
Finitely Generated Semiautomatic Groups?

Sanjay Jain1, Bakhadyr Khoussainov2 and Frank Stephan13

1 Department of Computer Science, National University of Singapore
13 Computing Drive, COM1, Singapore 117417, Republic of Singapore

sanjay@comp.nus.edu.sg
2 Department of Computer Science, University of Auckland

Private Bag 92019, Auckland, New Zealand
bmk@cs.auckland.ac.nz

3 Department of Mathematics, National University of Singapore
10 Lower Kent Ridge Road, S17, Singapore 119076, Republic of Singapore

fstephan@comp.nus.edu.sg

Abstract. The present work shows that Cayley automatic groups are semiautomatic
and exhibits some further constructions of semiautomatic groups. Furthermore, the
present work establishes that every finitely generated group of nilpotency class 3 is
semiautomatic.

S. Barry Cooper was a leading researcher in Recursion Theory and, in his later years, was a
driving force to extend this field to an area represented in the conferences “Computability in
Europe” and “Theory and Applications of Models of Computation” [7]; this larger area of Com-
putability in general should comprise all research which targets at computation and information
from a theoretical point of view. While Cooper remained active in recursion theory itself and
also worked with one of the authors of this paper [1] about topics from the difference hierarchy,
he also reached out to neighbouring fields [4,5], in particular when organising the two confer-
ence series. The present work is a representative item of his vision of computability in a more
general sense than just recursion theory. This work deals with computation from the viewpoint
of non-uniform usage of finite automata when describing functions like group operations and
futhermore uses tools from the classical theory of computation such as coding of NP-complete
problems or, more generally, Diophantine sets in order to obtain the result that certain groups
cannot be semiautomatic in the sense described. Each of the authors had multiple interactions
with Cooper and are in particular grateful for the support which they got when organising TAMC
2015 in Singapore; in his last year of life, Cooper came to Singapore to attend the conference and
to present a special session talk. The authors would like to dedicate this article to the memory
of S. Barry Cooper (9/10/1943–26/10/2015).

? F. Stephan (PI) and S. Jain (Co-PI) are supported in part by Singapore Ministry of Education Academic Research Fund
Tier 1 grants R146-000-181-112 and R252-000-534-112 as well as Tier 2 grant MOE2013-T2-1-062 / R146-000-184-112.
Additionally, S. Jain was supported in part by NUS grant C252-000-087-001. B. Khoussainov is supported in part by
the Marsden Fund grant of the Royal Society of New Zealand. A conference version of this paper was presented at CiE
2016 [10].

1

2

1 Introduction

Hodgson [8,9] as well as Khoussainov and Nerode [13] initiated the study of automatic structures,
including that of groups. In their approach, such a group is given by a regular set A as the
domain (denoting the representatives of the group) such that both, the group operation ◦ and
the equality =, are automatic; that is, there is an automaton which reads the convoluted tuples
(x, y, z) or (x, y) and decides whether such a tuple satisfies x◦y = z or x = y, respectively. Here,
for x = x1x2 . . . xm and y = y1y2 . . . yn with xi, yi ∈ Σ, the convolution of the pair (x, y) is the
string (

x1
y1

)(
x2
y2

)
. . .

(
xmax{m,m}

ymax{m,n}

)
over the new alphabet (Σ ∪ {#})2, where xi (respectively yi) is taken to be # in case of i > m
(respectively, i > n). The convolution over triples or tuples in general is defined similarly. The
advantage of this setting is that every function and relation definable in the language of group
theory using parameters from the group is again automatic. Furthermore, automata providing
the mappings can be found algorithmically. This also leads to the conclusion that for every fixed
automatic group, the first-order theory is decidable [13]. Furthermore, automatic functions are
precisely those which can be computed in linear time by a position-faithful one-tape Turing
machine [3], thus the automatic functions coincide with the smallest reasonable time complexity
class for functions.

Epstein, Cannon, Holt, Levy, Paterson and Thurston [6] argued that in the above formal-
isation, automaticity is, at least from the viewpoint of finitely generated groups, too restrictive.
They furthermore wanted that the representatives of the group elements are given as words over
the generators, leading to more meaningful representatives than arbitrary strings. Their concept
of automatic groups led, for finitely generated groups, to a larger class of groups, though, by
definition, it of course does not include groups which require infinitely many generators; groups
with infinitely many generators, to some extent, were covered in the notion of automaticity by
Hodgson, Khoussainov and Nerode. Nies and Thomas [16,17] provide results which contrast and
compare these two notions of automaticity and give an overview on results for groups which are
automatic in the sense of Hodgson, Khoussainov and Nerode.

Kharlampovich, Khoussainov and Miasnikov [12] generalised the notion further to Cayley
automatic groups. Here a finitely generated group (A, ◦) is Cayley automatic iff the domain A
is a regular set, for every group element there is a unique representative in A and, for every
a ∈ A, the mapping x 7→ x ◦ a is automatic. Note that the above requires multiplication by
constants to be automatic only from one side; when multiplication by a constant from both sides
are automatic, then the group is called Cayley biautomatic.

Finitely generated Cayley automatic groups have word problem decidable in quadratic time,
carrying over the corresponding result from the two previous versions of automaticity. As opposed
to the case of automatic groups (in the original sense of Hodgson), Miasnikov and Šunić [15]
showed that several natural problems like the conjugacy problem can be undecidable for some
Cayley automatic groups.

3

Jain, Khoussainov, Stephan, Teng and Zou [11] investigated the general approach where, in
a structure for some relations and functions, it is only required that the versions of the functions
or relations with all but one variable fixed to constants is automatic. Here the convention is to
put the automatic domains, functions and relations before a semicolon and the semiautomatic
relations after the semicolon. For a group, the semiautomatic group (A, ◦; =) would be a structure
where the domain A is regular, the group operation (with both inputs) is automatic and for each
fixed element a ∈ A the set {b ∈ A : b = a} is regular — note that group elements might have
several representatives in semiautomatic groups.

In the present work, for any group, ε represents the neutral element. One of the basic results
obtained is that the notion (A, ◦; =) collapses to an automatic group (in the sense of Hodgson,
Khoussainov and Nerode), as

a = b⇔ ∃c [a ◦ c = ε and b ◦ c = ε].

For semiautomatic groups, the two interesting group structures are (A,=; ◦) and (A; ◦,=). In
the first one, the equality is automatic, while in the second one, both the group operation and
the equality are only semiautomatic. If a group is finitely generated, then the definition of being
Cayley biautomatic is the same as having a presentation of the form (A,=; ◦).

Finitely generated semiautomatic groups share with the other types of automatic groups one
important property: The word problem can be decided in quadratic time and the algorithm is
the same as known for the Cayley automatic groups [12]. Thus finitely generated groups with
an undecidable or very complex word problem are not semiautomatic.

