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Abstract

Within the frameworks of learning in the limit of indexed classes of recursive lan-
guages from positive data and automatic learning in the limit of indexed classes
of regular languages (with automatically computable sets of indices), we study the
problem of minimizing the maximum number of mind changes FM(n) by a learner
M on all languages with indices not exceeding n. For inductive inference of re-
cursive languages, we establish two conditions under which FM(n) can be made
smaller than any recursive unbounded non-decreasing function. We also establish
how FM(n) is affected if at least one of these two conditions does not hold. In the
case of automatic learning, some partial results addressing speeding up the function
FM(n) are obtained.

Keywords: Inductive Inference, Algorithmic and automatic learning, mind changes,
speedup.

1 Introduction

In this paper, we consider a popular model for learning languages in the limit
from infinite positive data (inductive inference), as defined by M. Gold in
[Gol67] (in the sequel, we refer to it as TxtEx): a learner is an algorith-
mic device that, given access to potentially all positive data (as a stream of
data items, intermittent with a special character representing “no data at this
moment”), produces a (potentially infinite) sequence of conjectures, and even-
tually stabilizes on a correct grammar for the target language. Specifically, we
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concentrate on learnability of so-called indexed classes of languages — rep-
resented by computable numberings of languages with uniformly decidable
membership problem; these classes represent practically interesting families of
languages, in particular, the class of regular languages as represented by all fi-
nite automata or regular expressions and its practically important subclasses,
and the class of pattern languages represented by patterns [Ang80].

There are many different measures of complexity for learning languages in the
limit [CL82,CS83,DS86,Wie86,JS97,FKS95]. One obvious natural measure of
complexity is the number of mind changes that a learner makes on a target
language before stabilizing on a correct grammar for it. As there are infinitely
many languages in the target class, it is natural to consider the maximum
number of mind changes that a learner M makes on the first n+1 languages in
the numbering defining the target class; in the sequel, we denote this number
by FM(n) (another approach to mind change complexity was suggested in
[LZ93b]). This measure of complexity of inductive inference, in the context
of learning indexed families of recursive functions, was first suggested by J.
Bārzdiņš and R. Freivalds in [BF72], where they also initiated a study of the
bounds on the function FM(n). It is easy to see that FM(n) can be bounded by
n — the learner can use the so-called “identification by enumeration” strategy,
whereby all functions in the numbering consistent with the input data seen
so far are tried, starting from the first one, until a (smallest) index of the
target function is found. However, Bārzdiņš and Freivalds showed in [BF72]
(providing full proof in [BF74]) that the linear upper bound on FM(n) can
be reduced exponentially — to log n + log log n + o(log log n), if the learner
is allowed to use programs of a general type (from a universal acceptable
numbering of all programs) rather than indices in the numbering of the target
class. They also established a nearly matching lower bound for the function
FM(n) (having shown that there exists an indexed class of functions where no
strategy can use less than nearly log n mind changes). In the paper [Bār74b], J.
Bārzdiņš showed that the lower bound on the number of mind changes jumps
to nearly n, if the numbering defining the target class of functions is used as
the hypotheses space.

In the paper [BKP74], the authors studied the following problem: is it pos-
sible to “speed up” learning of indexed classes of functions achieving as slow
growth of the function FM(n) as possible? More specifically, if and when is
it possible, given any total recursive function r(n) and any learner M for an
indexed class L, to find another learner M′ such that, for all n, r(FM′(n)) ≤
max({FM(n), c}), for some constant c? They suggested to call such a provable
statement for a class L “absolute speed-up theorem” (AST, for brevity), and
established validity of AST for any class L of recursive functions with decid-
able equivalence problem and not learnable with a constant number of mind
changes.
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In this paper, we study possibilities of mind change speed-ups in two different
contexts. First, we consider TxtEx-learning (from all positive data) of indexed
families of recursive languages. Secondly, we consider learning in the limit,
from positive data, automatic classes of languages by automatic learners; such
an indexed class of languages is defined by a finite automaton (the study of
inductive inference in this context was initiated in [JLS10]).

In the general case of TxtEx-learning of indexed families, we establish the
conditions under which AST is possible: we show that AST holds if (a) the
equivalence problem for the languages in the class is decidable and (b) in-
clusion of one language in another one implies their equality (Theorem 4).
Note that the condition (a) typically holds for practically important indexed
families of languages (for example, the class of regular languages indexed by
finite automata and the class of pattern languages indexed by patterns). In
light of this, the condition (b) is really the important criterion deciding if the
AST can work for an indexed class. This condition is quite simple and can
be typically tested for many practically useful indexed classes. Then, we show
that, if the condition (a) holds and the condition (b) does not (and yet there
are no subset chains of languages of length more than 2), then FM(n) can
grow faster than any fixed recursive function (Theorem 9). We also consider
the case when the condition (b) holds, but (a) does not. It turns out, that,
in this case, any class can be learned with O(log n) upper bound on FM(n)
(Theorem 12), and there exists a class with the lower bound of log n−o(log n)
on FM(n) for any learner M (Theorem 11). As in the case of learning func-
tions, the algorithm, providing logarithmic upper bound on FM(n) utilizes a
“majority vote” strategy.

Interestingly, if a learner witnessing AST is required to conjecture grammars
only for the languages in the class, then it cannot be made consistent with the
input seen so far: for such consistent learners, we show that, for some classes,
the lower bound on FM(n) is log n+ 1 (cf. Theorem 8).

For the automatic case, the definition of FM needs to be readjusted, as indices
of languages are strings, and the set of indices must be regular; in addition,
we require learners to be computable by finite automata (automatic). Accord-
ingly, we consider a (natural) ordering of all indices and define FM(w) as the
maximum of the number of mind changes on all languages with indices not
length-lexicographically greater than w with respect to the given ordering.

We have not been able to find a reasonable range of automatic classes for
which AST holds. Yet, we obtained some interesting partial results. First, we
show that, for any non-decreasing unbounded automatic function, there is an
automatic class that can be learned by an automatic learner with FM(w) not
exceeding this function; yet AST is not possible for this class, as the func-
tion provides also the matching lower bound on FM(w) (Theorem 14). Then
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we show that, for a range of automatic classes satisfying a simple condition,
FM(w) can be made smaller than any unbounded non-decreasing recursive
function if an automatic learner uses fat texts, where every input datum ap-
pears infinitely many times (Theorem 16). This result works also for automatic
learners using arbitrary input texts if the languages in the class satisfy the ad-
ditional condition of being pairwise infinitely different. Although, our results
in this section do not directly deal with a more practically interesting AST
problem for learning automatic classes with no strong restrictions on either
stream of input data or the class to be learnt, they certainly shed light on the
difficulties of solving the AST problem without these restrictions.

