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Abstract

In an earlier paper, Kinber and Stephan posed an open problem about whether every class
of languages, which can be identified strong monotonically, can also be identified by a set-
driven machine. We solve this question in this paper. The answer to the question depends
on whether the machines are required to be total or not! The solution of this result uncovers
a finer gradation of the notion of set-drivenness.



1 Introduction

Consider the identification of formal languages from positive data. A machine is fed all the
strings and no nonstrings of a language L, in any order, one string at a time. The machine, as
it is receiving strings of L, outputs a sequence of grammars. The machine is said to identify
L just in case the sequence of grammars converges to a grammar for L. This is essentially
the paradigm of identification in the limit (called TxtEx-identification) introduced by Gold
[Gol67].

Since only strings belonging to the language are available, if a learning machine conjec-
tures a grammar for some superset of the target language, it may not be “rational” for the
machine to revise this conjecture as data about the complement of the language is not avail-
able. This is the problem of overgeneralization in learning formal languages from positive
data. To address this problem Jantke [Jan90] introduced the notion of strong monotonic
identification, in which a machine is only allowed to output ‘improvements’ of its previous
conjectures in the sense that each later conjectured grammar is for a language which contains
languages enumerated by earlier conjectured grammars (see formal definition in Section 2).

Another, issue in language identification is set-drivenness. This constraint requires that
the machine base its conjecture solely on the strings it has seen and not on the order in
which they appear (or on whether the strings have appeared repeatedly in the text) (see
formal definition in Section 2).

In an earlier paper [KS95], Kinber and Stephan posed an open problem about whether
every class of languages, which can be identified strong monotonically, can also be identified
by a set-driven machine. We solve this question in this paper. The answer to the question
depends on whether the machines are required to be total or not! We show that there exists
a class of languages which can be TxtEx-identified by a strong monotonic machine, but
which cannot be TxtEx-identified by any total set-driven machine. On the other hand we
show that every class of languages which can be TxtEx-identified by some strong monotonic
machine can also be TxtEx-identified by some set-driven machine (this machine however
may not be total). We now proceed formally. Section 2 describes the notation and the
identification paradigms. Section 3 gives the results.

2 Preliminaries

Any unexplained notion is from [Rog67]. N denotes the set of natural numbers.
i, j, k, m, n, p, s, t, x, with or without decorations (decorations are subscripts, superscripts,
primes and the like), range over N . ∈,⊆,⊂,⊇,⊃ denote membership, subset, proper sub-
set, superset and proper superset relationship for sets. ∅ denotes empty set. S, X, with or
without decorations, range over sets. card(S) denotes the cardinality of set S. min(S) and
max(S) respectively denote the minimum and maximum of set S. For an infinite set S, we
let max(S) = ∞. Also, by convention, min(∅) = ∞ and max(∅) = 0.

η, with or without decorations, ranges over partial recursive functions. domain(η) and
range(η) denote the domain and range of partial function η. f, g, h, with or without decora-
tions, range over total recursive functions.
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〈·, ·〉 denotes a pairing function, a computable bijective mapping from N ×N onto N .
ϕ denotes a standard acceptable programming system. ϕi denotes the partial function

computed by the i-th program in ϕ system. R denotes the set of all total computable
functions. Φ denotes a Blum complexity measure [Blu67] for programming system ϕ. Wi

denotes the set domain(ϕi). Intuitively, Wi denotes the i-th recursively enumerable (r.e.)
set. We let E denote the set of all r.e. sets. We let W t

i = {x < t | Φi(x) < t}.
For an overview of the field of inductive inference of languages we refer the reader to

[OSW86, CL82, KW80]. We only discuss the portion directly needed for the paper.
A sequence is a mapping from an initial segment of N to N ∪ {#}. We denote the

set of all finite sequences by SEQ. We let σ, τ, γ, with or without decorations, range over
SEQ. |σ| denotes the length of sequence σ. A text is a mapping from N to N ∪ {#}. The
initial sequence of T with length n is denoted by T [n]. content(T ) denotes the set of natural
numbers in the range of T . Similarly content(σ) denotes the set of natural numbers in the
range of σ. A text T is for a language L, iff content(T ) = L. Intuitively, a text T for L
denotes a listing of elements L, where # denotes pauses in such a listing. The need for #
comes mainly for empty languages, since the only text for empty language is a sequence of
#’s. We say that σ ⊆ τ , if σ is an initial sequence of τ . In this case we also say that τ is an
extension of σ.

