Learning from Streams

Sanjay Jain*!, Frank Stephan**? and Nan Ye?

! Department of Computer Science,
National University of Singapore, Singapore 117417, Republic of Singapore.
sanjay@comp.nus.edu.sg
2 Department of Computer Science and Department of Mathematics,
National University of Singapore, Singapore 117417, Republic of Singapore.
fstephan@comp.nus.edu.sg
3 Department of Computer Science,
National University of Singapore, Singapore 117417, Republic of Singapore.
yenan@comp.nus.edu.sg

Abstract. Learning from streams is a process in which a group of learn-
ers separately obtain information about the target to be learned, but
they can communicate with each other in order to learn the target. We
are interested in machine models for learning from streams and study
its learning power (as measured by the collection of learnable classes).
We study how the power of learning from streams depends on the two
parameters m and n, where n is the number of learners which track a
single stream of input each and m is the number of learners (among the
n learners) which have to find, in the limit, the right description of the
target. We study for which combinations m,n and m’,n’ the following
inclusion holds: Every class learnable from streams with parameters m,n
is also learnable from streams with parameters m’, n’. For the learning of
uniformly recursive classes, we get a full characterization which depends
only on the ratio 7*; but for general classes the picture is more compli-
cated. Most of the noninclusions in team learning carry over to nonin-
clusions with the same parameters in the case of learning from streams;
but only few inclusions are preserved and some additional noninclusions
hold. Besides this, we also relate learning from streams to various other
closely related and well-studied forms of learning: iterative learning from
text, learning from incomplete text and learning from noisy text.

1 Introduction

The present paper investigates the scenario where a team of learners observes
data from various sources, called streams, so that only the combination of all
these data give the complete picture of the target to be learnt; in addition the
communication abilities between the team members is limited. Examples of such
a scenario are the following: some scientists perform experiments to study a phe-
nomenon, but no one has the budget to do all the necessary experiments and

* Supported in part by NUS grant number R252-000-308-112.
** Supported in part by NUS grant number R146-000-114-112.

therefore they share the results; various earth-bound telescopes observe an ob-
ject in the sky, where each telescope can see the object only during some hours
a day; several space ships jointly investigate a distant planet.

This concrete setting is put into the abstract framework of inductive infer-
ence as introduced by Gold [3,6,11]: the target to be learnt is modeled as a
recursively enumerable set of natural numbers (which is called a “language”);
the team of learners has to find in the limit an index for this set in a given
hypothesis space. This hypothesis space might be either an indexed family or,
in the most general form, just a fixed acceptable numbering of all r.e. sets. Each
team member gets as input a stream whose range is a subset of the set to be
learnt; but all team members together see all the elements of the set to be learnt.
Communication between the team members is modeled by allowing each team
member to finitely often make its data available to all the other learners. We
assume that the learners communicate in the above way only finitely often.

The notion described above is denoted as [m,n]StreamEx-learning where
n is the number of team members and m is the minimum number of learn-
ers out of these n which must converge to the correct hypothesis in the limit.
Note that this notion of learning from streams is a variant of team learning,
denoted as [m,n]TeamEx, which has been extensively studied [1, 14, 18,19, 21,
22]; the main difference between the two notions is that in team learning, all
members see the same data, while in learning from streams, each team member
sees only a part of the data and can exchange with the other team members only
finitely much information. In the following, Ex denotes the standard notion of
learning in the limit from text; this notion coincides with [1,1]StreamEx and
[1,1]TeamEx.

In related work, Baliga, Jain and Sharma [5] investigated a model of learn-
ing from various sources of inaccurate data where most of the data sources are
nearly accurate.

We start with giving the formal definitions in Section 2. In Section 3 we
first establish a characterization result for learning indexed families. Our main
theorem in this section, Theorem 8, shows a tell-tale like characterization for
learning from streams for indexed families. An indexed family £ = {Lo, L1, ...}
is [m, n]StreamEx-learnable iff it is [1, | 7 ||StreamEx-learnable iff there exists
a uniformly r.e. sequence Fjy, E1,... of finite sets such that E; C L; and there
are at most L%J many languages L in £ with F; C L C L;. Thus, for indexed
families, the power of learning from streams depends only on the success ratio.
Additionally, we show that for indexed families, the hierarchy for stream learn-
ing is similar to the hierarchy for team function learning (see Corollary 10); note
that there is an indexed family in [m, n]TeamEx — [m, n]StreamEx iff < 1.
Note that these characterization results imply that the class of nonerasing pat-
tern languages [2] is [m, n]StreamEx-learnable for all m,n with 1 < m < n.
We further show (Theorem 12) that a class £ can be noneffectively learned from
streams iff each language in £ has a finite tell-tale set [3] with respect to the
class £, though these tell-tale sets may not be uniformly recursively enumerable
from their indices. Hence the separation among different stream learning criteria

is due to computational reasons rather than information theoretic reasons.

In Section 4 we consider the relationship between stream learning criteria
with different parameters, for general classes of r.e. languages. Unlike the in-
dexed family case, we show that more streaming is harmful (Theorem 14): There
are classes of languages which can be learned by all n learners when the data is
divided into n streams, but which cannot be learned even by one of the learners
when the data is divided into n’ > n streams. Hence, for learning r.e. classes,
[1,n]StreamEx and [1,n']StreamEx are incomparable for different n,n’ > 1.
This stands in contrast to the learning of indexed families where we have that
[1,n]StreamEx is properly contained in [1,n + 1]StreamEx for each n > 1.

Theorem 15 shows that requiring fewer number of machines to be successful
gives more power to stream learning even if the success ratio is sometimes high.
For each m there exists a class which is [m, n|StreamEx-learnable for all n > m
but not [m + 1, n']StreamEx-learnable for any n’ > 2m.

In Section 5 we first show that stream learning is a proper restriction of
team learning in the sense that [m,n]StreamEx C [m,n|TeamEx, as long as
1 <m < nandn > 1 We also show how to carry over several separation re-
sults from team learning to learning from streams, as well as give one simulation
result which carries over. In particular we show in Theorem 18 that if 7> > %
then [m,n]StreamEx = [n, n]StreamEx. Also, in Theorem 20 we show that if
- < % then [m,n]StreamEx ¢ Ex. One can similarly carry over several more
separation results from team learning.

One could consider streaming of data as some form of “missing data” as each
individual learner does not get to see all the data which is available, even though
potentially any particular data can be made available to all the learners via syn-
chronization. Iterative learning studies a similar phenomenon from a different
perspective: though the (single) learner gets all the data, it cannot remember
all of its past data; its new conjecture depends only on its just previous conjec-
ture and the new data. We show in Theorem 21 that in the context of iterative
learning, learning from streams is not restrictive (and is advantageous in some
cases, as Corollary 9 can be adapted for iterative stream learners). We addition-
ally compare stream learning with learning from incomplete or noisy data as
considered in [10, 16].