Mind changes have played an important role in other fields besides inductive
inference, such as in computational complexity to determine the powers of
Boolean Hierarchy, query order, etc. [KSW87,CGH+88,Bei91,HHW98].

2 Preliminaries

LetN denote the set of natural numbers. A language is a subset ofN . The sym-
bol ∅ denotes the empty set. Symbols ⊆,⊇,⊂,⊃, respectively, denote subset,
superset, proper subset and proper superset. Furthermore, max(S),min(S)
and card(S), respectively, denote the maximum, minimum and cardinality of
a set S, where max(∅) = 0 and min(∅) = ∞. We use card(S) ≤ ∗ to denote
that the cardinality of S is finite. When we say that two languages L and L′

are incomparable, then we mean that L 6⊆ L′ and L′ 6⊆ L.

We let 〈·, ·〉 stand for an arbitrary, computable, one-to-one encoding of all
pairs of natural numbers onto N [Rog67]. The functions π1 and π2 denote the
corresponding projection functions. Similarly, one can define 〈·, ·, . . . , ·〉 coding
multiple arguments, and the corresponding projection functions. We assume
these pairing functions to be monotonically increasing in all their arguments.

We let ϕ denote a fixed acceptable programming system for the partial com-
putable functions [Rog67]. The i-th partial computable function in the system
ϕ is denoted by ϕi. The set of all recursive functions is denoted by R. When
considering partial computable functions with multiple arguments, we assume
that the inputs are coded using the pairing function described above. Φ de-
notes a fixed Blum complexity measure [Blu67] for the ϕ system. ϕsi denotes
the function: ϕsi (x) = ϕi(x), if x < s and Φi(x) < s; otherwise ϕsi (x) is unde-
fined. We let Wi = domain(ϕi) and W s

i = domain(ϕsi ).

For a language L, L[m] = {x ≤ m : x ∈ L}. For a function h, h−1(m) denotes
the set of n such that h(n) = m.
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2.1 Learning Languages in the Limit

A finite sequence σ is a mapping from an initial segment of N into (N ∪{#}).
We let Λ denote the empty sequence. The content of σ, denoted content(σ), is
the set of natural numbers in the range of σ. The length of σ, denoted |σ|, is
the number of elements in the domain of σ. SEQ denotes the set of all finite
sequences. A text T is a mapping from N to (N ∪ {#}). The content of T ,
denoted content(T ), is the set of natural numbers in the range of T . A text T
is for a language L iff content(T ) = L. T [n] denotes the initial segment of T
of length n, and σ[n] denotes the initial segment of σ of length n. Intuitively,
#’s denote pauses in the presentation of data. A text T is called fat [OSW86]
if for every x ∈ content(T ), there exist infinitely many n such that T (n) = x.

A language learning machine is an algorithmic mapping from SEQ to N ∪{?}.
Intuitively, ? denotes that the learner does not have enough data to form
a conjecture. We let M, with or without decorations, range over learning
machines. If, for all but finitely many n, M(T [n]) = i, then we say that
M(T )↓ = i (or simply, M(T ) = i). If there exists an i such that M(T )↓ = i,
then we say that M(T ) converges (written: M(T )↓); otherwise, we say that
M(T ) diverges or M(T ) is undefined (written: M(T )↑).

Definition 1 [Gol67] (a) M TxtEx-identifies a language L (written: L ∈
TxtEx(M)) iff for all texts T for L, M(T )↓ and WM(T ) = L.

(b) M TxtEx-identifies a class L of languages iff M TxtEx-identifies each
L ∈ L.

(c) TxtEx = {L : (∃M)[M TxtEx-identifies L]}.

For a learner M, a text T , and n ∈ N , we let MCM(T [n]) denote the number
of mind changes [CS83,CL82] made by M on T [n], that is, card({r < n :
? 6= M(T [r]) 6= M(T [r + 1])}). Similarly, MCM(T ) denotes the number of
mind changes [CS83,CL82] made by M on T , that is, card({r :? 6= M(T [r]) 6=
M(T [r + 1])}). We let MCM(L) denote the maximum over MCM(T ) for all
texts T for L. One can assume without loss of generality that, if M(σ) 6=? and
σ ⊆ τ , then M(τ) 6=?.

A learner M is said to be consistent [Ang80,Bār74a] if for all σ ∈ SEQ,
content(σ) ⊆ WM(σ).

An indexed family is a family L = (Li)i∈N of languages such that, {(i, x) :
x ∈ Li} is recursive. When dealing with indexed families, we let FM(i) =
maximum over MCM(T ) on any input text T for a language Lj, j ≤ i.

Often, when learning indexed families, instead of using the acceptable pro-
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gramming system W0,W1, . . . as hypothesis space, we use an indexed family,
(Hi)i∈N , as hypothesis space. That is, in Definition 1(a), we requireHM(T ) = L,
instead of requiring WM(T ) = L. This model of learning is said to be class pre-
serving [LZ93a,ZZ08] if {Hi : i ∈ N} = {Li : i ∈ N}. In theorems in the
sequel, for positive learnability statements, by default, we take the hypothesis
space Hi = Li, unless specified otherwise. For non-learnability statements, we
allow acceptable programming system (Wi)i∈N as hypothesis space, (and thus
the diagonalization works against arbitrary hypothesis spaces).

We now formally define AST.

Definition 2 Suppose an indexed family L = (Li)i∈N is given. We say that
L satisfies absolute speed-up theorem (AST) if for any recursive function r(·)
and a learner M for L, there exists another learner M′ and a constant c such
that, for all n, r(FM′(n)) ≤ max({FM(n), c}).

3 Mind Change Speed-up for Learning Recursive Languages

Our main goal in this section is to establish conditions under which AST holds
for learning an indexed class of languages.

First, we note that AST does not hold for some indexed classes. As our first
theorem shows, some classes, for example, require linear number of mind
changes.

Theorem 3 Let Li = {j : j < i}. Let L = {Li : i ∈ N}. Then,

(a) L can be TxtEx-learnt by a learner M, such that FM(n) = n.

(b) Any learner M which TxtEx-learns L has FM(n) ≥ n.

Proof. (a) Consider a learner M such that M(T [n]) = 0, if content(T [n]) =
∅; otherwise M(T [n]) = max(content(T [n])) + 1. Clearly, M witnesses part
(a) (where the hypothesis space used by the learner M is (Li)i∈N).

(b) For any TxtEx-learner M for L, one can construct σi, i ∈ N , such that
σi ⊆ σi+1, content(σi) = Li, and M(σi) is a grammar for Li. Then MCM(σi) ≥
i.

