
Characterizing Language Identification by

Standardizing Operations

Sanjay Jain

Department of Computer and Information Sciences

University of Delaware

Newark, Delaware 19716

USA

Email: sjain@cis.udel.edu

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW, 2033

Australia

Email: arun@spectrum.cs.unsw.oz.au

Abstract

Notions from formal language learning theory are characterized in terms

of standardizing operations on classes of recursively enumerable languages.

Algorithmic identification in the limit of grammars from text presentation of

recursively enumerable languages is a central paradigm of language learning.

A mapping, F, from the set of all grammars into the set of all grammars is

a standardizing operation on a class of recursively enumerable languages L

just in case F maps any grammar for any language L ∈ L to a canonical

grammar for L. Investigating connections between these two notions is the

subject of this paper.

1

1 Introduction

A child (modeled as a machine) receives (in arbitrary order) all the well-

defined strings of a language (a text for the language) L, and simultaneously

conjectures a succession of candidate grammars for the language being re-

ceived. A criterion of success is for the child to eventually conjecture a

correct grammar for L and to never change its conjecture thereafter. If, in

this scenario for success, the child machine is replaced by an algorithmic

machine M, then we say that M TxtEx-identifies L. TxtEx is defined to

be the class of sets L of recursively enumerable languages such that some

machine TxtEx-identifies each member of L.

TxtEx-identification is essentially Gold’s [10] seminal notion of identi-

fication. The reader is directed to [18, 23, 22, 16] for a discussion of the

influence of this paradigm on contemporary theories of natural language.

The present paper studies characterizations of the class TxtEx and some

of its extensions. The usefulness of this study is apparent as similar char-

acterizations have been used by Freivalds [5], Chen [4], and Case, Jain, and

Sharma [3] to study program size restrictions in computational learning.

Our study is motivated by analogous work of Freivalds, Kinber, and Wieha-

gen [6] in the context of algorithmic inference of programs from graphs of

recursive functions.

We now motivate the notion of a standardizing operation on a class of

recursively enumerable (r.e.) languages. L, a class of languages, is effectively

standardizable just in case there exists a partial recursive function p such

that for all L ∈ L, for all i and j such that i and j are grammars for L,

p(i)↓ = p(j)↓ and p(i) is a grammar for L. We say that a recursive function

r with two arguments defines a limit-effective language operation on a class

of recursively enumerable languages L just in case for any language L in

L and any grammar i for L, limn→∞ r(i, n) exists and is the same for all

grammars of L. If, in the definition of limit-effective language operation,

the limiting value also happens to be a grammar for L, then r defines a

2

standardizing limit-effective language operation on L. We say that L is limit-

effective language standardizable just in case there exists a standardizing

limit-effective language operation on L. Lels is defined to be the class

of sets L of recursively enumerable languages such that L is limit-effective

language standardizable.

It is shown that TxtEx is properly contained in Lels. To characterize

TxtEx in terms of standardizing operations, we define a restricted form

of standardizing limit-effective language operation (viz., continuously limit-

effective language standardizable operation), such that the corresponding

class (viz., Clels) is exactly equal to TxtEx.

Since, TxtEx is properly contained in Lels, to get a characterization

of Lels in terms of language learning notions, we borrow extensions on

the theme of TxtEx-identification from [13]. We require that a learning

machine, trying to infer a grammar for a language from its text , be pre-

sented with an upper-bound on the minimal grammar for the language be-

ing learned. This is plausible additional information, as an upper-bound

on the size of “human brain storage” can be thought of as an upper-bound

on the size of a grammar for any language that can be learned by a child.

