
Learning Automatic Families of Languages ?

Sanjay Jain1 and Frank Stephan2

1 School of Computing, National University of Singapore, Singapore 117417.
Email: sanjay@comp.nus.edu.sg

2 Department of Mathematics and Department of Computer Science, National
University of Singapore, Singapore 119076.

Email: fstephan@comp.nus.edu.sg

Abstract. A class of languages is automatic if it is uniformly regular
using some regular index set for the languages. In this survey we report on
work about the learnability in the limit of automatic classes of languages,
with some special emphasis to automatic learners.

1 Introduction

A language is a set of strings over some finite alphabet. Consider the following
model of language learning. A learner receives all elements of the target lan-
guage, one elment at a time, repetition allowed, in arbitrary order (this form of
information provided to the learner is called a text for the language). Note that
no non-elements of the language is provided to the learner. For technical reasons,
we allow a special symbol # as input, which denoted “no datum” (this allows
for a text of empty language as an infinite sequence of #’s). After receiving each
new element the learner outputs its conjecture about what the target language
might be (this is usually expressed in the form of a grammar for the language,
in some hypothesis space). If the sequence of grammars output by the learner
converges to a correct grammar for the target language then the learner is said
to identify the language (from the corresponding text). For learning a language,
the learner is expected to learn it from all texts for the language. Learning of
one language is not useful, as a learner which outputs just a grammar for the
language, whatever the input might be, is similar to a person who predicts earth-
quake everyday, and is right on the day earthquake actually occurs. So what is
more interesting is whether the same learner can learn all languages from a class
of languages. This is essentially the model of learning proposed by Gold [11] and
called TxtEx-learning. In Gold’s original model there is no restriction on the
memory of the learner. Thus, the learner can remember all its past input data
when it comes up with its new hypothesis. In some cases below we will consider
restrictions on the memory of the learner. Thus, we define a learner taking this
into account.

Let N denote the set of natural numbers.

? Research for this work is supported in part by NUS grants C252-000-087-001 (S. Jain)
and R146-000-181-112 (S. Jain and F. Stephan)

A text T is a mapping from N to Σ∗ ∪ {#}. Content of a text T , de-
noted content(T) = {T (i) : i ∈ N} − {#}. T [n] denotes the initial sequence
T (0)T (1) . . . T (n− 1) of the text T , of length n.

A finite sequence is an initial segment of a text. SEQ denotes the set of all
finite sequences. For a finite sequence T [n], content(T [n]) = {T (i) : i ∈ N}−{#}.

We use σ�τ to denote the concatenation of two finite sequences σ and τ .
Similarly, σ�T denotes the concatentation of σ and T .

Definition 1 (Based on Gold [11]; see also [5, 17]). Suppose Σ is the
alphabet set for the languages and L = {Lα : α ∈ I} is a class of languages,
to be learnt, where I is an index set. Let H = {Hβ : β ∈ J} be the hypothesis
space, used by the learner, where J is the index set for the hypotheses. We
always assume that H is uniformly r.e.; in some cases below we will put more
restrictions on the hypothesis space. Let ? be a special symbol not in J which
denotes “no new conjecture at this point”. Suppose Γ is a finite set of alphabet
used for memory by the learner.

(a) A learner is an algorithmic mapping from Γ ∗×(Σ∗∪{#}) to Γ ∗×(J∪{?}).
A learner has an initial memory mem0 ∈ Γ ∗ and initial conjecture hyp0 ∈
J ∪ {?}.
Intuitively, for a learner M , M(mem, x) = (mem′, hyp), means that based
on old memory mem and current datum x, the new memory of the learner
is mem′ and hyp is its conjecture.

(b) Suppose a learner M with initial memory mem0 and initial hypothesis hyp0
is given. Suppose T is a text for a language L.

(i) Let memT
0 = mem0 and hypT0 = hyp0.

(ii) For k > 0, let (memT
k , hyp

T
k) = M(memT

k−1, T (k − 1))

(iii) Define M(T [k]) = (memT
k , hyp

T
k).