2 Preliminaries and Model for Stream Learning

For any unexplained recursion theoretic notation, the reader is referred to the
textbooks of Rogers [20] and Odifreddi [15]. The symbol N denotes the set of
natural numbers, {0,1,2,3,...}. Subsets of N are referred to as languages. The
symbols @), C, C, D and D denote empty set, subset, proper subset, super-
set and proper superset, respectively. The cardinality of a set S is denoted by
card(S). max(S) and min(S), respectively, denote the maximum and minimum
of a set S, where max(}) = 0 and min(f)) = oo. dom(¢)) and ran(¢) denote
the domain and range of ¢. Furthermore, (-,-) denotes a recursive 1-1 and onto
pairing function [20] from N x N to N which is increasing in both its arguments:

(x,y) + y. The pairing function can be extended to n-tuples by
taking (x1, Za,...,&n) = (@1, (T2, .., Tp)).

The information available to the learner is a sequence consisting of exactly the
elements in the language being learned. In general, any sequence T on N U {#}
is called a text, where # indicates a pause in information presentation. T'(t)
denotes the (¢t 4+ 1)-st element in T and T[t] denotes the initial segment of T
of length t. Thus T[0] = €, where € is the empty sequence. ctnt(T') denotes the
set of numbers in the text T. If ¢ is an initial segment of a text, then ctnt(o)
denotes the set of numbers in o. Let SEQ denote the set of all initial segments.
For 0,7 € SEQ, 0 C 7 denotes that o is an initial segment of 7. |o| denotes the
length of o.

A learner from texts is an algorithmic mapping from SEQ to NU {?}. Here
the output ? of the learner is interpreted as “no conjecture at this time.” For a
learner M, one can view the sequence M(T[0]), M(T[1]), ..., as a sequence of
conjectures (grammars) made by M on T.

Intuitively, successful learning is characterized by the sequence of conjectured
hypotheses eventually stabilizing on correct ones. The concepts of stabilization
and correctness can be formulated in various ways and we will be mainly con-
cerned with the notion of explanatory (Ex) learning. The conjectures of learners
are interpreted as grammars in a given hypothesis space H, which is always
recursively enumerable family of r.e. languages (in some cases, we even take
the hypothesis space to be a uniformly recursive family, also called an indexed
family). Unless specified otherwise, the hypothesis space is taken to be a fixed
acceptable numbering Wy, W1, ... of all r.e. sets.

— (@4y)(z+y+1)
2

Definition 1 (Gold [11]). Given a hypothesis space H = {Hy, Hy,...} and a
language L, a sequence of indices g, i1, . .. is said to be an Ex-correct grammar
sequence for L, if there exists s such that for all ¢ > s, H;, = L and iy = is. A
learner M Ex-learns a class L of languages iff for every L € £ and every text T
for L, M on T outputs an Ex-correct grammar sequence for L.

We use Ex to also denote the collection of language classes which are Ex-
learnt by some learner.

Now we consider learning from streams. For this the learners would get streams
of texts as input, rather than just one text.

Definition 2. Let n > 1. T' = (11,...,T,,) is said to be a streamed text for L
if ctnt(71) U... Uctnt(T,) = L. Here n is called the degree of dispersion of the
streamed text. We sometimes call a streamed text just a text, when it is clear
from the context what is meant.
Suppose T = (T1,...,T,) is a streamed text. Then, for all ¢, o = (T1[t],
., TL[t]), is called an initial segment of T. Furthermore, we define T[t] =
(T1[t], ..., Tult]). We define ctut(T'[t]) = ctut(T1[t]) U ... U ctnt(T,[t]) and sim-
ilarly for the content of streamed texts. We let SEQ™ = {(01,02,...,0,) : 01,
02,...,0n € SEQ and |o1| = |o2] = ... = |o,|}. For 0 = (01,09,...,0,) and

T=(1,7T2,...,Tn), we say that ¢ C 7 if 0; C 7y for i € {1,...,n}.

Let £ be a language collection and H be a hypothesis space.

When learning from streams, a team My, ..., M, of learners accesses a stream-
ed text T'= (11, ...,T,) and works as follows. At time ¢, each learner M; sees as
input T;[¢] plus the initial segment T'[sync;], outputs a hypothesis h; ; and might
update syncy41 to t. Here, initially synco = 0 and syncy1 = sync; whenever no
team member updates synciyq at time t.

In the following assume that 1 < m < n. A team (M, ..., M,,) [m,n|StreamEx-
learns L iff for every L € L and every streamed text T for L, (a) there is a
maximal ¢ such that sync;11 =t and (b) for at least m indices i € {1,2,...,n},
the sequence of hypotheses h; g, ki 1,... is an Ex-correct sequence for L.

We let [m,n|StreamEx denote the collection of language classes which are
[m, n]StreamEx-learnt by some team. The ratio 7* is called the success-ratio of
the team.

Note that a class £ is [1, 1]StreamEx-learnable iff it is Ex-learnable. A further
important notion is that of team learning [21]. This can be reformulated in our
setting as follows: £ is [m,n]TeamEx-learnable iff there is a team of learners
(M, ..., M,) which [m,n]StreamEx-learn every language L € L from every
streamed text (71,...,7Ty) for L when T) =Ty = --- = T, (and thus each T; is
a text for L).

For notational convenience we sometimes use M;(T'[t]) = M;(T1[t], ..., Tn[t])
(along with M;(T;[t], T[sync.])) to denote M;’s output at time ¢ when the team
My, ..., M, gets the streamed text T' = (T1,...,T},) as input. Note that here the
learner sees several inputs rather than just one input as in the case of learning
from texts (Ex-learning). It will be clear from context which kind of learner is
meant.

One can consider updating of synciy1 to t as synchronization, as the data
available to any of the learners is passed to every learner. Thus, for ease of
exposition, we often just refer to updating of synciy1 to t by M; as request for
synchronization by M;.

Note that in our models, there is no more synchronization after some finite
time. If one allows synchronization without such a constraint, then the learners
can synchronize at every step and thus there would be no difference from the
team learning model. Furthermore, in our model there is no restriction on how
the data is distributed among the learners. This is assumed to be done in an
adversary manner, with the only constraint being that every datum appears in
some stream. A stronger form would be that the data is distributed via some
mechanism (for example, z, if present, is assigned to the stream x mod n + 1).
We will not be concerned with such distributions but only point out that learning
in such a scenario is easier.

The following proposition is immediate from Definition 2.

Proposition 3. Suppose 1 < m < n. Then the following statements hold.