This generalization of Gold’s notion gives us a new criterion for language

learning. A machine is said to TxtBex-identify a language L just in case

the machine, when fed any text for L and an upper-bound on the mini-

mal grammar for L, converges to a correct grammar for L (B stands for

“Bound”). TxtBex is defined to be the class of sets L of recursively enu-

merable languages such that some machine TxtBex-identifies each language

in L. In the definition of TxtBex-identification if we further require that

the machine infer the same grammar for any upper-bound, we get a new

criteria of language learning called TxtUniBex-identification (Uni stands

for “Unique”). The class TxtUniBex can be similarly defined. We show

that the class TxtUniBex is exactly equal to Lels, and Lels is properly

contained in TxtBex.

3

2 Notation

Recursion-theoretic concepts not explained below are treated in [20]. N is

the set of natural numbers. a, b, c, i, j, k, l, m, n, x, and y, with or without

decorations (decorations are subscripts, superscripts and the like), range

over natural numbers unless otherwise specified. ⊆,⊂,⊇,⊃, denote subset,

proper subset, superset and proper superset respectively. ∈ denotes ‘element

of.’ Na denotes the set {x ∈ N | x ≤ a}. ∅ denotes the empty set. S, with

or without decorations, ranges over subsets of N . Dx denotes the finite

set whose canonical index is x [20]. According to Rogers’ scheme, D0 = ∅.

card(S) denotes the cardinality of the set S. max(),min() denote the

maximum and minimum of a set, respectively. By convention max(∅) = 0

and min(∅) = ∞. µx[Q(x)] is the least integer x such that the predicate

Q(x) is true, if such a least integer exists; µx[Q(x)] is undefined otherwise.

For any set A, 2A denotes the power set of A.

p, q range over partial recursive functions. f, g, r, s range over total re-

cursive functions. The set of all total recursive functions of one variable is

denoted by R. For n > 0, Rn denotes the set of total recursive functions of

n variables. For a partial recursive function p, domain(p) denotes the do-

main of p and range(p) denotes the range of p. ↓ denotes defined. ↑ denotes

undefined. p(x)↓ iff x ∈ domain(p); p(x)↑ otherwise.

L denotes a recursively enumerable (r.e.) subset of N (also referred to

as an r.e. language). E denotes the class of all r.e. languages. L, with

or without decorations, ranges over subsets of E . ϕ denotes a standard

acceptable programming system (also referred to as standard acceptable

numbering) [19, 20]. ϕi denotes the partial recursive function computed by

the ith program in the standard acceptable programming system ϕ. We often

refer to the ith program in the ϕ system as ϕ-program i. MinProg(f) denotes

the minimal program for f in the ϕ programming system. Wi denotes the

domain of ϕi. Wi is, then, the r.e. set/language (⊆ N) accepted by ϕ-

program i. We can (and do) also think of i as (coding) a (type 0 [11])

4

grammar for generating Wi. MinGram(L) denotes the minimal grammar for

L in the ϕ programming system. Φ denotes an arbitrary Blum complexity

measure [2] for ϕ. Wi,n denotes the set {x < n | Φi(x) < n}.

〈i, j〉 stands for an arbitrary computable one to one encoding of all pairs

of natural numbers onto N [20]. Corresponding projection functions are π1

and π2. (∀i, j ∈ N) [π1(〈i, j〉) = i and π2(〈i, j〉) = j and 〈π1(x), π2(x)〉 = x].

Similarly, 〈i1, i2, . . . , in〉 denotes a computable one to one encoding of all n-

tuples onto N . It shold be noted that we will sometimes abuse the notation

slightly and refer to 〈x, y〉 as 〈Dx, y〉, i.e., we will write the name of the finite

set in the first argument instead of its canonical index. This is for simplicity

of presentation and it will be clear when we resort to such an interpretation.

The quantifiers ‘
∞

∀ ’ and ‘
∞

∃ ’ mean ‘for all but finitely many’ and ‘there

exists infinitely many’, respectively.

3 Preliminaries

In this section, we briefly describe notions and results from the recursion

theoretic machine learning literature. We first introduce a notion that fa-

cilitates discussion about elements of a language being fed to a learning

machine.