One of the problems left open in the present work is the following: Is every finitely gener-
ated semiautomatic group Cayley automatic? More generally, does every semiautomatic group
admit a presentation where the multiplication with a fixed group element from one side only is
semiautomatic and the equality is automatic?

2 Basic Facts and Examples

Finitely generated groups are groups for which there is a set a1, . . . , an of generators such that
every element of the group can be expressed as a finite word over the ai and a−1i where a word
like a1a1a2a

−1
1 then stands for a1 ◦ a1 ◦ a2 ◦ a−11 . A group (A, ◦) has nilpotency class 3 if for

all elements x1, y1, y2, y3 in the group it holds that the the element x4 of the sequence given
inductively for k = 1, 2, 3 by

xk+1 = xk ◦ yk ◦ x−1k ◦ y
−1
k

is the neutral element ε of A. Thus there are some rules to move one element over another
element by generating some spin-off element, say

ai ◦ ai′ = ai′ ◦ ai ◦ bj

and the elements of the form x ◦ y ◦ x−1 ◦ y−1 generate a commutative subgroup B of the group.
Furthermore, B is a normal subgroup of A, that is, for all x ∈ B and y ∈ A, the element y◦x◦y−1

4

is also in B. The factor group A/B = {x ◦ B : x ∈ A} with x = y if x ◦ B = y ◦ B as sets is
also commutative and finitely generated; here (x ◦B) ◦ (y ◦B) = (x ◦ (y ◦B ◦ y−1)) ◦ (y ◦B) =
(x ◦ y) ◦ B ◦ B = (x ◦ y) ◦ B and these equalities use that B = y ◦ B ◦ y−1 for all y ∈ A. Thus
A/B is isomorphic to a finite product of the form

Zr × {0, 1, . . . , pr+1 − 1} × . . .× {0, 1, . . . , pn − 1}

for some n, r 6 n and pr+1, . . . , pn > 2. This is used in the construction of Theorem 8. Note that
if apni = ε in the factor group, it means that apni ∈ B in the original group B and the automatic
mappings for multiplication with generators have to take care of this fact.

In the case of a finitely generated group, it can be shown that, for every fixed a ∈ A, the
mappings x 7→ x ◦ a and x 7→ a ◦ x are automatic by proving this fact only for the generators
and their inverses. This fact is used at several places in the paper.

Furthermore, for a semiautomatic group with generators a1, a2, . . . , an, it can be checked in
quadratic time whether a word w over these generators is equal to the neutral element ε. The
idea is to start with a representative of ε and then, from the front to the end of the word,
multiply the representative with the corresponding generator or its inverse depending on the
symbol of the word read. When the whole word is processed, a finite automaton is used for
checking whether the group element is equal to ε. That the algorithm is in quadratic time stems
from the fact that each of the automatic functions involved makes the word only longer by a
constant amount of symbols and that the running of the automatic functions is in linear time.
Thus, the maximum length is bounded by a constant multiplied with the word involved. This
gives the overall quadratic bound of the decision algorithm. The details are more or less the
same as in the case of Cayley automatic groups as well as Thurston automatic groups and follow
the known proof [6,12].

The constructions in Theorem 8 and elsewhere use that there is a copy of the integers (Z,+,=,
<) which is automatic including equality and order; this is well-known since the beginning of
automatic structures [8,13]. The automatic representation follows the well-known algorithm for
verifying an addition in the examples

3 8 3 8 8 2 8 3 1 2 3 4

+ 1 2 3 4 5 6 7 + 5 6

= 3 9 6 2 2 8 5 0 = 1 2 9 0

where the algorithm goes from the end to the front, adding the two top digits and taking the
carry digit into account. For automatic structures where the strings start in the front at the
same position — instead of ending at the same position as the numbers in the example — one
just codes the numbers in the reverse order, so 1234 would be stored as 4321 and 56 as 65 so
that at the start the first two digits 4,6 have to be added, and then the next digits 3,5 plus carry
and so on.

In summary, the natural numbers can be coded as binary or decimal numbers in reverse
order so that the symbol an of the input always refers to the digit of 2n or 10n, respectively.
For uniqueness, leading zeroes are not allowed in the representation. Then the usual binary or

5

decimal addition of such numbers invokes an addition and the following automatic order is the
order on the decimals: a0a1 . . . an < b0b1 . . . bm iff n < m or n = m and the largest k with ak 6= bk
has that ak < bk in the order of the digits. Having addition and order on the binary or decimal
natural numbers, the representation can be extended to that of (Z,+,=, <) by representing each
integer z as a pair of two natural numbers (x, y) with z = x − y. Then (x1, y1) = (x2, y2) iff
x1 + y2 = x2 + y1 what can be checked in this representation. Multiplication of an integer z
with a fixed convoluted vector like (1, 3, 2) can be implemented as a constant repeated adding
(z, 0, 0)+(0, z, 0)+(0, z, 0)+(0, z, 0)+(0, 0, z)+(0, 0, z) for proof purposes; the actual automatic
structure can apply slightly more efficient algorithms. Similarly, a convoluted tuple (z1, . . . , zk)
can be mapped to v1·z1+v2·z2+. . .+vk ·zk for fixed vectors v1, . . . , vk in Zh for fixed h. The finitely
generated automatic groups (in sense of Khoussainov and Nerode) are fully characterised as those
which are given by finite extension of an Abelian finitely generated group; thus all such groups
are also automatic in the sense of Thurston. An example for a nilpotent Cayley biautomatic
group, that is, a finitely generated semiautomatic group of the form (A,=; ◦), is the group of all
unitriangular n× n matrices over Z.

Example 1. The group of all matrices of the form

{


1 a d f
0 1 b e
0 0 1 c
0 0 0 1

 : a, b, c, d, e, f ∈ Z}

which is generated by the three generators of the form
1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


and their inverses 

1−1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 −1 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
0 0 1−1
0 0 0 1

 .

This group is Cayley biautomatic and has nilpotency class 3; the reason is that the commutators
x−1 ◦ y−1 ◦ x ◦ y of two upper unitriangular matrices x, y have 0 in the semidiagonal next to
the main diagonal and the commutator of three elements have 0 in the first two semidiagonals
next to the main diagonal and that the commutators of four elements are always the identity
matrix. It can be represented by convoluted tuples of the form (a, b, c, d, e, f) where a, b, c, d, e, f
are integers in any given semiautomatic representation (Z,+,=; ·) of the ring of integers.

