
Semiautomatic Structures

Sanjay Jain1?, Bakhadyr Khoussainov2??, Frank Stephan3? ? ?,
Dan Teng3 and Siyuan Zou3

1 Department of Computer Science, National University of Singapore
13 Computing Drive, COM1, Singapore 117417, Republic of Singapore

sanjay@comp.nus.edu.sg
2 Department of Computer Science, University of Auckland, New Zealand

Private Bag 92019, Auckland, New Zealand
bmk@cs.auckland.ac.nz

3 Department of Mathematics, The National University of Singapore
10 Lower Kent Ridge Road, S17, Singapore 119076, Republic of Singapore

fstephan@comp.nus.edu.sg, tengdanqq930@hotmail.com, zousiyuan@hotmail.com

Abstract. Semiautomatic structures generalise automatic structures in the sense
that for some of the relations and functions in the structure one only requires the
derived relations and structures are automatic when all but one input are filled with
constants. One can also permit that this applies to equality in the structure so that
only the sets of representatives equal to a given element of the structure are regular
while equality itself is not an automatic relation on the domain of representatives.
It is shown that one can find semiautomatic representations for the field of rationals
and also for finite algebraic field extensions of it. Furthermore, one can show that
infinite algebraic extensions of finite fields have semiautomatic representations in
which the addition and equality are both automatic. Further prominent examples of
semiautomatic structures are term algebras, any relational structure over a countable
domain with a countable signature and any permutation algebra with a countable
domain. Furthermore, examples of structures which fail to be semiautomatic are
provided.

1. Introduction

General background. An important topic in computer science and mathematics is concerned
with classifying structures that can be presented in a way that certain operations linked to the
structures are computed with low computational complexity. Automatic functions and relations
can, in some sense, be considered to have low complexity. The first work in this field centered
on the question which sets are regular (that is, recognised by finite automata) and how one can
transform the various descriptions of regular sets into each other. Later mathematicians applied

? S. Jain was supported in part by NUS grants C252-000-087-001, R146-000-181-112 and R252-000-420-112.
?? B. Khoussainov is partially supported by Marsden Fund grant of the Royal Society of New Zealand. The paper was

written while B. Khoussainov was on sabbatical leave to the National University of Singapore.
? ? ? F. Stephan was supported in part by NUS grants R146-000-181-112 and R252-000-420-112.

1

2

the concept also to structures: Thurston automatic groups [4] are one of the pioneering works
combining automata theory with structures. Here one has (a) a regular set of representatives A
consisting of words over a finite alphabet of generators, (b) an automatic equivalence relation
representing equality and (c) for every fixed group member y, an automatic mapping fy from A
to A such that fy(x) is a representative of the group member x ◦ y. Here a function is automatic
iff its graph can be recognised by a finite automaton or, equivalently, iff it is computed in linear
time by a one-tape Turing machine which replaces the input by the output on the tape, starting
with the same position [2]. These concepts have been generalised to Cayley automatic groups
[9,14] and to automatic structures in general.

For automatic structures, one has to define how to represent the input to functions that have
several inputs. This is now explained in more detail. If Σ is the alphabet used in the regular
domain A ⊆ Σ∗ of the structure, one defines the convolution of two strings a0a1 . . . an and
b0b1 . . . bm to consist of combined characters c0c1 . . . cmax{m,n} where

– ck =
(
ak
bk

)
if k 6 min{m,n},

– ck =
(
ak
#

)
if m < k 6 n and

– ck =
(
#
bk

)
if n < k 6 m.

Here # is a fixed character outside Σ used for padding purposes. Convolution of strings x
and y is denoted by conv(x, y). Now the domain of a function f : A × A → A is the set
{conv(x, y) : x, y ∈ A} which might from now on be identified with A × A. Similarly one can
define convolutions of more than two parameters and also define that an automatic relation over
Ak is an automatic function from Ak to {0, 1} taking 1 on those tuples where the relation is true
and taking 0 otherwise. A structure A is automatic iff it is isomorphic to a structure B such that
the domain and all functions and relations in the structure are automatic.

Let N denote the set of natural numbers, Z the set of integers and Q the set of rational
numbers. Now (N,+,=, <) is an automatic structure, as (i) there is a regular set A such that
each member of N is represented by at least one member of A, (ii) there is an automatic function
f : A × A → A such that for each x, y ∈ A the value f(x, y) is a representative of the sum of
the elements represented by x, y and (iii) the sets {conv(x, y) : x, y represent the same element
of N} and {conv(x, y) : x represents a number n and y represents a number m with n < m} are
both regular. Automatic structures were introduced by Hodgson [6,7] and later, independently,
by Khoussainov and Nerode [10]. Automatic structures have a decidable first-order theory and
every function or relation first-order definable in an automatic structure (with quantification
over members of the structure, say group elements and using as parameters relations from the
structure or other automatic relations introduced into the representation of the structure) are
again automatic. These closure properties made automatic structures an interesting field of
study; however, a limitation is its expressiveness. For example, the structure (N, ·,=) is not
automatic yet its first-order theory is decidable. There is a limited version of multiplication
which is automatic in every automatic presentation of (N,+) or (Z,+): For every multiplication
with a fixed element n, one can find an automatic function which maps every representative of
a number m to a representative of the number m · n.

3

Therefore, one would like to overcome the lack of expressivity of automatic structures and
address the following questions: (1) Are there general ways to utilise finite automata for the
representation of non-automatic structures such as (Q,+) and (N, ·,=)? (2) Under such general
settings, what properties of automatic structures should be sacrificed and what properties should
be preserved to accommodate non-automatic structures as those we mentioned above? (3) What
are the limits of finite automata in representations of structures?

The present paper proposes one possible approach to address the questions above. The main
concept is motivated by the notion of Thurston automaticity and Cayley automaticity for groups
[4,9]. Namely, one says that a function f : Ak 7→ A is semiautomatic iff whenever one fixes all
but one of the inputs of f with some fixed elements of A, then the resulting mapping from
A to A is automatic. Similarly a relation R ⊆ Ak is semiautomatic, if it is a semiautomatic
function when viewed as a {0, 1}-valued function (mapping the members of R to 1 and the
non-members of R to 0). This permits now to give the general definition using finite automata
representing structures. For a structure, say (N,+, <,=; ·), one says that this structure is semi-
automatic iff there is a representation (A, f,B,C; g) of this structure such that A is a regular set
of representatives of N, f is an automatic function representing +, B,C are automatic relations
representing <,=, respectively, and g is a semiautomatic relation representing the multiplica-
tion. Note that the convention here is that the relations and functions before the semicolon have
to be automatic while those after the semicolon need only to be semiautomatic. Hence in a
structure (N,+, <,=; ·) the operation + and the relations < and = have to be automatic and ·
is only semiautomatic while in a structure (Q; +, ·, <,=) not only the operations addition and
multiplication are semiautomatic but also the relations < and =, that is, only the sets which
compare to a fixed element (say all representatives of numbers below 1/2 or all representatives of
5) have to be regular. This difference is crucial, for example, (Q,+; =) is not semiautomatic [20]
and (Q,=; +) is semiautomatic. It is of course the goal to maintain automaticity for as many
operations and relations as possible, therefore one needs to pay attention to these differences.
Here are some important comments on the structures.

– The condition that a basic function, say f : A2 → A, is semiautomatic requires, for all
a ∈ A, merely the existence of automata recognising the sets {conv(x, y) : y = f(x, a)}
and {conv(x, y) : y = f(a, x)}. This part of the definition is kept as general as possible to
accommodate a large class of structures. In particular, this part is needed to address question
(3) posed above. Obviously, the requirement that the graph {conv(x, y) : y = f(x, a)} is
automatic can be made effective; namely, there is an algorithm that given any a from the
domain produces a finite automaton recognising the graph {conv(x, y) : y = f(x, a)}. All the
results of the paper, apart from Theorems 9, 10 and 11, satisfy this effectiveness condition.
Thus, under this effectiveness condition, semiautomatic structures are still structures with
finite presentations.

– For the structures A with no relation symbols, semiautomaticity is equivalent to saying that
all algebraic polynomials with one variable (as defined in the beginning of Section 2) are
automatic. Thus, semiautomaticity under the effectiveness condition, is equivalent to saying
that the structure A′ = (A, g0, g1, . . .), where g0, g1, . . . is the list of all algebraic polynomials

4

with one variable, is automatic. In particular this implies that the first order theory of this
structure derived from A is decidable. The first order theory of A′, can naturally be embed-
ded into the first order theory of A. Hence, semiautomaticity of A under the effectiveness
condition, implies that a natural fragment of the first order theory of A is decidable. More-
over, algebraically the structure A′ has exactly the same set of congruences as the original
structure A.

– There is a difference between semiautomatic / automatic functions and relations when = is
only semiautomatic and not automatic. While a function, for each input, has to find only
one representative of an output, a relation must be true for all representatives of a given
tuple which is satisfied. Therefore, it can be that a function is automatic while the graph
{conv(x, y) : y = f(x)} is not automatic. However, the graph of an automatic function is
semiautomatic. Given some representative z of a member of the structure, the sets {y : y
and f(z) represent the same element} of the representatives of the image of z and {x :
∃y [f(x) is mapped to y and y represents the same element as z]} of representatives of the
preimage of z are regular. This difference in the effectivity of functions and relations is found
in many domains where equality is not fully effective. For example there are many methods
to systematically alter computer programs (for example, if p computes x 7→ f(x) then F (p)
computes x 7→ f(x) + 1). For many programming languages, such an F can even be realised
by an automatic function transforming the programs. However, it would be impossible to
check whether a program q is equal to F (p) in the sense that it has the same input/output
behaviour: the relation {(p, q) such that q computes a function producing outputs one larger
than those outputs produced by p} is indeed an undecidable set, due to Rice’s Theorem [8].

Often one identifies the rationals with the set of all pairs written as a/b with a ∈ Z and
b ∈ {1, 2, . . .}; so one identifies “one half” with each of 1/2, 2/4, 3/6, . . . and consider all
of these to be equal. Similarly, in the case that the distinction is not relevant, the represented
structure is often identified with its automatic or semiautomatic presentation and one denotes
representatives in the automatic domain by their natural representation or vice versa and de-
notes the automatic functions realising these operations with the usual notation for operations
of the structure represented.

Contributions of the paper. First, the paper proposes the class of semiautomatic structures
that can be defined in terms of finite automata. This class contains all automatic structures.
Under the effectiveness condition put on semiautomaticity, (1) these structures have finite pre-
sentations, (2) natural fragments of their first order theories are decidable and (3) the class is
wide enough to contain structures with undecidable theories. The paper provides many examples
of semiautomatic structures, see Section 2.

Second, the paper provides several results of a general character. For example, purely rela-
tional structures, countable ordinals and permutation algebras all have semi-automatic presenta-
tions. This provides a large class of semiautomatic structures and showcases the power of finite
automata in representation of algebraic structures. Note that for these results, no effectivity
constraints on the semiautomaticity are made. See Section 4.

