition 30 and Theorem 14.

Note that above Theorem thus gives the relationship (with respect to ≤TxtEx
strong ) between LQ

and LQ′
, for all Q,Q′ ∈ BASIC∗ (since by Proposition 25, one may assume without loss of

generality that in Qs, COSINGLE is never followed by COSINGLE, INIT, or SINGLE; and
SINGLE is not followed by any X ∈ BASIC).

Also, Theorem 15 immediately shows that none of LQ is ≤TxtEx
strong -complete.

The above Q-hierarchy can be applied to quantify intrinsic complexity of learning other
classes from texts. Consider, for example, open semi-hulls representing the space consisting of
all points (x, y) with integer components x, y in the first quadrant of the plane bounded by the y-
axis and the “broken” line passing through some points (0, 0), (a1, c1), ..., (an, cn) with ai < ai+1

(the line is straight between any of the points (ai, ci), (ai+1, ci+1)); further, assume that the slope
of the broken line is monotonically non-decreasing (where, for technical convenience, we assume
that the first slope is 0: that is c1 = 0). Any such open semi-hull can be easily learned in the
limit by the following strategy: given growing finite sets of points in the open semi-hull, learn

29



the first “break” point (a1, c1), then the first slope (c2− c1)/(a2− a1), then the second “break”
point (a2, c2), then the second slope (c3 − c2)/(a3 − a2), etc. Is this learning strategy optimal?
A more general question is: how to measure complexity of learning open semi-hulls? Note that
natural complexity measures such as the number of mind changes or memory size would not
work, since none of them can be bounded while learning open semi-hulls. One can rather try
to determine how many “mind changes” are required in much more general sense: how many
times ought a strategy change from INIT-like learning to, say, COINIT-like learning and back?
This is where our hierarchy can be applied. For example, suppose all open semi-hulls with
two “angles” are in the class (INIT,COINIT, INIT,COINIT). Then there exists a learning
strategy that “changes its mind” from INIT-like strategy to COINIT, then back to INIT, and
then one more time to COINIT (as a matter of fact, such a strategy for learning the above
open semi-hulls exists, and it is somewhat “better” than the natural strategy described above).
On the other hand, one can show that no (COINIT, INIT,COINIT, INIT)-type strategy (that
is, the one that starts like COINIT, “changes its mind” to INIT, then back to COINIT, and
then again to INIT) can learn open semi-hulls with two “angles”. Upper and lower bound of
similar kind are obtained for open semi-hulls and other geometrical concepts in [JK99].

Proposition 32 Suppose Q = (INIT,COINIT), Q′ = (COINIT, INIT). Then
(a) INIT × COINIT ≤TxtEx

strong LQ.
(b) INIT × COINIT ≤TxtEx

strong LQ′
.

Proof. We show only part (a). Part (b) can be shown similarly.
Define Θ as follows.
Θ(X) = X ∪ {〈x, y〉 | (∃i > x)(∃j)[〈i, j〉 ∈ X]}.
It is easy to verify that Θ({x | x ≤ i} × {y | y ≥ j}) = LQ

i,j .
Define Ψ as follows. Suppose a sequence α of grammars converges to grammar p. Then, Ψ(α)

converges to a grammar for {x | x ≤ i} × {y | y ≥ j}), where i = max({x | (∃y)[〈x, y〉 ∈ Wp]}),
and j = min({y | 〈i, y〉 ∈ Wp}).

It is easy to verify that Θ and Ψ witness that INIT × COINIT ≤TxtEx
strong LQ.

Proposition 33 Suppose Q ∈ {(INIT, COINIT), (COINIT, INIT ), (INIT, COSINGLE),
(COINIT,COSINGLE), (COSINGLE,COINIT)}. Then,

LQ 6≤TxtEx
strong INIT × COINIT.

Proof. Let Q′ = (INIT,COINIT) and Q′′ = (COINIT, INIT ). Then, INIT×COINIT ≤TxtEx
strong

LQ′
, and INIT × COINIT ≤TxtEx

strong LQ′′
(by Proposition 32).

However, either LQ 6≤TxtEx
strong LQ′

or LQ 6≤TxtEx
strong LQ′′

(Theorem 15). Thus, LQ 6≤TxtEx

INIT × COINIT.

We now give characterizations for degrees below and above an arbitrary degree LQ.
For the sake of simplicity we consider only Qs with components from {INIT,COINIT}.

(The formulations of characterizations for Qs including COSINGLE become technically too
complex).

Definition 26 Suppose Q = (q1, . . . , qk), where each qi ∈ {INIT,COINIT}, for 1 ≤ i ≤ k. Let
Q′ = (q2, . . . , qk). We say that 〈i1, . . . , ik〉 ≤Q 〈j1, . . . , jk〉 iff

(a) if q1 = INIT, then [i1 < j1] or [i1 = j1 and 〈i2, . . . , ik〉 ≤Q′ 〈j2, . . . , jk〉];
(b) if q1 = COINIT, then [i1 > j1] or [i1 = j1 and 〈i2, . . . , ik〉 ≤Q′ 〈j2, . . . , jk〉].

Here, for Q = (), we assume that 〈〉 ≤Q 〈〉.
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Note that ≤Q gives a total order on N |Q|. We say that I1 <Q I2 iff I1 ≤Q I2, but I1 6= I2. We
say that I1 ≥Q I2 iff I2 ≤Q I1. Similarly, I1 >Q I2 iff I2 <Q I1.

Definition 27 Suppose Q = (q1, . . . , qk), where each qi ∈ {INIT,COINIT}, for 1 ≤ i ≤ k. We
say that I = 〈i1, i2, . . . , ik〉 is Q-maximum element of a set S (denoted maxQ(S)) iff I ∈ S, and
(∀〈x1, . . . , xk〉 ∈ S)[〈x1, . . . , xk〉 ≤Q 〈i1, . . . , ik〉].

Q-maximum element of ∅ is undefined.

Note that every non-empty finite set has a Q-maximum element. Also, for any set S, if Q-
maximum element exists, then it is unique. (For some infinite sets, Q-maximum element may
not exist).

Definition 28 Suppose Q = (q1, . . . , qk), where each qi ∈ {INIT,COINIT}, for 1 ≤ i ≤ k. F ,
a partial recursive mapping from FINITE ×N to Nk, is called an Q- order-mapping iff for all
finite sets S, S′ ⊆ N , for all j, j′ ∈ N :

If S ⊆ S′ and j ≤ j′, then F (S, j)↓ ⇒ [F (S′, j′)↓ ≥Q F (S, j)].

For a Q- order-mapping F and L ⊆ N , we abuse notation slightly and let F (L) =
limS→L,j→∞ F (S, j).