A finite sequence is a mapping from {x | x < a}, for some a ∈ N , into

(N ∪ {#}). We let σ and τ , with or without decorations, range over finite

sequences. The content of a finite sequence σ, denoted content(σ), is the

set of natural numbers in the range of σ. Intuitively, #’s represent pauses

in the presentation of data. The length of σ, denoted |σ|, is the number of

elements in the domain of σ. σ ⊂ τ means that σ is an initial sequence of

τ . SEQ denotes the set of all finite sequences.

Definition 1 A learning machine is an algorithmic device which computes

a mapping from SEQ into N .

We let M, with or without decorations, range over learning machines.

5

Definition 2 A text T for a language L is a mapping from N into (N∪{#})

such that L is the set of natural numbers in the range of T . The content of

a text T , denoted content(T), is the set of natural numbers in the range of

T .

We let T , with or without decorations, range over texts. T [n] denotes

the finite initial sequence of T with length n. Hence, domain(T [n]) = {x |

x < n}. Suppose M is a learning machine and T is a text. M(T)↓ (read:

M(T) converges) ⇐⇒ (∃i)(
∞

∀ n)[M(T [n]) = i]. If M(T)↓, then M(T) is

defined = the unique i such that (
∞

∀ n)[M(T [n]) = i]; otherwise we say that

M(T) diverges (written: M(T)↑). Convergence of M on T is also referred

to as convergence in the limit.

Definition 3 [10]

(a) M TxtEx-identifies L (written: L ∈ TxtEx(M)) just in case (∀ texts

T for L)[M(T)↓ ∧ WM(T) = L].

(b) TxtEx = {L ⊆ E | (∃M)[L ⊆ TxtEx(M)]}.

Below, we define certain restrictions on learning machines and state re-

sults describing the effects of these restrictions.

Definition 4

(a) [1] A learning machine M is order-independent just in case for every

L ∈ TxtEx(M) and for every pair of texts T and T ′ for L, M(T) = M(T ′).

(b) [8, 21] A learning machine M is rearrangement-independent just in case

(∀σ1, σ2) [[content(σ1) = content(σ2)
∧
|σ1| = |σ2|] ⇒ M(σ1) = M(σ2)].

Lemma 5 [8, 21] From any learning machine M one may effectively con-

struct M′ such that (1) through (3) all hold.

(1) TxtEx(M) ⊆ TxtEx(M′).

(2) M′ is order-independent.

(3) M′ is rearrangement-independent.

6

We now introduce a technical result, Lemma 7, due to L. Blum and M.

Blum. This result is helpful in the description of one of our results.

Definition 6

(a) [8] σ is a TxtEx-stabilizing sequence for M on L just in case content(σ) ⊆

L and (∀σ′ | content(σ′) ⊆ L ∧ σ ⊆ σ′)[M(σ′) = M(σ)].

(b) [1, 17] σ is a TxtEx-locking sequence for M on L just in case σ is a

TxtEx-stabilizing sequence for M on L and WM(σ) = L.

Lemma 7 [1, 17] If M TxtEx-identifies L, then there is a TxtEx-locking

sequence for M on L.

If L ∈ TxtEx, then, using Lemma 5, we can say, without loss of general-

ity, that L is TxtEx-identified by a rearrangement-independent and order-

independent machine M′. Lemma 7 states that if M TxtEx-identifies L,

then there is a TxtEx-locking sequence for M on L. If M is rearrangement-

independent, then output of M, on input σ, is completely determined by

content(σ) and |σ|. Hence, when we are considering machines which are

rearrangement-independent we will frequently refer to a finite sequence σ

by 〈x, l〉 where Dx = content(σ) and l = |σ|. For a given rearrangement-

independent machine M and a language L, the least number 〈x, l〉, such that

〈x, l〉 is a TxtEx-locking sequence for M on L is called the least TxtEx-

locking sequence for M on L. For ease of discussion, we will abuse the

notation slightly, and often refer to 〈x, l〉 by 〈Dx, l〉.