5

Third, the paper proves semiautomaticity for many of the classical algebraic structures which
are groups, rings and vector spaces. The main reason for this study is that most of these structures
lack automatic presentations (such as (Q,+), (Z; ,+, ·,6) and infinite fields). Therefore, it is
natural to ask which of these structures admit semiautomaticity. Many of these structures and
in particular all concretely given examples are also semiautomatic with the effectivity condition.
For instance, the ordered field (Q(

√
n); +, ·, <,=) is semiautomatic for every natural number

n. There are also several counterexamples which are not semiautomatic. These examples and
counterexamples are presented in Sections 5, 6 and 7.

2. Decidability theorem and examples

The first result is a simple and general decidability result about semiautomatic structures without
relational symbols. So, let A = (A, f1, . . . , fn) be a semiautomatic structure where each fi is an
operation. An algebraic polynomial is a unary operation g of the form f(a1, . . . , ak, x, ak+2, . . . ,
an), where f is a basic operation of A, and a1, . . . , ak, ak+2, . . . , an are parameters from A.
Consider the structure A′ = (A; g0, g1, . . .), where g0, g1, . . . are a complete list of all algebraic
polynomials obtained from f1, . . . , fn. There is a close relationship between A and A′ in terms
of congruence relations (that is equivalence relations respected by the basic operations):

Proposition 1. The set of congruences of the structures A and A′ coincide.

The transformation A → A′ gives an embedding of the first order theory of A′ (with parameters
from A) into the first order theory of A. The embedding is the identity mapping. Assuming the
effectivity condition (that is there is an algorithm that given any algebraic polynomial g produces
a finite automaton recognising the graph of g), the automatic structure A′ has a decidable first
order theory.

Theorem 2 (Decidability Theorem). If A is semiautomatic, then under the effectivity con-
dition the first order theory of A′ is decidable.

The next examples illustrate that there are many semiautomatic structures which are not auto-
matic.

Example 3. ({0, 1}∗,=; ◦) with ◦ being the string concatenation is an example of a structure
which is semiautomatic but not automatic. For a fixed string v, the mappings w 7→ vw and
w 7→ wv are both automatic; however, conv(v, w) 7→ vw is not an automatic mapping. Indeed,
there is no automatic presentation of ({0, 1}∗,=, ◦).

Furthermore, (N,+, <,=; ·) is an example of a semiautomatic structure which is not auto-
matic, as there is no automatic copy of the multiplicative structure of the natural numbers
(N, ·). It is known that multiplication is semiautomatic due to the fact that multiplication
with a constant can be implemented as repeated addition. One can augment this example with
a semiautomatic function f : N × N → N such that f(x + y, x) = 3x + 3x+1 · y − 1 and
f(x, x+ y + 1) = 2 · 3x + 3x+1 · y − 1. Note that f is a semiautomatic bijection and there exists
no infinite regular set A for which there exists an automatic bijection g : A× A→ A.

6

Every two-sided Cayley automatic group (G, ◦) is an example of a semiautomatic structure
(G,=; ◦); the reason is that for finitely generated groups, multiplication with group elements
is automatic, as the multiplication with each generator is automatic. Furthermore, the auto-
maticity of = follows from the definition of Cayley automatic groups. In turn, the definition of
a semiautomatic structure gives that every semiautomatic group (G,=; ◦) is Cayley automatic.
Miasnikov and Sunic [14] provide an example of a group (G, ◦) which is one-sided but not two-
sided Cayley automatic, thus one would not have that (G,=; ◦) is semiautomatic but only that
(G,=; {x 7→ x ◦ y : y ∈ G}) is semiautomatic.

Example 4. Let S be the set of square numbers. Then (N,S, <,=; +) is semiautomatic. This
structure is obtained by first using a default automatic representation (A,+, <,=) of the additive
monoid of the natural numbers and then to let B = {conv(a, b) : a, b ∈ A ∧ b 6 a + a} be the
desired structure. Here conv(a, b) represents a2 + b. One has now conv(a, b) < conv(a′, b′) iff
a < a′ ∨ (a = a′ ∧ b < b′). Furthermore, conv(a, b) + 1 = conv(a′, b′) iff (a = a′ ∧ b′ = b + 1 6
a+ a)∨ (a′ = a+ 1∧ b = a+ a∧ b′ = 0). Iterated addition with 1 defines the addition with any
fixed natural number. Note that (N, S,+, <,=) is not automatic, as the multiplication can be
defined from S.

3. Term Algebras

The term algebra of a binary function f over a constant a consist of the term a and all terms
f(x, y) formed from previous terms x and y; for example f(a, a), f(a, f(a, a)) and f(f(a, a),
f(a, a)) are terms. Let T denote the set of all terms formed using the constant a and binary
function f .

Theorem 5. The term algebra (T ; f,=) is semiautomatic.

Proof. Let x0, x1, . . . be a one-one enumeration of all terms. One now has to find a representation
of the terms in which all mappings leftk : y 7→ f(xk, y) and rightk : y 7→ f(y, xk) are automatic.
The idea is to represent a by 0 and each function leftk by 012k and each function rightk by
012k+1. That is, if w represents a term y, then 012kw denotes leftk(y) and 012k+1w denotes
rightk(y). Note that each term starts with a 0 and thus, for each w ∈ (01∗)∗0, there is a unique
term represented by w.

For the above representation, the functions leftk and rightk are clearly automatic, as each
of them just inserts the prefix 012k or 012k+1 in front of the input. Thus, f is semiautomatic.

Let depth(a) = 0 and depth(f(x, y)) = 1 + max{depth(x), depth(y)}. Now each term y
has only finitely many representations, as it can only have representations which have at most
depth(y) + 1 zeros and each leftk or rightk used in the representation must satisfy that xk is a
sub-term of y. Thus, = is semiautomatic. �

Remark 6. Using a more careful representation, one can get a semiautomatic representation
for (T,=; {y 7→ f(x, y)}); this representation has the disadvantage that only the mappings with
the first parameter being the fixed one are automatic. It is known that one cannot make (T,=, f)

7

to be fully automatic and the proof actually gives that (T, f ; =) is also not semiautomatic. This
can be shown as follows: there is a constant c such that all terms of depth n have a representative
of length up to (n+ 1) · c; this can be shown by induction, as f combines two inputs of length up
to (n+ 1) · c to form a new term of depth n+ 1 represented by a string of length up to (n+ 2) · c.
Here c is the constant which bound the length of the representative a and the maximum length-
increase of the automatic function f on arbitrary inputs: |f(x, y)| 6 c+max{|x|, |y|} for any two
representatives x, y of some terms. Now the number of terms of depth n is doubly exponential
in n. To see this, note that one can form a tree with 2n nodes at level n, with each node at level
n being either the subterm f(a, a) or the subterm a; thus there are at least 22n many terms of
depth up to n + 1. On the other hand, there are only exponentially many strings of length up
to (n + 2) · c. Hence, for large n, not every term of depth n + 1 can be represented by a string
of length (n+ 2) · c. It follows that f above cannot be automatic.

Question 7. Is (T,=; f) semiautomatic?

One can generalise the above results to term algebras with several generators and with con-
stants. Furthermore, one can combine partial semiautomatic structures and obtain the free
term-algebraic extension of a partial semiautomatic structure. This is now explained by the
following example, where it is obvious how the definition generalises.

Let a semiautomatic structure (A; f, g,=) be given where f is a binary function and g a
ternary function. Note that a partial function like f is semiautomatic iff, for all values a ∈ A,
the domains {w ∈ A : f(a, w) is defined} and {w ∈ A : f(w, a) is defined} are both regular and
the partial mappings w 7→ f(a, w) and w 7→ f(w, a) are both automatic on their domains.

For the inductive definition of the free term-algebraic extension, one defines that a term has
depth 0 iff it is an element of A. Furthermore, one introduces terms of depth 1 being either f(a, b)
or g(a, b, c) with a, b, c ∈ A and satisfying that f(a, b) or g(a, b, c) was originally not defined in
the algebra (A; f, g,=), so that these terms are introduced to represent the missing values. For
n > 1, a term of depth n + 1 is either of the form f(a, b) with max{depth(a), depth(b)} = n
or of the form g(a, b, c) with max{depth(a), depth(b), depth(c)} = n. The next result shows that
structures of this type are semiautomatic and provides an explicit coding for this structure,
which generalises to other structures.

Theorem 8. The free term-algebraic extension of a partial semiautomatic structure is semiau-
tomatic.

Proof. The proof is given for the above example (A; dom(f), dom(g), f, g,=) and easily gen-
eralises to structures with other or more semiautomatic functions. Let 0 and 1 be two symbols
outside the alphabet of A and let h0, h1, . . . be a listing of all the mappings which are represented
by a term with one leaf being a variable x and the leaf be sitting on the top level, say f(a, x) or
g(f(a, b), x, g(c, d, e)) where a, b, c, d, e are fixed members of A; in the second term, f(a, b) and
g(c, d, e) would be assumed to be undefined in the original structure (A; dom(f), dom(g), f, g,=),
as otherwise f(a, b) or g(c, d, e) would have been replaced by some element of A. Now the map-
ping hk would in the first case map any term w to the value of f(a, w) and in the second case
map w to the value of g(f(a, b), w, g(c, d, e)).

8

Note that given a function hk, one can check whether an input from A is mapped to a member
from A, for example, if hk(x) = f(a, g(x, b, c)) then the output is in A iff w ∈ dom(g(x, b, c))
and the value d computed by the partial automatic function representing x 7→ g(x, b, c) satisfies
that d is in the domain of y 7→ f(a, y). Thus the domain and the function x 7→ f(a, g(x, b, c))
viewed as a function from A to A is regular and, on its domain, the function is automatic. Hence
for every hk there is an induced partial semiautomatic function h̃k : A 7→ A where h̃k(w) is
defined iff w ∈ A and hk(w) ∈ A. Furthermore, let t be a default term which is undefined in the
original semiautomatic structure, such a term must exist as otherwise the whole new structure
collapses to (A; f, g,=) and one can assume that t has depth 1. Now one makes the following
representatives:

– Members of A are represented by strings in A as before;
– For w ∈ A, if h̃k(w) is undefined then 1k0w represents the term hk(w) else 1k0w represents

the term hk(t);
– For w ∈ (1∗0)+ · A, the term 1k0w represents the term hk(w).

So the set (1∗0)∗ ·A of all representatives of elements of the term algebra is regular. Furthermore,
for each w ∈ (1∗0)∗·A, there is an automatic function which behaves as follows: if w ∈ A∩dom(h̃k)
then the function outputs h̃k(w) else the function outputs 1k0w. Thus, each function hk is
automatic and the functions f, g are semiautomatic.

Furthermore, one can show by induction that for each term t′ there is a finite set F of tuples
(n, k1, k2, . . . , kn, a) such that a is the length-lexicographic least member of {b ∈ A : a = b} and
t′ = h̃k1(h̃k2(. . . h̃kn(a) . . .)). Hence the regular set {1k101k20 . . . 1kn0b : b ∈ A∧ (n, k1, . . . , kn, a) ∈
F [b = a]} is the set of all representatives of the term t′ and equality is semiautomatic. �

Note that Kozen [12] showed that every finitely presented algebra is isomorphic to a free term
algebraic extension of a finite partial algebra, hence the above result also shows that every finitely
presented algebra is automatic.