(iv) M on T converges on text T to the hypothesis hyp iff, for all but finitely
many k, hypTk = hyp.

(c) M TxtEx-learns a language L (using hypothesis space H) if, for all texts
T for L, M on T converges to a hypothesis β such that Hβ = L.

(d) M TxtEx-learns the class L (using hypothesis spaceH) iffM TxtEx-learns
all the languages in the class L (using hypothesis space H).

(e) TxtEx = {L : some learner M learns L using some automatic family H as
the hypothesis space}.

Intuitively, memT
k and hypTk in part (b) above denote the memory and conjecture

of the learner M after having seen the data T [k].
We now consider automatic classes of languages. Intuitively, a class of lan-

guages is automatic if the class is uniformly regular. More formally, let Σ be
a finite alphabet, and let @ be a special symbol not in Σ. Given two strings
x = x0x1 . . . xn−1 and y = y0y1 . . . ym−1 over the alphabet Σ, define convolution
of x and y, conv(x, y) as follows. Let r = max({m,n}). For i < n, let x′i = xi;
for n ≤ i < r, let x′i = @. For i < m, let y′i = yi; for m ≤ i < r, let y′i = @. Now,
convolution of x, y is defined as conv(x, y) = z0z1 . . . zr−1, where zi = (x′i, y

′
i);

note that zi is a member of the alphabet Σ ∪ {@} × Σ ∪ {@}. One can extend
the definition of convolution to multiple strings similarly.

A class of languages L is said to be automatic if there is an indexing (Lα)α∈I ,
for some regular index set I such that, L = {Lα : α ∈ I} and {conv(α, x) : x ∈
Lα} is regular [20]. A relation R = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ Σ∗} is
said to be automatic if {conv(x1, x2, . . . , xn) : (x1, x2, . . . , xn) ∈ R} is regular.
Similarly, a function f is said to be automatic if {conv(x, y) : f(x) = y} is
regular.

The following theorem is important and it also enables to derive that the
first-order theory of any given automatic structure is decidable.

Theorem 2 (Blumensath and Grädel [4], Khoussainov and Nerode
[23]). Any relation that is first-order definable from existing automatic relations
is automatic and there is an algorithm to construct the corresponding automaton
from automata for the relations and functions of the automatic structure and the
defining formula.

Furthermore, one can characterise the automatic functions as functions which
map convoluted tuples to convoluted tuples and which can be computed by a one-
tape Turing machine with the output starting at the same position as originally
the input started and computation time being linear [7]; for this characterization
one can either use deterministic or non-deterministic Turing machines.

When learning automatic classes, we usually require that the hypothesis
space H is also automatic. This paper surveys some of the results in learnabil-
ity of countable automatic classes of languages. For learnability of uncountable
classes we refer the reader to Jain, Luo, Semukhin and Stephan [18].

2 Characterization of Learnability of Autmatic Classes

For the characterization, we first consider the notion of tell-tale sets as introduced
by Angluin. Let x <ll w denote that x is length-lexicographically smaller than
w. That is |x| < |w| or |x| = |w| and x is lexicographically before w (based on
some fixed ordering of the alphabet). Let x ≤ll w denote that x <ll w or x = w.

Definition 3 (Angluin’s Tell Tale condition [2]). Suppose L = {Lα : α ∈
I} is a class of languages.

(a) D is a tell-tale of L (with respect to L) iff D is finite and for all L′ ∈ L,
D ⊆ L′ ⊆ L implies L = L′.

(b) L satisfies Angluin’s Tell-Tale condition iff every L ∈ L has a tell-tale with
respect to L.

(c) [17] For all L ∈ L, we say that w is a tell-tale cut-off word for L (with respect
to L) iff {x ∈ L : x ≤ll w} is a tell-tale for L (with respect to L).

Essentially, Angluin [2] showed that if a class L does not satisfy Angluin’s tell-
tale condition, then it cannot be TxtEx-learnable. This result applies even for

general classes of r.e. languages, and even for non-recursive learners, though
Angluin’s stated theorem was only for indexed families and recursive learners.