4 TxtEx-Identification with Additional Informa-

tion

It could be argued that a language learner makes use of, in addition to a text

presentation, some additional information about the language. An upper-

bound on the size of the minimal grammar of the language being learned is

one such possible additional information. In the present section, we briefly

7

consider the resulting learning criteria with additional information. One of

these criteria turns out to be equivalent to a notion introduced in the present

paper. It is technically expedient to treat our learning machines to act on

two arguments: additional information and finite sequence. It will be clear

from the context if we are discussing learning with additional information

or learning without additional information.

M(b, σ) denotes the output of M on additional information b and a finite

sequence σ. For the criteria of inference discussed in this paper we can

and do assume, without loss of generality, that M(b, σ) is always defined.

M(b, T)↓ = i ⇐⇒ (
∞

∀ n)[M(b, T [n]) = i]. We write M(b, T)↓ ⇐⇒

(∃i)[M(b, T)↓= i].

Definition 8 [13]

(a) M TxtBex-identifies L (written: L ∈ TxtBex(M)) ⇐⇒ (∀b ≥

MinGram(L)) (∀T for L) (∃i | Wi = L)[M(b, T)↓ = i].

(b) TxtBex = {L | (∃M)[L ⊆ TxtBex(M)]}.

Intuitively, a language learning machine M TxtBex-identifies a lan-

guage L just in case M, presented with any b at least as large as the minimal

grammar for L and any text for L, converges in the limit to a grammar for L.

If we further require that the grammar inferred in the limit be the same for

any upper-bound, we get a new language learning criteria described below.

Definition 9 [13]

(a) M TxtUniBex-identifies L (written: L ∈ TxtUniBex(M)) ⇐⇒

(∃i | Wi = L) (∀b ≥ MinGram(L)) (∀T for L) [M(b, T)↓ = i].

(b) TxtUniBex = {L | (∃M)[L ⊆ TxtUniBex(M)]}.

Intuitively, a learning machine M TxtUniBex-identifies L just in case

M infers in the limit a unique grammar for L upon being fed any upper-

bound for the minimal grammar of L and any text for L.

For the purposes of the present paper, the above definitions suffice; the

reader is directed to [13] for an extensive study of the classes TxtUniBex,

8

TxtBex, and their generalizations. Fulk [8], and Jain and Sharma [12]

provide other approaches to modeling additional information for a language

learning agent (also see [7]). We now state the relationship between the

classes TxtEx, TxtUniBex, and TxtBex. Theorems 10 and 11 below can

also be derived using results by Kinber [14] cited in [6].

Theorem 10 [13] TxtEx ⊂ TxtUniBex.

Theorem 11 [13] TxtUniBex ⊂ TxtBex.

Theorem 12 [13] E 6∈ TxtBex.

We summarize the relationship between various classes defined in this

section.

TxtEx ⊂ TxtUniBex ⊂ TxtBex ⊂ 2E .

In the next section, we show our main results which provide a character-

ization for the classes TxtEx and TxtUniBex in terms of standardizing

operations.

5 Connections between Language Learning and Stan-

dardizing Operations

We now characterize TxtEx and TxtUniBex in terms of standardizing

operations on classes of r.e. languages. To this end, we first formally define

the notion of a limit-effective language operation on a set of r.e. languages.

Definition 13 F, a mapping from E to N , is a limit-effective language oper-

ation for L ⇐⇒ (∃r ∈ R2) [(∀L ∈ L) (∀j) [(Wj = L) ⇒ limn→∞ r(j, n) =

F(L)]]. We say that r defines the limit-effective language operation F on L.

For L ∈ L, we denote F(L) by rL.

9

Intuitively, a limit-effective language operation on a class of r.e. lan-

guages L behaves thus: given any grammar for a language L ∈ L, it finds

(in the limit) a unique number for that L. Additionally, if the unique number

also happens to be a grammar for L, then we refer to such a limit-effective

language operation as a standardizing limit-effective language operation.