6

Note that not every subgroup of the above has a regular domain. For example the subgroup
generated by 

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 ,


1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1


and their inverses consists of group elements of the form

1 a d f
0 1 b e
0 0 1 c
0 0 0 1


where a = c, a · b = d + e and some constraint on f holds (on when f has to be odd and
when it has to be even). The equation a · b = d + e implies that this group is not a regular
subset of the representation of the unitriangular matrices from Example 1. These dependencies
make it difficult to exploit on one hand the Cayley biautomaticity of the unitriangular matrices
in their natural representation as a group and on the other hand to embed a given nilpotent
group into this group in a way that its domain is a regular subset of the group in the matrix
representation. It is conjectured that this is impossible and that there is no way to overcome
this; that is, that there are finitely generated groups of nilpotency class 3 which are not Cayley
automatic. However, one can generalise the just defined matrix group to have a more general
example.

Example 2. For a given number n of generators with n > 3, let the group Gn be represented
by vectors of 4× 4 matrices over the integers of the form

1 mi mi,j mi,j,k

0 1 mj mj,k

0 0 1 mk

0 0 0 1


where each coordinate is given by a triple of indices (i, j, k) with 1 6 i < j < k 6 n of coordinates
and the group operation is the component wise matrix multiplication; in a vector of matrices
representing a group element, if two different matrices contain, perhaps at different positions,
entries with the same indices, then the corresponding numbers have to be the same. For example,
all group members in G4 are of the form


1 m1 m1,2 m1,2,3

0 1 m2 m2,3

0 0 1 m3

0 0 0 1

 ,


1 m1 m1,2 m1,2,4

0 1 m2 m2,4

0 0 1 m4

0 0 0 1

 ,


1 m1 m1,3 m1,3,4

0 1 m3 m3,4

0 0 1 m4

0 0 0 1

 ,


1 m2 m2,3 m2,3,4

0 1 m3 m3,4

0 0 1 m4

0 0 0 1




7

and they satisfy that all numbers called m2 in these matrices have the same value and also all
numbers called m3,4 have the same value. The generators are all the vectors ah where mh = 1
and all other entries (mi with i 6= h, mi,j and mi,j,k) are 0. For example, in G4, a1 ◦ a1 ◦ a2 is


1 2 2 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 2 2 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,


1 2 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

This group has nilpotency class 3. The group Gn is a semiautomatic group where equality is
automatic and the group operation is semiautomatic; as a representation one takes a convolution
of all the mi, mi,j, mi,j,k which, in turn, are all represented in a fixed representation of the
automatic group of integers. The group Gn is not the free group of nilpotency class 3: a1 and
a−11 ◦a−12 ◦a1 ◦a2 commute although they would not do it in the free group of nilpotency class 3.

3 Constructions of Semiautomatic Groups

Recall that Cayley automatic groups are finitely generated group (A, ◦) iff the domain A is
regular, every group element has a unique representative in A and for every a ∈ A, the mapping
x 7→ x ◦ a is automatic. This notion is equivalent to allowing multiple representatives in A for
the group elements, but additionally requiring that equality is automatic.

A semiautomatic finitely group where the equality is automatic is called Cayley biautomatic,
Example 2 is an example of a Cayley biautomatic group. Miasnikov and Šunić [15] showed that
there are Cayley automatic groups which are not Cayley biautomatic. They also showed that
there are Cayley automatic groups for which the conjugacy problem is undecidable and that the
isomorphism problem is also undecidable for the class of Cayley automatic groups.

Berdinsky and Khoussainov [2] have shown that every Baumslag Solitar group is Cayley
automatic and Jain, Khoussainov, Stephan, Teng and Zou [11] announced that every Baumslag
Solitar group is semiautomatic. This and other results follow now from a general transfer theorem
which shows that every Cayley automatic group is semiautomatic.

Theorem 3. If (A,=; {x 7→ x ◦ a : a ∈ A}) is a Cayley automatic group, then the group has
a semiautomatic presentation (B, x 7→ x−1; ◦,=); in this presentation the domain is regular
and the inversion is an automatic function, whereas the equality and the group operation are
semiautomatic.

Proof. Given the Cayley automatic group A as in the statement of the theorem, let B =
{(v, w) : v, w ∈ A} be the set of convoluted pairs (v, w), where the pair (v, w) stands for
the element v−1 ◦ w of A. Now (v, w) ◦ (ε, u) = v−1 ◦ w ◦ ε−1 ◦ u = v−1 ◦ w ◦ u = (v, w ◦ u),
(u, ε)◦(v, w) = u−1◦ε◦v−1◦w = (v◦u)−1◦w = (v◦u,w) and (v, w)◦(w, v) = v−1◦w◦w−1◦v = ε.
As every fixed element a ∈ A can be represented by either (ε, a) or (a−1, ε), multiplication with
a fixed group element from either side is automatic. Furthermore, the mapping (v, w) 7→ (w, v)
is automatic and computes the inverse. The set of representations of a fixed element a ∈ A is

8

the set {(v, w) : (a, ε) ◦ (v, w) = (ε, ε)} = {(v, w) : v ◦ a = w}, where the latter set is easily seen
to be regular. �

The above result shows that the undecidability results for Cayley automatic groups by Miasnikov,
Šunić and Ventura [15,19] generalise to finitely generated semiautomatic groups.

Corollary 4. There is a semiautomatic group (A; ◦,=) for which the conjugacy problem is un-
decidable. Furthermore, the isomorphism problem for semiautomatic groups is undecidable.

The next result shows that all semiautomatic groups can have an automatic inversion.

Proposition 5. Every semiautomatic group (A; ◦,=) has a further semiautomatic presentation
(B, x 7→ x−1; ◦,=).

Proof. The proposition is proven by introducing two new symbols, + and −, such that B =
{+,−} · A consists of all +x representing x ∈ A and −x representing x−1 for x ∈ A. The
inverse is now computed by the function interchanging + and −. For fixed a ∈ A, x 7→ x ◦ a
becomes +x 7→ +(x ◦ a) and −x 7→ −(a−1 ◦ x), x 7→ a ◦ x is implemented similarly and
{+x : x = a} ∪ {−x : x = a−1} is the regular set of representatives of a in B. �

Theorem 6. Assume that (A, ◦,=) is an automatic group (in the sense of Hodgson, Khous-
sainov and Nerode), (B; ◦,=) is a semiautomatic group and {ϕb : b ∈ B} is a family of homo-
morphisms from A to A such that for each b, b′ ∈ B, ϕb◦b′(a) = ϕb(ϕb′(a)) and each ϕb is an
automatic mapping, then the semidirect product A oϕ B is also a semiautomatic group (with
both equality and group operation being semiautomatic). Here the group operation in Aoϕ B is
defined by (a, b) ◦ (a′, b′) = (a ◦ ϕb(a′), b ◦ b′).

