
Strong Separation of Learning Classes

John Case

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716

email: case@cis.udel.edu

Tel: (302)-831-2711

Keh-Jiann Chen

Institute for Information Sciences

Academica Sinica

Taipei, 15, Taiwan

Republic of China

Sanjay Jain

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716

email: sjain@cis.udel.edu

Tel: (302)-831-1947

March 11, 2007

Abstract

Suppose LC1 and LC2 are two machine learning classes each based on a criterion of success.

Suppose, for every machine which learns a class of functions according to the LC1 criterion of

success, there is a machine which learns this class according to the LC2 criterion. In the case

where the converse does not hold LC1 is said to be separated from LC2. It is shown that for

many such separated learning classes from the literature a much stronger separation holds: (∀C ∈

LC1)(∃C
′ ∈ (LC2−LC1))[C

′ ⊃ C]. It is also shown that there is a pair of separated learning classes

from the literature for which the stronger separation just above does not hold. A philosophical

heuristic toward the design of artificially intelligent learning programs is presented with each strong

separation result.

1 Introduction

Technically the present paper presents a strengthening of some of the formal learning class hierarchy

results mostly from Case and Smith (1983). It is hoped that the particular technical results

presented herein can provide one of many possible vehicles to suggest a few philosophical heuristics

toward the design of learning programs in artificial intelligence. To that end, we present, with most

of our results, brief, corresponding interpretations.

In the present section we’ll briefly overview some of the technical results and corresponding

interpretations, but first it is helpful to explain what learning classes are and why they are inter-

esting.

We are concerned with the algorithmic learning of programs for functions. The reader may

find it interesting that the learning of programs for functions is interpreted in Blum and Blum

(1975), Case and Smith (1983) and Fulk (1985) as being about inductively inferring explanations

for scientific phenomena. The present paper mostly does not pursue further that interpretation.

We consider learning programs for functions each of whose possible inputs and outputs admits

of a finite computer representation. Such inputs and outputs clearly can be numerically coded by

numbers in N (
def
= {0, 1, 2, 3, . . .}). We will, then, consider the learning of programs for functions

which map N into N . We could also consider the learning of programs for partial functions (Rogers

(1967)) mapping N into N (functions with domain a subset of N), but, in the present paper, we

do not.

Imagine, if you will, an algorithmic device or machine M receiving as input all and only the

ordered pairs from the graph of a total function f mapping N into N . Lets say M receives the

ordered pairs in the order

(0, f(0)), (1, f(1)), (2, f(2)), (1)

The ordered pairs from the graph of f in any other order could be algorithmically preprocessed

into the order in (1), so it will suffice for consideration of mere algorithmicity to consider the order

in (1). Further imagine, again if you will, that M may, as it’s receiving the data about f in (1),

output, from time to time, a computer program (in some programming system) that M, at each

such time, conjectures is a possible program for f . The quality of these conjectures may be expected

to depend on the cleverness of M and the difficulty of f . One way to define the success of such an

M on such an f (Blum and Blum (1975); Gold (1967)) is to require for success that at some time

M receiving the data in (1) about f conjectures some program i such that

M receiving subsequent data re f never conjectures a program 6= i, (2)

and

i does compute f. (3)

1

We say, following the terminology in Case and Smith (1983), that in (and only in) this case M Ex-

identifies f . It is interesting to consider the extent to which a machine M can be a general purpose

learner, to what extent it can, say, Ex-identify each function f in a large class of functions. It is

easy to argue, for example, that a suitable machine M employing standard interpolation techniques

(Kopal (1961)) can Ex-identify each polynomial (of one variable with coefficients in N). It is known

(Gold (1967); Blum and Blum (1975)) that no single machine M, however clever, can Ex-identify

each computable function f . Ex is defined to be the class of all classes C of computable functions

such that some machine M Ex-identifies each function in C. Ex provides a convenient set theoretic

summary of the power of learning (programs for functions) according to the criterion of success,

Ex-identification. For example, the class of all polynomials (of one variable and with coefficients

in N) is in Ex, and the class of all computable functions is not.