This is the subject of next definition.

Definition 14

(a) F, a mapping from E to N , is a standardizing limit-effective language

operation for L ⇐⇒ [[F is a limit-effective language operation on L]

∧(∀L ∈ L)[WF(L) = L]].

(b) L is limit-effective language standardizable just in case there exists a

standardizing limit-effective language operation F on L.

(c) Lels = {L ⊆ E | L is limit-effective language standardizable }.

If s ∈ R2 defines a limit-effective language operation F on L and F is

also a standardizing limit-effective language operation on L, then we say

that s defines the standardizing limit-effective language operation F on L.

In this case we denote F (L) by sL.

We give some intuitive insight into the notion of L being limit-effective

language standardizable. The interpretation below was pointed out to us by

John Case. The grammar equivalence problem ({〈x, y〉 | Wx = Wy}) is well-

known to be Π0
2-complete [20]; hence, it cannot be accepted by a limiting

recursive procedure. The role of F in the definition of limit-effective language

standardizable is to indirectly provide a limiting recursive solution to this

problem for the special case where the grammars generate languages in L:

F finds (in the limit) canonical grammars.

Lels is a collection of all limit-effective language standardizable classes

of r.e. languages. Theorem 15 below shows that Lels is exactly the class of

r.e. languages that can be TxtUniBex-identified.

Theorem 15 TxtUniBex = Lels.

10

Proof: Let L ∈ TxtUniBex. We show that L ∈ Lels. Let M TxtUniBex-

identify L. We define a limit-effective language operation s that witnesses

L ∈ Lels. Let σn
j uniformly denote a finite sequence such that σn

j ⊂ σn+1
j

and content(σn
j) = Wj,n. Let s(j, n) = M(j, σn

j). For any L ∈ L, let aL

be such that M, on any text for L and any b ≥ MinGram(L), converges

to aL. Then, clearly limn→∞ s(j, n) = aL. Thus, L ∈ Lels. This shows

TxtUniBex⊆ Lels.

We now show that Lels ⊆ TxtUniBex. Let L ∈ Lels. Let s de-

fine a standardizing limit-effective language operation witnessing L ∈ Lels.

We now give the construction for a language learning machine M that

TxtUniBex-identifies L.

begin {M(b, T [n])}

1. Let a0 = max({a | (a ≤ n) ∧(∃j ≤ b) [Wj,a ⊆ content(T [n]) ∧

Wj,n ⊇ content(T [a])]}).

2. Let j0 = min({j | (j ≤ b) ∧ [Wj,a0
⊆ content(T [n]) ∧ Wj,n ⊇

content(T [a0])]}).

3. Output s(j0, n).

end

Now we show that M TxtUniBex-identifies L.

For any L ∈ L and any b ≥ MinGram(L), let S = {j | j ≤ b ∧ Wj = L}.

For any text T for L, let n0, n1 be so large that the following hold:

1) (∀i ∈ (N b − S))[Wi 6⊇ content(T [n0]) ∨ Wi,n0
6⊆ L]; and

2) (∀j ∈ S)(∀n ≥ n1)[s(j, n) = sL ∧ Wj,n1
⊇ content(T [n0 + 1]) ∧

Wj,n0+1 ⊆ content(T [n1])].

Clearly, such n0, n1 exist. Now, (∀n ≥ max({n0, n1})), M, on input b

and T [n], outputs s(j, n) = sL for some j ∈ S. Hence, M TxtUniBex-

identifies L.

Our main aim is to characterize TxtEx in terms of limit-effective lan-

guage operations. But, the above result tells us that the notion of limit-

effective language standardizable class is too general, and hence we need

11

to come up with a more restricted notion. We do exactly this by defining

a continuously limit-effective language standardizable class in Definition 17.

But, first we introduce the following useful technical concept.

Definition 16 Let a ∈ N . A finite set D is said to be a-consistent with an

r.e. language L ⇐⇒ [[D ⊆ L] ∧ [(D ∩ Na) = (L ∩ Na)]].