(a) [m,n|StreamEx C [m,n|TeamEx.
(b) [m +1,n+ 1]StreamEx C [m,n + 1]StreamEx.

(c) [m+ 1,n + 1]StreamEx C [m, n|StreamEx.

The following definition on stabilizing sequence and locking sequences are gen-
eralizations of similar definitions for learning from texts.

Definition 4 (Based on Blum and Blum [6], Fulk [9]). Suppose that L is a

language and My, ..., M, are learners. Then, o = (01, ...,0,) is called a stabiliz-
ing sequence for My, ..., M, on L for [m,n|StreamEx-learning iff ctnt(c) C L
and there are at least m numbers ¢ € {1,...,n} such that for all streamed texts T

for L with o = T'[|o|] and for all ¢t > |o|, when My, ..., M,, are fed the streamed
text T, for sync; and h;, as defined in Definition 2, (a) sync; < |o| and (b)
hie = hi ol

A stabilizing sequence o is called a locking sequence for My, ..., M, on L for
[m, n]StreamEx-learning iff in (b) above h; |, is additionally an index for L (in
the hypothesis space used).

The following fact is based on a result of Blum and Blum [6].

Fact 5. Assume that L is [m,n]StreamEx-learnable by M, ..., M,,. Then there
ezists a locking sequence o for My, Ms, ... M, on L.

Recall that a pattern language [2] is a set of words generated from a pattern 7. A
pattern 7 is a sequence of variables and symbols (constants) from alphabet Y. A
pattern 7 generates a word w iff one can obtain the word w by choosing, for each
variable, a value from Y. We now show that the class of pattern languages is
learnable from streamed text. Note that the result also follows from Theorem 8
below and the fact that pattern languages form an indexed family. We give a
proof sketch below for illustrative purposes.

Example 6. The collection of pattern languages is [n,n]StreamEx-learnable.

Proof sketch. We construct n learners My,..., M,, which [n,n|StreamEx-
learn the collection of pattern languages. On input streamed text T and at time
t+1, M; computes D = ctnt(7;[t])Uctnt (T [synce+1]) and the learner M; updates
syncyyo if T;(t) is not longer than any string in D and does not belong to D. The
hypothesis of M; at time ¢+ 1 is the most specific pattern containing all strings
in ctnt(T'[sync;y1]). It is easy to see that when t+1 is large enough, the shortest
strings in T'[syncty1] are just the shortest strings in the input pattern-language;
thus all learners do not synchronize after that and they all output the correct
pattern. O

3 Some Characterization Results

In this section we first consider a characterization for learning from streams for
indexed families. Our characterization is similar in spirit to Angluin’s character-
ization for learning indexed families.

Definition 7 (Angluin [3]). £ is said to satisfy the tell-tale set criterion if for
every L € L, there exists a finite set Dy, such that for any L' € £ with L' D Dy,
we have L' ¢ L. Dy, is called a tell-tale set of L. {Dy, : L € L} is called a family
of tell-tale sets of L.

Angluin [3] used the term ezact learning to refer to learning using the language
class to be learned as the hypothesis space and she showed that a uniformly re-
cursive language class L is exactly Ex-learnable iff it has a uniformly recursively
enumerable family of tell-tale sets [3]. A similar characterization holds for non-
effective learning [13, pp. 42-43]: Any class £ of r.e. languages is noneffectively
Ex-learnable iff £ satisfies the tell-tale criterion. For learning from streamed
text, we have the following corresponding characterization.

Theorem 8. Suppose k > 1 and 1 < m < n and T}A < % < % Suppose
L = {Lo, L1,...} is an indexed family where one can effectively (in i,x) test
whether © € L;. Then L € [m,n|StreamEx iff there exists a uniformly r.e.
sequence Ey, E1, ... of finite sets such that for each i, E; C L; and there are at
most k sets L € L with E; C L C L;.

Proof. (=): Suppose My, Ms, ..., M, witness that £ is in [m,n]StreamEx.
Consider any L; € L. Let 0 = (01,09,...,0,) be a stabilizing sequence for
My, Ms, ..., M, on L;. Fix any j such that 1 < j < n and for all streamed texts
T for L; which extend o, for all t > |o|, M;(T[t]) = M;(0). Let T, = o, #>
for r € {1,...,n} — {j}. Thus, for any L € £ and text T; for L such that T
extends o; and ctut(o) € L C L;, we have that m of My, ..., M, on (T1,...,T},)
converge to grammars for L. Since the sequence of grammars output by M, on
(Th,Ts,...,T,) is independent of L chosen above (with the only constraint being
L satisfying ctnt(0) € L C L;), we have that there can be at most * such
L € L. Now note that a stabilizing sequence o for My, Ms, ..., M, on L; can be
found in the limit. Let ¢° denote the s-th approximation to o. Then one can let
Ei = USEN Ctnt(O'S) N Lz

(«<): Assume without loss of generality that each L; is distinct. Let E; g
denote E; enumerated within s steps by the uniform process for enumerating
all the E;’s. Now, the learners My,..., M, work as follows on a streamed text
T. The learners keep variables i;, s; along with sync;. Initially ig = sg = 0.
At time t > 0 the learner M; does the following: If E;, 5, € ctnt(T[sync,]) or
E;, s, # E;,+ or ctut(T}[t]) € L;,, then synchronize and let ¢;41, S¢4+1 be such
that (i441,8t4+1) = (it, s¢) + 1. Note that (i, s;) can be recovered from T[syncy].

Note that for input streamed text T for L;, the values of i;, s; converge as
t goes to co. Otherwise, sync; also diverges, and once sync; is large enough so
that E; C T[sync,] and one considers (i;, s;) for which ¢, =i and E; o = E; 5,
for s’ > s, (note that all but finitely many values for s; satisfy this) then
the conditions above ensure that i;,s; and sync; do not change any further.
Furthermore, i’ = limy_, o i; satisfies that E; C L; C L.

The output conjectures of the learners at time ¢ are determined as follows:
Let S be the set of (up to) k least elements below ¢ such that each j € S satisfies

Ei,s, CLiN{z:x <t} CL;, N{z: 2z <t}. Then, we allocate, for each j € S,
m learners to output grammars for L;. It is easy to verify that, for large enough
t, i; and s; would have stabilized to, say, i’ and s, respectively, and S will
contain every j such that E;; C L; C Ly. Thus, the team My, My, ..., M, will
[m, n]StreamEx-learn each L; such that E;y C L; C L,/ (the input language L;
is one such L;).

The theorem follows from the above analysis. O

Here note that the direction (=) of the theorem holds even for arbitrary classes
L of r.e. languages, rather than just indexed families. The direction (<) does
not hold for arbitrary classes of r.e. languages. Furthermore, the learning algo-
rithm given above for the direction (<) uses the indexed family £ itself as the
hypothesis space: so this is exact learning.