Note that for any TxtEx-learner M for an indexed family L, for which
number of mind changes cannot be bounded by a constant, one can effec-
tively construct a recursive non-decreasing unbounded function h such that
h(n) ≤ FM(n). Thus, the following theorem gives conditions for AST holding
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for an indexed class (the actual AST is stated in the corollary).

Proof of the following theorem essentially uses the idea of delaying mind
change until it is safe, that is, until all grammars, except for at most one
grammar, upto a sufficiently large bound are found to be incompatible with
the input data.

Theorem 4 Suppose L = (Li)i∈N is an indexed family for which the equiva-
lence problem is decidable. Furthermore, assume that Li ⊆ Lj implies Li = Lj.

Suppose h is a monotonically non-decreasing recursive function, with range(h)
being unbounded.

Then, there exists a learner M which TxtEx-learns L such that FM(n) ≤
h(n).

Proof. The hypothesis space used by the learner M is (Li)i∈N . Let H(k) =
min({k′ : h(k′) > k}). Let M(Λ) =?. Inductively, define M(T [n+1]) as follows.

If for all j ≤ n, content(T [n+ 1]) 6⊆ Lj, then let M(T [n+ 1]) = M(T [n]).

Otherwise, let j be least such that content(T [n+1]) ⊆ Lj. If there exists a j′ <
H(MCM(T [n]) + 1), such that Lj 6= Lj′ (this can be tested, as the equivalence
problem is decidable) and content(T [n + 1]) ⊆ Lj′ , then let M(T [n + 1]) =
M(T [n]) (the learner M “does not want” to change mind to j, as there is a
different language containing the same initial segment of input data not “too
far” from j — as defined by the function H); otherwise let M(T [n+ 1]) = j.

Note that if M(T [n+1]) = j, then for all j′ < H(MCM(T [n])+1), Lj = Lj′ or
content(T [n+ 1]) 6⊆ Lj′ . That is, for all j′ such that h(j′) ≤ MCM(T [n]) + 1,
Lj = Lj′ or content(T [n+ 1]) 6⊆ Lj′ . Thus, if content(T [n+ 1]) ⊆ Li for an Li
different from Lj, i must be so large that MCM(T [n + 1]) < h(i). It follows
that, given any Li, for any text T for Li, MCM(T ) ≤ h(i). Furthermore, M
TxtEx-identifies Li on a text T for Li, as after it has received T [n+ 1] such
that content(T [n + 1]) 6⊆ Lj′ for any j′ such that h(j′) ≤ max({h(i), 1}), we
will have M(T [n+ 1]) = i.

Corollary 5 Suppose L = (Li)i∈N is an indexed family for which the equiva-
lence problem is decidable. Furthermore, assume that Li ⊆ Lj implies Li = Lj.
Then AST holds for L.

Proof. Suppose M TxtEx-identifies L and FM is the corresponding mind
change complexity function. The corollary is trivial if FM is bounded by a
constant. So assume FM is unbounded. Given a recursive function r, define
the recursive function h such that, h(0) = 0, and h(n + 1) = h(n) + 1 if
r(h(n) + 1) ≤ FM(n+ 1) as can be verified by running M on some σ of length
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at most n, such that content(σ) ⊆ {x : x ≤ n} ∩ Li, for some i ≤ n + 1;
h(n + 1) = h(n) otherwise. Thus, r(h(n)) ≤ FM(n), for n ≥ 1. Now the
corollary follows from Theorem 4.

The above corollary immediately gives the result of Bārzdiņš, Kinber and
Podnieks [BKP74] that, in the case of inductive inference of indexed classes of
recursive functions, decidability of the equivalence problem for the functions
in an indexed class suffices for AST.

Remark 6 The conditions of Theorem 4 are not necessary. For example, one
can easily transform any indexed class L = (Li)i∈N satisfying the conditions of
Theorem 4 into a class L′ = (L′j)j∈N with undecidable equivalence problem and
AST holding for it. For this, one takes either L′2j = L′2j+1 = {2x : x ∈ Lj} or
L′2j = {2x : x ∈ Lj} ∪ {2 ∗ 〈2j, rj〉+ 1} and L′2j+1 = {2x : x ∈ Lj} ∪ {2 ∗ 〈2j +
1, rj〉 + 1}, for some appropriate large enough rj, such that the i-th Turing
Machine does not correctly decide whether L′2j = L′2j+1.

Remark 7 The learner in the proof of Theorem 4 can be made consistent (for
indexed families), if the learner is allowed to output N as a conjecture. For
this, if the conjecture of the learner in the proof of Theorem 4 is inconsistent
(including for the initial conjecture ?), then it is replaced by a conjecture for
N . This potentially doubles the number of mind changes made, however this
problem can be easily addressed by replacing h(i) by b(h(i) .− 1)/2c in the
construction as in Theorem 4. Thus, the result of Theorem 4 holds even when
one requires the learners to be consistent, for any non-decreasing unbounded
recursive h which is ≥ 1 on all inputs.

However, the consistent learner, as in the above remark, outputting N from
time to time, may not be class preserving. In case one requires class preserving
consistency, the following theorem holds.

Theorem 8 Suppose Li = {〈x, bx〉 : x ∈ N}, where br is the (r + 1)-th least
significant bit of i in binary representation (the least significant bit is b0).

Let L = {Li : i ∈ N}.

Then,

(a) L can be class-preservingly consistently learnt by a learner M which makes
at most dlog(i+ 1)e mind changes on Li;

(b) For any class-preserving consistent learner M for L, FM(n) ≥ dlog(n+1)e.

Proof. (a) Consider a learner which, on input σ, outputs a grammar for Li,
where i is the least number such that Li is consistent with σ. Then, it is easy
to verify that the above learner satisfies (a).
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(b) Consider any learner M for L which is consistent. Suppose any m is given.
Then, let bx, for x < m, be defined as follows: if WM(〈0,b0〉,〈1,b1〉,...,〈x−1,bx−1〉)
contains 〈x, 0〉, then bx = 1; otherwise bx = 0. Then we have that for some i,
which can be written using at most m bits, M makes at least m mind changes
for consistently learning Li. Thus FM(n) is at least dlog(n+ 1)e.

Now we consider what happens if the conditions of Theorem 4 do not hold.
First, we consider the case when decidability of the equivalence problem still
holds, but subset chains of length more than 1 are allowed.

Proof of the following Theorem 9 essentially exploits the following idea. Note
that for any infinite set B and finite sequence σ, if content(σ) ⊆ B, and a
learner learns both B and B′, a finite subset of B containing content(σ), then
the learner makes a mind change, beyond σ, on some text for B extending
σ. For each learner Mi the proof uses a set L2i (representing B above). It
then constructs σ0, σ1, . . . , σr, with r ≤ h(2i), by potentially placing a finite
subset of L2i containing content(σj) into the class L in order to force h(2i)
mind changes by Mi (in case Mi learns L). It will be the case that at most
one of the above finite sets is actually placed in L and others are spoiled (by
making them non-subset of L2i), thus satisfying the requirement of having a
subset chain of length at most 2.