4. Relational Structures, Permutation Algebras and Ordinals

This section shows that when the signature of the structure is very restricted then the resulting
structure is always semiautomatic. Theorem 9 says that if a structure over a countable domain
consists only of relations and each of these relations has only to be semiautomatic and not
automatic, then one can indeed find a representation for this structure; this first result will then
be applied to show that every countable set of ordinals which is closed under + and < has a
semiautomatic representation.

Theorem 9. Every relational structure (A;R1, R2, . . .), given by at most countably many rela-
tions R1, R2, . . . over a countable domain A, is semiautomatic.

Proof. In the proof, it does not matter whether the unary relations on A considered are
obtained by fixing parameters from relations of higher order or whether they are unary relations
themselves. Therefore, one can without loss of generality assume that A = N and the relations

9

R0, R1, . . . are sets. The proof now proceedes by constructing a bijection π : N → {0, 1}∗ such
that image of each Re is a finite variant of a finite union of sets of the form x · {0, 1}∗, where
x ranges over finite strings. Such sets are obviously regular, hence π maps N to {0, 1}∗ in a
way that π(Re) is regular for each e. Furthermore, the equality on the structure will just be the
equality of strings, so the obtained copy ({0, 1}∗,=; {π(Re) : e ∈ N}) will be semiautomatic.

The construction of π is done in stages. In stage e, (i) a new finite tree Te+1 extending a finite
tree Te is constructed and (ii) N is split into infinite sets {Lx : x is a leaf of Te+1}. The following
properties will be satisfied:

(P1) π will be defined on all values below ne+1, where ne+1 satisfies ne+1 > e + 1 and n0 = 0.
Additionally, the range of π will contain all strings of length at most e+ 1.

(P2) π will map almost all members of Lx into extensions of the string x.
(P3) For all leaves x of Te+1, either almost all n ∈ Lx satisfy n ∈ Re or almost all n ∈ Lx satisfy

n /∈ Re.

Initially, T0 consists only of the empty string ε as root node (which is the unique leaf of T0) and
Lε = N. Assume that prior to stage e the function π is defined on all inputs below ne. Now one
keeps defining π(m) for m = ne, ne + 1, . . . as follows until the condition mentioned below holds:
let x be a leaf of Te such that m ∈ Lx; then let π(m) be the length-lexicographically least string
extending x which is not yet in the range of π. This process continues until all strings of length
up to e+ 1 are in the range of π and m > e+ 1. The number ne+1 is then the first n where π(n)
does not get defined in stage e. Then, one lets Te+1 be the union of Te and all sets {x0, x1} such
that x is a leaf of Te and both Lx ∩Re and Lx−Re are infinite. For each such x where {x0, x1}
are in Te+1− Te, define Lx0 = Lx−Re and Lx1 = Lx ∩Re. It is easy to verify the following facts
by induction:

(a) Strings in tree Te are of length at most e;
(b) For each leaf x of Te+1 it holds that (i) Lx is infinite and (ii) all m ∈ Lx for which π(m) is

defined after stage e satisfy that π(m) � x and (iii) all leaves x of Te+1 satisfy that either
almost all members of Lx are contained in Re or almost all members of Lx are outside of Re;

(c) In each step only finitely many values of π are defined;
(d) Each set π(Re) is regular, as for all but finitely many strings y, it depends only on the first

e+ 1 bits of a string y whether y ∈ π(Re) or not.

The above facts imply that the resulting copy of (N,=; {Re : e ∈ N}) is semiautomatic. �

Delhommé [3] showed that some automatic ordered set (A,<,=) is isomorphic to the set of
ordinals below α iff α < ωω. Furthermore some tree-automatic set (A,<,=) is isomorphic to the
set of ordinals below α iff α < ωω

ω
. It follows directly from Theorem 9 that every countable set

of ordinals is isomorphic to an semiautomatic ordered set, the next result shows that one can
combine this result also with a semiautomatic addition of ordinals.

Theorem 10. Let α be a countable ordinal. The structure ({β : β < ωα}; +, <,=) is semiauto-
matic.

10

Proof. Let (A;<,=) be a semiautomatic representation of the ordinals below α and assume
that the symbols ω, ^, (,),+ are not in the alphabet of A. Now let B be the set of all strings of
the form ω^(a0) + ω^(a1) + . . .+ ω^(an) representing the ordinal ωa0 + ωa1 + . . .+ ωan with the
empty string representing 0. The set of all possible representations of the ordinals below ωα is
regular. Now one can realise the addition of two non-empty strings v, w by forming v + w, so if
v = ω^(5)+ω^(3)+ω^(3) and w = ω^(4)+ω^(1)+ω^(0) then v+w = ω^(5)+ω^(3)+ω^(3)+
ω^(4) + ω^(1) + ω^(0) representing ω5 + ω3 + ω3 + ω4 + ω1 + ω0. Ordinals have the rules that if
a < b then ωa + ωb = ωb, hence the above ordinal equals ω5 + ω4 + ω1 + ω0.

Following Cantor’s arguments, for every ordinal β < ωα, there is a normal form β = ωb0 +
ωb1 + . . .+ ωbn for some n with b0, b1, . . . , bn ∈ A and b0 > b1 > . . . > bn. Now, given an ordinal
w = ωa0 + ωa1 + . . . + ωam , it holds that w = β iff there are i0, i1, . . . , in such that i0 < i1 <
. . . < in = m and for all k 6 m, the least index j with k 6 ij must satisfy k < ij ⇒ ak < bj and
k = ij ⇒ ak = bj. Given the automata to check whether some a ∈ A is below or equal bj, one
can build from these finite automata an automaton which checks whether w = β. Furthermore,
w < β iff there are n′ 6 n and i0, i1, . . . , in′−1, in′ with i0 < i1 < . . . < in′ = m + 1 and for all
k 6 m, the least index j with k 6 ij must satisfy k < ij ⇒ ak < bj and k = ij ⇒ ak = bj. Again
the corresponding test can be realised by a finite automaton. �

The next result shows that permutation algebras are semiautomatic. Here a permutation algebra
is a domain A plus a function f such that f is a bijection. Furthermore, the domain A is assumed
to be countable and this assumption applies to all structures considered in the present paper.

Theorem 11. Every permutation algebra (A, f ; =) is semiautomatic.

Proof. Let the orbit of a set z be the set of all z′ such that there is an n with fn(z′) = z or
fn(z) = z′. The idea is to pick up a set X of elements x0, x1, . . . such that for each z there is
exactly one xk in its orbit and represents X by the set Y of its indices (which is either N or a finite
subset of N). Now the domain is Y × Z and one uses the following semiautomatic equivalence
relation =: conv(k, 0) represents xk and conv(k, h) = conv(k′, h′) iff k = k′ and f |h−h

′|(xk) = xk;
here |h− h′| is the absolute value of h− h′ and if one starts at xk, then conv(k, h) = conv(k, h′)
iff |h − h′| times applying f to xk gives xk again. Furthermore, f(k, h) = (k, h + 1). It is
easy to see that f is automatic on a suitable representation of Y × Z and that also every set
{(k′, h′) : (k′, h′) = (k, h)} is regular as either it is the set {(k, h)} itself or it is the set of all
{(k, h+ ` · c) : ` ∈ Z} for some c ∈ {1, 2, . . .}. �
Theorems 9 and 11 either use relations or a single unary function. If one has both of these
concepts, then the result does no longer hold. The next result below stands in contrast with
Theorem 9. Note that though relations can be made semi-automatic using the technique of The-
orem 9, functions cannot: the intuitive reason is that the graphs of functions over one variable are
relations over two variables (one for the input and one for the output), and the semiautomaticity
requirement is that the graph of the function (which is two variable relation) is automatic.

Theorem 12. There is a recursive subset B of N such that the structure (N, B, Succ; =) is not
semiautomatic.

11

Proof. Let B be a recursive subset of N which is not exponential time computable and let
Succ : N 7→ N be the successor function from x to x+ 1.

If the above structure (N, B, Succ; =) is semiautomatic, then there exists a regular domain
A (representing N), an automaton M accepting B ⊆ A and a linear time computable function
f : A → A representing S, where {conv(x, f(x)) : x ∈ A} is regular. Let w ∈ A represent 0.
Thus, fn(w) represents n and fn(w) has length at most (n+ 1) · c for some constant c.

Now, B(n) can be decided by first computing fn(w) and then checking if M(fn(w)) accepts.
This can be done in time polynomial in n and thus exponential in the length of the binary repre-
sentation of n. This is a contradiction, as B was chosen not to be exponential time computable.
Thus, the structure (N, B, Succ; =) cannot be semiautomatic. Note that if the structure contains
only one of B and f , then it has to be automatic, as they are a predicate (characteristic function
of set) and a function with only one input variable and the proof does not even use whether =
is automatic or semiautomatic at all. �

5. Groups and Order

Khoussainov, Rubin and Stephan [11, Corollary 4.4] showed (in slightly different words) that
there is a semiautomatic presentation of (Z,=; +) in which the order of the integers is not
semiautomatic. An important question left open is whether one can improve this result such
that the presentation of (Z,+,=) used is automatic.

Question 13. Is there an automatic presentation of the integers such that addition and equality
are automatic while the set of positive integers is not regular, that is, the ordering of the integers
is not semiautomatic?

Note that a positive answer to this question would be a strengthening of the fact that the order <
is not first-order definable in (Z,+,=). This question motivates to study the connections between
automatic and semiautomatic groups and order. For this, recall the definition of ordered groups.

Definition 14. A group (G, ◦) is a structure with a neutral element e such that for all x, y, z ∈ G
there is a u ∈ G satisfying x ◦ e = e ◦ x = x, x ◦ (y ◦ z) = (x ◦ y) ◦ z, u ◦ x = e and x ◦ u = e.
Such a structure without the last statements on the existence of the inverse is called a monoid.
An ordered group (G, ◦, <) satisfies that < is transitive, antisymmetric and that all x, y, z ∈ G
with x < y satisfy x ◦ z < y ◦ z and z ◦ x < z ◦ y. If the preservation of the order holds only
for operations with z from one side, then one calls the corresponding group right-ordered or
left-ordered, respectively.

The first result is that in a semiautomatic group (G, ◦; =) and a semiautomatic ordered group
(G, ◦;<,=), the relations = and < are indeed automatic.

Proposition 15. Given a semiautomatic presentation (G, ◦; =) of a group, the equality in this
presentation is already automatic; similarly, given any semiautomatic presentation (G, ◦;<,=)
of an ordered group, the equality and order in this presentation are both automatic.

12

Proof. Note that there are now several members of the presentation G of the group which are
equal, for ease of notation one just writes still x ∈ G in this case.