Jain, Luo and Stephan showed that a class satisfying Angluin’s tell-tale con-
dition is enough for TxtEx-learnability of automatic classes. In particular they
showed that such a learner can have several useful additional properties.

Definition 4. Suppose M is a learner. The notation is as in Definition 1 for
memory and hypothesis of M on a text T .

(a) [3] M is said to be consistent on L if, for all texts T for L, for all n, HhypTk
⊇

content(T [k]).M is said to be consistent on L if it is consistent on each L ∈ L.
(b) [2] M is said to be conservative on L if, for all texts T for L, for all k, if

content(T [k+1]) ⊆ HhypTk
, then hypTk+1 = hypTk . M is said to be conservative

on L if it is conservative on each L ∈ L.
(c) [28, 31] M is said to be set-driven if, for all σ and τ in SEQ, if content(σ) =

content(τ), then M(σ) = M(τ).

When we say that M consistently (conservatively, set-drivenly, etc.) learns L,
we mean that M TxtEx-learns L, and is consistent (resepctively conservative,
set-driven) on L.

Theorem 5 (Jain, Luo and Stephan [17]). Suppose L is automatic and
satisfies Angluin’s tell-tale condition. Then there exists a learner M which is
set-driven, consistent and conservative on L and which TxtEx-learns L.

Note that if an automatic class L does not satisfy Angluin’s tell-tale condition,
then there is no learner (even non-recursive learner) which TxtEx-learns L. As
the tell-tale condition is first-order definable, we get the following corollary:

Corollary 6 (Jain, Luo and Stephan [17]). It is decidable whether a given
family {Lα : α ∈ I} is TxtEx-learnable (where the decision algorithm gets as
input the alphabet Σ and DFAs for regular set I and the regular set {conv(α, x) :
x ∈ Lα}).

A similar characterization for some other learning criteria can also be obtained.
Let us consider Finite learning.

Definition 7 (Gold [11]).

(a) M TxtFin-learns L (using hypothesis space H = (Hβ)β∈J) iff for all texts
T for L, there exists an n and a β such that:
(i) For m < n, M(T [n]) ∈ Γ × {?};
(ii) For m ≥ n, M(T [n]) ∈ Γ × {β};
(iii) Hβ = L.

(b) M TxtFin-learns L (using hypothesis space H) iff it TxtFin-learns each
L ∈ L (using hypothesis space H).

(c) TxtFin = {L : (∃M)[M TxtFin-learns L using some automatic hypothesis
space H]}.

A useful concept for TxtFin-learnability is the concept of characteristic sample.

Definition 8 (Lange and Zeugmann [26], Mukouchi [27]).

(a) A finite set S is a characteristic sample for L with respect to the class L iff
(i) S ⊆ L.
(ii) For all L′ ∈ L, S ⊆ L′ implies L = L′.

(b) L satisfies the characteristic sample property iff every L ∈ L has a charac-
teristic sample with respect to L.

Theorem 9 (Jain, Luo and Stephan [17]). Suppose L is an automatic class.
Then L ∈ TxtFin iff it satisfies the characteristic sample property.

3 Automatic Learners

A learner M is automatic if the function it computes is automatic. That is, the
mapping (old mem, datum) 7→ (new mem, hyp) is automatic. When requiring
the learners to be automatic, we add the term Auto in the learning criteria
(for example AutoTxtEx means TxtEx-learnability using automatic learners).
Besides, we often require some restrictions on the memory. These are mentioned
in the following.

Definition 10. Fix a learner M . For a text T , let memT
k and hypTk be as in

Definition 1.

(a) [33] The learner M is iterative if, for all texts T and k, memT
k = hypTk .

(b) [17] The learner M is word-size memory limited if there exists a constant c
such that for all T and k, |memT

k | ≤ max({|T (m)| : m < k}) + c.
(c) [17] The learner M is hypothesis-size memory limited if there exists a con-

stant c such that for all T and k, |memT
k | ≤ |hypTk |+ c.