Note that F (L) = maxQ({F (S, j) | S ⊆ L, j ∈ N, F (S, j)↓}).

Theorem 16 Suppose Q = (q1, . . . , qk), where each qi ∈ {INIT,COINIT}, for 1 ≤ i ≤ k.
L ≤TxtEx

strong LQ iff there exist F,G, where F is a partial recursive Q- order-mapping and G is a
partial limit recursive mapping from Nk to N such that

(a) For L ∈ L, F (L) is defined.
(b) For L ∈ L, G(F (L)) converges to a grammar for L.

Proof. (Only if direction) Suppose Θ and Ψ witness that L ≤TxtEx
strong LQ.

Define F , G as follows.
F (S, j) = maxQ(

⋃
{content(Θ(σ)) | content(σ) ⊆ S ∧ |σ| ≤ j}), where we assume that

maxQ(∅) is undefined.
Clearly, F is a partial recursive Q- order-mapping.
G(I = 〈i1, . . . , ik〉) is defined as follows. Let p be a grammar for LQ

I . Let αp = p, p, p, . . ..
Then, G(I) converges to the limit (if any) of Ψ(αp).

It is easy to verify that F,G satisfy requirements (a) and (b) of the theorem.

(If direction) Suppose F , a partial recursive Q- order-mapping and G, a partial limit recursive
mapping satisfying requirements (a) and (b) of the theorem are given. Then we construct Θ
and Ψ witnessing L ≤TxtEx

strong LQ as follows.
Θ(L) = {〈x1, . . . , xk〉 | (∃S ⊆ L)(∃j)[〈x1, . . . , xk〉 ≤Q F (S, j)↓]}.
Ψ(α) is defined as follows. Suppose a sequence α of grammars converges to grammar p, and

〈i1, . . . , ik〉 is Q-maximum element of Wp. Then Ψ(α) converges to G(〈i1, . . . , ik〉) (if defined).
It is easy to verify that Θ and Ψ witness that L ≤TxtEx

strong LQ.

Theorem 17 Suppose Q = (q1, . . . , qk), where each qi ∈ {INIT,COINIT}, for 1 ≤ i ≤ k.
LQ ≤TxtEx

strong L iff there exists a recursive function H such that
(a) {WH(i1,...,ik) | i1, . . . , ik ∈ N} ⊆ L, where WH(I) 6= WH(J), if I 6= J , for any vectors I

and J of length k.
(b) If 〈i1, . . . , ik〉 ≤Q 〈j1, . . . , jk〉, then WH(i1,...,ik) ⊆ WH(j1,...,jk).
(c) {WH(i1,...,ik) | i1, . . . , ik ∈ N} is limiting standardizable.
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Proof. For I = (i1, . . . , ik), let TI denote a text, obtained effectively from I, for LQ
I .

(Only if direction) Suppose LQ ≤TxtEx
strong L via Θ and Ψ.

Define H and E as follows.
WH(I) = content(Θ(TI)).
E(p) is defined as follows. Suppose αp = p, p, p, . . ., and Ψ(αp) converges to w. Then,

E(p) = maxQ(Ww) (if any).
It is easy to verify that H satisfies requirements (a) and (b) in the theorem, and E witnesses

satisfaction of requirement (c) of the theorem.

(If direction) Suppose that H, E are given such that H satisfies requirements (a) and (b) of
the theorem, and E witnesses satisfaction of requirement (c) of the theorem.

Define Θ as follows.
Θ(L) =

⋃
〈i1,...,ik〉∈L WH(i1,...,ik).

Let pI denote a grammar (obtained effectively from I) for content(Θ(TI)).
Define Ψ as follows. Suppose a sequence α of grammars converges to grammar q. Then,

Ψ(α) converges to a grammar for LQ
I , such that E(q) = E(pI) (if there is any such I).

It is easy to verify that Θ and Ψ witness that LQ ≤TxtEx
strong L.

One could generalize Definitions 26, 27, and 28 and Theorems 16 and 17 by allowing
COSINGLE and SINGLE in the Qs. Generalization for SINGLE is easy. Generalization in-
volving COSINGLE is technically messy (for example see the characterization of degrees below
and above COSINGLE in Theorems 10 and 11), since the definition of ≤Q and maxQ become
somewhat complicated. We omit this generalization to keep the presentation simple.

In our definition of the classes LQ we assumed that the “patterns” for different “dimensions”
of a “multidimensional” language come from the set BASIC . This gave us opportunity to
formalize classes (and degrees) requiring rather complex yet “natural” learning strategies. Now
we are going to make another step and define classes of “multidimensional” languages, where
such “patterns” come from the whole set of vectors Q. Moreover, the grammar for every
“dimension” Lk determines which “pattern” Q must be used to learn Lk+1.

Note that there exists a recursive bijective mapping, codek (obtainable effectively in k) from
the set of all possible Q (with components from BASIC) onto Nk.

Suppose Q ∈ BASICk. Let LQ
i denote the language LQ

i1,i2,···,ik , where i = 〈i1, · · · , ik〉.
Let code be a mapping from

⋃∞
k=1 BASICk to N . Let Qi denote the Q with code i.

Definition 29 Suppose Si = {i}.
Q0 = {Si | i ∈ N}.
Let LQm

i0,i1,···,im = Si0 × LQi0

i1
× · · ·LQim−1

im
.

Qm = {LQm

i0,i1,···,im | i0, i1, · · · , im ∈ N}.

We can thus consider i0, i1, · · · , im as a parameter of the languages in Qm.
For example, any language L ∈ Q1 consists of all pairs 〈i, x〉 such that all components x

form a language in LQi
.

Obviously, every class LQ is strongly reducible to Q1. On the other hand, it easily follows
from the hierarchy established in Theorem 14 that the degree Q1 is above any LQ. It can be
shown that Q2 6≤TxtEx

strong Q1. However, we have not been able to find out if the classes Qm with
m > 1 form an infinite hierarchy.
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Let Q∗ =
⋃∞

m=1Qm. 1

It follows from the next theorem that all of Qm, as well as Q∗, are not ≤TxtExa

strong -complete.

Theorem 18 For any a ∈ N ∪ {∗}, RINIT0,1 6≤TxtExa

strong Q∗.

Proof. Suppose by way of contradiction that Θ (along with Ψ) witnesses that RINIT0,1 ≤TxtExa

strong

Q∗.
Suppose Θ(X1) = LQm

p0,p1,...,pm
.