Proof. Consider the representation set C = {(a, b, ã) : a, ã ∈ A and b ∈ B}, where (a, b, ã) ∈ C
stands for (a, ε)◦ (ε, b)◦ (ã, ε) in the group AoϕB. Now, for a fixed a′ ∈ A, b′ ∈ B and arbitrary
(a, b, ã) ∈ C, the multiplications are defined as follows:

(a, b, ã) ◦ (a′, ε) 7→ (a, b, ã ◦ a′);
(a′, ε) ◦ (a, b, ã) 7→ (a′ ◦ a, b, ã);

(a, b, ã) ◦ (ε, b′) 7→ (a, b ◦ b′, ϕb′−1(ã));

(ε, b′) ◦ (a, b, ã) 7→ (ϕb′(a), b′ ◦ b, ã).

The last mapping is derived from the following equations (ε, b′) ◦ (a, ε) ◦ (ε, b) ◦ (ã, ε) = (ε, b′) ◦
(a, ε)◦ (ε, b′−1)◦ (ε, b′)◦ (ε, b)◦ (ã, ε) = (ε, b′)◦ (ε, b′−1)◦ (ϕb′(a), ε)◦ (ε, b′ ◦ b)◦ (ã, ε) = (ϕb′(a), ε)◦
(ε, b′ ◦ b) ◦ (ã, ε). Note that multiplying with (a′, b′, ã′) in C can be defined using the above as
(a′, b′, ã′) = (a′, ε) ◦ (ε, b′) ◦ (ã′, ε). Now, all the four mappings above are automatic as they only
use homomorphisms from B, which are automatic, and multiplication with fixed group elements
in the basic groups A and B, which are automatic. It follows that ◦ is semiautomatic in C.

For equality, note that (a, b, ã) = (a′, b′, ã′) iff b = b′ (in group B) and a ◦ ϕb(ã) = a′ ◦ ϕb′(ã′)
(in group A). Thus, for a fixed (a′, b′, ã′) ∈ C and any (a, b, ã) ∈ C, (a, b, ã) = (a′, b′, ã′) iff
b = b′ (in group B) and a ◦ ϕb′(ã) = a′ ◦ ϕb′(ã′). As ϕb′ , ◦ restricted to A and equality in A are
automatic, it follows that equality is semiautomatic in C. �

9

It can also be shown that the free product of finitely many semiautomatic groups is semiauto-
matic. The construction is very much inline with the one of Kharlampovich, Khoussainov and
Miasnikov [12] for Cayley automatic groups with some adjustments for semiautomaticity.

Theorem 7. The free product of finitely many semiautomatic groups is semiautomatic.

Proof. Let (A1; ◦,=), . . . , (An; ◦,=) be semiautomatic groups which all share the empty word
ε as neutral element and use disjoint alphabets to represent the other elements. Note that, for
each fixed a ∈ Ak, there is an automatic mapping x 7→ a ◦x (for x ∈ Ak) such that the length of
a ◦ x is at most a constant more than the length of x. Let # be a symbol not appearing in the
members of A1, . . . , Ak. Now each member of the free product B of A1, . . . , Ak is a word of the
form #+u1#

+u2#
+ . . .#+um#+ with u1, . . . , um representing elements different from ε and no

two subsequent uh, uh+1 are from the same group Ak. Any word from #+ denotes the neutral
element of the group. It is sufficient to show that the multiplication with any fixed element from
A1∪A2∪ . . .∪An−{ε} is automatic, multiplying with ε can be realised by the identity function.
Consider a ∈ Ak − {ε}.

Now x 7→ a◦x is given as follows: x is mapped to #a# in the case that x ∈ #+; x is mapped
to #a#x in the case that the first component u1 from x is not from Ak; x is mapped to the word
x′, where u1 is replaced by #|u1| in the case that u1 = a−1; otherwise x is mapped to the word
x′, where u1 is replaced by a word from (a ◦ u1)#∗. To ensure automaticity of the mapping, in
the last two cases above, enough #’s are filled in to make sure that length of x and x′ do not
differ by more than a constant (independent of x).

The mapping x 7→ x ◦ a is given as follows: x is mapped to #a# in the case that x ∈ #+; x
is mapped to x#a# in the case that the last component um of x is not from Ak; the last part
of the form um#+ is erased from x by the mapping in the case that um = a−1 and the last part
um#+ is replaced by (um ◦ a)# in the case that um ∈ Ak − {a−1}.

Furthermore, for comparing whether x of the form #+u1#
+ . . .#+un#+ represents a fixed

element #a1#a2# . . .#am#, consider the automaton consisting of m distinct subautomatons:
the h-th subautomaton checks whether the component uh of x is from the same Ak as ah and has
the same value; the automaton accepts iff all these checks succeed and the number of components
n of x is exactly m. �

4 Nilpotent Groups

Kharlampovich, Khoussainov and Miasnikov [12] showed that finitely generated groups of nilpo-
tency class 1 or 2 are Cayley automatic. The next theorem uses semiautomatic groups in place
of Cayley automatic groups and pushes the above result one step further. As it is open whether
all the finitely generated groups of nilpotency class 3 are Cayley automatic, this result provides
possible candidates for separating the two notions within the finitely generated groups.

Theorem 8. Every finitely generated group of nilpotency class 3 can be represented as a semi-
automatic group (A; ◦,=).

10

Proof. Let a1, . . . , an be the finitely many generators in the original nilpotent group.
Consider the factor group of the given group over the quotient group generated by all elements

of the form x ◦ y ◦ x−1 ◦ y−1. This group is Abelian and is isomorphic to

Zr × {0, 1, . . . , pr+1 − 1} × . . .× {0, 1, . . . , pn − 1}

for some r 6 n and natural numbers pr+1, . . . , pn > 2.
Let b1, . . . , bn′ be all the group elements of the form a−1i ◦ a−1i′ ◦ ai ◦ ai′ and let c1, . . . , cn′′ be

all the group elements of the form a−1i ◦ b−1j ◦ ai ◦ bj or b−1j ◦ a−1i ◦ bj ◦ ai. Note that the c1, . . . , cn′′
commute with all group elements, that for each i, j there is a k with

ai ◦ bj = bj ◦ ai ◦ ck, ai ◦ b−1j = b−1j ◦ ai ◦ c−1k

and that for each i, i′ there are j, k with

ai ◦ ai′ = ai′ ◦ ai ◦ bj, ai ◦ a−1i′ = a−1i′ ◦ ai ◦ b
−1
j ◦ ck.

Similar rules allow to move a−1i over ai′ , bj. Note that the group elements bj, bj′ also commute
with each other, as when, for example, bj′ = a−1i ◦a−1i′ ◦ai◦ai′ then bj ◦bj′ = bj ◦a−1i ◦a−1i′ ◦ai◦ai′ =
a−1i ◦ a−1i′ ◦ ai ◦ ai′ ◦ bj = bj′ ◦ bj. The reason is that the ck, ck′ produced by moving a−1i , a−1i′ ,
respectively, over bj, are cancelled out when moving ai, ai′ over bj. Now, each group element is
given by a convoluted tuple of integers

(m1, . . . ,mn,m
′
1, . . . ,m

′
n′ ,m

′′
1, . . . ,m

′′
n′′)

where, for i = r + 1, . . . , n, mi ∈ {0, 1, . . . , pi − 1}. The above member of A represents

am1
1 ◦ . . . ◦ amn

n ◦ b
m′1
1 ◦ . . . ◦ b

m′
n′

n′ ◦ c
m′′1
1 ◦ . . . ◦ c

m′′
n′′

n′′ .