Corollary 9. Suppose 1 <m < n,1 <m' <n' and = >k+1> ::T/, Let L
contain the following sets:

— the sets {2e + 2x : x € N} for all e;
— the sets {2e + 2z : x < |W,|+7r} foralle e N and r € {1,2,...,k};
— all finite sets containing at least one odd element.

Then L € [m,n|StreamEx — [m/,n'|StreamEx and L can be chosen as an
indexed family.

Proof sketch. First we show that £ € [1,k + 1]StreamEx. For each e and
for each L C {2¢,2e+2,2e+4, ...} with {2e} C L, let Ey, = {2e}; also, for any
language L € L containing an odd number, let E;, = L. Now, for an appropriate
indexing Lg, L1,... of £, {Ey, : i € N} is a collection of uniformly r.e. finite sets
and for each L € L, there are at most k+ 1 sets L’ € £ such that E;, C L' C L.
Thus, £ € [1, k+1]StreamEx by Theorem 8. On the other hand, for each L € L,
one cannot effectively (in indices for L) enumerate a finite subset Ey, of L such
that Er, C L' C L for at most k languages L' € £. We omit the details and the
proof that £ can be chosen as an indexed family. O

Corollary 10. Let IND denote the collection of all indexed families. Suppose
1<m<mnandl <m’ <n'. Then [m,n]StreamExNIND C [m/, n/|StreamEx
NIND iff [2] < | 2],

Remark 11. One might also study the inclusion problem for IND with respect
to related criteria. One of them being conservative learning [3], where the addi-
tional requirement is that a team member M; of a team M, ..., M, can change
its hypothesis from Ly to L. only if it has seen, either in its own stream or in
the synchronized part of all streams, some datum x ¢ Lg4. If one furthermore
requires that the learner is exact, that is, uses the hypothesis space given by the
indexed family, then one can show that there are more breakpoints than in the
case of usual team learning.

For example, there is a class which under these assumptions is conservatively
[2, 3]StreamEx-learnable but not conservatively learnable. The indexed family

L = {Ly, L1,...} witnessing this separation is defined as follows. Let @ be a
Blum complexity measure. For e € N and a € {1,2}, L3et, is {e,e+1,e4+2,...}
if @.(e) =00 and Lgetq is {e,e+1,e+2,...F — {Dc(e) + e+ a} if D.(e) < o0.
Furthermore, the sets Lg, L3, Lg, ... form a recursive enumeration of all finite
sets D for which there is an e with @.(e) < oo, min(D) = e and max(D) €
{P.(e) +e+1,P.(e) + e+ 2}.

We now give learners My, My, M3 which conservatively [2, 3]StreamEx-learn
L. On input text T, the learner M; synchronizes at time ¢ if

— either min(ctnt(7;[t])) < min(ctnt(T[sync]))
— or there is an x in ctnt(T;[t]) — ctnt(T[synce]) satisfying @ < D.(e) + 3 <
3 + max(ctnt(7;[¢]) U ctnt(T'[syncy])), where e = min(ctnt (T [syncy])).

The conjectures of My, My, M3 at time ¢ depend only on T'[syncy].

— If ctnt(T'[syncy]) = 0
then My, My, M3 output ?
else let e = min(ctnt(T'[sync;])) and proceed below.
— M3 searches for d with d <t A Lgg = ctnt(T[sync]).
If this d exists
then M3 conjectures Lsq
else M3 repeats its previous conjecture.
— Do the following for ¢ = 1 and a = 2.
If &.(e) + e+ a & ctnt(T[syncy])
then M, conjectures L3cy,
else if max(ctnt(T[sync])) < Pe(e) + e + 3 and there is a d < ¢ with Lgq =
ctnt(T[sync])
then M, conjectures Lsq
else M, conjectures L3ei3_q.

It is left to the reader to verify the correctness and conservativeness of this
learner.

To see that £ is not conservatively learnable from a single text by a learner M
using the exact hypothesis space, note that, for every e, M outputs a conjecture
L34, on some input o€, where a € {1,2} and ctnt(c®) C {e,e +1,...}. Thus,
there exists an e such that max(ctnt(c®)) < P.(e) (otherwise, the learner could
be used to solve the halting problem). Then, M would not be able to learn the
set {e+x:2<P.(e)+2} —{e+ P.(e) + a} conservatively.

Note that the usage of the exact hypothesis space is essential for this remark.
However, the earlier results of this section do not depend on the choice of the
hypothesis space. Assume that there is a k € {1,2,3,...} with = < % < Z‘—,/
Then, similarly to Corollary 9, one can show that some class is conservatively
[m, n]StreamEx-learnable but not conservatively [m’, n’|StreamEx-learnable.

The following result follows using the proof of Theorem 8 for noneffective learn-
ers. For noneffective learners one can consider every class as an indexed family.
Furthermore, finitely many elements can be added to F; to separate L; from the
finitely many subsets of it which contain F; and are proper subsets of L; — thus
giving us a tell-tale set for L;.

Theorem 12. Suppose 1 < m < n. L is noneffectively [m, n|StreamEx-learn-
able iff L satisfies Angluin’s tell-tale set criterion.

The above theorem shows that any separation between learning from streams
with different parameters must be due to computational difficulties.

Remark 13. Behaviourally correct learning (Bc-learning) requires a learner
to eventually output only correct hypotheses. Thus, the learner semantically
converges to a correct hypothesis, but may not converge syntactically (see [8,17]
for a formal definition). Suppose n > 1. If an indexed family is [1, n]|StreamEx-
learnable, then it is Bc-learnable using an acceptable numbering as hypothesis
space. This follows from the fact that an indexed family is Be-learnable using an
acceptable numbering as hypothesis space iff it satisfies the noneffective tell-tale
criterion [4]. Hence, Gold’s family [11] which consists of N and all finite sets is
[1,2]TeamEx-learnable but not [1, n]StreamEx-learnable for any n.

4 Relationship between various StreamEx-criteria

In this and the next section, for m,n,m’,n’ with 1 < m <nand 1 <m’ <n/,
we consider the relationship between [m,n]StreamEx and [m/, n']StreamEx.

We shall develop some basic theorems to show how the degree of dispersion,
the success ratio and the number of successful learners required, affect the ability
to learn from streams.

First, we show that the degree of dispersion plays an important role in the
power of learning from streams. The next theorem shows that for any n, there
are classes which are learnable from streams when the degree of dispersion is not
more than n, but are not learnable from streams when the degree of dispersion
is larger than n, irrespective of the success ratio.