Ex is our first example of a learning class.

We sometimes refer to i conjectured by M on f after receiving some data about f and satisfying

(2) above as the final program of M on f . Blum and Blum (1975) and Case and Smith (1983) in

effect introduce the idea that perhaps suitably clever single machines could learn larger classes of

functions if the criterion of success were loosened to allow final programs to be slightly erroneous.

For a ∈ N , M is said (Case and Smith (1983)) to Exa-identify f if and only if M on f conjectures

a final program i and this i computes f correctly except on up to a arguments to f ; on these

arguments it may be incorrect. Exa is defined to be the class of all classes C of computable

functions such that some machine M Exa-identifies each function in C. For each a ∈ N , Exa is

a learning class. Clearly Ex0 = Ex. Also, clearly Exa ⊆ Exa+1. It is shown in Case and Smith

(1983) that

Exa+1 −Exa 6= ∅. (4)

This means that, for each a ∈ N , there is a class of computable functions C that some M can

Exa+1-identify, but which no M can Exa-identify. Allowing the possibility of even one extra error

in final programs enables the learning of a class that cannot be learned otherwise. An apparent

philosophical heuristic toward the design of learning programs in artificial intelligence already from

this result is that one should not be too perfectionistic about final programs and consider allowing

errors in them since each error allowed may increase learning power. There is a possible problem

with this heuristic. What if we care about learning all the functions in a particular class C known to

be in, say, Exa, but then we want to learn all the functions in C together with even more functions

besides by the device of allowing an error in the final programs. (4) above does not guarantee the

existence of a class C ′ ⊇ C such that C ′ ∈ (Exa+1 − Exa). In fact, it might be that, to get the

extra learning power from (4) above, we have to give up learning a class C that we started with in

Ex. We may not want to adopt the apparent philosophical heuristic above if the cost of increasing

learning power in one direction is a loss in another. Fortunately, in the present paper, for a wide

2

variety of learning classes LC1,LC2 such that LC1 ⊆ LC2 and (LC2 − LC1) 6= ∅, we show the

strong separation result that

(∀C ∈ LC1)(∃C
′ ∈ (LC2 − LC1))[C

′ ⊃ C], (5)

where ‘⊃’ denotes proper superset. LC1 = Exa and LC2 = Exa+1 is an example.

For learning classes LC1 and LC2, from the literature, shown to be strongly separated in

the present paper, we can and do propose a corresponding philosophical heuristic recommending

loosening ones criterion of successful learning in a “direction” given by passing from the definition

of LC1 to that of LC2.

Here is another example of a criterion of success we consider, this one first introduced in Barzdin

(1974) based on a remark in Feldman (1972) and later introduced in Case and Smith (1983). This

criterion does not require a final program. We say, following the terminology in Case and Smith

(1983), that M Bc-identifies f if and only if at some time M receiving the data in (1) about f

conjectures some program i such that

i computes f (6)

and

M receiving subsequent data re f never conjectures a program not computing f . (7)

Note that (7) permits M, receiving subsequent data re f , to conjecture lots of programs different

from i, but these programs must also compute f . Bc is defined to be the class of all classes C of

computable functions such that some machine M Bc-identifies each function in C. ‘⊂’ denotes

proper subset. In Case and Smith (1983) it is shown that, for LC1 = ∪a∈NExa and LC2 = Bc,

LC1 ⊂ LC2. In the present paper we, in effect, show that, for this choice of LC1 and LC2, the

strong separation result (5) above actually holds. In this paper we also consider variants of Bc-

identification in which errors are allowed and show strong separation results, each accompanied by

a corresponding philosophical heuristic. We also show that a particular pair of learning classes,

LC1 = Pex and LC2 = Tex, defined below and known to be separated (Case and Ngo Manguelle

(1979)), is not strongly separated as in (5).