Note that several tuples of this type may represent the same group element due to products of
some bj and ck being ε.

In the representation set A, the integers mi and m′j in the above are represented in binary,
with the reverse ordering of the bits to allow automatic addition of components. Furthermore,
each m′′k is represented as a convoluted tuple (h0, h1, . . . , hn) of integers (in binary using reverse
ordering of the bits) satisfying

m′′k = h0 + h1 ·m1 + . . .+ hn ·mn,

The number of integers used in the overall representation described above is n+n′+ (n+ 1) ·n′′,
which is a constant independent of the group element; therefore convolution can indeed be used
to represent the group element.

Now it will be shown that multiplication with a fixed ai is automatic and that equality is
semiautomatic.

11

First, for automaticity of the multiplication with a fixed element, note that it is sufficient to
show that multiplication with a fixed generator from a1, a

−1
1 , . . . , an, a

−1
n is automatic, as every

other group element is a fixed product of these. This is shown in several steps, the number
of steps is constant and each step is automatic. For showing that the mapping x 7→ ai ◦ x is

automatic, it is now described how, ai ◦ a
mi′
i′ a

mi′+1

i′+1 . . . amn
n b

m′1
1 . . . b

m′
n′

n′ c
m′′1
1 . . . c

m′′
n′′

n′′ is updated to

a
mi′
i′ ◦ ai ◦ a

mi′+1

i′+1 . . . amn
n b

s′1
1 . . . b

s′
n′
n′ c

s′′1
1 . . . c

s′′
n′′
n′′ , where i′ < i and m′′k = (hk0, h

k
1, . . . , h

k
n). Repeatedly

using this mechanism to shift ai over am1
1 am2

2 . . . a
mi−1

i−1 and then showing how to handle the
increase of mi by 1, gives the multiplication by ai for any member of the group as represented
in A. Now suppose 1 6 i′ < i, 1 6 q 6 n, and mi′ > 0. There are j, k1, . . . , kn such that
aiai′ = ai′aibj and bjaq = aqbjckq . Then, the following operations are done to update m′j and
various m′′k to obtain the corresponding m′j and s′′j (values not updated are unchanged).

(a) mi′ is added to m′j (to handle the increase in the bj).
(b) mi′(mi′ − 1)/2 is added to m′′ki′ (to handle the increase in cki′ due to moving of bj generated

in (a) over a
mi′
i′). If mi′ is odd, then the above addition can be achieved by adding (mi′−1)/2

to h
ki′
i′ . If mi′ is even, mi′(mi′ − 1)/2 = mi′(mi′ − 2)/2 +mi′/2. Thus, the above addition can

be achieved by adding mi′/2 to h
ki′
0 and adding (mi′ − 2)/2 to h

ki′
i′ .

(c) mi′ ∗mq is added to m′′kq , for q = i′ + 1, . . . , n (to handle the increase in ckq due to moving

of b
mi′
j over a

mq
q). This can be done by adding mi′ to h

kq
q .

Note that ai ◦a−1i′ = a−1i′ ◦ai ◦ b
−1
j ◦ ck′ for some k′ which permits to handle the case when mi′ < 0

in a similar manner. For the multiplication

ai ◦ ami
i a

mi+1

i+1 . . . amn
n b

m′1
1 . . . b

m′
n′

n′ c
m′′1
1 . . . c

m′′
n′′

n′′ ,

one updates mi to mi + 1 and, as a chain reaction, for k = 1, . . . , n′′, update hk0 to hk0 − hki , for
the tuple (hk0, h

k
1, . . . , h

k
n) representing m′′k (so that the new value of mi is used rather than the

older value in the computation of m′′k).
Similarly it can be shown that also the mappings x 7→ a−1i ◦ x, x 7→ x ◦ ai and x 7→ x ◦ a−1i

are automatic.
The above handles all multiplications by ai on the left except for the case of i > r and

mi + 1 = pi. To handle this, an additional multiplication by a−pii can be done using the above
mechanism to bring the power of ai to 0.

Now, for showing semiautomaticity of equality, for any fixed element

am1
1 ◦ . . . ◦ amn

n ◦ b
m′1
1 ◦ . . . ◦ b

m′
n′

n′ ◦ c
m′′1
1 ◦ . . . ◦ c

m′′
n′′

n′′ ∈ A

it is shown that the set of its representatives in A is regular. Note that in the vector of the
exponents, for each further representative of the group element, the first n coordinates must also
be m1,m2, . . . ,mn, which can be easily checked. In the case that these n coordinates are equal,
one can tailormake an automaton to check for equality. The automaton can, for each k and for
the coordinates (h0, h1, . . . , hn) representing m′′k, use the formula

h0 + h1 ·m1 + . . .+ hn ·mn

12

to get the explicit value corresponding to m′′k in the other representative, in binary notation, as
multiplication of integers by constants can be done automatically. However, the m′-coordinates
and m′′-coordinates can be different for the two representatives. The difference of these coordin-
ates must, however, give a vector representing ε. Thus, it suffices to give a test for neutrality in
the m′-coordinates and m′′-coordinates in order to be able to decide equality to the fixed given
element. Call a set {v1, . . . , vr} of vectors representing these coordinates to be independent over
Z iff no vh can be obtained from a linear combination of the others using coefficients from Z.
If one of the sets {v1, v2, . . . , vr}, {−v1, v2, . . . , vr}, {v1 − v2, v2, . . . , vr}, {v2 − v1, v2, . . . , vr} is
independent, then all of them are. So Euclid’s algorithm can be run on the vectors until all but
one vector have a 0 in the first coordinate; then one can run the algorithm until, among all those
vectors with a 0 in the first coordinate, all but at most one have a 0 in the second coordinate
and so on. This implies that the number of independent vectors is not larger than the number
of coordinates. Thus there are fixed vectors {v1, . . . , v`} such that two vectors