Theorem 14. For any n > 1, there exists a language class L such that L €
[n,n]StreamEx — .- ,[1, n/]StreamEx.

Proof. Consider the class £ = £; U Lo, where

Ly ={L:L =Wy AVzfcard({(n + 1)z,...,(n+ 1)z +n} N L) < 1]} and
Lo={L:3x[{(n+1)x,...,(n+1a+n} C L] and L = W, for the least such z}.

It is easy to verify that £ can be [n,n]StreamEx-learnt. The learners can use
synchronization to first find out the minimal element e in the input language;
thereafter, they can conjecture e, until one of the learners (in its stream) observes
(n+ 1)z +j and (n + 1)z + j' for some z, j, j', where j # j' and j,7’ < n; in
this case the learners use synchronization to find and conjecture (in the limit)
the minimal = such that {(n + 1)z,...,(n+ 1)z + n} is contained in the input
language.

Now suppose by way of contradiction that £ is [1,n/]StreamEx-learnable
by Mji,..., M, for some n’ > n. We will use Kleene’s recursion theorem to

construct a language in £ which is not [1, n’]StreamEx-learned by M, ..., M, .

First, we give an algorithm to construct in stages a set S. depending on a
parameter e. At stage s, we construct (o1 4,...,0pn/5) € SEQ™ where we will
always have that o; s C 0 s41.

— Stage 0: (01,0,02,0,---,0n7,0) = (€,#,...,7#). Enumerate e into Se.
— Stage s > 0.
Let 0 = (01,6-1,---,0n/,s—1). Search for a 7 = (71,...,7) € SEQ"/,
such that (i) for ¢ € {1,...,n'}, 0y 5—1 C 7, (ii) min(ctnt(7)) = e and (iii)
for all z, card({y : y < n,(n+ 1)x +y € ctnt(r)}) < 1, and one of the
following holds:
(a) One of the learners requests for synchronization after 7 is given as input
to the learners My, ..., M.
(b) All the learners make a mind change between seeing o and 7, that is,
for all ¢ with 1 <14 <n/, for some 7" with ¢ C 7/ C 7, M;(0) # M;(7").
If one of the searches succeeds, then let 0; s = 7;, enumerate ctnt(7) into S
and go to stage s + 1.

If each stage finishes, then by Kleene’s recursion theorem, there exists an e such
that W, = Se and thus W, € £;. Fori € {1,...,n'},let T; = |J, 04,s. Now, either
the learners My, ..., M, synchronize infinitely often or each of them makes
infinitely many mind changes when the streamed text T = (T1,T%,...,Ty)
is given to them as input. Hence My,..., M, do not [1,n/]StreamEx-learn
We € L.

Now suppose stage s starts but does not finish. Let ¢ = (01,5-1,02.5—1,. ..,
0n',s—1). Thus, as the learners only see their own texts and the data given to every
learner up to the point of last synchronization, we have that for some j with 1 <
j < forall 7 =(m,72,...,7) extending ¢ = (01,5-1,02,5-1,---+0n’,s—1),
such that min(ctnt(7)) = e and for all z, 4, card({y : y < n,(n+ 1)z +y €
ctnt(o) Uctnt(;)}) < 1, (a) none of the learners synchronize after seeing 7 and
(b) M; does not make a mind change between o and 7.

Let rem(i) = ¢« mod (n + 1). Let z; = 1 + max(ctnt(s)). For 1 < i < n/,
such that rem(i) # rem(j), let T; be an extension of 0; s such that ctnt(T;) —
ctnt(o;s) = {(n + 1)(zs +) + rem(i) : * € N}. For ¢ € {1,...,n'} with
rem(i) = rem(j) and i # j, we let T; = 0, (#°°. We will choose T; below such
that 0;s-1 € Tj and ctnt(7};) — ctnt(o;s—1) = {(n + 1)(zs + z) + rem(j) :
xs +x > k}, for some k > x;.

Let p; be the grammar which M; outputs in the limit, if any, when the team
My, ..., M, is provided with the input (771, ..., T,). As the learner M; only sees
T; and the synchronized part of the streamed texts, by (a) and (b) above, we
have that none of the members of team synchronize beyond o and the learner M;
converges to the same grammar as it did after the team is provided with input
o, irrespective of which k > x4 is chosen. Now, by Kleene’s recursion theorem
there exists a k > x, such that Wy, = ctnt(o;) U {(n + 1)(zs + =) + rem(j) :
s+ 2 k}UUjeq0, ny—gy ctnt(Z;) and Wiy, & {Wp, : 1 < i < n'}. Hence

Wi, € Lo and Wy, is not [1, n’/]StreamEx-learnt by My, ..., M.
The theorem follows from the above analysis. O

The following result shows that the number of successful learners affects learn-
ability from streams crucially.

Theorem 15. Suppose k > 1. Then, there exists an L such that for alln > k
and n' > 2k, L € [k,n]StreamEx but £ & [k + 1,n/]StreamEx.

Proof. Let k be as in the statement of the theorem. Let ¢ be a partial recursive
function such that ran(¢) C {1,...,2k}, the complement of dom(z)) is infinite
and for any r.e. set S such that S N C is infinite, S N B is nonempty, where
B = {{z,y) : ¥(z) =y} and C = {{z,]) : © € dom(¢)),1 < j < 2k}. Note that
one can construct such a 1 in a way similar to the construction of simple sets.
Let A, = BU{{(z,j):1<j<2k}. Let L={B}U{A4, : x & dom(¢))}.

We claim that £ € [k, n|StreamEx for all n > k but £ ¢ [k+1,n'|StreamEx
for all n' > 2k.

We construct My, ..., M}, which [k, n]StreamEx-learn £ as follows.

On input T[t] = (Ty[t],...,Tr[t]), the learners synchronize if for some i,
ctnt(T;[t — 1]) does not contain (x, j) and (z, j') with j # j/, but ctut(7;[t]) does
contain such (z, j) and (z, j').

If synchronization has happened (in some previous step), then the learners
output a grammar for BU {(z,j) : 1 < j < 2k}, where z is the unique number
such that (x,j) and (z,j’) are in the synchronized text for some j # j'. Other-
wise, My, ..., M} output a grammar for B and each M; with k+1 < i < n does
the following: it first looks for the least such that (x,j) € ctnt(T;[t]) for some
Jj, and z is not verified to be in dom(v) in ¢ steps; then M; outputs a grammar
for A, if such an z is found, and outputs 7 if no such z is found.

If the learners ever synchronize, then clearly all learners correctly learn the
target language. Suppose no synchronization happens. If the language is B, then
My, ..., My correctly learn the input language. If the language is A, for some
x ¢ dom(%), then n > 2k (otherwise synchronization would have happened) and
at least k learners among My 1,..., M, eventually see exactly one pair of the
form (z,j), where 1 < j < 2k, and these learners will correctly learn the input
language.