Note that the above implies that Θ(Xc) ∈ Qm, for all 0 ≤ c ≤ 1.
For ease of writing the following proof, we will define two functions I(c, j) and I ′(c, j, k),

where c is a rational number between 0 and 1, and j, k are some natural numbers (j and k
would be bounded as seen in the definition below). Intuitively, I(c, j), I ′(c, j, k), would give the
parameters of the language Θ(Xc).

Suppose Θ(Xc) = LQm

i0,i1,...,im
.

Then, (i) For 0 ≤ j ≤ m, I(c, j) = ij (we will not be defining or using I(c, j) for j > m).
Intuitively, I(c, j) gives the j-th parameter of the language Θ(Xc).
(ii) Suppose 1 ≤ j ≤ m. Suppose 1 ≤ k ≤ |Qij−1 |. Suppose I(c, j) = ij = 〈x1, x2, . . . , x|Qij−1 |〉.

Then, I ′(c, j, k) = xk.
Intuitively, I ′(c, j, k) gives the k-th component of the j-th parameter of Θ(Xc).
Now we proceed with the proof. Initially let s = 0.1 and r = 0.9. The idea is to iteratively

cause “stabilization” of each of the parameters by progressively narrowing down the range [s, r].
Eventually this would give us that Θ(Xs) = Θ(Xr) = Θ(Xc) for s ≤ c ≤ r, for some s < r,
causing a contradiction.

The following construction is non-effective (effectiveness is not needed for the argument).
The following method of diagonalization cannot be made effective, though we do not know if
there are other effective ways of doing the diagonalization.

For i = 1 to m do

(* Invariant 1: For all c, d ∈ rat such that s ≤ c < d ≤ r, I(c, t) = I(d, t), for t < i. *)

(* Note that invariant 1 trivially holds for i = 1, since I(c, 0) = I(d, 0). *)

(* At the end of last (m-th) iteration of the loop the above invariant 1 will hold for i = m + 1
*)

(* This loop tries to stabilize the i-th parameter of the reduction. *)

Let Q = QI(s,i−1).
For w = 1 to |Q| do
(* Invariant 2: For all c, d ∈ rat such that s ≤ c < d ≤ r, I ′(c, i, t) = I ′(d, i, t), for 1 ≤ t < w.

*)
(* Note that invariant 2 trivially holds for w = 1, since there is no t with 1 ≤ t < w. *)
(* At the end of last (|Q|-th) iteration of the loop the above invariant 2 will hold for

w = |Q|+ 1 *)
(* This inner loop tries to stabilize w-th component of the i-th parameter of the reduction

*)
(* If w-th component of Q is SINGLE or COSINGLE, then the following is not needed,

since invariant 2 is already satisfied for the next iteration. However we need this
when w-th component of Q is INIT or COINIT. *)

1For the definition of Q∗ we assume that there is some uniform way in which one can determine the size of
the tuples, for example by coding any tuple x in Nk, as 〈k, x〉.
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Let diff = ABS(I ′(s, i, w)− I ′(r, i, w)) (where ABS gives the absolute value).
Let c1, c2, . . . , cdiff +2, be such that
s < c1 < c2 < · · · < cdiff +2 < r.
Now by invariants 1 and 2, and by monotonicity of Θ (with respect to monotonicity of

the input language), there must exist l, 1 ≤ l ≤ diff + 1, such that
I ′(cl, i, w) = I ′(cl+1, i, w).
Let s = cl and r = cl+1.
(* Note that invariant 2 is satisfied, for the next iteration. *)

EndFor
(* Note that invariant 1 is satisfied, for the next iteration. *)

EndFor

End

Now note that each loop is executed only finitely many times. Thus at the end of the
algorithm we will have s < r, and by invariant 1,

for all c, d ∈ rat such that s ≤ c < d ≤ r, I(c, i) = I(d, i), for i < m + 1.
Thus, Θ(Xs) = Θ(Xr) = Θ(Xc) for s ≤ c ≤ r. A contradiction to Θ (along with Ψ)

witnessing RINIT0,1 ≤TxtExa

strong Q∗.

6 Weak Degrees and Their Characterizations

In this section we will consider the structure of degrees of weak reducibility (or simply weak
degrees) above and below the classes considered in the previous section.

First note that for weak-reductions, INIT,FINITE,COSINGLE are≤TxtEx
weak -complete [JS96].

We will be giving a characterization of ≤TxtEx
weak -complete classes in Subsection 6.2 below. Con-

sequently, in Subsection 6.1 we focus on classes involving COINIT and SINGLE. We will give
a characterization of classes which are weak-reducible to COINIT or SINGLE, and the classes
to which COINIT or SINGLE are weak-reducible. We will also consider a hierarchy for LQ,R

when each component of Q belongs to {COINIT,SINGLE}.

6.1 Incomplete Weak Degrees

The following theorem gives the characterization of classes of languages which are weak-reducible
to SINGLE.

Theorem 19 L ≤TxtEx
weak SINGLE iff there exist F , a partial recursive function from SEQ to

N , and G, a partial limit recursive mapping from N to N , such that
(a) For all σ, τ , if σ ⊆ τ , then [F(σ)↓ ⇒ F (τ)↓ = F (σ)].
For any text T , let F (T ) = limn→∞ F (T [n]).
(b) For any text T for L ∈ L, F (T ) is defined.
(c) For any text T for L ∈ L, G(F (T )) converges to a grammar for L.

Proof. (Only if direction) Suppose L ≤TxtEx
weak SINGLE via Θ and Ψ. Without loss of generality

assume that card(content(Θ(σ))) ≤ 1, for all σ. Define F and G as follows.
F (σ) = x, if content(Θ(σ)) = {x}. F (σ) is undefined if content(Θ(σ)) = ∅.
Define G(w) as follows: Let p be a grammar for {w}. Let G(w) = limit (if any) of Ψ(αp),

where αp = p, p, p, . . ..
It is easy to verify that F,G satisfy requirements (a) to (c) of the theorem.

34



(If direction) Suppose F , G satisfying requirements (a) to (c) of the theorem are given. To
show that L ≤TxtEx

weak SINGLE, define Θ and Ψ as follows.
Θ(T ) is defined so that content(Θ(T )) = {F (T [n]) | F (T [n])↓}.
Suppose a sequence α of grammars converges to grammar p. Then, Ψ(α) converges to

G(min(Wp)) (if defined).
It can be easily verified that the above Θ, Ψ witness that L ≤TxtEx

weak SINGLE.