(m1, . . . ,mn,m
′
1, . . . ,m

′
n′ ,m

′′
1, . . . ,m

′′
n′′) and

(m1, . . . ,mn, m̃
′
1, . . . , m̃

′
n′ , m̃

′′
1, . . . , m̃

′′
n′′)

represent the same element iff the difference

(0, . . . , 0,m′1 − m̃′1, . . . ,m′n′ − m̃′n′ ,m′′1 − m̃′′1, . . . ,m′′n′′ − m̃′′n′′)

is of the form r1 · v1 + r2 · v2 + . . . r` · v` for some r1, . . . , r` ∈ Z. This is an existentially quantified
formula, where the multiplication with fixed vectors (represented as convoluted tuples) can be
done by an automatic function and their adding and comparing with the target as well. Thus
the predicate whether the two vectors from above representing the two group elements are the
same is automatic. Thus for each group element

am1
1 ◦ . . . ◦ amn

n ◦ b
m′1
1 ◦ . . . ◦ b

m′
n′

n′ ◦ c
m′′1
1 ◦ . . . ◦ c

m′′
n′′

n′′

there is a finite automaton which decides whether another group element is equal to it. So the
group (A; ◦,=) is semiautomatic. �

For the representation used in the above theorem, by using the natural subgroup B of all elements
in A generated by the bj and ck, the following Theorem 9 below can be shown. The key idea is to
represent each group element in the form b◦a◦ b̃ where b, b̃ are in B and a is either am1

1 ◦ . . .◦amn
n

or amn
n ◦ . . . ◦ a

m1
1 ; these two orderings are used in order to facilitate inversion. Item (b) in the

theorem below is proven by coding a computationally difficult problem into the theory of the
structure of the group and then conclude that this problem would be solvable in the case that
the given structure is semiautomatic.

Theorem 9. In the following, (A, ◦) denotes a finitely generated group of nilpotency class 3, B
denotes the commutator subgroup generated by all elements of the form x ◦ y ◦ x−1 ◦ y−1 with
x, y ∈ A and • denotes the restriction of ◦ to the domain (A×B) ∪ (B × A).

13

(a) For every A as above, the structure (A,B, x 7→ x−1, •; ◦,=) is semiautomatic.
(b) For some A as above, the structure (A,B, •,=; ◦) is not semiautomatic.

Proof. (a): The notation from the proof of Theorem 8 is carried over for this proof. The
group elements are represented as products b ◦ a ◦ b̃ where (i) b, b̃ are products of bj’s and ck’s
represented in the same format as they are represented in Theorem 8 and (ii) a is a member of
(a∗1a

∗
2 . . . a

∗
n∪a∗n . . . a∗2a∗1) represented as a convoluted tuple (m0,m1, . . . ,mn), wherem0 ∈ {−1, 1};

the tuple (m0,m1, . . . ,mn) represents am1
1 ◦ . . . ◦ amn

n , if m0 = 1, and amn
n ◦ . . . ◦ a

m1
1 , if m0 = −1.

The mappings b 7→ b−1, a 7→ a−1 and b̃ 7→ b̃−1 are realised by negating all entries in the
corresponding tuples; for mapping (b ◦ a ◦ b̃) to (b ◦ a ◦ b̃)−1, one has to exchange the entries of
b and b̃ as well, as (b ◦ a ◦ b̃)−1 = b̃−1 ◦ a−1 ◦ b−1. Thus the mapping x 7→ x−1 (in the chosen
representation) is automatic.

Note that, in the representation for b̂ ∈ B, all the m-coordinates are 0. Thus for the compon-
ent m′′k in the representation of b̂, the integers h1, h2, . . . (as in Theorem 8) can be ignored. Hence,

the multiplication b̂ • (b ◦ a ◦ b̃), can be done by adding m′j coordinate of the representation of b̂

to the corresponding m′j coordinate of b and the h0-component of the m′′k coordinate of b̂ to the

corresponding h0-component of the m′′k coordinates of b. Similarly, when computing (b◦a◦ b̃)• b̂,
the coordinates of b̂ are added as above to those of b̃.

Note that, in the representation chosen for this proof, b̂ ∈ B is actually a product of the
form: b′ ◦ε◦ b̃′, where b′, b̃′ are represented as in Theorem 8. The coordinates of b′ and b̃′ as above
can be contracted to the coordinates of one member of B by simply adding, component-wise,
prior to carrying out the multiplication • as described above. These arguments explain why • is
an automatic function.

Multiplication of an element x with generators ai from either side as done in Theorem 8, can
easily be adjusted to the representation chosen here.

Now, assume a fixed group element x = am1
1 am2

2 . . . amn
n ◦ b′, where b′ ∈ B, is given. Let

a = am1
1 am2

2 . . . amn
n . Note that for all representatives y = b ◦ a′ ◦ b̃ of x in the representation

chosen, the coordinates m1,m2, . . . ,mn corresponding to a′ must match to that of a as above.
Furthermore, there is a fixed element b̂ ∈ B such that

amn
n ◦ . . . ◦ a

m1
1 = am1

1 ◦ . . . ◦ amn
n ◦ b̂.

Now, for any given representative y = b ◦ a′ ◦ b̃ with the coordinates for a′ being m0 = −1,
m1, . . . ,mn, the coordinate m0 can be converted to +1, by replacing b̃ by b̂ ◦ b̃. Furthermore,
using the arguments given in the proof of Theorem 8, there is a fixed automatic homomorphism
ϕa : B → B such that b ◦ a = a ◦ ϕa(b). The products ϕa(b) ◦ b̃ or ϕa(b) ◦ b̂ ◦ b̃ can be carried
out by componentwise addition of the vectors involved. Once this is done, the algorithm from
Theorem 8 can be used to compare y in the resulting representation with that of x. Thus equality
is semiautomatic in the representation chosen.

For the proof of (b), one starts with the free group Â of nilpotency class 3 generated by â1, . . . , â7.
Let B̂ denote the subgroup generated by {x−1 ◦y−1 ◦x◦y : x, y ∈ Â} and Ĉ denote the subgroup

14

generated by {x−1 ◦ y−1 ◦ x ◦ y : x ∈ B̂, y ∈ Â}. For a suitable subgroup C̃ of Ĉ defined below,
one chooses A by defining

A = {x ◦ C̃ : x ∈ Â}.

Furthermore, let B denote {x ◦ C̃ : x ∈ B̂} and C denote {x ◦ C̃ : x ∈ Ĉ}. The choice of C̃ will
be crucial. Note that one can make two c, c′ from Ĉ to be equal in C by putting c−1 ◦ c′ into C̃.
Similarly, one can make c to be ε by putting c into C̃. Furthermore, one can make c = c′ ◦ c′′ by
putting c−1 ◦ c′ ◦ c′′ in C̃. The C̃ will be defined implicitly based on the above methods below.

The goal is to code a hard problem into the theory of the automatic structure (A,B, •,=; ◦).
So one considers the structure which can check membership in A, membership in B, multiplica-
tion of two elements with one in B and one in A and equality; furthermore, multiplcation with
fixed members from A from either side can also be used.