Now suppose by way of contradiction that a team (M7,...,M],) of learn-
ers [k + 1,n/|StreamEx-learns £. By Fact 5, there exists a locking sequence
o0 = (01,...,0p) for the learners M{,..., M), on B. Let S C {1,...,n'} be of
size k + 1 such that the learners M/, i € S, do not make a mind change beyond
o on any streamed text 71" for B which extends o.

By definition of v, there must be only finitely many (z, j) € C such that the
learners M1, Mj, ..., M, synchronize or one of the learners M/, i € S, makes
a mind change beyond o on any streamed text extending o for B U {(x, j)}
— otherwise we would have an infinite r.e. set S consisting of such pairs, with
S C C but SN B = 0, a contradiction to the definitions of 1, B,C. Let X be
the set of these finitely many (x,j). Let Z be the set of 2 such that, for some
i with 1 < ¢ < n/, the grammar output by M/ on input o is for A,, or the

grammar output by M/ (in the limit) on input o;#>° (with the last point of
synchronization being before all of input o is seen) is for A,.

Select some z ¢ dom(t) such that z ¢ Z and (z,j) ¢ X for any j. Now
we construct a streamed text extending o for A, on which the learners fail. Let
S’ D S be a subset of {1,2,...,n'} of size 2k. If i is the j-th element of S’ then
choose T; such that T; extends o; and ctut(T;) = BU{(z,j)} else (when i ¢ S")
let T; = 0;#°>°. Thus, T = (T4, ...,T,) is a streamed text for A,. However, only
the learners M/ with ¢ € S’ — S can converge to correct grammars for A, (as
the learners M; with ¢ € S or ¢ ¢ S’, would not have converged to a grammar
for A, by definition of z, X and Z above).

It follows that £ ¢ [k + 1, n/]StreamEx. O

5 Learning from Streams versus Team Learning

Team learning is a special form of learning from streams, in which all learners
receive the same complete information about the underlying reality, thus team
learnability provides upper bounds for learnability from streams with the same
parameters. These upper bounds are strict.

Theorem 16. Suppose 1 < m < n and n > 1. Then [m,n|StreamEx C
[m, n]TeamEx.

Proof. The inclusion follows from Proposition 3. The inclusion is proper as
on one hand it holds that [1,1]StreamEx C [m,n]TeamEx and on the other
hand, by Theorem 14, we have [1, 1]StreamEx Z [m, n]StreamEx. O

Remark 17. Another question is how this transfers to the learnability of in-
dexed families. If 7+ > % and £ is an indexed family, then £ € [m, n]StreamEx
iff £ € [m,n]TeamEx iff £ € Ex. But if 1 <m < 7, then the class £ consisting
of N and all its finite subsets is [1,2]TeamEx-learnable and [m,n]TeamEx-
learnable but not [m, n]StreamEx-learnable.

Below we will show how several results from team learning can be carried over
to the stream learning situation.

It was previously shown that in team learning, when the success ratios exceed
a certain threshold, then the exact success ratio does not affect learnability any
longer. Using a similar majority argument, we can show similar collapsing results
for learning from streams (Theorem 18 and Theorem 19).

Before we formulate this precisely, we introduce two useful concepts. First, by
s-m-n theorem, there exists a recursive function majority such that majority(gs,

.., gn) is a grammar for {z : = is a member of more than half of Wy, ,..., Wy, }.

Note that if more than half of ¢q,...,g, are grammars for a language L, then
majority(gi,...,gn) is a grammar for L as well.

Second, suppose Mi,..., M, are a team learning from a given streamed
text T = (T1,...,T,,). Then we can define the convergence time Conuvr(i,t)
at time ¢ for M; to be the minimum ¢ > 0 such that whenever ¢’ < j < ¢,

M;(Th[j),- -, Twlj]) = My(Ta[t'],. .., Tu[t']). Thus a necessary condition for M;
to learn the target (in Ex-sense) is that lims_, o Convp(i,t) converges.

2

Theorem 18. Suppose 1 < m < n. If ™ > 3,

[n,n]StreamEx.

then [m,n]StreamEx =

Proof. We construct My, ..., M}, such that they [n, n|StreamEx-learn £. The
basic idea of the proof is that the learners M7, MJ, ..., M] maintain the con-
vergence information for the seemingly earliest m converging machines among
My,..., M, (breaking ties in favour of lower numbered learner) based on the
input seen so far. If this information gets corrupted (due to one of the m earliest
converging learners among M, ..., M, making a mind change), then synchro-
nization is used to update the information.

Suppose T = (Th,...,T,) is the input streamed text for a language L. Ini-
tially, synco = 0. Each learner, at time ¢ > 1, has information about Convr (i, sync;)
for each i. At time ¢t > 1, each learner first computes i¢,4%,... i} as a per-
mutation of 1,2,...,n such that, for » with 1 < r < n, Convp(iL, sync;) <
Convr (it q, syncy) and if Convp(it, sync;) = Convrp(il, |, sync;), then il <
it ;. Now the learner M/ synchronizes at time ¢ if either M; synchronizes
at time t or i = 4! for some r with 1 < r < m and M;(T;[t], T[sync:]) #
M;(T;[t — 1), T[synci—1]) (recall that M; sees only the information in 7T;[¢] and
T[sync] at time ¢). The grammar output by M/ is majority(gi,ga,-- -, gm),
where g, = M;: (T'[syncy]).

It is easy to verify that if the learners Mi, Ms, ..., M,, [m,n|StreamEx-
learn L, then eventually (as ¢ goes to oo) sync; and the variables i}, ...,
get stabilized and the learners M, ..., M;: would have converged to their final
grammar after having seen the input T'[sync,] and Ty [t], ..., T [t], respectively.
Thus, majority(gi, g2, ..., gm) would be a correct grammar for L as at least
m — (n —m) of the grammars g1, ..., g, are correct grammars for L. O

Theorem 19. Suppose 1 < m < n and k > 1. Then [|Z|(n — m) + km,
kn|StreamEx C [m,n]StreamEx.

One can also carry over several diagonalization results from team learning to
learning from streams. An example is the following.

Theorem 20. Forallj € N, [j+2,2j+3]StreamEx ¢ [j+ 1,25+ 1| TeamEx.

Proof. Let £; = {L : card(L) > j+ 3 and if ey < ... < ej1o are the j + 3

smallest elements of L, then either [We, = ... = W, , = L] or [at least one of
€o, - .-, €j41 is a grammar for L and W, ,, is finite and maz(We,) is a grammar
for L]}.