We denote the above memory restrictions on a learner by using the terms It,
Word and Index in the criteria names. For example, AutoWordTxtEx de-
notes TxtEx-learning by an automatic learner with word-size memory limita-
tion. The next theorem shows that requiring learners to be automatic can be
very restrictive. This is not only because automatic learners have limited mem-
ory: automatic learners cannot even learn classes which can be iteratively learnt.

Theorem 11 (Jain, Luo and Stephan [17]). The automatic class

{{0, 1}|x| − {x} : x ∈ {0, 1}∗}

is ItTxtEx-learnable but not AutoTxtEx-learnable.

Theorem 12 (Jain, Luo and Stephan [17]).

(a) AutoItTxtEx ⊆ AutoWordTxtEx ⊆ AutoTxtEx.
(b) AutoItTxtEx ⊆ AutoIndexTxtEx ⊆ AutoTxtEx.
(c) AutoWordTxtEx 6⊆ AutoIndexTxtEx.

At the time of writing, it is still open AutoWordTxtEx = AutoTxtEx and
whether AutoIndexTxtEx = AutoItTxtEx. Furthermore, it is open whether
AutoIndexTxtEx ⊆ AutoWordTxtEx.

However, if the alphabet for languages is unary, then AutoIndexTxtEx ⊂
AutoWordTxtEx = AutoTxtEx.

An interesting class which is automatically learnable is unions of regular
patterns languages which have variables only among the last n symbols.

Angluin [1] introduced the pattern languages and Shinohara [32] investigated
learnability of the class of pattern languages generated by regular patterns. Au-
tomatic classes of pattern languages are a special case of classes of pattern lan-
guages generated by regular patterns and the n-th automatic class Pn is defined
as follows: For a finite alphabet Σ, Pn contains all pattern languages of the form
αb1b2 . . . bn, where α ∈ Σ∗ and each b1, b2, . . . , bn is either a member of Σ or the
set Σ∗; for example, if Σ = {0, 1, 2}, then 0112101012Σ∗21Σ∗ is an automatic
pattern language in P4.

Theorem 13 (Case et al. [9]). Suppose |Σ| ≥ 3 and n > 0. Then, L =
{L1 ∪ L2 : L1, L2 ∈ Pn} is AutoWordTxtEx-learnable via a learner that,
furthermore, for all texts T for a language L outside L, converges to an index
for a language L′ such that L′ − L is finite.

4 Automatic Learning From Fat Text

A text T is called fat (see [29]) if every member of content(T) appears infinitely
often in the text. That is, for all x ∈ content(T), there exist infinitely many n
such that T (n) = x.

As the automatic learners are very much memory limited, one may expect
to overcome some of these limitations using a fat text. In fact that is indeed the
case as shown by the following result. For learnability of a class from fat texts,
we just require the learnability when the input text is fat, and do not care what
happens when the input text is not fat.

Theorem 14 (Jain, Luo and Stephan [17]). Suppose L is an automatic
class which satisfies Angluin’s tell-tale condition. Then there exists a learner M
which AutoWordTxtEx-learns L from fat texts.

Osherson, Stob and Weinstein [29] considered partial learning in which the
learner need not converge to a correct hypothesis but instead satisfy the fol-
lowing for any text T for the language L being learnt:

(a) only one hypothesis is output infinitely often — that is, there exists exactly
one p such that hypTk = p for infinitely many k;

(b) the unique p which is output infinitely often is a grammar for the input
language L.

Theorem 15 (Jain, Luo and Stephan [17]). Every automatic class L can
be partially learnt by an automatic learner with word-size limited memory from
fat texts.

5 Negative Counterexamples

The model of learning in which the learners get only positive data, as considered
in most of the literature on inductive inference, is based on the studies by lin-
guists that children mainly get only positive data. However, this is not entirely
true as the children are often told about the errors they make. Thus, there is
some negative data, in the form of counterexamples that is given to the chil-
dren. In this section we consider giving the learner negative counterexamples, if
any, to their conjectures. This is given in the form of a separate text, where the
new datum is either an appropriate negative counterexample (if it exists) to the
previous conjecture or a # (indicating no negative counterexample).