Theorem 9 Suppose h is any recursive increasing function. There exists an
indexed family L, where the indexing is one-to-one, for which there is no subset
chain of length more than 2, and there is no speedup. That is,

(a) L can be TxtEx-learnt, using a class preserving hypothesis space, by a
learner M, such that FM(i) ≤ h(i) + 1.

(b) For any M which TxtEx-identifies L, FM(2i) ≥ h(2i).

(Actually, the condition of not having a subset chain of length more than 2
can be made even stronger: If L ⊂ L′ are in the class, then L and L′ are
incomparable to every other language in the class).

Proof. Let L2i = {〈i, x〉 : x is odd}.

Let Ari = {〈i, x〉 : x is odd and x ≤ r}.

Let Br,y
i = {〈i, x〉 : x is odd and x ≤ r} ∪ {〈i, 2〈r, y〉〉}.

We let L = {Lj : j ∈ N}, where Lj, for odd j, are defined below. They will
be of the form Ari or Br,y

i which are chosen to be in the class based on the
following construction (where it is ensured that if Lj = Ari or Br,y

i , then j ≥ 2i
and r ≥ 1).
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It will be the case that, for any i, r, L contains at most one of Ari or Br,y
i

(for some y), and there are at most h(2i) + 1 many different r’s such that L
contains Ari or Br,y

i (for some y).

We now give the construction for Lj, for j being odd. The following process is
run in dovetailing fashion for each i. For a given i, the languages constructed
below are of the form Ari or Br,y

i . These are used to diagonalize against the
learner Mi.

All the processes have a common atomic procedure New(). This procedure,
when called with parameter i, returns the least odd number j ≥ 2i such that
j has not been returned by any other New() call before (to any process). Note
that for every i there is at least one call New(i) by the following process; thus
for each odd j, Lj gets defined.

Given i, construction for the languages in L which are of the form Ari or Br,y
i ,

for some r, y.
Initially, let σ0 = 〈i, 1〉.
For k = 0 to h(2i) do:
1. Let w = max({w′ : 〈i, w′〉 ∈ content(σk)}).
2. Let j = New(i).

We now define the language Lj which gets added to L. Initially, Lj
is Awi . Define more and more elements not in Awi to be not in Lj
until step 3 succeeds. If and when step 3 succeeds, go to step 4.

3. Search for a τ extending σk such that content(τ) ⊆ L2i, and Mi(σk) 6=
Mi(τ).

4. Let Lj = Bw,y
i , for an even y such that Lj(〈i, 2〈w, y〉〉) has not been

defined upto now and y > w.
5. Let σk+1 be an extension of τ such that content(σk+1) = Aw

′
i , for

some odd w′ > w such that w′ bounds the time/steps needed by the
underlying dovetailing process to get upto here in the construction.

EndFor

Note that if Mi TxtEx-learns L, then the search in step 3 will succeed.
Furthermore, only the last incomplete iteration of the “for” loop may generate
a subset of L2i. All other languages generated are incomparable to each other.
Thus the languages in L satisfy the “subset” constraints of the theorem.

Furthermore, note that, if Mi TxtEx-learns L, then the above construction
forces at least h(2i) many mind changes for Mi on some text for L2i (one
for each value of k in {1, 2, . . . , h(2i)}; note that the initial conjecture when
k = 0, may not be a mind change, as the Mi may start with ?). Thus, the
condition (b) of the theorem holds.
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To see (a), let g(i, k) denote a program which decides Lj, for the j as in
iteration k, step 2, of the for loop above if iteration k exists; otherwise it is a
program which decides L2i. Note that such a grammar can be easily defined,
as one can slowly follow L2i, and if one observes iteration k to have started,
then follow Lj as in there — see step 5 in the construction above which allows
us to do this.

Now, if 〈i, w〉 is the largest element seen in the input so far and w is even, then
the learner immediately knows the input language and can output a grammar
appropriately. On the other hand, if w is odd, then the learner simulates
the construction above for w time/steps to find the largest k such that the
construction above (in the process with parameter i), after w steps, reaches
iteration k in the loop (where, we take k to be 0 if the construction above
has not reached the start of the For loop). Now, if 〈i, w〉 belongs to Lj, where
j is as in iteration k of the loop in the construction above, then the learner
outputs g(i, k). Otherwise, it outputs g(i, k + 1).

It is easy to verify that the learner above TxtEx-learns the class L and makes
at most h(k) + 1 mind changes on a text for the language Lk.

Now we will study what can happen if the languages in an indexed class are
equal or incomparable, but the equivalence problem may be undecidable. We
begin with the following useful technical proposition.

Proposition 10 There exists a recursive function G such that, given any
m, n, e, `, σ such that ` ≤ |σ|, and content(σ) ⊆ {〈e, x〉 : 〈e, x〉 ≤ m},
G(e,m, n, `, σ) is a set S of 2n indices for decision procedures such that

(i) for each j ∈ S, content(σ) ⊆ ϕ−1j (1) ⊆ content(σ) ∪ {〈e, x〉 : 〈e, x〉 > m};

(ii) for all j, j′ ∈ S, ϕ−1j (1) and ϕ−1j′ (1) are either equal or incomparable;

(iii) if Me TxtEx-identifies ϕ−1j (1) for each j ∈ G(e,m, n, `, σ), and WMe(σ[`])

∩ {y : y ≤ m} 6= content(σ), then for some j ∈ S, for some text T for ϕ−1j (1),
which starts with σ, card({k ≥ ` : Me(T [k]) 6= Me(T [k + 1])}) ≥ n+ 1.

Proof. Let G be defined as follows. For any suitable parameters, suppose we
have defined G(·, ·, n′, ·, ·), for n′ < n. Then, we define G(e,m, n, `, σ) as follows
(where the parameters satisfy the hypothesis of the proposition). By implicit
use of effective s-m-n theorem, G(e,m, n, `, σ) is a set S of 2n indices which
behave as follows. Assume, ` ≤ |σ|, and content(σ) ⊆ {〈e, x〉 : 〈e, x〉 ≤ m}
(otherwise, G(e,m, n, `, σ) can be defined so that content(σ) = ϕ−1(j) for each
j ∈ G(e,m, n, `, σ)).

If n = 0, then we let G(e,m, n, `, σ) enumerate a set S of one index which is
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a decision procedure for content(σ).