The reader may have noticed that the example heuristics explicitly given or hinted at above

do not really tell the designer of learning programs in artificial intelligence exactly what to put in

his or her design to achieve the resultant increase in learning power. It is not at all clear from the

above what to actually do so as to make sure one is not being too narrow about what constitutes

success. It turns out that each of our proofs of a strong separation result of the form (5) essentially

presents an algorithm for passing from any machine M which LC1-identifies a class C to a machine

M′ which LC2-identifies a class C ′ ⊃ C, where C ′ 6∈ LC1. Hence, we present algorithms for example

ways to explicitly strictly improve any design in the direction of the advice from the corresponding

3

philosophical heuristic. We also present some discussion about the potential eventual practicality

of such algorithms (just before Proposition 15 below).

2 Preliminaries

2.1 Notation

N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Unless otherwise specified,

e, i, j,m, n, r, s, t, x, y, z, with or without decorations (decorations are subscripts, superscripts and

the like) range over N . ∗ denotes a non-member of N and is assumed to satisfy (∀n)[n < ∗ < ∞].

a and b with or without decorations, range over N ∪ {∗}. ↑ denotes undefined. S, with or without

decorations, ranges over subsets of N . card(S) denotes the cardinality of the set S. max(·),min(·)

denote the maximum and minimum of their respective set arguments. We assume that max(∅) = 0

and min(∅) =↑.

η and θ range over partial functions with arguments and values from N . η(x)↓ denotes that

η(x) is defined; η(x)↑ denotes that η(x) is undefined. f, g, p and q with or without decorations

range over total functions with arguments and values from N . For n ∈ N and partial functions η

and θ, η =n θ means that card({x | η(x) 6= θ(x)}) ≤ n; η =∗ θ means that card({x | η(x) 6= θ(x)})

is finite. domain(η) and range(η) denote the domain and range of the function η, respectively.

〈i, j〉 stands for an arbitrary, computable, one to one encoding of all pairs of natural numbers

onto N (Rogers (1967)) (we assume that 〈i, j〉 ≥ max({i, j}) and that 〈·, ·〉 is increasing in both

its arguments). π1 and π2 denote the corresponding inverses: for all x, y, π1(〈x, y〉) = x and

π2(〈x, y〉) = y.

ϕ denotes a fixed acceptable programming system for the partial computable functions: N → N

(Rogers (1958); Rogers (1967); Machtey and Young (1978)). (Case showed the acceptable systems

are characterized as those in which every control structure can be constructed (Riccardi (1980);

Royer (1987)); Royer and later Marcoux examined complexity analogs of this characterization

(Riccardi (1980); Riccardi (1981); Royer (1987); Marcoux (1989)). Essentially all “naturally”

occurring programming systems are acceptable, but non-acceptable systems can be mathematically

constructed (Rogers (1958)).) ϕi denotes the partial computable function: N → N computed by

program i in the ϕ-system. Thanks to the numerical coding of programs onto N , we identify ϕ-

programs with natural numbers. Φ denotes an arbitrary Blum complexity measure (Blum (1967a);

Hopcroft and Ullman (1979)) for the ϕ-system. Intuitively, Φi(x) is a measure of the resource (for

example, time) used by ϕ-program i on input x. The set of all total recursive functions of one

variable is denoted by R. C, with or without decorations, ranges over subsets of R.

4

A function f is said to be zero-extension of η
def
⇔

f(x) =

η(x) x ∈ domain(η);

0 otherwise.

ZERO∗ denotes the set {f | (
∞
∀ x)[f(x) = 0]}.

The quantifiers ‘
∞
∀ ’ and ‘

∞
∃ ’, essentially from Blum (1967a), mean ‘for all but finitely many’ and

‘there exist infinitely many’, respectively.

2.2 Fundamental Function Inference Paradigms

Let f [n] denote the finite initial segment ((0, f(0)), (1, f(1)), . . . , (n − 1, f(n − 1))). Let INIT =

{f [n] | f ∈ R∧n ∈ N}. We let M, with or without decorations, range over learning machines (also

called Inductive Inference Machines, IIMs (Blum and Blum (1975))).