The following theorem gives the surprising result that classes of languages to which SINGLE
is weak-reducible are the same as the classes of languages to which SINGLE is strong-reducible.
Thus, one can get a characterization of classes to which SINGLE is weak-reducible by using
the characterization of classes to which SINGLE is strong-reducible. Note that in contrast to
the following result, the lower cones of weak and strong reducibility (with respect to SINGLE)
differ. To see this, consider: L = {L | L 6= ∅ ∧ (∀x ∈ L)[Wx = L]}. Clearly, L ≤TxtEx

weak SINGLE.
However, it was shown in [JS97] that L 6≤TxtEx

strong FINITE, and thus L 6≤TxtEx
strong SINGLE.

Theorem 20 SINGLE ≤TxtEx
weak L iff SINGLE ≤TxtEx

strong L.

Proof. Clearly, SINGLE ≤TxtEx
strong L implies SINGLE ≤TxtEx

weak L. Now suppose SINGLE ≤TxtEx
weak

L, as witnessed by Θ and Ψ. Define Θ′ as follows.
Θ′(#k) = #k.
Θ′(#ki{#, i}j) = #kΘ(ij+1).
(Θ′ on other inputs doesn’t matter).
It is easy to verify that Θ′, Ψ witness that SINGLE ≤TxtEx

strong L.

We now consider classes which are ≤TxtEx
weak -reducible to COINIT. Note that the next the-

orem is similar in spirit to Theorem 8. However, in the case of weak reductions, texts replace
languages.

Theorem 21 L ≤TxtEx
weak COINIT, iff there exist two functions, F , a partial recursive mapping

from SEQ to N , and partial limiting recursive G mapping N to N such that:
(i) For all τ extending σ, F (σ)↓ ⇒ F (τ)↓ ≤ F (σ).
For any text T , let F (T ) denote limn→∞ F (T [n]).
(ii) For any text T for L ∈ L, F (T ) < ∞.
(iii) For any text T for L ∈ L, G(F (T )) is a grammar for L.

Proof. (Only if direction) Suppose L ≤TxtEx
weak COINIT via Θ and Ψ. Define F and G as

follows:
F (σ) = min(content(Θ(σ))), where if content(Θ(σ)) is empty, then min(content(Θ(σ))) is

not defined.
G(w) is defined as follows. Let p be a grammar for {x | x ≥ w}. Then, G(w) converges to

the limit (if any) of Ψ(αp), where αp = p, p, p, . . ..
It is easy to verify that F,G satisfy the requirements (i) to (iii) of the theorem.

(If direction) Suppose F and G satisfying requirement (i) to (iii) of the theorem are given.
Let Θ(T ) be defined so that content(Θ(T )) = {x | (∃n)[x ≥ F (T [n])↓]}.
Suppose a sequence α of grammars converges to grammar p. Then Ψ(α) converges to

G(min(Wp)) (if defined).
It is easy to verify that above Θ and Ψ witness that L ≤TxtEx

weak COINIT.

A characterization of classes to which COINIT is ≤TxtEx
weak -reducible turns out to be quite

complex. The main reason for this is that different texts for the same language may be mapped
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to quite different languages in ≤TxtEx
weak reduction. The order of presentation of text thus becomes

important in the reduction. Before presenting our characterization for classes to which COINIT
is weak-reducible we consider some definitions.

Definition 30 Let VALID = {(x1, t1, . . . , xk, tk) | k ∈ N ∧ xi > xi+1 for 1 ≤ i < k}.

Definition 31 Suppose (x1, t1, . . . , xk, tk) and (x′1, t
′
1, . . . , x

′
l, t

′
l) ∈ VALID.

Then, (x1, t1, . . . , xk, tk) ≤VALID (x′1, t
′
1, . . . , x

′
l, t

′
l) iff [[k ≤ l] ∧ (∀i ≤ k)[xi = x′i] ∧ (∀i <

k)[ti = ti′ ] ∧ [tk ≤ t′k]].

Definition 32 A text T is said to be nice iff

(∀n)[T (n + 1) = T (n) = # ∨ T (n + 1) = T (n) + 1 ∨ T (n + 1) < min(content(T [n + 1]))]

Let NICETEXTS = {T | T is nice }.

One can effectively transform a text T into a nice text T ′ with the following property:

If content(T ) ∈ COINIT, then content(T ) = content(T ′).

This can be done as follows:
T ′(0) = T (0).
If T ′(n) = # and T (n + 1) = #, then T ′(n + 1) = #;
ElseIf T (n+1) < min(content(T ′[n+1])), then let T ′(n+1) = T (n+1). (Here min(∅) = ∞).
Else (note that in this case T (n + 1) ≥ min(content(T ′[n + 1]))) let T ′(n + 1) = T ′(n) + 1.
It is easy to verify that
(1) For all T : T ′ ∈ NICETEXTS.
(2) If content(T ) ∈ COINIT, then content(T ′) = content(T ).

Theorem 22 COINIT ≤TxtEx
weak L iff there exists a recursive function H mapping VALID to

N , such that
(a) Let V1 = (x1, t1, x2, t2, . . . , xk, tk) and V2 = (x′1, t

′
1, x2, t2, . . . , x

′
l, t

′
l) ∈ VALID.

If V1 ≤VALID V2, then WH(V1) ⊆ WH(V2).
(b) {

⋃
t′
k
∈N WH(x1,t1,x2,t2,...,xk,t′

k
) | (x1, t1, x2, t2, . . . , xk, 0) ∈ VALID} ⊆ L.

(c) For (x1, t1, . . . , xk, tk) and (x′1, t
′
1, . . . , x

′
l, t

′
l) ∈ VALID, if xk 6= x′l, then⋃

t′
k
∈N WH(x1,t1,x2,t2,...,xk,t′

k
) 6=

⋃
t′
l
∈N WH(x′1,t′1,x′2,t′2,...,x′

l
,t′

l
).

(d) Suppose C = {
⋃

t′
k
∈N WH(x1,t1,x2,t2,...,xk,t′

k
) | (x1, t1, x2, t2, . . . , xk, 0) ∈ VALID}. Then

there exists a partial limit recursive E such that

(i) For all p, p′ such that Wp = Wp′ ∈ C, E(p) = E(p′).
(ii) For all p, p′, if for some (x1, t1, x2, t2, . . . , xk, 0) and (y1, s1, y2, s2, . . . , yl, 0) ∈

VALID, with xk 6= yl,

Wp =
⋃

t′
k
∈N WH(x1,t1,x2,t2,...,xk,t′

k
), and Wp′ =

⋃
s′
l
∈N WH(y1,s1,y2,s2,...,yl,s

′
l
),

then E(p) 6= E(p′).

Proof. For any V = (x1, t1, . . . , xk, tk) ∈ VALID, define σV = (x1 + 0, x1 + 1 . . . , x1 + t1, x2 +
0, x2 + 1, . . . , x2 + t2, . . . , xk + 0, xk + 1, . . . , xk + tk).