Otherwise, (i.e., n > 0), initially, for each j ∈ S, for y ≤ 〈e,m + 1〉, let
ϕj(y) = 1 iff y ∈ content(σ) ∪ {〈e,m + 1〉}. Then, for each j ∈ S, for larger
and larger y > 〈e,m + 1〉, we let ϕj(y) = 0, until a σ′ extending σ is found
such that content(σ′) = content(σ) ∪ {〈e,m + 1〉}, and Me(σ

′) 6= Me(σ[`]).
If and when such a σ′ is found let m′ = max({y : ϕj(y) has been defined so
far for some j ∈ S}). Let σ1 be an extension of σ′ such that content(σ1) =
content(σ) ∪ {〈e,m + 1〉, 〈e,m′ + 1〉}. Let σ2 be an extension of σ′ such that
content(σ2) = content(σ) ∪ {〈e,m + 1〉, 〈e,m′ + 2〉}. Let 2n−1 members of S
follow the 2n−1 members of G(e, 〈e,m′ + 2〉, n− 1, |σ′|, σ1) and the remaining
2n−1 members of S follow the 2n−1 members of G(e, 〈e,m′+ 2〉, n− 1, |σ′|, σ2).
Note that WMe(σ′) ∩ {y : y ≤ 〈e,m′ + 2〉} is not equal to at least one of
content(σ1) and content(σ2). It is now easy to verify by induction that G
satisfies the requirements of the proposition.

Using the above proposition, we can now show that, for some class with unde-
cidable equivalence problem and equal or incomparable languages, the lower
bound on FM(n) is at least log n − o(log n), and, thus, AST cannot hold for
such classes.

Proofs of the next two theorems are based on techniques used in [BF74,FBP91]
for similar theorems for function learning.

Theorem 11 Given any non-decreasing recursive function f with unbounded
range, there exists an indexed family L = (Li)i∈N , where, for all j and k,
either Lj = Lk or Lj and Lk are incomparable, such that for all M TxtEx-
identifying L, FM(n) ≥ log n− f(n) for infinitely many n.

Proof. Without loss of generality assume that M(Λ) =? for the given learner
M. Let n0 = 0, and ni+1 = ni + 2r such that r > log ni+1 − f(ni+1). Let G
be as in Proposition 10. For each i, let Lj, ni ≤ j < ni+1, follow the ni+1 −
ni languages ϕ−1k (1), k ∈ G(π1(i), 0, log(ni+1 − ni), 0,Λ) (which need not be
distinct). Thus by Proposition 10, for all i, FMπ1(i)

(ni+1) ≥ log ni+1− f(ni+1).
Now, as M is equivalent to some Mp, we have that for infinitely many i,
such that π1(i) = p, FM(ni+1) = FMπ1(i)

(ni+1) ≥ log ni+1 − f(ni+1). Theorem
follows.

The next theorem shows that, yet, every indexed class with equal or incom-
parable languages can be learned using approximately log n mind changes.

Theorem 12 Every indexed family L = (Li)i∈N , such that for all i, j, either
Li = Lj or Li and Lj are incomparable, can be TxtEx-learnt by a learner M,
using a class preserving hypothesis space, such that FM(n) ≤ log n+log log n+
o(log log n).
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(Here, for ease of notation, we take log n and log log n to be 1, for n ≤ 2).
Proof. Let

pn =
c

n log n(log log n)2

where c > 0 is such that
∑
n pn ≤ 1, and we take log n and log log n to be 1

for n ≤ 2.

Let wn be a rational number, effectively computed from n such that pn/2 ≤
wn ≤ pn.

Let wt(S) =
∑{wj : j ∈ S}. Let

αi =
1

2i
+

i∑
j=0

1

2i+2j

ri =
1

23i+2

Note that αi+1 = 1
2
(αi + ri).

We think of a learner M as having been given the whole text T , and working
in stages, outputting conjectures in each stage.

Initially, S0 = ∅, and i = 0.

Inductively, the following invariants will be satisfied.

(IA) for all j ∈ Si, content(T ) 6⊆ Lj.

(IB) wt(N − Si) ≤ αi.

For any finite set S, let majgram(S) denote the majority weight follower
among decision procedures in S. That is, (a) majgram(S) is a decision pro-
cedure for some Lj, j ∈ S, and (b) if there exists a S ′ ⊆ S, such that
wt(S ′) > wt(S)/2, and for all j, j′ ∈ S ′, Lj = L′j, then majgram(S) is a
decision procedure for Lj, for some j ∈ S ′.

At stage i (starting with stage 0), M first searches for a Xi ⊆ N−Si, such that
wt(N − Si−Xi) ≤ ri. Then, the learner outputs majgram(Xi). It then waits
until it finds a subset Yi ⊆ Xi such that wt(Yi) ≥ 1

2
(wt(Xi)), and each j ∈ Yi

satisfies content(T ) 6⊆ Lj. At which point the learner computes Si+1 = Si∪Yi,
and goes to stage i+ 1.

It is easy to verify that (IA) and (IB) are satisfied.

Now consider any Lk and text T for Lk. Clearly, the learner converges, as
wt({k}) ≥ c

2k log k(log log k)2
, and thus, by (IA) and (IB), we cannot have infinitely
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many stages. Furthermore, for the last stage i that is executed, we must have
that there is no Yi ⊆ Xi such that wt(Yi) ≥ 1

2
wt(Xi) and for all j ∈ Yi,

content(T ) 6⊆ Lj. It immediately follows that wt(Zi) > 1
2
(wt(Xi)), where

Zi = {j ∈ Xi : Lk = Lj}. Thus, majgram(Xi) is a decision procedure for Lk.

Thus, M TxtEx-identifies L.

Furthermore, the number of stages i executed by the learner (and, thus, the
number of mind changes made by M on T ) satisfies 7

3∗2i ≥ αi ≥ wt({k}) ≥
wk ≥ c

2k log k(log log k)2
. Thus, i ≤ log k + log log k + o(log log k).

Furthermore, one can modify the construction in the above theorem to bound
FM(n) by log n+ log log n+ . . .+ o(log log log . . . log n), by using

pn =
c

n log n(log log n) . . . (log log log . . . log n)2
.

Note that the above result does not hold if one requires, on the positive side,
that the learner uses the given indexing of L as the hypothesis space. This
follows from the corresponding result for function learning from [Bār74b].

4 Automatic Classes and Learning

In this section, we introduce necessary concepts for automatic learning of
automatic classes.