So let the semiautomatic presentation (G, ◦; =) be given and let e be the neutral element. In
particular the set of all representatives of e is regular. Now one can define an automatic function
neg which finds for every x ∈ G an element neg(x) ∈ G with x◦neg(x) = e. Having this function
and using that ◦ is automatic, one has that x = y ⇔ x ◦ neg(y) = e, hence = is automatic.

Similarly, given an automatic presentation (G, ◦;<,=) of an ordered group, one shows again
that = is automatic. Furthermore, as the set {u ∈ G : u < e} is regular, one can use that x < y
iff x ◦ neg(y) < e in order to show that < is also automatic. �

Example 16. (a) One might ask to which extent the above proposition generalises to monoids.
The answers are in general negative. For example, if one takes an irrational number r with
1 < r < 2 such that the first n bits of the binary expansion of r cannot be computed in
time polynomial in n, then the ordered monoid (N + r · N,+,=;<) is semiautomatic; here one
represents a + rb by conv(a, b) with component wise addition and a + rb = a′ + rb′ holds iff
a = a′ ∧ b = b′. The order is semiautomatic as every member of the monoid bounds only finitely
many smaller members.

However, there is no presentation of the above monoid where, besides addition and equality,
also the order is automatic. To see this note that, using automatic functions x 7→ 2x and
x 7→ 2x+ 1, one can compute from n, in time polynomial in n, representatives for r · 2n and any
desired number m ∈ {0, 1, . . . , 2n+1}. Using interval search and an automatic comparison, one
can then find out in time polynomial in n, the natural number m which satisfies m 6 2n·r 6 m+1
and therefore obtain the first n bits of the binary expansion of r. This contradicts the choice
of r.

(b) The monoid (N,+; =) has a semiautomatic representation in which = is not automatic.
The idea would be to represent every member n as conv(a, b), where a is a binary and b is
a ternary number and n = a + b. Component wise addition witnesses that + is automatic.
However, one cannot find out when conv(a, 0) = conv(0, b), as this would need to convert binary
and ternary numbers into each other, which is not automatic, hence the equality is not automatic.
Equality however is semiautomatic as every n is represented by only finitely many pairs.

(c) Let x 6lex y denote that x is before y in lexicographic order. Let xmaxlex y denote
the maximum of x, y in lexicographic order. Let ({0, 3}∗ · {1, 2},maxlex) be the semigroup so
formed. Note that the sets {3n1, 3n2} form maximal 2-chains, as in this structure 3n2 is the
immediate successor of 3n1 but neither does 3n2 have an immediate successor nor 3n1 have an
immediate predecessor. Now let In = {u ∈ {0, 3}∗ · {1, 2} : 3n2 6lex u 6lex 3n+11}. Note that
compressing some of the intervals In to points would produce longer maximal chains, for example
if I2 and I3 are compressed to points but no other interval then one would have the maximal
4-chain made of the equivalence classes 321, I2, I3, 342. For each n, one creates a maximal
n + 3-chain by compressing the intervals I(n+3)2+m with m ∈ {1, 2, . . . , n, n + 1} iff the n-th
automatic linear order from some fixed recursive enumeration of all such orders does not have a
maximal n+3-chain. One does not compress any other intervals. The resulting structure ({0, 3}∗ ·
{1, 2},maxlex;<,=) with = being defined by declaring elements in compressed intervals as equal

13

and x 6 y ⇔ ∃x′, y′ [x = x′ ∧ y = y′ ∧ x′ 6lex y′] is semiautomatic; note that each compressed
interval In is regular and each other element is represented by a singleton; furthermore, it is easy
to see that the ordering is also semiautomatic. However, by construction the linear ordering is not
automatic. Furthermore, also the equality is not automatic, as the ordering is first-order definable
from maxlex and the equality. Hence one has a semiautomatic ordered semigroup (A, ◦;<,=)
where the semigroup operation ◦ is automatic while neither (A, ◦,=) nor (A,<,=) have an
automatic presentation.

There are numerous examples of ordered automatic groups. It is clear that such groups must
be torsion-free. Examples would be the additive group of integers, Zn with lexicographic order
on the components and pointwise addition, subgroups of the rationals generated by elements of
the form x−k for some fixed rational x and k ranging over N. So it is natural to look for further
examples, in particular noncommutative ones. The next result shows noncommutative automatic
ordered groups do not exist; note that the result holds even if in the group below only (G, ◦,=)
is automatic and the ordering exists, but is not effective.

Theorem 17. Every ordered automatic group (G, ◦, <,=) is Abelian.

Proof. Let an automatic ordered group (G, ◦, <,=) be given, as the equality is automatic,
one can without loss of generality assume that every element of the group is given by a unique
representative in G. Nies and Thomas [16,17] showed that due to the automaticity every finitely
generated subgroup (F, ◦) of G satisfies that it is Abelian by finite. In particular every two
elements v, w of F satisfy that there is a power n with vn ◦ wn = wn ◦ vn. Now, following
arguments of Neumann [15] and Fuchs [5, page 38, Proposition 10], one argues that the group
is Abelian.

In the case that v◦wn 6= wn◦v, consider the element wn◦v◦w−n◦v−1 which is different from e;
without loss of generality wn ◦v ◦w−n ◦v−1 < e. By multiplying from both sides inductively with
wn ◦v ◦w−n and v−1, respectively, one gets inductively the relation (wn ◦v ◦w−n)m+1 ◦v−(m+1) <
(wn ◦ v ◦ w−n)m ◦ v−m < e for m = 1, 2, . . . , n and by associativity and cancellation the relation
wn ◦vn ◦w−n ◦v−n < e can be derived. This contradicts the assumption that vn and wn commute
and therefore wn ◦ vn ◦ w−n ◦ v−n = e.

In the case that v ◦ wn = wn ◦ v, one again assumes that v ◦ w ◦ v−1 ◦ w−1 < e and derives
that v ◦ wn ◦ v−1 ◦ w−n < e contradicting the assumption that v and wn commute. Hence one
can derive that any two given elements v, w in G commute and (G, ◦) is an Abelian group. �

Example 18. The Klein bottle group is an example of a noncommutative left-ordered group.
This is the group of all aibj with generators a, b and the defining equality a ◦ b = b−1 ◦ a. One
represents the group as the set of all conv(i, j) with i, j ∈ Z using an automatic presentation of
(Z,+, <). Now the group operation aibj◦ai′bj′ is given by the mapping from conv(i, j), conv(i′, j′)
to conv(i + i′, j + j′) in the case that i′ is even and to conv(i + i′,−j + j′) in the case that i′

is odd. Thus the group is automatic. The ordering on the pairs is the lexicographic ordering,
that is, aibj < ai

′
bj

′
iff i < i′ or i = i′ ∧ j < j′. Using some case distinction, one can show that

aibj < ai
′
bj

′
iff a ◦ aibj < a ◦ ai′bj′ iff b ◦ aibj < b ◦ ai′bj′ and deduce from these basic relations

that the group is left-ordered.

14

A central motivation of Question 13 is the connection between definability and automaticity of
the order in groups. The next example shows that for some semiautomatic groups, the order can
be first-order defined from the group operation (which is not the case with the integers). In the
example one cannot have that ◦ is automatic, as the group is not commutative.

Theorem 19. There is a semiautomatic noncommutative ordered group (G,<,=; ◦) such that
the ordering is first-order definable from the group operation.

Proof. The group consists of all aibjck with three generators a, b, c with the defining equalities
a ◦ b = b ◦ a ◦ c, a ◦ c = c ◦ a and b ◦ c = c ◦ b. Given two elements v and w, let r(v, w) denote the
formula that a ◦ v = v ◦ a∧ b ◦w = w ◦ b∧ v ◦ b ◦ v−1 ◦ b−1 = a ◦w ◦ a−1 ◦w−1; this formula says
that v is of the form akch and w is of the form bkc` for some k, h, `. In this case v ◦w ◦ v−1 ◦w−1
is of the form ck

2
. Now the formula p(u) says that u is of the form ck for some k > 0 by letting

p(u) ⇔ ∃v1, w1, v2, w2, v3, w3, v4, w4 [r(v1, w1) ∧ r(v2, w2) ∧ r(v3, w3) ∧ r(v4, w4) ∧ u = v1 ◦
w1 ◦ v−11 ◦ w−11 ◦ v2 ◦ w2 ◦ v−12 ◦ w−12 ◦ v3 ◦ w3 ◦ v−13 ◦ w−13 ◦ v4 ◦ w4 ◦ v−14 ◦ w−14 ◦ c],

using that every natural number is the sum of four squares. Now one has that

v < w iff p(w−1 ◦ v ◦ b−1 ◦ v−1 ◦ w ◦ b) ∨ (b ◦ v−1 ◦ w = v−1 ◦ w ◦ b ∧ p(a ◦ v−1 ◦ w ◦ a−1 ◦
w−1 ◦ v)) ∨ p(v−1 ◦ w)

which is expressing the three clauses of the lexicographic order by saying that in v−1 ◦ w there
are either a positive number of a or no a and a positive number of b or only a positive number
of c.

Furthermore, to show that ◦ is semiautomatic, one notes that aibjck is represented by
conv(i, j, k) and now multiplication with the generators a, b, c from the right map conv(i, j, k)
to conv(i + 1, j, k − j), conv(i, j + 1, k), conv(i, j, k + 1), respectively, and multiplication with
the generators a, b, c from the left map conv(i, j, k) to conv(i + 1, j, k), conv(i, j + 1,−i + k),
conv(i, j, k + 1), respectively. Similar laws hold for multiplication with inverses of the genera-
tors and so all multiplications with fixed elements are realised by automatic functions. Equality
is automatic, as it is identity on the given elements; the lexicographic order on the triples is
automatic. Furthermore, it is easy to see that the group is an ordered group using the given
lexicographic order. �

Theorem 20. The additive ordered subgroup ({n · 6m : n,m ∈ Z},+, <) of the rationals has a
presentation in which the addition and equality are automatic while the ordering is not semiau-
tomatic.

Proof. The idea is to represent group elements as conv(a, b, c) representing a+b+c where a ∈ Z,
b = b1b2 . . . bn ∈ {0} ∪ {0, 1}∗ · {1} represents b1/2 + b2/4 + . . . + bn/2

n and c1c2 . . . cm ∈ {0} ∪
{0, 1, 2}∗ ·{1, 2} represents c1/3+c2/9+ . . .+cm/3

m. The representation of Z is chosen such that
addition is automatic. Furthermore, now one adds conv(a, b, c) and conv(a′, b′, c′) by choosing
conv(a′′, b′′, c′′) such that the represented values satisfy a′′ = a+ a′ + (b+ b′ − b′′) + (c+ c′ − c′′)

15

and b′′ ∈ {b + b′, b + b′ − 1} and c′′ ∈ {c + c′, c + c′ − 1} and 0 6 b′′ < 1 and 0 6 c′′ < 1. It can
be easily seen that the resulting operation is automatic.