IIMs have been used in the study of machine identification of programs for recursive functions as

well as for algorithmic learning of grammars for languages (Blum and Blum (1975); Case and Smith

(1983); Chen (1981); Fulk (1985); Gold (1967); Osherson, Stob and Weinstein (1986); Wiehagen

(1978); Angluin and Smith (1983); Klette and Wiehagen (1980); Case (1986)). For language learn-

ing, direct analogs of the strong separations of the present paper provably do not hold. Whether

suitably and interestingly amended versions do hold remains to be investigated.

For any IIM M, behaving as described in Section 1, we define an associated function MF :

INIT → N as follows. Consider M receiving the graph of f as input, in the order given in (1). Let

prog0 be a program for everywhere 0 function. Let MF (f [n])
def
= prog0 if M has not output any

program by the time it receives (n, f(n)); otherwise let MF (f [n])
def
= the last program output by

M by the time it receives (n, f(n)).

From now on, for expository convenience, we will use the ‘M’ to mean either ‘M’ itself or ‘MF ’

with context dictating which is intended.

We now extend the domain of M, the function.

M(f) is defined to have the value i (written: M(f)↓ = i) ⇔ (
∞
∀ n)[M(f [n]) = i]. M(f) is

undefined (written: M(f)↑)
def
⇔ no such i exists.

By means of the next five definitions we formally specify all the learning classes mentioned or

hinted at in Section 1.

Definition 1 (Gold (1967); Blum and Blum (1975); Case and Smith (1983)) Recall that a ranges

over N ∪ {∗}. For all a,

(a) M Exa-identifies a recursive function f (written: f ∈ Exa(M)) iff both M(f)↓ and ϕM(f) =a

f .

(b) Exa = {C ⊆ R | (∃M)[C ⊆ Exa(M)]}.

5

Definition 2 (Case and Smith (1983)) For all a,

(a) M Bca-identifies a recursive function f (written: f ∈ Bca(M)) iff (
∞
∀ n)[ϕM(f [n]) =a f].

(b) Bca = {C ⊆ R | (∃M)[C ⊆ Bca(M)]}.

We usually write Ex for Ex0 and Bc for Bc0. (Barzdin (1974)) essentially introduced the

notion of Bc0. Theorem 3 just below states some of the basic hierarchy results about the Exa and

Bca classes.

Theorem 3 For all n,

(a) Exn ⊂ Exn+1;

(b)
⋃

n∈N Exn ⊂ Ex∗;

(c) Ex∗ ⊂ Bc;

(d) Bcn ⊂ Bcn+1;

(e)
⋃

n∈N Bcn ⊂ Bc∗; and

(f) R ∈ Bc∗.

Parts (a), (b), (d), and (e) are due to Case and Smith (1983). John Steel first observed that

Ex∗ ⊆ Bc and the diagonalization in part (c) is due to Harrington and Case (Case and Smith

(1983)). Part (f) is due to Harrington (Case and Smith (1983)). Blum and Blum (1975) first

showed that Ex ⊂ Ex∗. Barzdin (1974) first showed Ex ⊂ Bc.

The following definition was based on Popper’s principle (Popper (1968)) that scientific conjec-

tures should be refutable.

Definition 4 (Case and Ngo Manguelle (1979)) M is Popperian iff for all f and n, ϕM(f [n]) is a

total function.

We write f ∈ Pex(M) to denote the fact that f ∈ Ex(M) and M is Popperian.

Definition 5 (Case and Ngo Manguelle (1979)) Pex = {C ⊆ R | (∃M)[C ⊆ Ex(M) ∧ M is

Popperian]}.

The following definition requires M to output programs for total functions on the initial segments

of functions it identifies, but not necessarily otherwise.

Definition 6 (Case and Ngo Manguelle (1979))

(a) M Tex-identifies f (written: f ∈ Tex(M)) iff M Ex-identifies f and (∀n)[ϕM(f [n]) is total].

(b) Tex = {C ⊆ R | (∃M)[C ⊆ Tex(M)]}.