Now the following will be shown: For an NP-hard problem, one can choose A (by chosing C̃
appropriately) such that there is a automatic relation R in B × B × B and a polynomial time
function f mapping parameters (α, β, γ) to members of B × B × B such that f(α, β, γ) ∈ R
iff a corresponding instance of a fixed NP-complete problem can be solved. Since automatic
relations can be solved in linear time [3], this would result in a proof that P = NP. Admittedly,
the hypothesis P = NP is not yet refuted; however, a more complicated coding could do the
same for any given Diophantine set and would result in a situation where automaticity permits
to decide a nonrecursive Diophantine set, a contradiction. As the coding for this is much more
involved, only the coding of the NP-hard problem is supplied in order to convince the reader
that not every structure of the form (A,B, •,=; ◦) is semiautomatic. So the goal is to solve the
following NP-hard set in the integers:

S = {(α, β, γ) : ∃µ, ν ∈ Z [µ2 6 γ2 and µ2 + ν · β = α]}.

Here the complexity of (α, β, γ) is measured in the number of bits needed for their binary
represenation and the NP-hardness of this set was shown by Manders and Adleman [14]. Now
a formula representing an automatic relation R will be defined along with special elements

b1, c1, c2 ∈ B defined later such that (cα1 , b
β
1 , c

γ2

2) ∈ R iff (α, β, γ) ∈ S.

Note that due to • being automatic, one can compute for fixed b ∈ B a power bδ by using
that the functions bδ 7→ b2δ = bδ • bδ and bδ 7→ b2δ+1 = bδ • bδ • b are both automatic and can
be computed in linear time. Furthermore, the representatives of b2δ and b2δ+1 are both only a
constant longer than that of bδ; this implies that the overall function δ 7→ bδ can be computed in
time polynomial in the number of digits of δ, as one starts with u0 = ε and one does, inductively
for each digit d = d1, . . . , d` of δ, the update u = u • u • bd, with bd = ε for d = 0 and bd = b for
d = 1. Note that γ2 can be computed beforehand in polynomial time from γ.

Recall that a1, . . . , a7 are the generators of A. R will be defined by an existentially quantified
formula which asks for the existence of an x, x1, x2 ∈ A and y, y1, y2 ∈ B satisfying the conditions
laid out below. Note that

x ∈ am1
1 ◦ am2

2 ◦ . . . ◦ am6
6 ◦ am7

7 ◦B

15

and similarly for x1, x2. Furthermore, for studying how the generator a7 commutes with the other
generators, let b1, . . . , b6 denote the members of B satisfying

a7 ◦ a1 = a1 ◦ a7 ◦ b1, . . . , a7 ◦ a6 = a6 ◦ a7 ◦ b6.

C̃ is chosen such that the following conditions are true for the degree of commutativity between
a1, . . . , a6 and b1, . . . , b6:

b1 ◦ a1 = a1 ◦ b1 ◦ c1, b2 ◦ a2 = a2 ◦ b2 ◦ c1 ◦ c2,
b3 ◦ a3 = a3 ◦ b3 ◦ c2, b4 ◦ a4 = a4 ◦ b4 ◦ c2,
b5 ◦ a5 = a5 ◦ b5 ◦ c2, b6 ◦ a6 = a6 ◦ b6 ◦ c2.

Here by definition c1 = b−11 ◦ a−11 ◦ b1 ◦ a1 and c2 = b−13 ◦ a−13 ◦ b3 ◦ a3 and the other four
equations redefine the corresponding commutators for ai, bi. Furthermore, one defines for all
different i, i′, i′′ ∈ {1, . . . , 7} that

a−1i ◦ (a−1i′ ◦ a
−1
i′′ ◦ ai′ ◦ ai′′)

−1 ◦ ai ◦ (a−1i′ ◦ a
−1
i′′ ◦ ai′ ◦ ai′′) = ε

and this implies that bj ◦ ai = ai ◦ bj for i, j ∈ {1, . . . , 6} with i 6= j. Now there is a c ∈ C such
that

a7 ◦ x = x ◦ a7 ◦ bm1
1 ◦ bm2

2 ◦ . . . ◦ bm6
6 ◦ c.

It is required that y, y1, y2 depend on x, x1, x2 and each other as follows:

a7 ◦ x = x ◦ a7 ◦ y, a7 ◦ x1 = x1 ◦ a7 ◦ y1,
a7 ◦ x2 = x2 ◦ a7 ◦ y2, y = y1 • y2.

The first of the following conditions is due to the choice of m1, . . . ,m6 and the second and third
conditions will be imposed implicitly:

y ∈ a1 ◦ bm1
1 ◦ . . . ◦ bm6

6 ◦ C,
y1 ∈ a1 ◦ bm1

1 ◦ C,
y2 ∈ a2 ◦ bm2

2 ◦ . . . ◦ bm6
6 ◦ C

For the second and third conditions, one ensures that b1 does not occur in y1 and that b2, . . . , b6
do not occur in y2 by requiring the following commutativity conditions on y1, y2:

a1 ◦ y2 = y2 ◦ a1, a2 ◦ y1 = y1 ◦ a2, a3 ◦ y1 = y1 ◦ a3,
a4 ◦ y1 = y1 ◦ a4, a5 ◦ y1 = y1 ◦ a5, a6 ◦ y1 = y1 ◦ a6.

In addition one requires that either a7 does not occur in x, x1, x2 or a7 commutes with b1, . . . , b6.
This is obtained by postulating, for i = 1, . . . , 6 and x̃ = x, x1, x2 and for all ỹ ∈ B,

if ai ◦ x̃ = (x̃ ◦ ai) • ỹ then a7 ◦ ỹ = ỹ ◦ a7.

16

Note that if a7 occurs in x̃ then moving ai over a7 gives a member of b−1i ◦ C while all other
commutators of ai and ai′ with i′ ∈ {1, . . . , 6}−{i} do commute with a7. If now ỹ is the member
of B generated by moving ai over x and a7 ◦ ỹ = ỹ ◦ a7 then either a7 does not occur in x̃ and
thus bi does not occur in ỹ or a7 and bi commute. The above conditions together give that

bβ1 • y2 • x = x • bβ1 • y2 • c
βm1+m2

2
1 • cm

2
2+m

2
3+...+m

2
6

2

and thus one imposes the additional constraint that

bβ1 • y2 • x = x • bβ1 • y2 • cα1 • c
γ2

2 .