Assume now by way of contradiction that one could compare the fractional parts b and c of a
number in order, that is, the relation {(b, c) : conv(0, b, 0) < conv(0, 0, c)} would be automatic.
Then one could first-order define a function f which maps every ternary string c to the length-
lexicographic shortest binary string b satisfying conv(0, 0, c1) < conv(0, b, 0) < conv(0, 0, c2).
There are 3n · 2 ternary strings c of length n + 1 not ending with a 0 representing different
values between 0 and 1 and f maps these to 3n · 2 different binary strings representing values
between 0 and 1; as the resulting strings are binary, some of these values f(c) must have the
length at least n · log(3)/ log(2). However, this contradicts the fact the length of f(c) is at most
a constant longer than c for all inputs c from the domain of f (as f is first-order defined from an
automatic relation and thus automatic). Thus the function f cannot be automatic and therefore
the ordering can also not be automatic. It follows from Proposition 15 that the order is not even
semiautomatic. �

Tsankov [20] showed that the structure (Q,+,=) is not automatic. However, one can still get
the following weaker representation.

Theorem 21. The ordered group (Q, <,=; +) of rationals is semiautomatic.

Proof. The idea is to represent the numbers q ∈ Q as sums a +
∑

n>2
bn
n!

with a ∈ Z and
bn ∈ {0, 1, . . . , n− 1}. Almost all bn will be 0 and therefore each of the sums is finite. Each bn is
taken to be of the form 1bn0 in the case that bn < n − 1 and of the form 1n−1 in the case that
bn = n−1. Furthermore, let the code w consist of the concatenation of the codes for b2, b3, . . . , bm
up to the first m such that either m = 2 and all bn = 0 or bm is the last non-zero bi. In the case
that bm = m− 1 one appends a 0 to the representation of w in order to achieve that the set of
possible representations for w is the regular set {0} ∪ {0, 1}∗ · {10}.

Note that the possible values of w are ordered by lexicographic ordering, that is, v < w if
either w is a proper extension of v or for some u, u0 � v and u1 � w; latter only happens if for
some n, the values of bi, 2 6 i < n, are same in v, w and bn = 1k0 in v and bn � 1k+1 in w, hence
the numerical value of v is below that of w. Now, a rational number a+

∑
n>2

bn
n!

is represented
by the convolution of a code for a and a code w for the fractional part; the representation of
the integer part is chosen such that addition and ordering are automatic. Thus, to decide the
ordering, one can compare the integer parts first and then, if they are equal, decide the ordering
by comparing the fractional parts with lexicographic ordering.

Furthermore, for adding a number represented as above with a fixed rational, there is a
constant n such that only the values for b2, b3, . . . , bn change (in the case that they are there) plus
perhaps there is a carry into the integer part plus a constant addition to the integer part. Hence
one only needs to decode b2b3 . . . bn, do the addition and replace this prefix by the updated code,
while all values bn+1bn+2, . . . remain unchanged, though their representation might shift forward
or backward by constantly many symbols due to the fact that the space needed by the first
symbols might change. These ideas show that the addition in this structure is semiautomatic. �

16

A further example of a semiautomatic groups are the Baumslag Solitar groups for which Berdins-
ky [1] has shown that they are one-sided Cayley automatic. The next result shows that one can
have automaticity for multiplication with fixed elements from both sides, provided one accepts
that the equality is only semiautomatic and not automatic.

Theorem 22. Let G be a Baumslag Solitar group, that is, be a finitely generated group with
generators a, b and the defining relation bna = abm for some m,n ∈ Z − {0}. Then the group
(G; ◦,=) is semiautomatic.

Proof. The proof is given for positive n,m. If one or both of them are negative, the proof is
similar.

The idea is to represent each member of the group by elements of the form conv(i, j, s),
representing bisbj, where i, j ∈ Z and s is a finite string over the generators consisting of a
and a−1 where each two occurrences of abka and a−1bka−1 satisfies 0 6 k < max{m,n}, any
occurrence of abka−1 satisfies 0 < k < m and any occurrence of a−1bka satisfies 0 < k < n;
furthermore, s is either the empty string or starts and ends with an a or a−1. Such an s is
called a skeleton of a representative. Note that there can be different representations of a group
element, but in each case, the subsequence of the a and a−1 in the skeleton is the same, only the
number of b can vary; in the case that b2a = ab3, the equations b4aa = b2abab3 = ab2ab6 give
that all three skeletons aa, aba and ab2a are used in representatives of the word b4aa.

Multiplication with b or b−1 from either side just changes the value of i or j by 1 or −1,
respectively. When multiplying bisbj with a there are two cases. Let j′, k such that j = j′ ·
n + k and 0 6 k < n. If s ends with a or k 6= 0 or bis = ε then the new representative
for bisbj ◦ a is conv(i, sbka, j′ · m). Otherwise, if s = s′bha−1 and s′ does not end with b then
the new representative for bisbj ◦ a is conv(i, s′, j′ · m + h). Multiplication from the front and
multiplication with a−1 from either side is handled similarly. Thus ◦ is semiautomatic on the set
of representatives.

In order to see that every group member has a regular set of representatives, that is, for
seeing that = is semiautomatic, consider any representative conv(i, s, j). Let k, k′ be the number
of occurrences of a and of a−1 in s, so if s = ab2aba−1 then k = 2 and k′ = 1. Now it is easy to see

that bn
kmk′

s = sbn
k′mk

. Hence, if i = i′ · nkmk′ + i′′ and 0 6 i′′ < nkmk′ then the representative
conv(i, s, j) can be replaced by the reduced representative conv(i′′, s, j + i′ · nk′mk). Note that
whenever for reduced representatives of a group member the parts i′′ and s are the same, then
also the number j+ i′ ·nk′mk of trailing b must be the same. Thus every group member has only
a finite number of reduced representatives. Thus, there is a semiautomatic function which checks
whether the skeleton of a representative given as input matches the group member in question
and if so, transforms it to a reduced representative which can then be compared with a finite
list. Thus the set of representatives of every fixed group member is regular.

Furthermore, the set of all representatives of members in the group is regular and the group
(G; ◦,=) is semiautomatic. �

17

6. Rings

Ordered rings and fields are obtained by augmenting an ordered Abelian group with a multipli-
cation which respects the corresponding laws. The formal definition is the following.

Definition 23. Given an Abelian group (R,+) (perhaps with an order <) with 0 being the
additive identity and introducing a multiplication ·, the resulting structure is a ring iff · is
associative and satisfies the two laws of distributivity (for all x, y, z ∈ R): x · (y · z) = (x · y) · z,
(x+ y) · z = (x · z) + (y · z), z · (x+ y) = (z · x) + (z · y).

Furthermore, in an ordered ring, (R,+, <) has to be an ordered group and for nonzero
elements x, y ∈ R, 0 < x · y iff either 0 < x ∧ 0 < y or x < 0 ∧ y < 0.

An (ordered) field is an (ordered) ring in which (G− {0}, ·) is an Abelian group.

A vector space over a field (F,+, ·) is a group (G,+) such that there is a scalar multiplication
� : F × G → G with (x · y) � z = x � (y � z) and 1 � z = z and (x + y) � (u + z) =
x � u + y � u + x � z + y � z for all x, y ∈ F and u, z ∈ G. In the case that it is clear from
context, � is denoted as · as well.

The ring of integers (Z,+, <,=; ·) is semiautomatic, the semiautomaticity of the multiplication
stems from the fact that multiplication with fixed constants can be implemented by repeated
adding or subtracting the input from 0 a fixed number of times. One can, however, augment
the ring of integers with a root of a natural number and still preserve that addition and order
are automatic and multiplication is semiautomatic. The first example for this is the ordered
ring (Z + 1+

√
5

2
· Z,+, <; ·) where the ordering < is the one inherited from the real numbers.

In the following, let u denote 1+
√
5

2
, u is called the golden ratio. That the ring is closed under

multiplication follows from the fact that u2 = u+ 1, note that furthermore 1/u = u− 1. As the
ring contains the irrational number

√
5 = 2u − 1 and compares multiples of

√
5 with integers,

it is not directly clear that the ring has a semiautomatic presentation. Note that the technique
is similar to the one used by Nies and Semukhin [18] for an automatic representation of (Z2,+)
in which no subgroup generated by a single element is a regular subset. Furthermore, the basics
of this representation also build on well-known work on Fibonacci numbers including Tan’s
automatic representation of the natural numbers with addition and the predicate that a number
is a Fibonacci number [19].

Theorem 24. Let u = 1+
√
5

2
. The ordered ring (Z + u · Z,+, <,=; ·) has a semiautomatic pre-

sentation.

Proof. The set A of representatives of a ring element a consists (of a suitably ordered) sequence
anan−1 . . . am of integers satisfying the following conditions:

– n > 0 > m;

– There is a constant k such that −k 6 ai 6 k for all i;

– a =
∑

i ai · ui.

18

One can easily see that k can be chosen to be 2, as 3ui = ui−2 + ui+2 and one uses this identity
in order to update the coefficients until every ai is in {−2,−1, 0, 1, 2}; this stage is eventually
reached, as every update reduces the value

∑
i |ai| by one.

Note that automatic operations and relations need that the code as above are aligned
and ordered from some starting position. Thus one represents a = −

∑
i u

iai by a string
a0a−1a1a−2a2 . . . a−max{n,m}amax{n,m}. Linear-time one-tape Turing machines processing convo-
luted tuples of such strings can nevertheless go to the right end, then process the code in order
from least significant to the most significant, until they reach the end again and then terminate;
hence automaticity is possible with this notation (note that functions computable by linear-time
one-tape Turing machines, where input and output start at the same position, are automatic
[2]).

Let k′ be a natural number satisfying that 2k ·
∑

i62 u
i < k′; this constant exists due to the

fact that
∑

i62 u
i = u3/(u − 1). The following automatic algorithm determines the sign of a

representation:

1. Let x = 0, y = 0 and i = n;

2. If x+ y > k′ or x+ ai > k′ then terminate with output “a > 0”;

3. If x+ y < −k′ or x+ ai < −k′ then terminate with output “a < 0”;

4. Replace (x, y) by (x+ y, x+ ai) and i by i− 1;

5. If i > m then go to step 2;

6. Determine the sign of a by a finite case distinction over the values of x, y which are in
{−k′, . . . , k′}.

Note that (x, y) stands during the run time for x · ui+2 + y · ui+1 and represents the sum of∑
j>i aj ·uj. In the fourth step of the loop, this is adjusted to a linear combination of coefficients

of ui+1 and ui based on the identity u2 = u+ 1 and the fact that now ai becomes added into the
memory. For the correctness, it is easy to see that during the whole runtime of the algorithm,
the variables x, y (which represent the state of the automaton) are from the constant sized range
{−k′, . . . , k′}. Furthermore, assume that the algorithm terminates early at some stage i and that
x > 0. Note that −k′ 6 y 6 k′ and therefore x + y > −k′ and x + ai > −k′. If x + y > k′

then x + ak > −k and if x + ak > k′ then x + y > −k. Thus x · ui+2 + y · ui+1 + ai · ui will be
transformed into a sum of a number greater than k′ · ui and

∑
j<i aj · uj − kui− kui+1 which, by

the choice of k′, is a positive number. Thus the termination is correct and a > 0. Similarly one
verifies that the early termination with the output a < 0 is correct. It follows that the whole
algorithm is correct and one can automatically determine whether a number is positive or zero
or negative.