Let Σ denote a non-empty finite alphabet. Let Σ∗ denote the set of all strings
over the alphabet Σ. Let ε denote the empty string. We let |w| denote the
length of string w. We fix some arbitrary order among the members of Σ.
For strings x and y, x <lex y denotes that x is lexicographically (that is, in
dictionary order) before y. The relation x <ll y denotes that x is length-lexi-
cographically before y, that is, either |x| < |y|, or |x| = |y| and x <lex y.
When we consider sets of strings, min(S) and max(S) denote the length-
lexicographically minimal and maximal strings in S, where max(∅) = ε and
min(∅) is undefined. We let succL(w) and predL(w) denote the successor and
predecessor of w in the length-lexicographical ordering of the language L,
where predL(w) is undefined for the length-lexicographically least string in L,
and succL(w) is undefined for the length-lexicographically maximal string in
L (if any). For a given Σ and w ∈ Σ∗, let ord(w) denote the number of strings
in Σ∗ which are <ll w. We let cfL denote the characteristic function of L.

The convolution (see [KN95]) of two strings x, y ∈ Σ∗, conv(x, y), is defined as
the string (x(0), y(0))(x(1), y(1)) . . . (x(n− 1), y(n− 1)), where each pair is a
symbol from (Σ ∪ {�})2 and n = max(|x|, |y|). The special symbol � 6∈ Σ
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is appended (as many times as needed) to the shorter string in order to
make both strings to be of the same length n. Similarly, conv can be de-
fined on multiple arguments. An n-ary relation R or an m-ary function f
is called automatic if the sets {conv(x1, x2, . . . , xn) : R(x1, x2, . . . , xn)} and
{conv(x1, x2, . . . , xm, y) : f(x1, x2, . . . , xm) = y}, respectively, are regular.

A family of languages over alphabet Σ, {Lα : α ∈ I} is said to be automatic
(see [KN95]) iff I is a regular set, Lα ⊆ Σ∗ for each α ∈ I, and {conv(α, x) :
x ∈ Lα} is regular.

When we are considering learning of automatic classes, the elements of lan-
guages are strings rather than natural numbers. Most of the definitions and
notations discussed above for learning languages over natural numbers carry
over to the case of learning languages over strings, with numbers being replaced
by strings; we omit the details. Below we describe a special kind of learner,
called automatic learner ([JLS10,CJO+11]). An automatic learner is an au-
tomatic mapping from previous memory and current datum to new memory
and new conjecture. That is, the relation (previous memory, current datum,
new memory, new conjecture) is automatic. Here memory is a string over
some alphabet Γ. Suppose T is the input text for the automatic learner Q.
Let (memT

n+1, hyp
T
n+1) = Q(memT

n , T (n)), where memT
0 and hypT0 are some

default initial memory mem0 and the default initial hypothesis hyp0 of the
learner Q. We can consider the hypothesis hypTn of the learner Q as its output
on the input T [n], and thus the learnability notions discussed in Section 2.1
above can be taken over to the setting of automatic learners. Below we let Q
range over automatic learners. Here are some examples:

(a) Let Σ = {0, 1}. Let Lα = {x : α ≤ll x}. Then, L = {Lα : α ∈ {0, 1}∗} is au-
tomatically learnable. The learner just remembers the length-lexicographically
least string in the input text (which is also its conjecture).

(b) Let Σ = {0, 1}. Let Lconv(α,β) = {x : α ≤ll x ≤ll β}, for α, β ∈ {0, 1}∗.
Then, L = {Lconv(α,β) : α, β ∈ {0, 1}∗} is automatically learnable. The
learner just remembers (a convolution of) the length-lexicographically least
and length-lexicographically largest element in the input text (this convolu-
tion is also its conjecture).

(c) Let Σ = {0, 1}. Let Lα = {x : |x| = |α|, x 6= α}. Then, L = {Lα : α ∈
{0, 1}∗} is not automatically learnable [JLS10].

When dealing with automatic families, we let FM(w) = maximum over the
mind changes made by the learner M on any input text for a language Lu,
u ≤ll w.

Note that for learning automatic families, as long as memory is not restricted
(except due to the definition of automatic learner), one can assume the hy-
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pothesis space to be the same as the automatic class being learnt (this holds as
one can decide whether Hi = H ′j, for any given automatic families (Hi)i∈I and
(H ′j)j∈I′). Thus, for the next section, for all the results the hypothesis space
used is the automatic family being learnt. Furthermore, one can also assume,
without loss of generality, that the automatic class is one-to-one (that is, it
has at most one index for any language).

5 Mind Change Speed-up for Automatic Classes

In the sequel, pairing is assumed to be done via convolution, that is, for strings
x1, x2, . . ., (x1, x2, . . .) is taken as conv(x1, x2, . . .). We begin with an example
of an automatic class containing languages over the unary alphabet with linear
lower and upper bounds on the number of mind changes.

Theorem 13 Let L0i = {0j : j < i}. Let L = {L0i : i ∈ N}. Then,

(a) L can be TxtEx-learnt by an automatic learner Q such that FQ(0n) = n.

(b) Any learner M which TxtEx-learns L has FM(0n) ≥ n.

Proof. (a) Consider a learner Q which starts with intial conjecture and
initial memory 00. It will be the case that the memory and conjecture of Q
will always be the same. Q, on previous memory 0j and current datum 0i, has
new memory and new conjecture as 0max({i+1,j}). It is easy to verify that Q
witnesses (a).

(b) For any TxtEx-learner M for L, one can construct σi, i ∈ N , such
that σi ⊆ σi+1, content(σi) = L0i , and M(σi) is a grammar for L0i . Then
MCM(σi) ≥ i.

Now we show that, for any automatic function h (with the range containing
strings over a unary alphabet), there is an automatic class that can be learned
automatically with h (more precisely, ord(h(0i+1, ε)+1) being the tight bound
on the number of mind changes).

Theorem 14 Suppose h is a non-decreasing automatic function with range(h)
⊆ 0+. Let

L(0i+1,ε) = {(0i+1, 1j) : j ∈ N},

L(0i+1,1j+1) = {(0i+1, 1r) : r < j + 1},

L(ε,ε) = ∅, and
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L = {L(ε,ε)} ∪ {L(0i+1,1j) : i ∈ N, j ≤ ord(h(0i+1, ε))}.

Then,

(a) L can be TxtEx-learnt by an automatic learner Q, such that FQ(0i+1, ε) ≤
ord(h(0i+1, ε)) + 1.

(b) Any learner M which TxtEx-learns L has FM(0i+1, ε) ≥ ord(h(0i+1, ε))+
1.