Intuitively, D ⊆ L is a-consistent with L just in case for each i ≤ a,

i ∈ D ⇐⇒ i ∈ L.

Definition 17

(a) L is continuously limit-effective language standardizable ⇐⇒ (∃r, s ∈

R2) such that the following hold:

1. r defines a limit-effective language operation on L;

2. s defines a standardizing limit-effective language operation on L;

3. (∀L ∈ L)

3a. [DrL
is max(DrL

)-consistent with L] and

3b. (∃lL ∈ N) (∀n ≥ lL)(∀j)[[Dr(j,n) is max(DrL
)-consistent with

L] ⇒ [s(j, n) = sL]].

(b) Clels = {L ⊆ E | L is continuously limit-effective language standardiz-

able }.

s, in the above definition of a continuously limit-effective language stan-

dardizable class has the same role as F in the definition of a limit-effective

language standardizable class. r, another limit-effective language operation,

places some extra constraints on how s finds (in the limit) canonical gram-

mars for languages in L.

Theorem 18 TxtEx = Clels.

Proof: Let L ∈ TxtEx. We show that L ∈ Clels. Let M TxtEx-identify

L. Without loss of generality, let M be rearrangement independent and

order independent.

12

begin {r(j, n)}

1. {We search for the least locking sequence of M on Wj}

find the least 〈D, l〉 such that (D ⊆ Wj,n) and

(∀S | D ⊆ S ⊆ Wj,n) (∀l′ | (card(S) − card(D) + l) ≤ l′ ≤ n)

[M(〈D, l〉) = M(〈S, l′〉)].

{Clearly, such a 〈D, l〉 exists, since, for D = Wj,n and l = n, the

above is vacuously true.}

Let a = max(D). Let D′ = {x | x ∈ Wj,n ∩ Na}.

2. if (∀i ≤ n) [M(〈D, l〉) = M(〈D′, l + card(D′) + i〉)] then

define r(j, n) = k such that Dk = D′

else

define r(j, n) = 0

endif

end

Let i0 be a grammar for the empty set.

begin {s(j, n)}

if r(j, n) = 0 then

let s(j, n) = i0

{note that according to our convention D0 = ∅}

else

let s(j, n) = M(〈D, l〉), where D, l are as found in step 1 of

the definition of r(j, n).

endif

end

Claim 19 r defines a limit-effective language operation for L.

Proof: Clearly, r is a total recursive function. If Wi = Wj = L ∈ L, then

for large enough n, D and l as found in the procedure for r(i, n) and r(j, n)

will be such that 〈D, l〉 is the least TxtEx locking sequence for M on L.

Hence, for large enough n, D′ found in step 1 of the procedure for r(i, n)

13

and r(j, n) would also be the same. Thus, limn→∞ r(i, n) = limn→∞ r(j, n).

Claim 20 s defines a standardizing limit-effective language operation for

L.

Proof: Arguing as in Claim 19, we can show that s is a limit-effective lan-

guage operation for L. Also, for all j such that Wj ∈ L, for large enough

n, 〈D, l〉 as found in step 1 of the procedure for r(j, n) is the least locking

sequence for M on L (since, M TxtEx-identifies Wj) and, thus, we have

that WsL
= L.

We now define lL for each L ∈ L. For all L ∈ L, let lL = l and SL = D,

where 〈D, l〉 is the least TxtEx locking sequence for M on L.

Claim 21 For all L ∈ L, the requirements in the definition of continuously

limit-effective language standardizable class are satisfied by r, s, and lL.

Proof: Claim 19 and 20 respectively imply requirements 1 and 2 in the

definition of continuous limit-effective language standardizability. Consider

any L ∈ L. Clearly, DrL
is max(DrL

)-consistent with L (note the definition

of D′ in step 1 of the definition or r). Consider any j, n such that

1) n ≥ lL,

2) Dr(j,n) is max(DrL
)-consistent with L.