For this, the learner is considered as a mapping from (old mem, new da-
tum, new counter example) to (new mem, new hypothesis). We can then define
M(T [n], T ′[n]) as the pair of memory and conjecture of the learner after having
seen the text T [n] and corresponding counterexamples given by T ′[n]. As this
definition is a straightforward generalization of Definition 1, we omit the details
of the learner but concentrate on how the counterexample text is defined.

Definition 16 (Jain and Kinber [13]). Suppose M is a learner and H =
(Hβ)β∈j is the hypothesis space used by M .

(a) T ′ is a counterexample text for M on input text T for a language L iff for
all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ⊆ L, then T ′(n) = #
if Hhyp 6⊆ L, then T ′(n) ∈ Hhyp − L.

(b) T ′ is a least-counterexample text for M on input text T for a language L
iff for all n, where M(T [n], T ′[n]) = (mem, hyp),

if Hhyp ⊆ L, then T ′(n) = #
if Hhyp 6⊆ L, then T ′(n) = min(Hhyp − L).

(c) M NCEx-learns a language L (using hypothesis space H) iff for all texts
T for L, and all corresponding counterexample texts T ′ for M on the input
text T , M(T, T ′) converges to a hypothesis hyp such that Hhyp = L.

(d) M NCEx-learns a class L of languages (using hypothesis space H) iff it
NCEx-learns each language from L (using hypothesis space H).

(e) NCEx = {L : (∃M)[M NCEx-learns L using some automatic family H as
the hypothesis space}.

One can similarly define ItNCEx, ItLNCEx, LNCEx and other learning cri-
teria (here LNC stands for least counterexample).

Theorem 17 (Jain and Kinber [13]). Suppose L = {Lα : α ∈ I} is an
automatic family.

(a) L ∈ AutoItNCEx via a learner that uses a class preserving hypothesis
space, H = {Hβ : β ∈ J}, where the languages in H are same as that in L,
though indexing may be different (with potentially several copies of the same
language).

(b) L ∈ AutoWordNCEx via a learner that uses the hypothesis space (Hα)α∈I ,
where Hα = Lα.

The learners witnessing the above result are however inconsistent. For consis-
tency, we need least negative counterexamples.

Theorem 18 (Jain, Kinber and Stephan [16]). Every automatic family is
AutoWordLNCEx-learnable via a consistent learner.

The learner in the above proof however uses a general automatic hypothesis
space, which may contain lanugages outside the class L. It can be shown that
some automatic class L cannot be AutoLNCEx-learnt using a class preserving
automatic hypothesis space.

6 Parallel Learning of Automatic Classes

In parallel learning, the learner simultaneously gets texts for n distinct languages
from the target class L, and outputs its conjecutres for the corresponding texts.
This study was originated for general TxtEx-learning by [24] and then studied
by [14, 15] for the case of learning automatic families. These learning criteria
are denoted by (m,n)-TxtEx and (m,n)-TxtFin-learning. Here, note that for
the above learning criteria, when the input texts are for distinct languages in
the class, we require the sequence of conjectures to converge on all the texts,
whether the corresponding texts are actually learnt or not.

Furthermore, one can also distinguish the cases of the learner being required
to specify the m texts which it learns, and the learner only being required to learn
m of the n texts, without any constraint on specifying which texts it learnt. The
requirement of specifying the texts which are learnt is denoted by using Super
in the name of the learning criteria.

Theorem 19 (Jain and Kinber [14, 15]).

(a) Suppose 0 < m ≤ n, L is an automatic family and all except at most n−m
langauges L ∈ L have a characteristic sample with respect to L. Then L is
(m,n)-SuperTxtFin-learnable.

(b) Suppose 0 < m ≤ n and L is an automatic class having at least 2n+ 1−m
languages. Then (m,n)-SuperTxtFin-learnability of L implies that there
are at most n−m languages in L which do not have a characteristic sample
with respect to L.

For the case when the learner is not required to specify the languages it learns,
the characterisation is slightly different.