(Only if direction) Suppose COINIT ≤TxtEx
weak L via Θ and Ψ.

Define H and E as follows.
WH(V ) = content(Θ(σV )).
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E(p)= limiting value (if any) of min(WΨ(αp)), where αp = p, p, p, . . ..
It is easy to verify that H satisfies requirements (a) to (c) of the theorem and E witnesses

the satisfaction of requirement (d) in the theorem.

(If direction) Suppose that H (satisfying requirements (a) to (c) of the theorem) and E (wit-
nessing the satisfaction of requirement (d) of the theorem) are given. By discussion just before
the theorem, it is enough to weak-reduce the class of texts NICETEXTS − {#∞} to L. We
may further ignore the presence of # in the σ for the construction of Θ (one may just map #∞

to #∞ and #iσ to #iΘ(σ), where σ is a non-empty sequence which doesn’t contain #).
Define Θ as follows.
(Recall that Wi,s is Wi enumerated within s steps)
content(Θ(σV )) = WH(V ),|σV |.
For each V = (x1, t1, x2, t2, . . . , xk, 0) ∈ VALID, let pV be a grammar (obtained effectively

from V ) for content(Θ(
⋃

tk∈N σx1,t1,x2,t2,...,xk,tk)).
Define Ψ as follows. Suppose a sequence α of grammars converges to grammar q. Then,

Ψ(α) converges to a grammar for {x | x ≥ xk}, such that E(q) = E(pV ), where V =
(x1, t1, x2, t2, . . . , xk, 0) ∈ VALID.

(If several different V ’s satisfy the above, then it doesn’t matter which one is picked).
It is easy to verify that Θ, Ψ witness that COINIT ≤TxtEx

weak L.

We now turn our attention to the hierarchy formed for LQ,R. Note that if a component
of Q is INIT or COSINGLE, then LQ,R would be ≤TxtEx

weak -complete. Thus, the only cases
of interest are when components of Q are only from COINIT,SINGLE. Moreover, by using
Proposition 23, we may assume that SINGLE appears only at the end of Q.

Proposition 34 Suppose Q = (COINIT,SINGLE), R = R1 × R2, Q′ = (COINIT) and R′ =
R′

1, where R1, R2 and R′
1 are infinite subsets of N . Then LQ,R 6≤TxtEx

weak LQ′,R′
.

Proof. Suppose by way of contradiction Θ and Ψ witness that LQ,R ≤TxtEx
weak LQ′,R′

. Let
i1 be a non-minimal element in R1. Consider LQ

i1,i2
such that i2 ∈ R2. Let σ be such that

content(σ) ⊆ LQ
i1,i2

, and content(Θ(σ)) 6= ∅. Now, there are infinitely many languages in LQ,R

containing content(σ) (for example, all languages LQ
i′1,j such that i′1 < i1, i′1 ∈ R1 and j ∈ R2),

but only finitely many languages in LQ′,R′
containing content(Θ(σ)). It follows that Θ,Ψ cannot

witness LQ,R ≤TxtEx
weak LQ′,R′

. Proposition follows.

We now consider the hierarchy for LQ,R, for weak-reduction when components of Q are from
COINIT,SINGLE. The hierarchy result is given by Corollary 4 below.

Theorem 23 Suppose Q = (q1, . . . , qk+1), and Q′ = (q′1, . . . , q
′
k+1, q

′
k+2), where qi = q′i =

COINIT, for 1 ≤ i ≤ k + 1, and q′k+2 = SINGLE. Suppose R = R1 × R2 × · · · × Rk+1,
R′ = R′

1 × R′
2 × · · · × R′

k+2, where each Ri, R′
i is an infinite subset of N , except for R′

1 which
is finite. Then LQ,R 6≤TxtEx

weak LQ′,R′
.

Proof. We prove the theorem by induction on k.
We first consider the base case of k = 0. Thus, we need to show that LQ,R 6≤TxtEx

weak LQ′,R′
,

where Q = (COINIT), Q′ = (COINIT,SINGLE) and R = (R1), R′ = (R′
1, R

′
2), where R′

1 is
finite, and R1, R

′
2 are infinite. Now if LQ′

i,j ⊂ LQ′

i′,j′ , then i > i′. Now, suppose f and g are

functions such that Θ(LQ
i ) = LQ′

f(i),g(i). Then it follows that i < i′ implies f(i) < f(i′). But this
is impossible, since domain of f is infinite, but range of f is finite.
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Now suppose by induction that the theorem holds for k = n. We show that the theorem
holds for k = n + 1.

Suppose by way of contradiction that Θ and Ψ witness LQ,R ≤TxtEx
weak LQ′,R′

.

Claim 1 There exists an i1 ∈ R1 (which is not the least element of R1), and a σ such that
(1) content(σ) ⊆ LQ,R

i1,0,0,....
(2) content(Θ(σ)) contains 〈i′1, . . .〉, for some i′1 ∈ R′

1.
(3) Let ii1 be the maximum element in R1 which is less than i1. Then, for all i2 ∈ R2, i3 ∈

R3, . . ., for any τ extending σ such that content(τ) ⊆ LQ,R
ii1,i2,..., content(Θ(σ)) does not contain

any element of the form 〈x, . . .〉, with x < i′1. In other words, Θ maps any text extending σ for
LQ,R

ii1,i2,..., to a text for a language of form LQ′,R′

i′1,... .

Proof. Consider m1 ∈ R1 such that there are more elements in R1 below m1 than the num-
ber of elements in R′

1. Now, if the claim is false, then one could start with a σm1 , such that
content(σm1) ⊆ LQ,R

m1,0,0,..., and content(Θ(σm1)) contains 〈x1, . . .〉, x1 ∈ R1. Then, one can in-
ductively define σm2 , σm3 , . . . (where m2,m3, . . . are elements of R1 smaller than m1 in descend-
ing order), along with x2, x3, . . ., such that content(σmw) ⊆ LQ,R

mw,0,0,..., and content(Θ(σmw))
contains 〈xw, . . .〉, xw ∈ R′

1, where x1 > x2 > x3 . . .. But this is impossible (since R1 has more
elements below m1 than the number of elements in R′

1). This proves the claim. 2

Now fix i1, i
′
1, σ as in the Claim. Let i′2 be such that content(Θ(σ)) contains 〈i′1, i′2, . . .〉.

Thus, it immediately follows that Θ (along with Ψ) can be used for a ≤TxtEx
weak -reduction from

LQQ,RR to LQQ′,RR′
, where QQ, QQ′ are obtained from Q, Q′ by dropping the first COINIT,

RR is obtained from R by dropping R1, and RR′ is obtained from R′ by dropping R′
1 and

changing R′
2 to R′

2 ∩ {x | x ≤ i′2}. A contradiction to the induction hypothesis.