L is clearly in [j 4 2,25 + 3]StreamEx, as the learners can first obtain the
least j + 3 elements in the input texts (via synchronization, whenever a smaller
element than previous j + 3 smallest elements is observed). Then, j 4 2 learners
could just output e, €1, . . ., €;41 and the remaining learners output (in the limit)

max(We,,,), if it exists.

The proof to show that £; & [j + 1,25 + 1]TeamEx can be done essentially
using the technique of [12]. Below we give the proof for the case of j = 0. Thus,
we need to show that Lo ¢ Ex. Suppose Ly is Ex-learnable by a learner M.
We give an algorithm using a recursive function p as parameter to construct a

sequence of uniformly r.e. sets Sp, 51,53, ..., in stages.

— At stage 0, op = p(0)p(1)p(2) and enumerate p(0),p(1),p(2) into Sy and S;.
— At stage s > 0, let x5 be the minimum element such that no x > x, is
enumerated into Sy or S7. Enumerate p(z;) into Sy and S; and enumerate
all elements of Sy into S,._. Now dovetail between the searches in (a) and (b)
below:
(a) Search for p(z,) in an enumeration of Wy,).
(b) Search for 7 with ctnt(7) consisting of numbers greater than p(2) such
that M(cs—17) # M (o).
If the search in (a) succeeds first, then enumerate p(zs + 1) into Sy and So
and enumerate all elements in Sy into S, 1. Continue the search in (b).
Whenever the search in (b) succeeds, let o5 = 05_17 and let S = Sy U
S1 Uctnt(os). Enumerate elements in S into Sy and S;. Go to Stage s + 1.

The construction of Sy, Sq,... is effective in p, thus there exists a recursive
function f, such that Wy ;) = S;. By operator recursion theorem [7], there
exists a monotone increasing recursive p such that f, = p. Fix this p. The way
we add elements into Sy and S; guarantees that p(0) < p(1) < p(2) are the
smallest elements in W,y and W,(1).

If the construction goes through infinitely many stages, then the search in (b)
is always successful and W,y = W) = L for some L. Thus L € Ly. However,
Uien i is a text for L and M makes infinitely many mind changes on it.

If some stage s starts but does not terminate, then M does not change its
mind no matter how os_1 is extended by using numbers greater than p(2). If
the search in (a) is not successful, then W) = Wpy,,) = L for some L and
p(zs) is the maximum element in W,5y. Thus L € L. Extend 0,1 to be a text
for L. However, in this case M on this text has stabilized on M (o4_1), but the
language Wy (o, _,) is not equal to L as p(zs) is in L but not in Wys,,).

If the search in (a) is successful, then W1y = Wy(5 41) = L for some L and
p(zs + 1) is the maximum element in Wp,(9). Thus L € L. Extend o, to be a
text for L. However, in this case M on this text has stabilized on M (cs_1), but
the language Wiy (o, _,) is not equal to L as p(z,) is in Wy, _,) but not in L.

Hence £y ¢ Ex. O

6 Iterative Learning and Learning from Inaccurate Texts

In this section, the notion of learning from streams is compared with other no-
tions of learning where the data is used by the learner in more restricted ways
or the data is presented in more adversarial manner than in the standard case of

learning. The first notion to be dealt with is iterative learning where the learner
only remembers the most recent hypothesis, but does not remember any past
data [23]. Later, we will consider other adversary input forms: for example the
case of incomplete texts where finitely many data-items might be omitted [10,
16] or noisy texts where finitely many data-items (not in the input language)
might be added to the input text.

The motivation for iterative learning is the following: When humans learn,
they do not memorize all past observed data, but mainly use the hypothesis they
currently hold, together with new observations to formulate new hypotheses.
Many scientific results can be considered to be obtained in iterative fashion. It-
erative learning for learning from a single stream/text was previously modeled by
requiring the learners to be a function of the previous hypothesis and the current
observed data. Formally, a single-stream learner M : (NU{#})* — (NU{?}) is it-
erative if there exists a recursive function F' : (NU{?}) x (NU{#}) — NU{?} such
that on a text T', M (T[0]) =7 and for t > 0, M(T'[t]) = F(M(T[t—1]),T'(t)). For
notational simplicity, we shall write F(M (T'[t—1]),T(¢)) as M (M (T[t—1]), T'(¢)).
We can similarly define iterative learning from several streams by requiring each
learner’s hypothesis to be a recursive function of its previous hypothesis and the
set of the newest datum received by each learner — here, when synchronization
happens, the learners only share the latest data seen by the learners rather than
the whole history of data seen.

Iterative learning can be considered as a form of information incompleteness
as the learner(s) do not memorize all the past observed data. Interestingly, every
iteratively learnable class is learnable from streams irrespective of the parame-
ters.

Theorem 21. For anyn > 1, every language class Ex-learnable by an iterative
learner is iteratively [n,n]StreamEx-learnable.

Proof. Suppose £ is Ex-learnable by an iterative learner M. We construct
My, ..., M, which [n, n]StreamEx-learn £. We maintain the invariant that each
M; outputs the same grammar g at each time step. Initially g =7. At any time ¢,
suppose M; receives a datum z!, previous hypothesis is g and the synchronized
data, if any, was df, d5, ..., d!. The output conjecture of the learners is ¢’ = g, if
there is no synchronized data; otherwise the output conjecture of the learners is
g =M(...M(M(g,d})ds)...d.). The learner M; requests for synchronization
if M(q',2t) # g'. Clearly M,..., M, form a team of iterative learners from
streams and always output the same hypothesis. Furthermore, it can be seen
that if M on the text T7(0)75(0)...T,(0)T1(1)T(1)...T,(1) ... converges to a
hypothesis, then the sequence of hypothesis output by learners My, Ms, ..., M,
also converges to the same hypothesis. Thus, if M iteratively learns the input
language, then My, Mo, ..., M, also iteratively [n, n]|StreamEx-learn the input
language. O

Now we compare learning from streams with learning from an incomplete or noisy
text. Formally, a text T € (NU{#})*° is an incomplete text for L iff L D ctnt(T)
and L — ctnt(7) is finite [10,16]. A text for L is noisy iff ctnt(7') C L and

ctnt(T) — L is finite [16]. Ex-learning from incomplete or noisy texts is the same
as Ex-learning except that the texts are now incomplete texts or noisy texts, re-
spectively. In the following we investigate the relationships of these criteria with
learning from streams. We show that learning from streams is incomparable to
learning from incomplete or noisy texts.

The nature of information incompleteness in learning from an incomplete text
is very different from the incompleteness caused by streaming of data, because
streaming only spreads information, but does not destroy information (Theo-
rem 12), while the incompleteness in an incomplete text involves the destruction
of information. This difference is made precise by the following incomparability
results.