Theorem 7 (Case and Ngo Manguelle (1979)) Pex ⊂ Tex ⊂ Ex.

6

3 Strong Separation

First we consider the Ex hierarchy.

Theorem 8 (∀n)(∃C)(∀M)(∃M′)[[C 6∈ Exn] ∧ [C ⊆ Exn+1(M′)] ∧ [(Exn(M) − C) ⊆ Exn(M′)]].

Corollary 9 (∀n)(∀C ∈ Exn)(∃C′ ⊇ C)[C′ ∈ Exn+1 − Exn].

As mentioned in Section 1, the advice suggested by Corollary 9 is to consider allowing even

one (more) error in final programs. The proof of Theorem 8 provides one way to algorithmically

augment any learning machine to take advantage of this advice.

Proof of Theorem 8. Fix n. Let M0,M1, . . . denote a recursive enumeration of all inductive

inference machines. We will construct a recursive sequence of programs, p(0), p(1), p(2), . . . such

that, for all i, ϕp(i)(0) = i and card({x | ϕp(i)(x)↑}) ≤ n + 1, and, moreover, {f | ϕp(i) ⊆ f} 6⊆

Exn(Mi). We take C = {f | (∃i)[ϕp(i) ⊆ f]} (thus C 6∈ Exn). Given M we first show how to

construct M′ satisfying the statement of the theorem (assuming the existence of p and C as defined

above). Let M′(f [0]) = 0. For m > 0, let M′(f [m]) = p(f(0)) if ¬[(∃x < m)[Φp(f(0))(x) ≤

m ∧ ϕp(f(0))(x) 6= f(x)]]; M′(f [m]) = M(f [m]) otherwise. It is easy to see that M′ satisfies the

statement of the theorem. It remains now to construct p as claimed above. The construction of p

is a variant of the construction in Case and Smith (1983) proving that (Exn+1 − Exn 6= ∅).

By a suitably padded version of s-m-n theorem (Rogers (1967)) there exists a recursive p,

such that the (partial) function ϕp(i) may be defined as follows. We describe the function ϕp(i).

ϕp(i)(0) = i. Let xs denote the least x such that ϕp(i)(x) has not been defined before stage s. Go

to stage 0.

Definition of ϕp(i)

Begin stage s

1. For each y ∈ N , let fy denote the function defined as follows:

fy(x) =

ϕp(i)(x) x < xs;

y xs ≤ x ≤ xs + n;

0 otherwise.

2. Dovetail steps 3 and 4 until, if ever, step 3 succeeds. If and when step 3 succeeds, go to

step 5.

3. Search for a y and m, with m > xs, such that Mi(fy[m]) 6= Mi(fy[xs]).

4. Let x = xs + n + 1.

7

repeat

ϕp(i)(x) = 0; x = x + 1.

forever

5. If and when 3 above succeeds, let y, n be as found in step 3. Let ϕp(i)(x) = y for

xs ≤ x ≤ xs + n. For x such that xs + n < x < m and ϕp(i)(x) has not been defined

till now, let ϕp(i)(x) = 0.

6. Go to stage s + 1.

End stage s

End of definition of ϕp(i)

We now have to prove that card({x | ϕp(i)(x)↑}) ≤ n + 1 and (∃f)[ϕp(i) ⊆ f ∧ f 6∈ Exn(Mi)].

For this we consider the following cases:

Case 1: Infinitely many stages are executed.

In this case clearly ϕp(i) is total and Mi(ϕp(i))↑.

Case 2: Some stage s starts but never finishes.

In this case, for each y ∈ N , let fy be as defined in step 1 in Stage s. Clearly {x | ϕp(i)(x)↑} =

{xs, . . . , xs + n}, and, for all y, ϕp(i) ⊆ fy. Also for all y, Mi(fy) = Mi(ϕp(i)[xs]). However,

Mi(ϕp(i)[xs]) can compute an n variant of at most (n+1) fy’s. Thus there exists an fy ⊇ ϕp(i)

such that Mi does not Exn-identify fy.