Corollary 2 Suppose Q = (q1, q2, . . . , qk), and Q′ = (q′1, q
′
2, . . . , q

′
k), where for 1 ≤ i < k,

qi = q′i = COINIT, and qk = COINIT, and q′k = SINGLE. Then, LQ 6≤TxtEx
weak LQ′

.

Let Q = (SINGLE), R = R1, Q′ = (COINIT), and R′ = R′
1, where R1 is infinite and R′

1 is
finite. Then it can be easily seen that LQ,R 6≤TxtEx

weak LQ′,R′
.

Now by using similar induction as in the proof of Theorem 23, one can show

Theorem 24 Suppose Q = (q1, . . . , qk+1), and Q′ = (q′1, . . . , q
′
k+1), where qi = q′i = COINIT,

for 1 ≤ i < k + 1, qk+1 = SINGLE and q′k+1 = COINIT. Suppose R = R1 × R2 × · · · × Rk+1,
R′ = R′

1 × R′
2 × · · · × R′

k+1, where each Ri, R′
i is an infinite subset of N , except for R′

1 which
is finite. Then LQ,R 6≤TxtEx

weak LQ′,R′
.

Corollary 3 Suppose Q = (q1, q2, . . . , qk, qk+1), and Q′ = (q′1, q
′
2, . . . , q

′
k), where for 1 ≤ i ≤ k,

qi = q′i = COINIT, and qk+1 = SINGLE. Then, LQ 6≤TxtEx
weak LQ′

.

Corollary 4 Suppose Q = (q1, q2, . . . , qk), Q′ = (q′1, q
′
2, . . . , q

′
l), where each qi, 1 ≤ i < k, and q′i,

1 ≤ i < l, is COINIT, and qk, q
′
l are members of {COINIT,SINGLE}. Then, LQ ≤TxtEx

weak LQ′

iff k < l OR [k = l and qk = COINIT ⇒ q′l = COINIT].

Proof. If direction follows from Theorem 15. We prove the only if direction.
We consider the following two cases:

Case 1: k > l.
Let Q′′ = (q′′1 , q′′2 , . . . , q′′l , q′′l+1) and Q′′′ = (q′′1 , q′′2 , . . . , q′′l ), where, for 1 ≤ i ≤ l, q′′i = COINIT

and q′′l+1 = SINGLE. Then, by Corollary 3 we have that LQ′′ 6≤TxtEx
weak LQ′′′

. Since LQ′ ≤TxtEx
strong

LQ′′′
and LQ′′ ≤TxtEx

strong LQ (by Theorem 15), we have that LQ 6≤TxtEx
weak LQ′

.
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Case 2: k = l, qk = COINIT, and ql = SINGLE.
Then, from Corollary 2 we have that LQ 6≤TxtEx

weak LQ′
.

Corollary follows from above two cases.

Note that above gives ≤TxtEx
weak -relation among all the classes LQ, with components of Q

coming from {COINIT,SINGLE}. This is so, since by Proposition 23 and Proposition 25,
SINGLE can be assumed to appear in Q at most once and at the end (if it appears).

One can get characterizations of classes below and above LQ with respect to weak-reduction
in a spirit similar to that of Theorems 21 and 22. However, since they become technically quite
complex, we omit them here.

6.2 Complete Weak Degrees

We first give a characterization of ≤TxtExa

weak -complete classes, for all a ∈ N .

Definition 33 A non-empty class L of languages is called quasi-dense iff
(a) L is 1–1 recursively enumerable.
(b) For any L ∈ L and any finite S ⊆ L, there exists an L′ ∈ L, such that S ⊆ L′, but

L 6= L′.

Note: (b) can be equivalently replaced by
(b’) For any finite set S, either there exists no language in L extending S, or there exist

infinitely many languages in L extending S.

Definition 34 A non-empty r.e. class T of texts is called quasi-dense iff
(a) For distinct T, T ′ ∈ T , content(T ) 6= content(T ′).
(b) For each σ, either there exists no text in T extending σ, or there exist at least two

distinct texts in T extending σ.

Note: (b) can be equivalently replaced by
(b’) For each σ, either there exists no text in T extending σ, or there exist infinitely many

texts in T extending σ.

Proposition 35 Suppose T is a quasi-dense class of texts. Then there exists a quasi-dense
class L such that {content(T ) | T ∈ T } ⊇ L.

Proof. Suppose T = {Ti | i ∈ N}, where Ti can be obtained effectively from i, and content(Ti) 6=
content(Tj), if i 6= j. Let Li = content(Ti). Clearly, L = {Li | i ∈ N} is a quasi-dense class of
languages, and {content(T ) | T ∈ T } = L.

Proposition 36 Suppose L is quasi-dense class of languages. Then there exists a quasi-dense
class of texts, T , such that {content(T ) | T ∈ T } ⊆ L.

Proof. Let L0, L1, . . ., be a 1–1 recursive enumeration of all the languages in L.
Define T0, T1, . . ., as follows:
Let σ0, σ1, . . ., be a recursive enumeration of all finite sequences such that every finite

sequence appears infinitely often in the enumeration.
Let T0 be a text for L0.
Let Used = {0} (intuitively, Used denotes the Lj ’s which we have already used in construc-

tion of earlier Ti’s). Go to stage 0.
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Stage i: Definition of Ti+1.

Let j ≥ i, be least number such that σj is a prefix of some Tk, k ≤ i.
Search for Lr such that, r 6∈ Used, and content(σj) ⊆ Lr.
Define Ti+1 as a text for Lr which extends σj . Let Used = Used ∪ {r}.
Go to stage i + 1.

Clearly, the above sequence of texts is 1–1 (content-wise). We thus only need to show that
for any prefix σ of Tj , there is another Tr, which extends σ. For this let k > j, be least number
such that σ = σk. Now Tk must extend σ.

Proposition 37 Suppose a ∈ N ∪ {∗}. If L is a-limiting standardizable, then for all L,L′ ∈ L,
either L = L′ or L 6=2a L′.

Proof. Suppose by way of contradiction that L,L′ ∈ L are different but L =2a L′. Let i be
such that Wi = L. Let i′ be such that Wi′ = L′. Let i′′ be such that Wi′′ =a L and Wi′′ =a L′.

Note that such i, i′, i′′ exist. Suppose F witnesses a-limiting standardizability of L. Then,
F (i) = F (i′′), and F (i′′) = F (i′), but F (i) 6= F (i′). A contradiction.