Theorem 20 (Jain and Kinber [14, 15]).

(a) Suppose 0 < m ≤ n, L is an automatic family, and there exists a subset
S of L of cardinality at most n −m such that every language in L − S has
a characteristic sample with respect to L − S. Then L is (m,n)-TxtFin-
learnable.

(b) Suppose 0 < m ≤ n, L is an automatic class having at least 2n + 1 − m
languages. Then (m,n)-TxtFin-learnability of L implies that there exists a
subclass S of L of cardinality at most n − m such that every language in
L − S has a characteristic sample with respect to L − S.

For finite automatic classes the situation becomes a bit more complicated and full
characterization depends on a combinatorial argument. We refer the reader to
[15] for full details. Furthermore, one can show a hierarchy for (m,n)-learnability
as follows.

Theorem 21 (Jain and Kinber [14, 15]).

(a) Suppose 0 < m < n. Then, there exists an automatic class L which is
(m,n)-SuperTxtFin-learnable but not (m+ 1, n)-TxtFin-learnable.

(b) There exists an automatic class L such that for all n > 1, L is (n − 1, n)-
TxtFin-learnable but not (1, n)-SuperTxtFin-learnable.

For TxtEx-learnability, (m,n)-TxtEx-learnability and (m,n)-SuperTxtEx-
learnability coincide [15]; thus we give the following results only for (m,n)-
TxtEx.

Theorem 22 (Jain and Kinber [14, 15]).

(a) Suppose 0 < m ≤ n and L is an automatic class. Then L is (m,n)-TxtEx-
learnable iff at most n−m languages in L do not have a tell-tale with respect
to L.

(b) For n > 0 there exists an automatic (1, n + 1)-TxtEx-learnable class that
is not (1, n)-TxtEx-learnable.

(c) For n > 0, (1, n)-TxtFin ⊆ TxtEx.

Jain and Kinber also explore the above model of parallel learning when the
learners are automtic. However, here the picture becomes more complicated and
full characterization is not yet known.

7 Robust Learning of Automatic Classes

Intuitively, a class of objects is robustly learnable if every computable transfor-
mation of the class is learnable. Robust learnability seems a desirable property
as it indicates that learning of the class is not due to presence of some artificial
coding within the data, but is due to the structure of the class itself (Bārzdiņš,
in the 1970s). Bārzdiņš reasoned that if a class is learnable only due to some
self-referential property then this self-referential part can be “removed” via com-
putable transformations, and thus the class be transformed into an unlearnable
class. This line of research has been explored in various papers such as [6, 8, 10,
21, 12, 25, 30]. However, most of these work were on function learning and there
does not seem to be a good definition for robust learning of classes of languages.
Using automatic classes and related transformations, [19] explored robust learn-
ing of classes of automatic languages. The translations which were considered
valid for this are defined as follows:

Definition 23 (Jain, Martin and Stephan [19]). Let an automatic class
(Lα)α∈I be given. Let Φ be a first order formula, with a distinguished variable
x as a unique free variable, where Φ is allowed to use predicates “y ∈ X” and
“y ∈ Lα” along with the set I. Let Φ(L) be the the language consisting of all
strings s such that Φ[s/x] is true, where X is taken to be L. Φ is an automatic
translator (for the automatic family L) if the following conditions hold:

(a) for all languages L,L′, if L ⊆ L′, then Φ(L) ⊆ Φ(L′);

(b) for all languages L,L′ ∈ L, if L 6⊆ L′, then Φ(L) 6⊆ Φ(L′).

Let Φ((Lα)α∈I) = (Φ(Lα))α∈I . It is easy to verify that any translation of an
automatic family is automatic. Jain, Martin and Stephan [19] considered var-
ious properties such as consistency, conservativeness, strong monotonicity and
confidence and obtained various charaterizations on when automatic classes are
robustly learnable and when some translations of automatic classes are learnable
under above constraints. We consider some of these characterizations below.

Theorem 24 (Jain, Martin and Stephan [19]). Given an automatic class
L = (Lα)α∈I , the following are equivalent:

(a) Every translation of L is TxtEx-learnable.