Proof. (a) Let Q be a learner which starts with initial memory and initial
conjecture as (ε, ε). It will be the case that the memory and conjecture of Q
will always be the same. The learner Q does not change its memory/conjecture
on any input datum which is not of the form (0i+1, 1j). The new memory and
conjecture of Q on current datum (0i+1, 1j) is defined as follows:

• if j ≥ ord(h(0i+1, ε)) or previous memory is (0i+1, ε), then new memory and
conjecture are (0i+1, ε);
• if j < ord(h(0i+1, ε)), and previous memory is (0i+1, 1j

′+1), with j′ ≤ j, or
previous memory is (ε, ε), then new memory and conjecture are (0i+1, 1j+1);
• new memory and conjecture are same as the previous memory, otherwise.

(This case is taken even for the case when the current datum is #.)

It is easy to verify that Q satisfies the requirements. Here, note that the num-
ber of mind changes made by Q on input L(0i+1,1j), for 1 ≤ j ≤ ord(h(0i+1, ε)),
is bounded by j.

(b) Follows as learning L0i+1,ε will need ord(h(0i+1, ε)) + 1 mind changes due
to {∅} ∪ {L(0i+1,1j) : i ∈ N, 1 ≤ j ≤ ord(h(0i+1, ε))} ⊆ L.

Now our goal is to show that, under certain natural conditions, mind change
speed-up for automatic classes is possible if an automatic learner uses fat texts.

Proofs of Theorems 15 and 16 are the most difficult in this paper. In these
theorems, on one hand, the class L considered is automatic (so equivalence,
subset problem, etc., among languages in the class are decidable), but, on
the other hand, the learner is automatic and we also allow some subset re-
lations among languages. The main difficulty is because of the learner being
automatic, thus forgetting past data. The proof again uses delaying of mind
change until it is safe, by cancelling all but c wrong grammars upto some
large enough bound (in a way similar to Proof for Theorem 4). Here c is a
constant such that at most c different languages in the class are related by
subset/superset relation with any particular language of the class. Then, the
learner finds upto c2 many grammars which may be for the input language,
in case any of the languages, with indices below the large enough bound men-
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tioned above, contains the input language. The learner then proceeds to try
these languages one by one (where smaller languages are tried first). Due to
forgetting of past data by automatic learners, one needs a fat text to be able
to cancel out wrong grammars. Formal details follow. The proof for arbitrary
speed-up (Theorem 16) is technically involved, and thus we begin by showing
a simpler version first.

Theorem 15 Suppose L = {Lα : α ∈ I} is an automatic family (without loss
of generality, assume one-to-one). Suppose constants k and c are given, where
for all L ∈ L, card({L′ ∈ L : L ⊆ L′ or L′ ⊆ L}) ≤ c.

Then, there exists an automatic learner Q which learns L from fat texts such
that (for learning from fat texts) FQ(α) ≤ max({d|α|/ke, 1}) ∗ c2 − 1.

Proof. Without loss of generality assume that there are at least c+1 indices
of length at most k. The learnerQ defined below operates in phases. Intuitively,
memory of Q is of the form

(0i, 0p, α1, α2, . . . , αc+1, β1, β2, . . . , βc2 , prevconj),

where

• (i) p = k ∗ i;
• (ii) αj <ll αj+1, for 1 ≤ j < c;
• (iii) αc ≤ll αc+1;
• (iv) prevconj is the previous conjecture;
• (v) Q has already made (i−1)-phases (each producing upto c2 conjectures),

and is now in its i-th phase;
• (vi) for all α such that |α| ≤ p and α 6∈ {αj : 1 ≤ j ≤ c} ∪ {γ : αc ≤ll γ ≤ll
αc+1}, Q has already observed a string in the input which is not in Lα;
• (vii) in case αc = αc+1, β1, . . . , βc2 denote the c2 possible members β of I

such that Lβ is contained in one of Lαj , 1 ≤ j ≤ c (in case of < c2 such
members, we use # for the remaining elements); furthermore, if Lβj ⊆ Lβj′ ,
then j ≤ j′;
• (viii) in case αc = αc+1, prevconj = βj for some j such that 1 ≤ j ≤ c2, and

for 1 ≤ j′ < j, Q has already observed a string in the input which is not in
Lβj′ .

Initially, the memory of Q is (01, 0k, α1, α2, α3, . . . , αc, αc+1,#,#, . . . ,#, ?),
where αc+1 is the length-lexicographically largest element of I of length at
most k, and α1, . . . , αc are the c length-lexicographically least elements of I.
The initial conjecture of Q is ?.

At any point during the learning process, if the new input datum is w and the
previous memory is (0i, 0p, α1, α2, . . . , αc+1, β1, β2, . . . , βc2 , prevconj), then Q
behaves as follows:
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• (1.) If αc 6= αc+1, and w 6∈ Lαj for some least j with 1 ≤ j ≤ c+ 1, then
· (1.1.) If j = c+1, then let α′c+1 = predI(αc+1), and α′r = αr for 1 ≤ r ≤ c;

otherwise, let (i) α′r = αr, for 1 ≤ r < j, (ii) α′r = αr+1, for j ≤ r < c,
(iii) α′c = succI(αc), and (iv) α′c+1 = αc+1.
· (1.2.) If α′c 6= α′c+1, then let β1 = . . . = βc2 = #, and let new mem-

ory be (0i, 0p, α′1, . . . , α
′
c+1, β1, . . . , βc2 , prevconj) and let new conjecture

be prevconj.
· (1.3.) else (i.e., α′c = α′c+1), let β1, . . . , βc2 denote the c2 possible members
β of I such that Lβ is contained in one of Lα′j , 1 ≤ j ≤ c; furthermore, if

Lβj ⊆ Lβj′ , then j ≤ j′; If there are several possible orders to choose βj
satisfying the above, then choose the lexicographically least order among
them. (In case of < c2 members β of I such that Lβ is contained in some
Lαj , we use # for the remaining β’s); Conjecture β1, and let new memory
be (0i, 0p, α′1, . . . , α

′
c+1, β1, . . . , βc2 , β1).

• (2.) else (if αc = αc+1), then
· if w 6∈ Lprevconj, then

(2.1.) if prevconj = βj, and j < c2 and βj+1 6= #, then let new
memory be (0i, 0p, α1, α2, . . . , αc+1, β1, β2, . . . , βc2 , βj+1) and the new
conjecture be βj+1.
(2.2.) otherwise, let new memory be

(0i+1, 0p+k, α′1, α
′
2, . . . , α

′
c+1,#,#, . . . ,#, prevconj),

where α′c+1 is the length-lexicographically largest element of I of
length at most p+k, and α′1, . . . , α

′
c are the c length-lexicographically

least elements of I. Conjecture prevconj.
· else (i.e., w ∈ Lprevconj) repeat the old memory and conjecture.
• (3.) else (i.e., αc 6= αc+1, and w ∈ Lαj for all j with 1 ≤ j ≤ c + 1) repeat

the old memory and conjecture.