Proposition 22. Suppose that L consists of Lo = N and all sets Liy1 = {1+
(z,y) : « < k Ay € N}. Then L € [n,n]StreamEx for any n > 1 but L can
neither be Ex-learnt from noisy text nor from incomplete text. Furthermore, L
is iteratively learnable.

Proof. L is iteratively learnable by the following algorithm: as long as 0 has
not been seen in the input, the learner conjectures Ly for the minimal number
k such that no element 1 + (x,y) with © > k and y € N has been seen so far;
once 0 has been observed, the learner changes its mind to Ly and does no further
mind change. It follows that L is iteratively [m,n]StreamEx-learnable.

For the negative result, note that the presence of 0 in the text distinguishes
the learning of Ly from that of Li41, k > 0. However, by either omitting 0 from
the text of Ly in the case of learning from incomplete texts or by adding it to
the text of any Ly 1 in the case of noisy texts, this method of distinguishing the
two cases gets lost and the resulting situation is similar to Gold’s example that
N and the sets {0,1,2,...,2} form an unlearnable class [11]. O

For the separations in the converse direction, one cannot use indexed families as
every indexed family Ex-learnable from normal text is already learnable from
streams; obviously this implication survives when learnability from normal text
is replaced by learnability from incomplete or noisy text.

Remark 23. Supposen > 2. Then the cylindrification of the class £ from Theo-
rem 14 is Ex-learnable from incomplete text but not [1, n|StreamEx-learnable.

Here the cylindrification of the class £ is just the class of all sets {(x,y) : z €
LAy € N} with L € £. Incomplete texts for a cylindrification of such a set L can
be translated into standard texts for L and so the learnability from incomplete
texts can be established; the diagonalization against the stream learners carries
over.

It is known that learnability from noisy text is possible only if for every two
different sets L, L’ in the class the differences L — L’ and L’ — L are both infi-
nite. This is a characterization for the case of indexed families, but it is only a
necessary but not sufficient criterion for classes in general. For example if a class
L consists of sets L, = {(z,y) : y € N—{a,}} without any method to obtain a,
from x in the limit, then learnability from noisy text is lost.

Theorem 24. There is a class L which is learnable from noisy text but not
[1, n]StreamEx-learnable for any n > 2.

In the following only the separating class is given. The class L is the set of all
sets L such that there exist d, e such that L satisfies one of the following two
conditions:

— g is defined on some finite domain, ¢, extends ¢q, e > max(dom(pg)), e
is total and L contains (z,y,2) iff t =0Ay=doraz >0Ag@.(z—1) =y or
r=e+1ANy=ple)+1.

— @4 has an infinite domain and L contains (x,y,z) iff £ = 0Ay = d or
x>0Apalz—1)|=y.

So the set L is the cylindrificated graph of a partial multivalued function f for
which f(0) gives away the index d and the position of a double value (if it exists)
gives away the index e. This class £ is then learnable from noisy text but not
[m, n]StreamEx-learnable.

7 Conclusion

In this paper we investigated learning from several streams of data. For learn-
ing indexed families, we characterized the classes which are [m,n|StreamEx-
learnable using a tell-tale like characterization: An indexed family £ = {Ly, L1,
...} is [m,n]StreamEx-learnable iff it is [1, | ** ||StreamEx-learnable iff there
exists a uniformly r.e. sequence Ey, F1, ... of finite sets such that F; C L; and
there are at most | -] many languages L in £ such that ; C L C L;.

For general classes of r.e. languages, our investigation shows that the power of
learning from streams depends crucially on the degree of dispersion, the success
ratio and the number of successful learners required. Though higher degree of
dispersion is more restrictive in general, we show that any class of languages
which is iteratively learnable is also iteratively learnable from streams even if
one requires all the learners to be successful. There are several open problems
and our results suggest that there may not be a simple way to complete the
picture of relationship between various [m, n]StreamEx learning criteria.

References

1. Andris Ambainis. Probabilistic inductive inference: a survey. Theoretical Computer
Science, 264:155—167, 2001.

2. Dana Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46-62, 1980.

3. Dana Angluin. Inductive inference of formal languages from positive data. Infor-
mation and Control, 45:117-135, 1980.

4. Ganesh Baliga, John Case and Sanjay Jain. The synthesis of language learners.
Information and Computation, 152:16-43, 1999.

5. Ganesh Baliga, Sanjay Jain and Arun Sharma. Learning from multiple sources of
inaccurate data. Siam Journal on Computing, 26:961-990, 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive in-
ference. Information and Control, 28:125-155, 1975.

John Case. Periodicity in generations of automata. Mathematical Systems Theory,
8:15-32, 1974.

John Case and Christopher Lynes. Machine inductive inference and language
identification. In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th
International Colloquium on Automata, Languages and Programming, volume 140
of Lecture Notes in Computer Science, pages 107-115. Springer-Verlag, 1982.
Mark Fulk. Prudence and other conditions on formal language learning. Informa-
tion and Computation, 85:1-11, 1990.

Mark Fulk and Sanjay Jain. Learning in the presence of inaccurate information.
Theoretical Computer Science, 161:235-261, 1996.

E. Mark Gold. Language identification in the limit. Information and Control,
10:447-474, 1967.

Sanjay Jain and Arun Sharma. Computational limits on team identification of
languages. Information and Computation, 130:19-60, 1996.

Sanjay Jain, Daniel Osherson, James S. Royer and Arun Sharma. Systems That
Learn: An Introduction to Learning Theory, 2nd edition. MIT Press, 1999.
Sanjay Jain and Arun Sharma. Team learning of computable languages. Theory
of Computing Systems, 33:35-58, 2000.

Piergiorgio Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam,
1989.

Daniel Osherson, Michael Stob and Scott Weinstein. Systems That Learn: An In-
troduction to Learning Theory for Cognitive and Computer Scientists. MIT Press,
1986.

Daniel Osherson and Scott Weinstein. Criteria of language learning. Information
and Control, 52:123-138, 1982.

Leonard Pitt. Probabilistic inductive inference. Journal of the ACM, 36:383-433,
1989.

Leonard Pitt and Carl H. Smith. Probability and plurality for aggregations of
learning machines. Information and Computation, 77:77-92, 1988.

Hartley Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967. Reprinted, MIT Press 1987.

Carl H. Smith. The power of pluralism for automatic program synthesis. Journal
of the ACM, 29:1144-1165, 1982.

Carl H. Smith. Three decades of team learning. Algorithmic Learning Theory 1994,
Springer LNCS 872:211-228, 1994.

Rolf Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.
Elektronische Informationsverbarbeitung und Kybernetik (FIK), 12:93-99, 1976.