(b) For all α ∈ I, there exists a bα ∈ I such that for all β ∈ I, either Lβ 6⊂ Lα
or there exists a γ ≤ll bα such that Lα 6⊆ Lγ and Lβ ⊆ Lγ .

Theorem 25 (Jain, Martin and Stephan [19]). Suppose L is an automatic
class all of whose translations are TxtEx-learnable. Then, every translation of
L is consistently and conservatively TxtEx-learnable iff L is well founded under
inclusion.

A learner M is said to be strong monotonic [22] if, for all texts T , for all m <
n, if hypTm 6=? and hypTn 6=?, then HhypTm

⊆ HhypTn
, where hypTs denotes the

hypothesis of M after seeing input T [s].

Theorem 26 (Jain, Martin and Stephan [19]). Given an automatic class
L = (Lα)α∈I , the following are equivalent:

(a) Every translation of L is strong monotonically TxtEx-learnable.

(b) For all α ∈ I, there exists a bα ∈ I such that for all β ∈ I, either Lα ⊆ Lβ
or there exists a γ ≤ll bα such that Lα 6⊆ Lγ and Lβ ⊆ Lγ .

Furthermore, every automatic class has some translation which is strong mono-
tonically TxtEx-learnable.

Acknowledgements: This talk consists of work done with several authors: John
Case, Efim Kinber, Trong Dao Le, Qinglong Luo, Eric Martin, Yuh Shin Ong,
Shi Pu, Samuel Seah and Pavel Semukhin.

References

1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21(1):46–62, 1980.

2. D. Angluin. Inductive inference of formal languages from positive data. Informa-
tion and Control, 45:117–135, 1980.

3. J. Bārzdiņš. Inductive inference of automata, functions and programs. In Pro-
ceedings of the 20th International Congress of Mathematicians, Vancouver, pages
455–460, 1974. In Russian. English translation in American Mathematical Society
Translations: Series 2, 109:107-112, 1977.

4. A. Blumensath and E. Grädel. Automatic structures. In 15th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), pages 51–62. IEEE Computer Society,
2000.

5. J. Case, S. Jain, Y. S. Ong, P. Semukhin, and F. Stephan. Automatic learners with
feedback queries. Journal of Computer and System Sciences, 80:806–820, 2014.

6. J. Case, S. Jain, M. Ott, A. Sharma, and F. Stephan. Robust learning aided by
context. Journal of Computer and System Sciences (Special Issue for COLT’98),
60:234–257, 2000.

7. J. Case, S. Jain, S. Seah, and F. Stephan. Automatic functions, linear time and
learning. In S.B. Cooper, A. Dawar, and B. Löwe, editors, How the World Computes
- Turing Centenary Conference and Eighth Conference on Computability in Europe
(CiE 2012), Proceedings, volume 7318 of Lecture Notes In Computer Science, pages
96–106. Springer, Berlin, 2012.

8. J. Case, S. Jain, F. Stephan, and R. Wiehagen. Robust learning – rich and poor.
Journal of Computer and System Sciences, 69(2):123–165, 2004.

9. John Case, Sanjay Jain, Trong Dao Le, Yuh Shin Ong, Pavel Semukhin, and Frank
Stephan. Automatic learning of subclasses of pattern languages. Information and
Computation, 218:17–35, 2012.

10. M. Fulk. Robust separations in inductive inference. In 31st Annual IEEE Sympo-
sium on Foundations of Computer Science, pages 405–410. IEEE Computer Society
Press, 1990.

11. E. M. Gold. Language identification in the limit. Information and Control,
10(5):447–474, 1967.

12. S. Jain. Robust behaviorally correct learning. Information and Computation,
153(2):238–248, September 1999.

13. S. Jain and E. Kinber. Automatic learning from positive data and negative
counterexamples. In Nicolas Vayatis Nader Bshouty, Gilles Stoltz and Thomas
Zeugmann, editors, Algorithmic Learning Theory: 23rd International Conference
(ALT’ 2012), volume 7568 of Lecture Notes in Artificial Intelligence, pages 66–80.
Springer-Verlag, 2012.