We then show that s(j, n) = sL. Clearly, this is true when L = ∅. Thus,

let us assume that L 6= ∅. Let D, l,D′ be as calculated in r(j, n). Now

DrL
⊆ Dr(j,n) ⊆ L (by the definition of consistency). Since, 〈SL, lL〉 is a

TxtEx locking sequence for M on L and SL ⊆ DrL
⊆ Dr(j,n) = D′ ⊆ L,

we have M(〈D′, card(D′) + l + lL〉) = sL. In step 2 of the definition of r,

it has been checked that M(〈D, l〉) = M(〈D′, card(D′) + l + lL〉). Thus,

M(〈D, l〉) = sL and therefore s(j, n) = sL.

From the above claims it follows that L is continuously limit-effective

language standardizable, and hence, TxtEx ⊆ Clels. We now show that

14

Clels ⊆ TxtEx. Let L ∈ Clels. We show that L ∈ TxtEx. Let r define a

limit-effective language operation and s define a standardizing limit-effective

language operation as in the definition of continuous limit-effective language

standardizability. For each L ∈ L, let lL be as defined in the definition

of continuous limit-effective language standardizability. We now give the

construction of a language learning machine M which TxtEx-identifies L.

begin {M(T [n])}

1. Let CandidateSet = {j | j ≤ n and Dr(j,n) is max(Dr(j,n))-

consistent with content(T [n])};

2. if CandidateSet = ∅

then output 0

else output s(j, n) where j = µk[k ∈ CandidateSet∧

max(Dr(k,n)) = max({max(Dr(i,n)) | i ∈ CandidateSet})]

endif

end {M(T [n])}

Claim 22 M TxtEx-identifies L.

Proof: Let L ∈ L. Let T be a text for L. Let k be such that Wk = L. Let

n0 be such that for all n > n0, r(k, n) = rL. Clearly, such an n0 exists (by

definition of continuously limit-effective language standardizability). Let n1

be so large that the following hold:

(a) n1 ≥ lL;

(b) content(T [n1]) ⊇ DrL
;

(c) n1 > k; and

(d) n1 > n0.

Clearly, such an n1 exists. Now consider the procedure for M(T [n]),

for n ≥ n1. k is in the CandidateSet (by step 1 in the construction of

M). Let j ∈ CandidateSet be such that max(Dr(j,n)) ≥ max(DrL
). Since

j ∈ CandidateSet, Dr(j,n) is max(Dr(j,n))-consistent with content(T [n]).

This implies that Dr(j,n) is max(DrL
)-consistent with L. Hence, by the

15

definition of continuously limit-effective language standardizability, s(j, n) =

sL. Therefore, M(T [n]) = sL. Thus, M TxtEx-identifies L.

This proves Theorem 18.

6 Summary

The theory of standardizing operations could be used to gain insights into

formal language learning theory. Towards this goal, we have given charac-

terizations of notions about language identification in terms of standardiz-

ing operations. We have shown that the natural notion of limit-effective

language standardizable operation turns out to be more general than Gold’s

seminal notion of TxtEx-identification. To characterize TxtEx-identification

exactly, we have introduced restrictions on the idea of limit-effective lan-

guage standardizing operation. We also borrow concepts from additional

information studies in language learning to characterize limit-effective lan-

guage standardizing operation in terms of a more general notion than TxtEx-

identification. Our results can be summarized as follows:

TxtEx = Clels ⊂ TxtUniBex = Lels ⊂ TxtBex ⊂ 2E .

Freivalds [5], Chen [4], Case, Jain, and Sharma [3] have made use of

similar characterizations to gain an insight into the study of program size

restrictions in inductive learning. We hope that the results presented here

will provide a new way to approach various issues in formal language learning

theory.