These conditions together enforce that βm1 + m2
2 = α and m2

2 + m2
3 + . . . + m2

6 = γ2. Using
the theorem that every natural number is the sum of four integer squares, one has that the
solvability of the conditions is equivalent to the existence of integers m1,m2 with βm1 +m2

2 = α
and m2

2 6 γ2. Thus one has the following statement:

(α, β, γ) ∈ S iff (cα1 , b
β
1 , c

γ2

2) ∈ R iff there are x, x1, x2 ∈ A and y, y1, y2 ∈ B such that

bβ1 • y2 • x = x • bβ1 • y2 • cα1 • c
γ2

2

and the equations governing the specific form of the variables x, x1, x2, y, y1, y2 are satisfied,
namely

a7 ◦ x = x ◦ a7 ◦ y, a7 ◦ x1 = x1 ◦ a7 ◦ y1, a7 ◦ x2 = x2 ◦ a7 ◦ y2,
y = y1 • y2,

a1 ◦ y2 = y2 ◦ a1, a2 ◦ y1 = y1 ◦ a2, a3 ◦ y1 = y1 ◦ a3,
a4 ◦ y1 = y1 ◦ a4, a5 ◦ y1 = y1 ◦ a5, a6 ◦ y1 = y1 ◦ a6

and, for i = 1, . . . , 6 and x̃ = x, x1, x2 and for all ỹ ∈ B,

if ai ◦ x̃ = (x̃ ◦ ai) • ỹ then a7 ◦ ỹ = ỹ ◦ a7.

This comprehensive formula defines that R is an automatic relation in the case that (A,B, •,=; ◦)
is semiautomatic. If R would be automatic, P would be equal to NP. This shows that the
assumption of R being automatic is unlikely. A more complicated construction could also code
up an unsolvable Diophantine set which then would be solved if the corresponding structure is
semiautomatic; the group and the formula required would, however, be much more complicated.
Therefore the proof is here given by coding an NP-complete problem. �

5 Conclusion

The present work established that every Cayley automatic group is semiautomatic, thus permit-
ting to prove that the semiautomatic groups have an undecidable isomorphism problem and an
undecidable conjugacy problem. Prior work showed that finitely generated groups of nilpotency

17

class 2 are on one hand Cayley biautomatic [12] and on the other hand not automatic [18]; how-
ever, the situation was left open for nilpotent groups of higher classes. The present paper shows
that finitely generated groups of nilpotency class three are always semiautomatic. As one could
not establish that they are always Cayley automatic, these groups form a natural candidate to
separate these two notions. In general, the following questions are open at the point of writing
of this paper:

− Is every finitely generated semiautomatic group Cayley automatic?

− More generally, does every semiautomatic group (G; ◦,=) have a presentation in which the
equality is automatic and, for each constant a, also the mapping x 7→ x ◦ a is automatic?

− Are all finitely generated nilpotent groups semiautomatic?

− Are all finitely generated nilpotent groups Cayley automatic?

− Are all finitely generated nilpotent groups Cayley biautomatic?

The results in this paper give some progress towards these questions, but leave all of them open.

References

1. Bahareh Afshari, George Barmpalias, S. Barry Cooper and Frank Stephan. Post’s Pro-
gramme for the Ershov Hierarchy. Journal of Logic and Computation, 17:1025–1040, 2007.

2. Dimitry Berdinsky and Bakhadyr Khoussainov. On automatic transitive graphs. Develop-
ments in Language Theory - Eighteenth International Conference, DLT 2014, Ekaterinburg,
Russia, August 26-29, 2014. Proceedings. Springer LNCS 8633:1–12, 2014.

3. John Case, Sanjay Jain, Samuel Seah and Frank Stephan. Automatic functions, linear time
and learning. Logical Methods in Computer Science, 9(3), 2013.

4. S. Barry Cooper. Mathematics, metaphysics and the multiverse. Computation, Physics and
Beyond - International Workshop on Theoretical Computer Science, WTCS 2012, Dedicated
to Cristian S. Calude on the Occasion of His Sixtieth Birthday, Auckland, New Zealand, 21–
24 February 2012, Revised Selected and Invited Papers. Springer LNCS 7160:252–267, 2012.

5. S. Barry Cooper. The machine as data: a computational view of emergence and definability.
Synthese 192(7):1955–1988, 2015.

6. David B.A. Epstein, James W. Cannon, Derek F. Holt, Silvio V.F. Levy, Micheal S. Paterson
and William P. Thurston. Word Processing in Groups. Jones and Bartlett Publishers,
Boston, 1992.

7. T.V. Gopal, Manindra Agrawal, Angsheng Li and S. Barry Cooper. A Roadmap to TAMC.
Theory and Applications of Models of Computation - Eleventh Annual Conference, TAMC
2014, Chennai, India, 11–13 April 2014. Proceedings. Springer LNCS 8402:1–6, 2014.

8. Bernard R. Hodgson. Théories décidables par automate fini. Ph.D. thesis, Département de
mathématiques et de statistique, Université de Montréal, 1976.

9. Bernard R. Hodgson. Décidabilité par automate fini. Annales des sciences mathématiques
du Québec, 7(1):39–57, 1983.

18

10. Sanjay Jain, Bakhadyr Khoussainov and Frank Stephan. Finitely generated semiautomatic
groups. Pursuit of the Universal, Twelfth Conference on Computability in Europe, CiE 2016,
Paris, France, 27 June - 1 July 2016, Proceedings. Springer LNCS 9709:282–291, 2016.

11. Sanjay Jain, Bakhadyr Khoussainov, Frank Stephan, Dan Teng and Siyuan Zou. Semi-
automatic structures. Computer Science – Theory and Applications – Ninth International
Computer Science Symposium in Russia, CSR 2014, Moscow, Russia, June 7–11, 2014. Pro-
ceedings. Springer LNCS 8476:204–217, 2014.

12. Olga Kharlampovich, Bakhadyr Khoussainov and Alexei Miasnikov. From automatic struc-
tures to automatic groups. Groups, Geometry and Dynamical Systems, 8(1):157–198, 2014.

13. Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures. Logic and
Computational Complexity, International Workshop, LCC 1994, Indianapolis, Indiana, USA,
October 13–16, 1994, Proceedings. Springer LNCS, 960:367–392, 1995.

14. Kenneth L. Manders and Leonard Adleman. NP-complete decision problems for binary
quadratics. Journal of Computer and System Sciences 16:168–184, 1978.

15. Alexei Miasnikov and Zoran Šunić. Cayley graph automatic groups are not necessarily Cayley
graph biautomatic. In, Dediu, A. H. and Mart́ın-Vide, C. (eds.), Language and Automata
Theory and Applications - Sixth International Conference, LATA 2012, A Coruña, Spain,
March 5-9, 2012. Proceedings. Springer LNCS, 7183:401-407, 2012.

16. André Nies. Describing Groups. The Bulletin of Symbolic Logic, 13(3):305-339, 2007.
17. André Nies and Richard Thomas. FA-presentable groups and rings. Journal of Algebra,

320:569-585, 2008.
18. Graham Oliver and Richard M. Thomas. Automatic presentations for finitely generated

groups. Twentysecond Annual Symposium on Theoretical Aspects of Computer Science
(STACS 2005), Stuttgart, Germany, Proceedings. Springer LNCS, 3404:693–704, 2005.

19. Zoran Šunić and Enric Ventura. The conjugacy problem in automaton groups is not solvable.
Journal of Algebra, 364:148–154, 2012.