By a slight modification of the definition of ≤TxtExa

weak , we say that T ≤TxtExa

weak L, if there
exist Θ and Ψ such that, for all T ∈ T , Θ(T ) is a text for some L ∈ L, and for any infinite
sequence α of grammars being TxtExa-admissible for Θ(T ), Ψ(α) converges to a grammar
for an a-variant of content(T ). One can similarly define T ≤TxtExa

weak T ′, L ≤TxtExa

weak T and
≤TxtExa

weak -completeness of T .
Let RESFIN = {T | (∀i | i = 0 ∨ T (i) 6= T (i − 1))[T (i) ∈ {〈x, i〉 | x ∈ N}] ∧

card(content(T )) < ∞}.
Intuitively, RESFIN is a subset of texts for languages in FINITE, with some special proper-

ties. (RES in RESFIN above stands for restricted). Texts in RESFIN “code” every position,
where the next element differs from the previous one. The properties that we need include the
facts that RESFIN is ≤TxtEx

weak -complete, and all the texts in it are pairwise different. For our
purposes of characterization it turns out that RESFIN is more suitable to use than the class
of all the texts for FINITE or INIT.

It is easy to verify that RESFIN is quasi-dense, r.e. class of texts.
For T ∈ RESFIN, for a ∈ N , let T a be defined as follows: For j < a, and any i ∈ N , let

T a(a ∗ i + j) = 〈T (i), j〉.
For a ∈ N , let RESFINa = {T a | T ∈ RESFIN}.

Proposition 38 Suppose a ∈ N .
(a) RESFINa is a quasi-dense class of texts.
(b) For all distinct texts T , T ′ ∈ RESFINa, content(T ) 6=a−1 content(T ′).
(c) {content(T ) | T ∈ RESFINa} ∈ TxtEx.
(d) {content(T ) | T ∈ RESFIN2a+1} is a-limiting standardizable.
(e) RESFIN2a+1 is ≤TxtExa

weak -complete.

Proof. Parts (a) to (c) in the above proposition can be easily proved using the definition of
RESFINa. Part (e) can be shown essentially along the lines of the proof of FINITE being
≤TxtEx

weak -complete in [JS96]. We omit the details.
We show part (d). Define F as follows. For any p, let F (p) be the canonical index for

{x | card({y | 〈x, y〉 ∈ Wp}) ≥ a + 1}, if Wp is finite. F (p) is undefined if Wp is infinite. It is
easy to verify that F is partial limit recursive. Moreover, if Wp =a content(T 2a+1), for some
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T ∈ RESFIN, then F (p) is the canonical index for content(T ). It follows that F witnesses
a-limiting standardizability of {content(T ) | T ∈ RESFIN2a+1}.

Proposition 39 Suppose T is quasi-dense class of texts. Suppose Θ is a recursive mapping
from T to Θ(T ), such that for all T, T ′ ∈ T , content(Θ(T )) 6= content(Θ(T ′)). Then, T ′ =
Θ(T ) is quasi-dense. Furthermore, if T is r.e., then so is T ′.

Proof. Obvious.

Proposition 40 Suppose T is an r.e. class of texts, and T ′ is an r.e. quasi-dense class of
texts. Then, one can define a recursive operator Θ such that (i) Θ(T ) ⊆ T ′, and (ii) for distinct
T, T ′ ∈ T , Θ(T ) 6= Θ(T ′).

Proof. Let T0, T1, . . ., be a 1–1 enumeration of T . Let T ′
0, . . ., be a 1–1 enumeration of T ′.

Let σ0, σ1, . . ., be a 1–1 enumeration of all the finite sequences.
We will define Θ(·) in stages below. In odd stage 2s + 1, we would define Θ(Ts[m]), for all

m ∈ N . In even stage 2s we would define Θ(σs) (if not defined already). We will maintain the
following invariants:

(i) For all σ, |σ| = |Θ(σ)|.
(ii) If Θ(σ) has been defined by some stage, then we would have (by that stage), for all

τ ⊆ σ, Θ(τ) = Θ(σ)[|τ |].
Similarly, for σ replaced by any text T ∈ T in previous statement.
(iii) For any σ, there exists a text T ∈ T , such that Θ(σ) ⊆ T .
(iv) Before the start of any stage 2s or 2s + 1, Θ would have been defined for Θ(Ts′ [n]), for

s′ < s, n ∈ N . Θ(σ), would have been defined for only finitely many σ such that σ 6⊆ T , for
any T ∈ {T0, T1, . . . , Ts−1}.

We let Θ(Λ) = Λ.

Stage 2s:

If Θ(σs) has not been defined upto now, then let σ ⊆ σs be the largest prefix of σs such
that Θ(σ) has been defined upto now. Let T ∈ T be such that Θ(σ) ⊆ T . Then, for σ′

such that σ ⊆ σ′ ⊆ σ′, let Θ(σ′) = T [|σ′|].
Stage 2s + 1:

Let Ts[m] be the largest prefix of Ts such that Θ(Ts[m]) has been defined upto now. (Note
that there exists such a largest m, since Ts is different from all Ts′ , s′ < s). Let T ′ ∈ T ′

be an extension of Θ(Ts[m]) such that T ′ is different from all of Θ(Tj), j < s. Then, let
Θ(Ts[m′]) = T ′[m′], for m′ > m. Thus, Θ(Ts) = T ′.

It is easy to verify that a Θ such as above can be easily constructed, and Θ satisfies the
requirements of the proposition.

Theorem 25 For any a ∈ N and L ∈ TxtExa, L is ≤TxtExa

weak -complete iff there exists an r.e.
quasi dense class of texts T representing a subclass of L such that {content(T ) | T ∈ T } is
a-limiting standardizable.

Proof. (Only if direction): We need to show that every ≤TxtExa

weak -complete class has the prop-
erties claimed in the theorem.
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Suppose L is ≤TxtExa

weak -complete. Clearly L ∈ TxtExa. Also, there exist Θ and Ψ witnessing
{content(T ) | T ∈ RESFIN2a+1} ≤TxtExa

weak L (since {content(T ) | T ∈ RESFIN2a+1} ⊆
FINITE, and FINITE ∈ TxtExa).

We first claim that for any two distinct texts T, T ′ ∈ RESFIN2a+1, content(Θ(T )) 6=2a

content(Θ(T ′)). Suppose by way of contradiction that T, T ′ are distinct but content(Θ(T )) =2a

content(Θ(T ′)). Let q be such that content(Θ(T )) =a Wq =a content(Θ(T ′)). Then, Ψ(q, q, . . .)
must converge to a grammar for an a-variant of both content(T ) and content(T ′). However,
since content(T ) 6=2a content(T ′), this is impossible. It follows that any two distinct texts in
Θ(RESFIN2a+1) must have content differing by at least 2a + 1 elements.