From the above two cases it follows that C 6∈ Exn.

Similarly it can be shown that

Theorem 10 (∃C)(∀M)(∃M′)[[C 6∈
⋃

i Exi]∧ [C ⊆ Ex∗(M′)]∧ [(∀n)[(Exn(M)− C) ⊆ Exn(M′)]]].

Corollary 11 (∀C ∈
⋃

i Exi)(∃C′ ⊇ C)[C′ ∈ Ex∗ −
⋃

i Exi].

The advice suggested by Corollary 11 is to consider allowing an unbounded, finite number of

errors in final programs. A worked out proof of Theorem 10 would provide one way to algorith-

mically augment any learning machine to take advantage of this advice. We should caution the

reader that not every learning application would be able to tolerate an unbounded , finite number

of errors.

Theorem 12 below can be proved using a combination of the idea used to prove Theorem 13

below and the proof in Case and Smith (1983) to show that Bc− Ex∗ 6= ∅.

Theorem 12 (∀C ∈ Ex∗)(∃C′ ⊇ C)[C′ ∈ Bc− Ex∗].

The advice suggested by Theorem 12 is to not necessarily require a final program. Furthermore,

this is more powerful advice than that given after Corollary 11 above. A worked out proof of

8

Theorem 12 would provide one way to algorithmically augment any learning machine to take

advantage of this advice. We should caution the reader that in some cases the increased learning

power must come from the improved machine outputting infinitely many different programs (Case

and Smith (1983)), and, hence, in such cases, the size of these programs (Blum (1967b)) will grow

without bound. There are two answers to this. One is that the human race may go extinct before

the program sizes get too large to handle, so it might not matter. The other is that, while requiring

the number of different programs output to be finite does not increase learning power (Barzdin

and Podnieks (1973); Case and Smith (1983)), it does increase learning power if one also bounds

a suitably sensitive measure of the computational complexity of the learning machine itself (Case,

Jain and Sharma (1991)).

We now turn to the Bc hierarchy. Corollary 14 solves an open problem in Chen (1981).

Theorem 13 (∀n)(∃C)(∀M)(∃M′)[[C 6∈ Bcn] ∧ [C ⊆ Bcn+1(M′)] ∧ [(Bcn(M) − C) ⊆ Bcn(M′)]].

Corollary 14 (∀n)(∀C ∈ Bcn)(∃C′ ⊇ C)[C′ ∈ Bcn+1 − Bcn].

The advice suggested by Corollary 14 is similar to that suggested by Corollary 9: consider

allowing even one (more) error in programs conjectured. The proof of Theorem 13 provides one

way to algorithmically augment any learning machine to take advantage of this advice.

Proof of Theorem 13. Fix n. Let M0,M1, . . . denote a recursive sequence of all inductive in-

ference machines. We will construct a recursive sequence of pairwise distinct programs p(0), p(1), . . .

such that, for each i, the following three conditions are satisfied.

(A) (∃j)[ϕp(〈i,j〉) is total].

(B) (∀j, k | j ≤ k)[domain(ϕp(〈i,k〉)) = ∅ ∨ domain(ϕp(〈i,j〉)) ⊆ domain(ϕp(〈i,k〉))].

(C) {f ∈ R | f(0) = i ∧ (∀j)[card({x | ϕp(〈i,j〉)(x)↓ 6= f(x)}) ≤ n + 1]} 6⊆ Bcn(Mi).

Let Ci = {f ∈ R | f(0) = i ∧ (∀j)[card({x | ϕp(〈i,j〉)(x)↓ 6= f(x)}) ≤ n + 1]}.

Note that conditions (A) and (B) imply that, for each i,

[(
∞
∀ k)[domain(ϕp(〈i,k〉)) = ∅ ∨ ϕp(〈i,k〉) is total]

∧

[card({k | domain(ϕp(〈i,k〉)) 6= ∅}) < ∞ ⇒ ϕp(〈i,max({k|domain(ϕp(i,k))6=∅})〉) is total]].