For three numbers a =
∑

i ai · ui, b =
∑

i bi · ui and c =
∑

i ci · ui, one can check whether
a+ b = c by forming the number

∑
i(ai + bi − ci) · ui and then verify using the above algorithm

whether the sign of this number (where k is now 6) is indeed zero. Similarly, one can compare
two numbers in order to find whether they represent the same element or one is below the other,
one just has to determine the sign of

∑
i(ai− bi) ·ui. It follows that (A,+, <,=) is an automatic

group.

19

Multiplication with u or u−1 can be realised by shifting all coefficients in the representation
by one position up or down, respectively. Multiplication with a fixed integer can be realised by a
constant time of adding or subtracting the input to 0. One can obtain multiplication with every
fixed ring element by combining finitely many of these operations.

Furthermore, one can clearly represent 0, 1 and u in A and therefore −1, 0, 1,−u, u in A. As
A is closed under addition and multiplication, all ring members are represented. As u−1 = u−1,
no element is represented which is not a ring member. �

Remark 25. One can indeed even show that the set of representatives of natural numbers in
this ring is regular. For this, one uses that 3 · ui = u−2+i + u2+i. This permits to deduce the
following examples: 1 = u0, 3 = u2 + u−2, 7 = u4 + u−4, 18 = u6 + u−6, ui+2 + u−i−2 =
3 · (ui + u−i)− (ui−2 + u−i+2) for even i > 2. This permits to represent every natural number by
a string a0a−1a1a2a−2 . . . a−2ka2k such that, for all i, a−i = ai, ai ∈ {0, 1, 2} and ai = 0 whenever
i is odd. It is easy to see that the set of the above chosen representatives is regular and, as
= is automatic, also the set of all representatives of natural numbers is regular. Furthermore,
one can see that every finite union of sets of the form a′ · N + b′ with a′, b′ being fixed ring
elements is regular. Furthermore, there is an automatic function sending any ring-element a to
the convolution of its coordinates b, c ∈ Z such that a = b+ c · u.

The construction of ordered semiautomatic rings extending the integers by the irrational factor√
5+1
2

can be extended as follows.

Theorem 26. Assume that d2 = ne2 + 1 and d > 1 for natural numbers d, e. Let u = d+ e ·
√
n.

The ring (Z + u · Z,Z,+, <,=; ·) is semiautomatic.

Proof. Note that

u2 = (d+ e ·
√
n)2 = e2 · n+ 2d · (d+ e

√
n)− d2 = 2du− 1

and u+ u−1 = 2d. Then all powers ui are in the ring Z + u · Z. Furthermore, one can represent
the ring as done in Theorem 24 as polynomials in u with coefficients from {−2d,−2d + 1, . . . ,
−1, 0, 1, . . . , 2d − 1, 2d} using that 2d > 2 and therefore every replacement 2dui → ui−1 + ui+1

reduces the sum of the absolute values of the coefficients until this sum is minimal. Writing
the coefficients as a string of the form a0a1a−1a2a−2 . . . ana−n permits to identify the integers as
those numbers which are equal to a number where am = a−m for all m: This can be seen by
induction as one apply a normalisation 2dui → ui−1 + ui+1 exactly at i when one does it at −i
and so maintain that each integer has a symmetric representation; furthermore, one can show
by induction that each symmetric representation stands for an integer: ui+2 + u−i−2 represents
the same integer as 2dui+1 − ui − u−i + 2du−i−1 which represents the difference of 2d times the
integer represented by ui+1 + u−i−1 and the integer represented by ui + u−i. The order on the
representatives is decided by a method similar to the one in Theorem 24 and it is automatic. The
addition is automatic, as for three ring elements

∑
i aiu

i,
∑

i biu
i,
∑

i ciu
i, one can check whether∑

i(ai + bi − ci)ui represents the 0. Multiplication with powers of u can be realised by making
a shift; multiplication with integers can be realised as repeated addition; hence multiplication
with constant ring elements is automatic. �

20

Theorem 27. The ring (Z(
√
n),Z,+, <,=; ·) has for every positive natural number n a semi-

automatic presentation.

Proof. Without loss of generality, n is not a square number; the case where n is square is
trivial, as it just says that the ordered ring of integers is semiautomatic. Now consider the
equation d2 = ne2 + 1; this equation is known as “Pell’s Equation” and it is known that for each
integer n which is not a square there are infinitely many integer pairs (d, e) with d2 = ne2 + 1.
Euler named these equations (with parameter n) after Pell and for some small n, Pell’s equation
was solved independently by Indian and Greek mathematicians more than 2000 years ago; later
Brahmagupta in India found a method to solve several more of these equations and Bhaskara
II solved it for all non-square n. In Europe, Lagrange [13] solved the general problem first and
showed that there are infinitely many solutions in the case that n is not a square. For square
numbers n the only integer solution is d = 1 and e = 0, as 1 and 0 are the only integer squares
with difference 1.

Given n, one can now chose d, e as above with d > 1. By Theorem 26 the structure (Z +
u · Z,Z,+, <,=; ·) with u = d + e ·

√
n has an automatic presentation. Now the subset A =

Z · (u− d) + Z · e is a regular subset of this structure, as

z ∈ A⇔ ∃x, y [z = (u− d) · x+ e · y]

and addition and multiplication with constants is automatic. Note that

A =
√
n · e · Z + e · Z

and that this ordered additive group is — by the homomorphism z 7→ z/e — isomorphic to the
ordered additive group B =

√
n · Z + Z and so one can use the element x in A to represent

the element x/e of B. Furthermore, one can make B to be a ring noting that the multiplication
in (A,+, <; ·) permits through the formula x, c 7→ x · c/e to define the multiplication in B:
(x/e) · (c/e) = ((x · c)/e)/e; this formula defines, for each constant c, an automatic function in
A and thus the multiplication with constants is automatic in B. The integers in B are equal to
A ∩ Z, thus they form there a regular subset of B as well. �

Remark 28. Note that in the above representation, the set

{conv(x, y) : x, y ∈ Z ∧ x > 0 ∧ y <
√
n · x < y + 1}

is regular; this permits to use finite automata to find arbitrary close approximations of
√
n by

quotients of natural numbers.

The next result deals with noncommutative rings where the multiplication is not commutative
and where, to simplify the proof, a 1 does not need to exist.

Theorem 29. There is a ring (R,+,=, ·) such that (R,+,=) is an automatic group and the
family of functions {y 7→ y · x : x ∈ R} is semiautomatic while every function y 7→ x · y with
x ∈ R fixed is either constant 0 or not automatic (independent of the automatic representation
chosen for the ring).

21

Proof. One is considering a ring over the Boolean field ({0, 1},+, ·) where the elements of the
ring are given as repetition-free sums over generators xi; the empty sum stands for the 0 in the
ring and each element is self-inverse for the addition. Furthermore, let f be a function from N
to N to be defined later. Now one defines the multiplication using the equalities xi · xj = xf(j)
and the law of distributivity. The function f is a permutation on the natural numbers such that
the length of each orbit is a prime number and the k-th prime number pk occurs as a length of
an orbit iff k is an element of some fixed undecidable set K.

If the ring would have an automatic presentation such that each mapping x 7→ y · x is
automatic, then one could fix y as the generator x0 and would have that k is in the set K iff
the function x 7→ x0 · x has an orbit of length k. As the first-order theory of this function is
decidable, K would be decidable in contradiction to the assumption.

Now a presentation of the ring is given in which addition and equality are automatic, as
well as multiplication with a fixed second element is automatic. For this, one represents every
ring element by a binary string a0a1 . . . an representing

∑
m6n am · xm and says that two such

representations are the same if they only differ by trailing zeroes, hence equality is automatic.
Furthermore, addition of two such strings is realised by bit-wise exclusive or, where the result
has the length of the longer string (with zeroes added into the missing positions of the shorter
string). Now, consider multiplication with a fixed element, say x3+x8+x9, in the second position
and let y be the sum of k generators. If k is even then y · (x3 + x8 + x9) = 0. If k is odd then
y · (x3 + x8 + x9) = xf(3) + xf(8) + xf(9). Hence the structure (R,+,=; {y 7→ y · x : x ∈ R}) is
semiautomatic. �

7. Fields and Vector Spaces

In the following, let (A,+, <,=; ·) be a semiautomatic ordered ring. Note that such a ring is an
integral domain, as given two nonzero factors v, w, one can (after multiplication with −1 when
needed) assume that 0 < v and 0 < w; then it follows that 0 < v · w and therefore v · w differs
from 0. Hence the quotient field is always defined.

Theorem 30. If (A,+, <,=; ·) is a semiautomatic ordered ring then the unique quotient field
F defined by the ring is an ordered semiautomatic field (F ; +, ·, <,=).

Proof. The members of F are of the form a
b

with a, b ∈ A and 0 < b; they are represented by

conv(a, b) but for convenience in the following always written as a
b
. Let a′

b′
be a fixed element of

F and consider adding, multiplying and comparing with a′

b′
:

– The addition a
b
7→ a·b′+a′·b

b·b′ is automatic, as multiplication with fixed ring elements a′, b′ is
automatic and adding of ring elements is also automatic;

– The multiplication a
b
7→ a·a′

b·b′ is automatic, for the same reasons as addition;

– The set {a
b

: a · b′ < a′ · b} of all representatives of members of F less than a′

b′
is regular;

– The set {a
b

: a · b′ = a′ · b} of all representatives of a′

b′
is regular.

22

Hence (F ; +, ·, <,=) is semiautomatic; the verification that the resulting structure is an ordered
field follows the verification that the rationals are an ordered field when constructed from the
ring of integers, this verification is left to the reader. �

Corollary 31. The ordered field (Q; +, ·, <,=) of the rationals and, for all n ∈ N, the extensions
(Q(
√
n); +, ·, <,=) are semiautomatic.

Remark 32. Does it make a difference whether one writes 7
3

or 2 + 1
3
? The advantage of the

latter is that one can directly see whether it is an integer. To see that 15133
123

= 123 + 6
123

is
not an integer requires already some calculations. Indeed, if one chooses for the rationals the
representation of all conv(a, b, c) standing for a+ b

c
with a, b, c ∈ Z and 0 6 b < c, then addition

and multiplication with constants is still semiautomatic and so are < and =; however, also the
representatives of each finite union of sets of the form q · N + p with p, q ∈ Q form a regular
set. Thus, on one hand, this representation has some advantage over the easier one given in
Theorem 30, where the representatives of members of Z do not form a regular set. On the other
hand, if one includes the inverse operations p, q 7→ p − q and p, q 7→ p/q where the latter is
only defined for q 6= 0 into the structure, then the construction from Theorem 30 actually is a
semiautomatic presentation for (F ; +,−, ·, /, <,=). The mapping − is obviously semiautomatic.
Dividing by a fixed number a′

b′
> 0 is just given by a

b
7→ a·b′

b·a′ and dividing by a fixed number
a′

b′
< 0 is just given by a

b
7→ −a·b′
−b·a′ . Furthermore, if the first parameter a′

b′
is fixed then one has to

compare the second parameter with 0. If the second parameter is greater 0 then a
b

is mapped to
a′·b
b′·a , if the second parameter is smaller than 0 then a

b
is mapped to −a

′·b
−b′·a , if the second parameter

is 0 then the value of the division is undefined.
Furthermore, note that expanded decimals with periods (coded by overlined digits) do not

give a semiautomatic presentation for the rationals. The main reason is that when adding 1.01
and 2.58002 the period gets longer and the result is 3.59012103. In general, when adding the
fixed number to 1.01 to a rational with a period of an odd length, the resulting number will have
a period of double length, thus the addition with the fixed value 1.01 is not automatic in this
structure.