Let T ′ = {Θ(T ) | T ∈ RESFIN2a+1}. It follows using Proposition 39 that T ′ is an r.e.
quasi-dense class of texts.

Now, suppose F is an a-limiting standardizing function for {content(T ) | T ∈ RESFIN2a+1}.
Let F ′(q) be defined as follows. Suppose αq = q, q, q, . . ., and Ψ(αq) converges to w. Then
F ′(q) = F (w). It is easy to verify that F ′ is an a-limiting standardizing function for {content(T ) |
T ∈ T ′}.

(If direction): Suppose T represents a subclass of L such that T is an r.e. quasi-dense class of
texts and {content(T ) | T ∈ T } is a-limiting standardizable via F .

Recall that RESFIN2a+1 is ≤TxtExa

weak -complete by Proposition 38(e). Let Θ be any operator
such that (i) Θ(RESFIN2a+1) ⊆ T , and (ii) for distinct T, T ′ ∈ RESFIN2a+1, Θ(T ) 6= Θ(T ′)
(by Proposition 40, such a Θ exists).

For T ∈ RESFIN2a+1, let gT be a grammar (obtainable effectively from T ) for content(T ),
and hT be a grammar (obtainable effectively from T ) for content(Θ(T )). Note that F (hT ) 6=
F (hT ′), for any two distinct texts T, T ′ ∈ RESFIN2a+1 (since content(Θ(T )) 6= content(Θ(T ′))).

Let Ψ be defined as follows.
Suppose a sequence α of grammars converges to a grammar q. Then Ψ(α) converges to

gT , such that F (q) = F (hT ) (if there is any such T ∈ RESFIN2a+1). Note that, for T ∈
RESFIN2a+1, if q is indeed a grammar for an a-variant of content(Θ(T )), then T is the unique
text in RESFIN2a+1, such that F (q) = F (hT ), and this T can be found in the limit.

It is easy to verify that Θ and Ψ witness that RESFIN2a+1 ≤TxtExa

weak L. Thus, L is
≤TxtExa

weak -complete.

The following theorem characterizes complete weak degrees in terms of their algorithmic
(standardizability) and topological (quasi-density) potentials.

Theorem 26 For any a ∈ N and L ∈ TxtExa, L is ≤TxtExa

weak -complete iff there exists a
quasi-dense subclass of L which is a-limiting standardizable.

Proof. The theorem follows from Theorem 25 and Propositions 35 and 36.

We now characterize ≤TxtEx∗
weak -complete classes.

For any T ∈ RESFIN, define T ∗ as follows:
T ∗(i) = 〈content(T [i]), i〉.
(Here and below, for ease of notation we are allowing finite sets as parameters for the pairing

function. One could always replace such parameters by the canonical indices for the finite sets).
Let RESFIN∗ = {T ∗ | T ∈ RESFIN}.

Proposition 41 (a) RESFIN∗ is a quasi-dense class of texts.
(b) For all distinct texts T , T ′ ∈ RESFIN∗, content(T ) 6=∗ content(T ′).
(c) {content(T ) | T ∈ RESFIN∗} ∈ TxtEx.
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(d) {content(T ) | T ∈ RESFIN∗} is ∗-limiting standardizable.
(e) RESFIN∗ is ≤TxtEx∗

weak -complete.

Proof. Parts (a) to (c) in above proposition can be easily proved using the definition of
RESFIN∗. For part (d) define E as follows. E(p) converges to the canonical index for S, if
there exists a j ∈ N such that 〈S, j〉 ∈ Wp, and for all S′ ∈ FINITE, S′ 6= S, 〈S′, k〉 6∈ Wp,
for k ≥ j. Now, if Wp is a ∗-variant for content(T ∗), for some T ∈ RESFIN, then, E(p)
converges to the canonical index for content(T ). Thus, E witnesses ∗-limiting standardizability
of {content(T ) | T ∈ RESFIN∗}. Part (e) can now be shown essentially along the lines of the
proof of FINITE being ≤TxtEx

weak -complete in [JS96].

Theorem 27 L is ≤TxtEx∗
weak -complete iff L ∈ TxtEx∗ and there exists a r.e. quasi dense

class of texts, T , representing a subclass of L such that {content(T ) | T ∈ T } is ∗-limiting
standardizable.

Proof. The above theorem can be proved similarly to Theorem 25 except that we use
RESFIN∗ instead of RESFIN2a+1. We omit the details.

Theorem 28 L is ≤TxtEx∗
weak -complete iff L ∈ TxtEx∗, and there exists a subclass L′ of L such

that L′ is quasi-dense, and ∗-limiting standardizable.

Proof. Follows from Theorem 27 and Propositions 35 and 36.

7 Conclusions

The formalisms and results obtained in the paper are of two types:
a) Formalisms, hierarchies, and characterizations for classes of “multidimensional” lan-

guages, where information learned from one “dimension” aids to learn another one. The char-
acterizations define set-theoretical and algorithmic properties of such classes.

b) The characterizations of complete degrees. These characterizations specify algorithmic
and topological properties of classes in the complete degrees. A new natural powerful class of
languages complete for strong reductions has been discovered.

The results for “multidimensional” languages reveal a new variety of learning strategies,
which, to learn a “dimension”, use previously learned information to find the right “subspace”,
or a previously learned “pattern” specifying a learning “substrategy” for the next “dimension”.
As far as the former approach is concerned, the picture of hierarchies based on “core” classes
SINGLE,COSINGLE, INIT,COINIT (SINGLE,COINIT for weak reductions) has been com-
pleted. The latter approach is implemented in the form of classes Qm and Q∗, see Definition 29.
There is a number of interesting open problems related to these classes, as well as to the for-
malism as a whole:

a) Do the classes Qm for m > 1 form an infinite hierarchy?
b) Is it possible to define a “natural” class of languages based on combinations of classes

from BASIC above the class Q∗?
c) Is it possible to (naturally) define a type of language classes with a different way of using

or learning “patterns”?
The degrees of “core” classes forming BASIC are known to contain many of important

“practical” learning problems. For example, COINIT contains the class of pattern languages
[JS96]. However, there certainly exist “natural” classes of infinite/finite languages that are
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probably incomparable, at least in terms of strong reductions, with some/all classes in BASIC .
One can add these classes to BASIC and apply the formalisms developed in the paper. Explo-
ration of, say, Q-classes based on such extensions of BASIC can give a deeper understanding
of the nature of learning strategies and learning from texts as a whole.
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