Thus, for all f ,

f ∈ Ci ⇒ (
∞
∀ m)[ϕp(i,max({k<m|Φp(〈i,k〉)(0)<m})) =n+1 f]. (8)

9

We take C =
⋃

i∈N Ci. We will construct p as claimed above later. Given M, we first construct

M′ as claimed in the statement of the theorem. Define M′ as follows. Let

Sat(m, f) = (∃k < m)[card({x < m | Φp(〈f(0),k〉)(x) < m ∧ ϕp(〈f(0),k〉)(x) 6= f(x)}) > n + 1] (9)

M′(f [0]) = 0. For m > 0, if ¬Sat(m, f), then M′(f [m]) = p(〈f(0), r〉), where r = max({k < m |

Φp(〈i,k〉)(0) < m}); M′(f [m]) = M(f [m]) otherwise.

Note that, if f ∈ C, then by (8), for all but finitely many m, M′(f [m]) is a program for an n+1

variant of f . Thus C ⊆ Bcn+1(M′). If f 6∈ C, then, for all but finitely many m, Sat(m, f) is true, and

thus, for all but finitely many m, M′(f [m]) = M(f [m]). It follows that Bcn(M) − C ⊆ Bcn(M′).

We now construct p as claimed above. p can be constructed by easy modification of the construc-

tion used in the proof in Case and Smith (1983) of the fact that Bcn+1−Bcn 6= ∅. For completeness

we give the details of the construction. Our construction of p, in addition to satisfying conditions

(A) and (C) above also satisfies a strengthened version of (B).

(B′) (∀k)[ϕp(〈i,k〉) is total]
∨

(∃k)[ϕp(〈i,k〉) is total ∧(∀k′ < k)[domain(ϕp(〈i,k′〉)) = domain(ϕp(〈i,0〉))]∧(∀k′ > k)[domain(ϕp(〈i,k′〉)) =

∅]].

We now proceed to construct p, as claimed above. By the operator recursion theorem (Case

(1974)) there exists a recursive, one-to-one, p, such that, for each i, the (partial) function ϕp(〈i,·〉)

may be described as follows.

Let ϕp(〈i,0〉)(0) = i. Let xs denote the least x such that ϕp(〈i,0〉)(x) has not been defined before

stage s. Go to stage 1.

Begin stage s

1. For each x < xs, let ϕp(〈i,s〉)(x) = ϕp(〈i,0〉)(x).

2. Dovetail steps 3 and 4 until, if ever, step 3 succeeds. If and when step 3 succeeds, complete the

then current iteration of the repeat loop in step 4, and then, go to step 5.

3. Let g be the zero extension of ϕp(〈i,0〉)[xs]. Search for m > xs, and for a y > m such that, for

all r ≤ n, ϕMi(g[m])(y + r)↓ = 0.

4. Let x = xs.

repeat

ϕp(〈i,s〉)(x) = 0.

x = x + 1.

forever

5. If and when step 3 succeeds, let y be as found in step 3.

5.1 Let ϕp(〈i,0〉)(y + r) = 1, for r ≤ n.

10

5.2 Let m′ = max(y + n, x).

5.3 For each z ≤ m′ such that ϕp(〈i,0〉)(z) has not been defined till now, let ϕp(〈i,0〉)(z) = 0.

5.4 For each z ≤ m′ such that ϕp(〈i,s〉)(z) has not been defined till now, let ϕp(〈i,s〉)(z) = 0.

5.5 For z > m′, make ϕp(〈i,s〉)(z) = ϕp(〈i,0〉)(z) whenever ϕp(〈i,0〉)(z) gets defined (i.e. ϕp(〈i,s〉)

“follows” ϕp(〈i,0〉) from now on).

(Note that, because of step 5, ϕp(〈i,s〉) =n+1 ϕp(〈i,0〉) and domain(ϕp(〈i,0〉)) = domain(ϕp(〈i,s〉)).)

6. Go to stage s + 1.

End stage s

Case 1: Infinitely many stages are executed.