Intuitively, for any w, in step (1) the learner (over several inputs) tries to
eliminate all but c of the potential conjectures of length at most p; all the
eliminated conjectures do not contain the input language (see steps 1, 1.1
and 1.2). Once the learner is left with only c conjectures of length at most p,
which may contain the input language, it finds the indices of all the potential
c2 many languages which may be for the input language (unless none of the
languages, with index of length at most p, contain the input language) (see
step 1.3).

After this, in steps 1.3, 2 and 2.1, the learner serially tries all the above c2

many languages which could be the input language. (Note that, the testing
of these languages is done in a specific order so that subsets are tried earlier
than the supersets.) Then, the learner eliminates them one by one, until it
finds the correct language or observes that none of them could contain the
input language (i.e., all languages in L which contain the input have indices
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of length larger than p). In which case the learner goes to the next (i+ 1-th)
phase (step 2.2).

It is now easy to verify that the above learner TxtEx-identifies L on fat texts,
and on Lα makes at most max({d|α|/ke, 1}) ∗ c2 − 1 mind changes (using
max({d|α|/ke, 1}) phases, each of which may make upto c2 conjectures).

Note that the above proof uses fat texts to be able to check whether a language
in the automatic family contains the input language or not.

In the above theorem, one can replace c2 by c, if, instead of using conjectures
βj one by one, the learner (i) keeps track of βj such that it hasn’t seen a non-
element of Lβj , and (ii) outputs a conjecture βj if the learner hasn’t seen a
non-element of Lβj and Lβj is contained in every other Lβj′ for which it hasn’t
seen a non-element. This ensures that in steps 1.3 and 2, for each value of i,
at most c conjectures are output.

Furthermore, we can generalize the theorem above to beat (almost every-
where) mind changes given by any non-decreasing unbounded recursive func-
tion as follows. Suppose h is a recursive non-decreasing unbounded function.
Let H(i) = min({j : h(j) > i}). Suppose M is a one tape Turing Machine
which computes the mapping 0i to 0H(i). The snap shot of the computation
done by the Turing Machine, at any point of time, can be given by its instan-
taneous description (ID) [HU79]. Note that, for a fixed TM M , the function to
compute the next ID from the previous ID for TM M , nextIDM(ID), is au-
tomatic. Now, instead of using memory as in the proof of the above theorem,
we use memory of the form (0i, s, temp, α1, α2, . . . , αc+1, β1, . . . , βc2 , prevconj),
where initially, the memory is (01, s0, 1, α1, α2, . . . , αc+1, β1, . . . , βc2 , prevconj),
where s0 is the initial ID of the TM M on input 01 (values of α1, α2, . . . ,
are irrelevant at the beginning). We have an additional step 0 in the con-
struction. In case temp=1, this step computes nextIDM(s); in the case that
nextIDM(s) is not a halting ID, the learner’s new memory is updated to
(0i, nextIDM(s), temp, α1, α2, . . . , αc+1, β1, . . . , βc2 , prevconj); otherwise, first
the learner determines 0p, the content of the tape after M halts (this can be
done using nextIDM(s)) and updates its memory to (0i, 0p, 0, α1, α2, . . . , αc+1,
β1, . . . , βc2 , prevconj), where α1, . . . , αc are the length-lexicographically least
members of I, αc+1 is the length-lexicographically largest element of I of
the length at most p, and β1, . . . , βc2 = #. The remaining steps are the
same as in the proof of the theorem above, except that they are applica-
ble when temp = 0, and step 2.2. is updated to replace the new memory by,
(0i+1, s, 1, α1, α2, . . . , αc+1, β1, . . . , βc2 , prevconj), where s is the initial ID of
M on input 0i+1 (value of α1, . . . , β1, . . . is irrelevant at this point, as they will
be updated in step 0).

Thus, we have the following theorem.
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Theorem 16 Suppose L = {Lα : α ∈ I} is an automatic family (without loss
of generality assume one-to-one). Suppose a non-decreasing unbounded recur-
sive function h and a constant c are given, where for all L ∈ L, card({L′ ∈
L : L ⊆ L′ or L′ ⊆ L}) ≤ c.

Then, there exists an automatic learner Q which learns L from fat texts such
that (for learning from fat texts) FQ(α) ≤ max({h(|α|), 1}) ∗ c− 1.

The above result also works if, instead of using fat texts, the languages in
the class are required to be pairwise infinitely different (in addition to the
requirement: for all L ∈ L, card({L′ ∈ L : L ⊆ L′ or L′ ⊆ L}) ≤ c, for some
constant c). For example, when the languages in the class are cylindrical, as
in the case of each L ∈ L being of the form {(x, a) : x ∈ L′, a ∈ 0∗}, for some
corresponding L′. Thus, we have the following mind change speed-up result
holding for automatic learning from arbitrary texts.

Theorem 17 Suppose L = {Lα : α ∈ I} is an automatic family (without loss
of generality assume one-to-one).

Suppose non-decreasing unbounded recursive functions h and constant c are
given, where for all L ∈ L, card({L′ ∈ L : L ⊆ L′ or L′ ⊆ L}) ≤ c.

Furthermore, suppose that the languages in the class are pairwise infinitely
different.

Then, there exists an automatic learner Q which learns L from texts such that
FQ(α) ≤ max({h(|α|), 1}) ∗ c− 1.

Another case where the above result applies is when the alphabet used for the
languages is of cardinality 1, that is |Σ| = 1 (in addition to the requirement
that for all L ∈ L, card({L′ ∈ L : L ⊆ L′ or L′ ⊆ L}) ≤ c, for some constant
c). This holds, as for an alphabet of the size 1, an automatic learner can
remember in the memory all strings seen [JLS10].

6 Conclusion

In 1972, Bārzdiņš and Freivalds introduced the maximum number of mind
changes on the first n functions as a measure of efficiency of learning in the
limit. Our interest in this measure of complexity for learning indexed classes
of languages was revived by growing interest in automatic learning of auto-
matic classes of languages. As mind change speed-up effects, discussed and
resolved for learning recursive functions in [BKP74], surprisingly, have never
been explored for learning languages from positive data, we, first, considered
these issues for the corresponding framework. We also give a sufficient condi-
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tion for a family of automatic classes for which speed-up is possible if either
an automatic learner uses fat texts, or the languages in the classes in question
differ infinitely. Yet the general problem of whether there are wide natural
automatic classes for which mind change speed-up is possible remains open.

One can note that the mind change speed-up in both frameworks considered
in our paper is achieved when a learner, choosing a new conjecture, accesses
increasingly more data from the underlying numbering of languages. It would
be very interesting to find out if the amount of such data can be measured
in some form and what is the actual quantitative relationship between this
amount and the number of mind changes.
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