Theorem 33. If (A,+, <,=; ·) is a semiautomatic ordered ring then every finite-dimensional
vector space (F n; +, ·,=) defined from the quotient field F of the ring A has a semiautomatic rep-
resentation and all linear mappings from F n to F n are automatic. In particular, finite algebraic
extensions (G; +, ·,=) of the field (F,+, ·,=) are semiautomatic.

Proof. The idea is to represent the members of the vector space by k + 1-tuples conv(a1, a2,
. . . , ak, b) of members of A representing the vector (a1

b
, a2
b
, . . . , ak

b
). Now an addition with a

fixed vector (
a′1
b′
,
a′2
b′
, . . . ,

a′k
b′

) is realised by mapping conv(a1, a2, . . . , ak, b) to (a1 · b′ + b · a′1,
a2 · b′ + b · a′2, . . . , ak · b′ + b · a′k, b · b′) which is an automatic function as it only involved
multiplication with fixed ring members a′1, a

′
2, . . . , a

′
k, b
′, respectively, and addition. Similarly,

one can do multiplication with a fixed scalar a′

b′
by multiplying all components of the vector

with the corresponding constants. In the same way one can automatically compare any fixed
vector for equality with elements of the vector space. For realising linear mappings, one has

23

first to make sure that all the entries in the matrix to be multiplied with and the vector to be
added afterwards have the same fixed denominator b′; furthermore, the numerators are denoted
as a′i,j for the matrix elements and c′i for the fixed vector involved in the linear mapping. Now
conv(a1, a2, . . . , ak, b) is mapped to a vector with the i-th component being

∑
j a
′
i,j · aj + c′i and

the denominator component being b · b′. The verification is straightforward.
Suppose the finite algebraic extension G of the F is defined from the ring A using an irre-

ducible polynomial c0 + c1x+ c2x
2 + . . . ck−1x

k−1. Then one can represent G as a k-dimensional
vector space over F where the components stand for the coefficients of linear combinations of
1, x, x2, . . . , xk−1 in the field. Now every multiplication with a fixed element is a linear mapping
inside the vector space and hence every finite algebraic extension (G; +, ·,=) of the field F is
semiautomatic. �

One might ask whether one can combine all those functions and subsets of the rationals which
were semiautomatic and combine it to vectors similar in the spirit of Theorem 33. In the following,
consider programs which consist of finitely many steps of the following type which modify some
vector (x1, x2, . . . , xk) of rationals.

– Replacing some variable xi by a linear combination
∑

j=1,...,k aj · xj + b;
– Replacing some variable xi by 1/xi provided that xi is not 0, here 0 is mapped to 0 in order

to avoid undefined output;
– Doing if-then-else statements where the conditions are Boolean combinations of subconditions

which check whether a linear combination of the variables is either positive or zero or an
integer;

– One can nest such if-then-else statements with words “begin” and “end”.

Note that such functions can be concatenated by simply concatenating the corresponding pro-
grams. Furthermore, note that there are only constantly many of these steps and, in contrast to
the usual computer programs, the algorithm cannot go in loops. Let Fk be the class of all such
functions mapping from Qk to Qk. The so obtained structure is a quite natural example which
can be shown to be not semiautomatic for large enough k (see Theorem 34 below); note that
without the inclusion of the multiplicative inverse in the above definition, the structure would
be semiautomatic.

Theorem 34. The structure (Q16;F16,=) is not semiautomatic.

Proof. Here “(Q16;F16,=) is semiautomatic” means that the equality is semiautomatic and
each of the functions f : Q16 7→ Q16 in F16 is automatic (as the vectors are considered as single
entities and not tuples in terms of the automaticity condition). This corresponds to the usage
in Theorem 33 where also the field elements, which are vectors over Q, are considered as single
entities with respect to the notion of semiautomaticity.

For the proof, one considers the vectors as being of the form (x, y1, . . . , y9, z1, . . . , z6) where x
is a parameter, y1, . . . , y9 are certain input variables and z1, . . . , z6 are auxiliary variables to do
computations in order to compute a polynomial over x, y1, . . . , y9. Let a polynomial p be given
such that for x ∈ N there are natural numbers y1, . . . , y9 with p(x, y1, . . . , y9) = 0 iff x ∈ K for

24

some recursively enumerable and undecidable set K. Such a polynomial was constructed in the
solution of the Hilbert’s Tenth Problem by Matiyasevich (with originally more than 9 variables).
The polynomial p can be computed by adding a sequence of monomials where the sum is kept in
z1 and the monomials are kept in z2. Furthermore, one uses z3, z4, z5, z6 to do the multiplication,
here a · b = 1

2
· ((a+ b)2 − a2 − b2) and the square is given by the formula

a2 = a+ 1/(
1

a− 1
− 1

a
)

for the case that a /∈ {0, 1}. The goal is that the function f computed satisfies the following:
If x, y1, . . . , y9 ∈ N and p(x, y1, . . . , y9) = 0 then f(x, y1, . . . , y9, z1, . . . , z6) = (x, 1, . . . , 1) else
f(x, y1, . . . , y9, z1, . . . , z6) = (x, 0, . . . , 0). The following program illustates the function f for the
sample polynomial x, y1, . . . , y9 7→ 2 · x · y1 − 3 · y1 · y2 · y3.

If x > 0 and x ∈ Z and y1 > 0 and y1 ∈ Z and . . . and y9 > 0 and y9 ∈ Z then begin
z1 = 0;
z2 = x;
z3 = z2 + y1;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z3; z3 = z2;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z6 − z3; z3 = y1;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z6 − z3; z2 = 1

2
· z6;

z1 = z1 + 2 · z2;
z2 = y1;
z3 = z2 + y2;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z3; z3 = z2;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z6 − z3; z3 = y2;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z6 − z3; z2 = 1

2
· z6;

z3 = z2 + y3;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z3; z3 = z2;

25

if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;
z4 = 1/z4; z3 = z3 + z4 end;

z6 = z6 − z3; z3 = y3;
if z3 6= 0 and z3 6= 1 then begin z4 = z3; z5 = z4 − 1; z4 = 1/z4; z5 = 1/z5; z4 = z5 − z4;

z4 = 1/z4; z3 = z3 + z4 end;
z6 = z6 − z3; z2 = 1

2
· z6;

z1 = z1 − 3 · z2;
if z1 = 0 then begin y1 = 1; y2 = 1; . . .; z6 = 1 end else begin y1 = 0; y2 = 0; . . .; z6 = 0

end end
else begin y1 = 0; y2 = 0; . . .; z6 = 0 end.

So this algorithm maps input (x, y1, . . . , y9, z1, . . . , z6) to (x, 1, . . . , 1) in the case that x, y1,
. . . , y9 ∈ N and p(x, y1, . . . , y9) = 0. Otherwise the input is mapped to (x, 0, . . . , 0). One can,
for the right p and not the simple example above, also make such a program computing p and
this then defines a function f ∈ F16 such that x ∈ K iff the tuple (x, 1, . . . , 1) is in the range
of f . Now one can construct from the automaton for the function f and the automaton for the
function g given by

g(x, y1, . . . , y9, z1, . . . , z6) = (x− 1, y1, . . . , y9, z1, . . . , z6)

an automaton for the function f concatenated with x− 1 applications of g. Then one can check
whether (1, . . . , 1) is in the range of that function, as equality is semiautomatic and one can
know the automaton recognising the set of representatives of (1, . . . , 1). Hence one would be able
to decide K using the four automata for recognising the domain, the graph of f , the graph of
g and the equivalence class of (1, . . . , 1). By this contradiction one can conclude that the given
structure cannot be semiautomatic. �

The following questions are currently open with respect to fields. In particular there is still a
lack of methods to show that certain structures are not semiautomatic.

Question 35. (a) Are the structures (Q, <,=; +, ·) or (Q,=; +, ·) semiautomatic? In other
words, is it really needed, as done in the above default representations, that the equality and
the order are not automatic?

(b) Is the polynomial ring (Q[x]; +, ·,=) semiautomatic?
(c) Is there a transcendental field extension of the rationals which is semiautomatic?
(d) Is (Q,Z; +,−, ·, /, <,=) semiautomatic?

The counterpart of Questions 35 (b) and (c) for finite fields has a positive answer.

Theorem 36. Let (F,+, ·) be a finite field. Then the following structures are semiautomatic:

– Every (possibly infinite) algebraic extension (G,+,=; ·) of the field;
– The polynomial rings (F [x],+,=; ·) in one variable and (F [x, y]; +, ·,=) in two or more vari-

ables;

26

– The field of fractions ({a
b

: a, b ∈ F [x] ∧ b 6= 0}; +, ·,=) over the polynomial ring with one
variable.

Proof. For the first statement, let F0 = F as the starting finite field and describe the algebraic
extension G by a sequence F1, F2, . . . of finite fields such that every field Fn+1 is a finite algebraic
extension and finite-dimensional vector space over Fn. The members of F are considered to
be almost everywhere 0 functions from N to F0; these can be represented by finite strings of
members of F0 (used as an alphabet) with component wise addition; trailing zeroes are omitted
and the empty string represents the everywhere 0 function. In this vector space, one groups
the vector space into groups of dim(Fn/F0) entries so that each string in the representation
consists of blocks of length dim(Fn/F0) of symbols representing one element in Fn, the last
non-zero element might be represented by a string shorter than dim(Fn/F0) where the missing
components are interpreted as zeroes. Thus the strings represent at the same time members
of vectors over each Fn. One can represent a multiplication with a fixed element of Fn as a
mapping which changes each block of length dim(Fn/F0) according to a fixed table, omitting
trailing zeroes from the result. As a multiplication with an element from Fn is indeed a scalar
multiplication in the field viewed as a vector space over Fn, it follows that the multiplication in
the resulting full field G is semiautomatic.

For the second statement, one represents F [x] as strings over F where a non-empty string
a0a1 . . . an represents

∑
m=0,...,n am ·xm and representations are equal if they only differ by trailing

zeroes. Addition is pointwise addition of F . For multiplication, one sees that multiplication with
xn is just realised by the mapping w 7→ 0nw which is automatic and multiplication with a
fixed element can be realised by adding up a fixed number of such shifted versions of w. Thus
(F [x],+,=; ·) is semiautomatic.