14. S. Jain and E. Kinber. Parallel learning of automatic classes of languages. In
Sandra Zilles Peter Auer, Alexander Clark and Thomas Zeugmann, editors, Al-
gorithmic Learning Theory: 23rd International Conference (ALT’ 2014), volume
8776 of Lecture Notes in Artificial Intelligence, pages 70–84. Springer-Verlag, 2014.

15. S. Jain and E. Kinber. Parallel learning of automatic classes of languages. Theoret-
ical Computer Science A, 2016. Accepted. Special Issue on Algorithmic Learning
Theory 2014.

16. S. Jain, E. Kinber, and F. Stephan. Automatic learning from positive data and
negative counterexamples. 2014. Manuscript.

17. S. Jain, Q. Luo, and F. Stephan. Learnability of automatic classes. Journal of
Computer and System Sciences, 78(6):1910–1927, 2012.

18. S. Jain, Q. Luo, F. Stephan, and P. Semukhin. Uncountable automatic classes and
learning. Theoretical Computer Science, 412(19):1805–1820, 2011. Special issue:
Algorithmic Learning Theory, 2009.

19. S. Jain, E. Martin, and F. Stephan. Robust learning of automatic classes of lan-
gauges. Journal of Computer and System Sciences, 80:777–795, 2014.

20. S. Jain, Y. S. Ong, S. Pu, and F. Stephan. On automatic families. In T. Arai,
Q. Feng, B. Kim, G. Wu, and Y. Yang, editors, Proceedings of the 11th Asian Logic
Conference, in Honor of Professor Chong Chitat’s 60th birthday, 2009, pages 94–
113. World Scientific, 2011.

21. S. Jain, C. Smith, and R. Wiehagen. Robust learning is rich. Journal of Computer
and System Sciences, 62(1):178–212, 2001.

22. K. Jantke. Monotonic and nonmonotonic inductive inference of functions and pat-
terns. In Nonmonotonic and Inductive Logic, 1st International Workshop, Karl-
sruhe, Germany, volume 543 of Lecture Notes in Computer Science, pages 161–177.
Springer-Verlag, 1990.

23. B. Khoussainov and A. Nerode. Automatic presentations of structures. In Logical
and Computational Complexity, (International Workshop LCC 1994), volume 960
of Lecture Notes in Computer Science, pages 367–392. Springer, 1995.

24. E. Kinber, C. Smith, M. Velauthapillai, and R. Wiehagen. On learning multiple
concepts in parallel. Journal of Computer and System Sciences, 50:41–52, 1995.

25. S. Kurtz and C. Smith. A refutation of Bārzdiņš’ conjecture. In K. P. Jantke,
editor, Analogical and Inductive Inference, Proceedings of the Second International
Workshop (AII ’89), volume 397 of Lecture Notes in Artificial Intelligence, pages
171–176. Springer-Verlag, 1989.

26. S. Lange and T. Zeugmann. Types of monotonic language learning and their
characterization. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, pages 377–390. ACM Press, 1992.

27. Y. Mukouchi. Characterization of finite identification. In K. Jantke, editor, Ana-
logical and Inductive Inference, Proceedings of the Third International Workshop,
pages 260–267, 1992.

28. D. Osherson, M. Stob, and S. Weinstein. Learning strategies. Information and
Control, 53:32–51, 1982.

29. D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

30. M. Ott and F. Stephan. Avoiding coding tricks by hyperrobust learning. Theoretical
Computer Science, 284(1):161–180, 2002.

31. G. Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von Inferenzstrate-
gien. PhD thesis, RWTH Aachen, 1984.

32. T. Shinohara. Polynomial time inference of extended regular pattern languages.
In RIMS Symposia on Software Science and Engineering, Kyoto, Japan, volume
147 of Lecture Notes in Computer Science, pages 115–127. Springer-Verlag, 1982.

33. R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Journal of Information Processing and Cybernetics (EIK), 12(1–2):93–99, 1976.