A learning machine is a (possibly partial) algorithmic mapping from SEQ to N , Where
the output of the learning machines is interpreted as a grammar in some standard acceptable
numbering. We usually refer to learning machines as just machines. We let M, with or
without decorations, range over learning machines.

We say that M on T converges or M(T ) converges (written M(T )↓) iff there exists an i
such that, for all but finitely many n, M(T [n]) = i. Otherwise we say that M(T ) diverges
(written M(T )↑). In case M(T )↓, we say that M(T ) = i, for the unique i such that, for all
but finitely many n, M(T [n]) = i.

Definition 1 [Gol67]

1. We say that M TxtEx-identifies L (written: L ∈ TxtEx(M)), iff (∀ Texts T for
L)[M(T )↓ ∧ WM(T ) = L].

2. We say that M TxtEx-identifies a class L of languages, iff M TxtEx-identifies each
language in L.

3. TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

From any machine M one can effectively construct a total machine M′ such that
TxtEx(M) ⊆ TxtEx(M′) (see for example [OSW86]). Thus requiring machines to be
total does not restrict the class TxtEx.

The proof presented in this paper depends on the technical notion of locking sequence.
The next two definitions and a lemma introduce this concept.

Definition 2 [Ful85, Ful90] σ is a stabilizing sequence for M on L iff
(a) content(σ) ⊆ L, and
(b) (∀τ | σ ⊆ τ ∧ content(τ) ⊆ L)[M(σ) = M(τ)].
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Definition 3 [BB75] σ is a locking sequence for M on L, iff σ is a stabilizing sequence for
M on L and WM(σ) = L.

The following locking sequence lemma was proved by Blum and Blum [BB75].

Lemma 4 [BB75] Suppose M TxtEx-identifies L. Then there exists a stabilizing sequence
for M on L. Moreover, every stabilizing sequence for M on L is a locking sequence for M
on L.

We now consider strong monotonic and set-driven machines.

Definition 5 [Jan90] M is strong monotonic iff (∀σ, τ | σ ⊆ τ)[WM(σ) ⊆ WM(τ)].

Definition 6 [Jan90] SMON = {L ⊆ E | (∃M)[M is strong monotonic and L ⊆
TxtEx(M)]}.

It is easy to show that for any strong monotonic machine M there exists a total strong
monotonic machine M′ such that TxtEx(M) ⊆ TxtEx(M′). Thus the class SMON is not
restricted by requiring learning machines to be total.

Also note that if M is strong monotonic and M TxtEx-identifies L, then, for all σ such
that content(σ) ⊆ L, WM(σ) ⊆ L.

Definition 7 [OSW82] M is set-driven iff (∀σ, τ | content(σ) = content(τ))[M(σ)↓ =
M(τ)↓ or M(σ)↑ = M(τ)↑].

Thus the output of a set-driven machine depends only on the content of its input. Note that
unlike strong monotonicity or TxtEx-identification, identification by set driven machines
may be restricted if we require machines to be total. (This follows as a corollary to our
results). Thus we have two versions of set-driven identification.

Definition 8 1. SDT = {L ⊆ E | (∃M)[M is total and set-driven and L ⊆ TxtEx(M)]}.

2. SDNT = {L ⊆ E | (∃M)[M is set-driven and L ⊆ TxtEx(M)]}.

In general set-driven constraint restricts TxtEx-identification (see [SR84, Ful85]). However
if one only considers language classes which do not contain finite languages, set-driven con-
straint is not a restriction (see for example [OSW86, Ful85]). Our result regarding total
set-driven machines does not change even if one considers the class version of totality, i.e.
one only requires the set-driven machine to be defined on σ such that content(σ) ⊆ L, for L
TxtEx-identified by the machine.

3 Results

3.1 Set-driven identification by total learning machines

Theorem 9 SMON− SDT 6= ∅.
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Proof. Let M0,M1, . . . denote an algorithmic listing of all the learning machines.
Let Li = {〈i, x〉 | x ∈ N}. Let Sn

i = {〈i, x〉 | x < n}.
Let Ti be a text for Li, such that content(Ti[n]) = Sn

i . Intuitively, Ti just lists the
elements of Li in a canonical order.