For the second part of second statement, the semiautomaticity of the polynomial ring over
several variables, the result follows from the more general result given in Theorem 37 below.

For the third statment, the field of fractions (Q; +, ·,=) of (F [x],+,=; ·) is semiautomatic by
the same arguments as in Theorem 30; here one only has to adjust the arguments relating the
order of the field (which does not exist here) by the weaker property that a, b 6= 0⇒ a · b 6= 0 for
members a, b ∈ F [x], which follows the usual standard arguments of constructing a field from a
ring. �

Let (U,×, <) be an ordered monoid with U = {u0, u1, . . .} being countable and ui < uj ⇔ i < j
and ui < uj ⇒ ui × uk < uj × uk ∧ uk × ui < uk × uj for all i, j, k and u0 being the neutral
element (u0 × ui = ui × u0 = ui for all i). For a finite field (F,+, ·), let a string a0a1 . . . an in F ∗

with an 6= 0 represent the polynomial ∑
m6n

am · um

of degree n and let the empty string ε represent 0 and ε having the degree −1. Addition of such
polynomials is defined with component wise addition where one first appends trailing zeroes to
make the representatives having the same length and then removes the trailing zeores from the
result polynomial. For non-empty strings a = a0a1 . . . an and b = b0b1 . . . bm, one defines the

27

product

(
∑
i6n

ai · ui) · (
∑
j6m

bj · uj) =
∑

i6n,j6m

ai · bj · ui · uj

and notes that the degree of this product is the degree of un · um: If ui < un and uj < um then
ui · uj < ui · um < un · um and un · uj < un · um; furthermore, it follows from an 6= 0 ∧ am 6= 0
that the term an · am · un · um does not vanish. Thus, for all non-zero polynomials a and b, the
degree of a · b is at least the maximum of the degrees of a and of b. One can also show that this
structure is a ring. Let (F [U],+, ·) denote this ring.

This structure is quite general. For example, one can choose U such that the ring (F [U],+, ·)
is the polynomial ring over F with a given number of variables. In the case that one wants
to represent infinitely many variables, one takes ui × uj = ui·j+i+j and the k-th variable is
represented by up−1 where p is the k-th prime number. Furthermore, for two variables, one can
consider ordered pairs 〈i, j〉 = (i + j) · (i + j + 1)/2 + i and let u〈i,j〉 × u〈i′,j′〉 = u〈i+i′,j+j′〉 with
u〈i,j〉 representing the monomial xiyj. Another structure which can be realised this way is the
free associative unital algebra over F in at most countably many variables.

Theorem 37. The ring (F [U]; +, ·,=) is semiautomatic for F,U as above. In particular, poly-
nomial rings over F with at most countably many variables and the free associative algebra over
F with at most countably many variables are semiautomatic in this sense.

Proof. One first introduces base representations of the members of F [U] by strings over F
ending with a non-zero element. Furthermore, let ⊕, ⊗ and � be three symbols outside F . Now
one assigns to every string w over {F,⊕,⊗,�}∗ a value val(w) as follows:

– val(ε) is 0, which is represented by ε;
– For w ∈ F ∗, val(w) is the base element v of F [U] obtained by omittting trailing zeroes from
w;

– val(w ⊗ ε) and val(w � ε) are both 0, which is represented by ε;
– val(w ⊗ v) = val(w) · val(v) in the case that v ∈ F ∗ and v does not represent 0;
– val(w � v) = val(v) · val(w) in the case that v ∈ F ∗ and v does not represent 0;
– val(w ⊕ ε) = val(w);
– val(w ⊕ v) = val(w) + val(v) in the case that v ∈ F ∗ and the degree of v and w differs;
– val(w ⊕ v) = un in the case that v ∈ F ∗ and v does not represent 0 and the degree of v and
w is both n and n > 0.

Note that the function val itself is not automatic, however the function valn is automatic where
valn(w) = val(w) in the case that w represents a polynomial of degree n or less and valn(w) = @
in the case that w represents a polynomial of degree above n. The reason for the automaticity is
that the function can go from the start to the end over the expression and whenever the value
becomes @, it remains this value unless there is a multiplication with 0 (coded as ε); thus the
automaton handles only finitely many possible values and keeps in the memory one operand
consisting of the value of the processed part and another one of the next value to be taken into
account. These values are updated according to the operands given. Note that the nonstandard

28

feature in the last condition of the definition of val was explicitly chosen this way in order to
make the functions valn all automatic.

Hence one can check whether a representative w has a fixed value v by evaluating valdeg(v)(w)
and comparing the result with v. One can do the addition with a fixed value v as follows. If
valdeg(v)(w) 6= @ then v+w is represented by the corresponding base element for that value else
v +w is w⊕ v. If v = ε then the products val(w) · v and v · val(w) are represented by ε else the
products val(w) ·v and v ·val(w) are represented by w⊗v and w�v, respectively. Thus addition
and multiplication with constants is automatic and the so defined ring is semiautomatic. �

The proof is relying on the fact that the field is finite. If one wants to do a similar construction for
an infinite structure, a field would not do it. However, if one does not have additive inverses and
still multiplication of non-zero elements are non-zero like in the structure (N,+, ·), one can show
that also (N[U]; +, ·,=) is semiautomatic. The key idea is that now valn(w) = @ if either the
degree is above n or the value of a coefficient is above n. Thus, when evaluating an expression,
one only has to deal with coefficients from {0, 1, . . . , n}. In particular the semirings (N[x]; +, ·,=)
and (N[x, y]; +, ·,=) are semiautomatic.

8. Conclusion

The present work gives an overview on initial results on semiautomatic structures and shows
that many prominent structures (countable ordinals with addition, the ordered fields of rationals
extended perhaps by one root of an integer, algebraic extensions of finite fields) are semiautomatic
and investigates to which degree one can still have that some of the involved operators and
relations are automatic. Several concrete questions are still open, in particular the following ones:
Is there an automatic presentation of the integers such that addition and equality are automatic
while the ordering of the integers is not semiautomatic? Are the structures (Q, <,=; +, ·) or
(Q,=; +, ·) semiautomatic, that is, can in the semiautomatic field of rationals the order and the
equality be made automatic? The corresponding is possible for the additive group of rationals.

Additional questions might relate to the question of effectivity. For example, for a given
function f in some given structure, can one effectively find from the parameter y an automaton
for x 7→ f(x, y)? While this is impossible for the most general results in Section 4, the concrete
structures in Sections 5, 6 and 7 permit that one obtains the automata from the representatives
by recursive functions. The complexity of these functions might be investigated in subsequent
work for various structures.

Furthermore, one can introduce the concept of faithful semiautomatic structures. Here a
semiautomatic structure, say (Q; +, ·, <,=), is faithful iff there is a subset S of the set of rep-
resentatives of Q such that for each member of Q there is exactly one representative in S and
the semiautomatic functions realising + and · map inputs from S × S to S. Indeed, one could
determine for each rational a

b
the greatest common divisor c of a, b and then choose s = a/c

b/c
.

The corresponding adjustments to the semiautomatic functions will then indeed map S × S to
S, although they are still defined for all legal representatives in the structure. It might indeed
be interesting to get also for other structures faithful semiautomatic representations.

29

Acknowledgements

The authors would like to thank Anil Nerode as well as the participants of the IMS Workshop on
Automata Theory and Applications who discussed the topic and initial results with the authors.

References

1. Dimitry Berdinsky. The Baumslag Solitar group is Cayley automatic. Private communica-
tion, 2013.

2. John Case, Sanjay Jain, Samuel Seah and Frank Stephan. Automatic functions, linear time
and learning. In, Cooper, S. B., Dawar, A. and Löwe (eds.), How the World Computes
- Turing Centenary Conference and Eighth Conference on Computability in Europe, CiE
2012, Cambridge, UK, June 18–23, 2012. Proceedings. Springer LNCS, 7318:96–106, 2012

3. Christian Delhommé. Automaticité des ordinaux et des graphes homogènes. Comptes Ren-
dus Mathematique, 339(1):5–10, 2004

4. David B.A. Epstein, James W. Cannon, Derek F. Holt, Silvio V.F. Levy, Micheal S. Paterson
and William P. Thurston. Word Processing in Groups. Jones and Bartlett Publishers,
Boston, 1992

5. Lázló Fuchs. Partially Ordered Algebraic Systems. Pergamon Press, 1963.
6. Bernard R. Hodgson. Théories décidables par automate fini. Ph.D. thesis, Département de

mathématiques et de statistique, Université de Montréal, 1976
7. Bernard R. Hodgson. Décidabilité par automate fini. Annales des sciences mathématiques

du Québec, 7(1):39–57, 1983
8. John E. Hopcroft, Ravjeev Motwani and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages and Computation. Third edition. Addison Wesley, 2007
9. Olga Kharlampovich, Bakhadyr Khoussainov and Alexei Miasnikov. From automatic struc-

tures to automatic groups. CoRR abs/1107.3645, 2011
10. Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. In, Leivant,

D. (ed.), Logic and Computational Complexity, International Workshop, LCC 1994, Indi-
anapolis, Indiana, USA, October 13–16, 1994; Springer LNCS, 960:367–392, 1995

11. Bakhadyr Khoussainov, Sasha Rubin and Frank Stephan. Definability and regularity in
automatic structures. In, Diekert, V. and Habib, M. (eds.), Twentyfirst Annual Symposium
on Theoretical Aspects of Computer Science, STACS 2004, Montpellier, France, March 25-
27, 2004, Proceedings; Springer LNCS, 2996:440-451, 2004

12. Dexter Kozen. Complexity of finitely presented algebras. PhD thesis, Computer Science
Department, Cornell University, May 1977

13. Joseph-Louis Lagrange. Solution d’un probléme d’Arithmétique. J.-A. Serret (editor). Oeu-
vres de Lagrange, 1:671–731, 1867.
http://gdz.sub.uni-goettingen.de/no_cache/dms/load/img/?IDDOC=41029

14. Alexei Miasnikov, Zoran Sunic. Cayley graph automatic groups are not necessarily Cayley
graph biautomatic. In, Dediu, A. H. and Mart́ın-Vide, C. (eds.), Language and Automata
Theory and Applications - Sixth International Conference, LATA 2012, A Coruña, Spain,
March 5-9, 2012. Proceedings. Springer LNCS, 7183:401-407, 2012

30

15. Bernhard Hermann Neumann. On ordered groups. American Journal of Mathematics, 71:1–
18, 1949

16. André Nies. Describing Groups. The Bulletin of Symbolic Logic, 13(3):305-339, 2007.
17. André Nies and Richard Thomas. FA-presentable groups and rings. Journal of Algebra,

320:569-585, 2008
18. André Nies and Pavel Semukhin. Finite automata presentable Abelian groups. Annals of

Pure and Applied Logic, 161:458–467, 2009.
19. Wai Yean Tan. Automatic Structures. Honours Year Thesis, Department of Mathematics,

National University of Singapore, 2008.
20. Todor Tsankov. The additive group of the rationals does not have an automatic presentation.

The Journal of Symbolic Logic, 76(4):1341–1351, 2011.