7 Acknowledgements

We would like to thank John Case, Mark Fulk, and Rajeev Raman for helpful

discussions. We are also grateful to an anonymous referee whose comments

have resulted in several improvements in the paper. This work was carried

out when Sanjay Jain was supported by the NSF grant CCR 832-0136 at

16

the University of Rochester and Arun Sharma was supported by the NSF

grant CCR 871-3846 to John Case at SUNY at Buffalo and the University of

Delaware. Finally, we would also like to express our gratitude to Professor

S. N. Maheshwari of the Department of Computer Science and Engineering

at the Indian Institute of Technology, New Delhi for making the facilities of

his department available to us during the preparation of this manuscript.

References

[1] L. Blum and M. Blum. Toward a mathematical theory of inductive

inference. Information and Control, 28:125–155, 1975.

[2] M. Blum. A machine-independent theory of the complexity of recursive

functions. Journal of the ACM, 14:322–336, 1967.

[3] J. Case, S. Jain, and A. Sharma. Convergence to nearly minimal size

grammars by vacillating learning machines. In R. Rivest, D. Haussler,

and M. Warmuth, editors, Proceedings of the Second Annual Workshop

on Computational Learning Theory, pages 189–199. Morgan Kaufmann,

1989.

[4] K. J. Chen. Tradeoffs in inductive inference of nearly minimal sized

programs. Information and Control, 52:68–86, 1982.

[5] R. Freivalds. Minimal Gödel numbers and their identification in the

limit. In Mathematical Foundations of Computer Science, volume 32

of Lecture Notes in Computer Science, pages 219–225. Springer-Verlag,

1975.

[6] R. Freivalds, E. Kinber, and R. Wiehagen. Connections between iden-

tifying functionals, standardizing operations, and computable number-

ings. Zeitschr. j. math. Logik und Grundlagen d. Math. Bd., 30:145–164,

1984.

17

[7] R. Freivalds, E. Kinber, and R. Wiehagen. Inductive inference from

good examples. In Analogical and Inductive Inference, Proceedings of

the Second International Workshop (AII ’89), volume 397 of Lecture

Notes in Artificial Intelligence, pages 1–17. Springer-Verlag, 1989.

[8] M. Fulk. A Study of Inductive Inference Machines. PhD thesis,

SUNY/Buffalo, 1985.

[9] M. Fulk. Saving the phenomenon: Requirements that inductive ma-

chines not contradict known data. Information and Computation,

79:193–209, 1988.

[10] E. M. Gold. Language identification in the limit. Information and

Control, 10:447–474, 1967.

[11] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 1979.

[12] S. Jain and A. Sharma. Learning in the presence of partial explanations.

Information and Computation, 95:162–191, 1991.

[13] S. Jain and A. Sharma. Learning with the knowledge of an upper bound

on program size. Information and Computation, 102:118–166, 1993.

[14] E. Kinber. On comparison of limit identification and limit standard-

ization of general recursive functions. Uch. zap. Latv. univ., 233:45–56,

1975.

[15] D. Osherson, M. Stob, and S. Weinstein. Note on a central lemma of

learning theory. Journal of Mathematical Psychology, 27:86–92, 1983.

[16] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An

Introduction to Learning Theory for Cognitive and Computer Scientists.

MIT Press, 1986.

[17] D. Osherson and S. Weinstein. A note on formal learning theory. Cog-

nition, 11:77–88, 1982.

18

[18] S. Pinker. Formal models of language learning. Cognition, 7:217–283,

1979.

[19] H. Rogers. Gödel numberings of partial recursive functions. Journal of

Symbolic Logic, 23:331–341, 1958.

[20] H. Rogers. Theory of Recursive Functions and Effective Computability.

McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[21] G. Schäfer-Richter. Über Eingabeabhängigkeit und Komplexität von In-

ferenzstrategien. PhD thesis, RWTH Aachen, 1984.

[22] K. Wexler. On extensional learnability. Cognition, 11:89–95, 1982.

[23] K. Wexler and P. Culicover. Formal Principles of Language Acquisition.

MIT Press, 1980.

19