Now let L1 = {Li | i ∈ N ∧ Mi total ∧ (∀n)[Mi(Ti[n]) 6= Mi(Ti[n + 1])]}.
L2 = {Sm

i | i ∈ N ∧ Mi total ∧ (∃n)[Mi(Ti[n]) = Mi(Ti[n + 1])] ∧ m = min({n |
Mi(Ti[n]) = Mi(Ti[n + 1])})}.

L3 = {Sm+1
i | i ∈ N ∧ Mi total ∧ (∃n)[Mi(Ti[n]) = Mi(Ti[n + 1])] ∧ m = min({n |

Mi(Ti[n]) = Mi(Ti[n + 1])})}.
L = L1 ∪ L2 ∪ L3 ∪ {N}.

Claim 10 L 6∈ SDT.

Proof. Suppose by way of contradiction that Mi is total, set-driven, and L ⊆ TxtEx(Mi).
We consider two cases.
Case 1: There exists an n such that Mi(Ti[n]) = Mi(Ti[n + 1]).

Let m = min({n | Mi(Ti[n]) = Mi(Ti[n + 1])}). Now both content(Ti[m]) = Sm
i

and content(Ti[m+1]) = Sm+1
i belong to L. However, since Mi is set-driven and

Mi(Ti[m]) = Mi(Ti[m + 1]), we have that Mi does not TxtEx-identify at least
one of Sm

i and Sm+1
i .

Case 2: For all n, Mi(Ti[n]) 6= Mi(Ti[n + 1]).

In this case Li ∈ L, Ti is a text for Li, but Mi(Ti)↑. Thus Mi does not TxtEx-
identify Li.

From the above cases we have that L 6∈ SDT. 2

Claim 11 L ∈ SMON.

Proof. Let pi be a grammar, obtained effectively from i, such that Wpi = {〈i, x〉 | (∀n ≤
x)[Mi(Ti[n])↓ 6= Mi(Ti[n + 1])↓]}.

Suppose Mi is total. Then the following property of Wpi is easy to verify: if {n |
Mi(Ti[n]) = Mi(Ti[n + 1])} = ∅, then Wpi = Li; otherwise Wpi = Sm

i , where m = min({n |
Mi(Ti[n]) = Mi(Ti[n + 1])}). Also note that if L ∈ L is such that L 6= ∅ and L ⊆ Li, then
either L = Wpi , or Wpi ⊂ L = Sm+1

i , where m = min({n | Mi(Ti[n]) = Mi(Ti[n + 1])}). We
use these facts to construct a strong monotonic machine M which TxtEx-identifies L.

Consider the following machine M. Let GN denote a grammar for N . Let G∅ denote a
grammar for ∅. Let Gm

i denote a grammar, obtained effectively from i and m, for Sm
i .

Let Xs
i = {n ≤ s | (∀m ≤ n+1)[Mi(Ti[m])↓ in ≤ s steps ] ∧ Mi(Ti[n]) = Mi(Ti[n+1])}.

Intuitively, for total Mi, Xs
i attempts to approximate the set {n | Mi(Ti[n]) = Mi(Ti[n+1])}

from below.
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M(σ) =



G∅, if content(σ) = ∅;
pi, if content(σ) 6= ∅ and content(σ) ⊆ Li and

X
|σ|
i = ∅;

pi, if content(σ) 6= ∅ and content(σ) ⊆ Li and
X

|σ|
i 6= ∅ and content(σ) ⊆ Sm

i , where
m = min(X |σ|

i );
Gm+1

i , if content(σ) 6= ∅ and content(σ) ⊆ Li and
X

|σ|
i 6= ∅ and content(σ) 6⊆ Sm

i , where
m = min(X |σ|

i );
GN , otherwise.

From the discussion above it is easy to see that M is strong monotonic and TxtEx-
identifies each language in L. 2

The theorem follows from the above two claims.

3.2 Set-driven identification by non-total learning machines

Theorem 12 SMON ⊆ SDNT.

Proof. Suppose a machine M is given such that M is strong monotonic. Without loss
of generality assume that M is total. We now construct a machine M′ such that, M′ is
set-driven (possibly non-total) and M′ TxtEx-identifies each language TxtEx-identified by
M.

We assume some well-ordering of elements of SEQ; thus we can talk about the least
element of SEQ satisfying certain constraints.

We say that L is closed with respect to σ and M, if the following properties are satisfied:
(a) content(σ) ⊆ L.
(b) (∀τ | content(τ) ⊆ L)[WM(τ) ⊆ L].
Let closure(σ,M), denote the smallest (with respect to containment) language which is

closed with respect to σ and M. Note that a grammar for closure(σ,M) can be effectively
obtained from σ and M. Let gram be a computable function such that Wgram(σ,M) =
closure(σ,M) (such a function clearly exists by s-m-n theorem [Rog67]).

Our construction of M′ depends on the following property of closure.

Lemma 13 Suppose L ∈ TxtEx(M) and content(σ) ⊆ L. Then closure(σ,M) ⊆ L.

Proof. Since M is strong monotonic, for all τ such that content(τ) ⊆ L, we have that
WM(τ) ⊆ L. Lemma now follows from the definition of closure(σ,M). 2

We will now give a set-driven (potentially non-total) machine M′ which TxtEx-identifies
each language TxtEx-identified by M. The proof that M′ TxtEx-identifies each language
TxtEx-identified by M uses Lemma 13.
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Begin M′(σ)

1. Let S = content(σ).
2. Search for τ such that 2.1, 2.2 and 2.3 are satisfied.

2.1. For all τ ′ < τ (in the well ordering of SEQ), either content(τ ′) 6⊆ S, or τ ′ is not a
stabilizing sequence for M on S.

2.2. content(τ) ⊆ S.
2.3. (∃t)[S ⊆ W t

M(τ) and (∀γ | τ ⊆ γ ∧ content(γ) ⊆ S ∧ |γ| ≤ t)[M(τ) = M(γ)]].
Note that a τ satisfying 2.1, 2.2, and 2.3 may not exist. If no τ satisfying 2.1, 2.2 and

2.3 exists then M′(σ)↑; otherwise choose one such τ for step 3 (note that if such a τ
exists, then one such τ can be found algorithmically).

3. Output gram(τ,M).
Note that gram(τ,M) is a grammar for closure(τ,M). Thus from property 2.3 above we

have content(σ) ⊆ WM′(σ).

End M′(σ)

It is easy to see that M′ defined above is set-driven. Suppose L ∈ TxtEx(M) and T is
a text for L. Clearly, by Lemma 13 we have that, for all n, WM′(T [n]) ⊆ L. We thus just
need to show that M′(T )↓ and WM′(T ) ⊇ L. We consider two cases.
Case 1: L is finite.

Let n be such that L = content(T [n]). Now clearly, M′(T )↓ = M′(T [n]) (since
M′ is set-driven). Let τ be as found in step 2 of M′(T [n]). Note that such a
τ must exist, since M TxtEx-identifies L: the least locking sequence for M on
L, satisfies 2.1, 2.2, and 2.3. Now by property 2.3. checked in step 2 of the
construction of M′ we have, L = content(T [n]) ⊆ closure(τ,M) = WM′(T [n]).
Thus from the discussion before the case analysis, we have that M′ TxtEx-
identifies L.

Case 2: L is infinite.

Suppose σ is the least stabilizing (locking) sequence (in the well-ordering of SEQ)
for M on L. We claim that for all but finitely many n, M′(T [n]) = gram(σ,M).
Since closure(σ,M) ⊇ L, using the discussion before the case analysis, we have
that M′ TxtEx-identifies L.

So let m be so large that the following are satisfied.
(a) content(σ) ⊆ content(T [m]).
(b) For all σ′ < σ, such that content(σ′) ⊆ L, there exists an extension σ′′ of

σ′ such that

M(σ′) 6= M(σ′′), content(σ′′) ⊆ content(T [m]) and
content(T [m]) 6⊆ W

|σ′′|
M(σ′).

Note that such an m exists since each σ′ < σ is not a stabilizing sequence for
M on L and card(L) = ∞. Thus for all n > m, τ chosen in the algorithm for
M′(T [n]) would be σ.
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It follows from the above case analysis that M′ TxtEx-identifies each language TxtEx-
identified by M.

4 Conclusion

We solved an open problem of Kinber and Stephan in which they asked if each collection of
languages identifiable by a strong monotonic learner can also be identified by a set-driven
learner. We showed that if we require the set-driven learner to be total, then there are
collections of languages that can be identified by total strong monotonic machines that
cannot be identified by any set-driven machines. On the other hand, if the set-driven learner
is allowed to diverge on certain evidential states, then the story is different. We showed that
each collection of languages that can be identified by a strong monotonic machine can also
be identified by a set-driven machine that is not required to be total. These two results
uncover a finer gradation in the notion of set-drivenness that was not known earlier.
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