In this case, for all s, ϕp(〈i,s〉) is total. Also, for all s, ϕp(〈i,s〉) =n+1 ϕp(〈i,0〉) (see comment

at the end of step 5). Thus ϕp(〈i,0〉) ∈ Ci. Also ϕp(〈i,0〉) 6∈ Bcn(Mi), since because of the

success, in each stage s, of step 3 and the diagonalization in step 5.1, for infinitely many m,

ϕMi(ϕp(〈i,0〉)[m]) 6=
n ϕp(〈i,0〉). Thus conditions (A)–(C) as stated above are satisfied.

Case 2: Some stage s starts but never finishes.

Clearly, ϕp(〈i,s〉) is total. Properties (A) and (B) are immediate from the construction (see com-

ment at the end of step 5). Clearly, ϕp(〈i,s〉) ∈ Ci. (C) follows from the fact that, for all but

finitely many m, for infinitely many x, ϕMi(ϕp(〈i,s〉)[m])(x) 6= 0 (otherwise step 3 would succeed).

It is useful at this juncture to consider the particular ways presented in the proofs so far to

algorithmically improve learning. It would be easy to argue that these ways to achieve improvement

provide mathematical existence proofs but do not necessarily provide improvement on a class of

functions that is likely to come up in a natural learning scenario. The proof of Theorem 13 involves

a complex self (and other) reference argument. With minor changes we could recast the proof of

Theorem 8 as a self-reference argument based on some form of the Kleene recursion theorem (Rogers

(1967), Page 214). As will be seen, the proof of Theorem 17 below involves a self-reference argument

based on the Kleene recursion theorem. In each case the existence of the means for improvement

depends on a self-reference argument (or something close enough for our purposes). It is plausibly

argued in Case (1988) that self-referential examples witnessing existence are harbingers of natural

examples witnessing same. Hence, there is some reason to expect that a search to find natural ways

to improve learning along the lines suggested in the present paper would be fruitful.

From Theorem 3, R ∈ Bc∗; hence, we have

Proposition 15 (∀C ∈
⋃

i Bci)(∃C′ ⊇ C)[C′ ∈ Bc∗ −
⋃

i Bci].

11

4 Some More Results on Strong Separation

Here is a case where strong separation does not hold.

Theorem 16 ¬[(∀C ∈ Pex)(∃C ′ ⊇ C)[C′ ∈ Tex− Pex]].

Proof. Let C = ZERO∗ ∈ Pex. Any machine which Tex-identifies ZERO∗ is a Popperian

machine.

Theorem 17 (∃C)(∀M)(∃M′)[[C 6∈ Tex] ∧ [C ∪Tex(M) ⊆ Ex(M′)]].

The advice suggested by the two corollaries just below to Theorem 17 is to not necessarily

require that all the conjectures along the way to a final program compute total functions. The

proof of Theorem 17 provides one way to algorithmically augment any learning machine to take

advantage of this advice.

Corollary 18 (∀C ∈ Tex)(∃C ′ ⊇ C)[C′ ∈ Ex − Tex].

Corollary 19 (∀C ∈ Pex)(∃C ′ ⊇ C)[C′ ∈ Ex − Pex].

Proof of Theorem 17. Given f , let nf = 1 + min({x | ϕf(0)(x) 6= f(x)∨Φf(0)(x) ≥ f(x + 1)})

if {x | ϕf(0)(x) 6= f(x)∨Φf(0)(x) ≥ f(x+1)} 6= ∅; nf is undefined otherwise. Consider the following

class of functions:

C = {f | [ϕf(0) = f ∧ (∀x)[Φf(0)(x) < f(x + 1)]] ∨ [(∃x)[Φf(0)(x) ≥ f(x + 1) ∨ ϕf(0)(x) 6=

f(x)] ∧ [(∀x ≥ nf)[f(x) = 0]]]}.

We first show that C 6∈ Tex. Suppose by way of contradiction that M Tex-identifies C. Then

by the Kleene recursion theorem there exists an e such that the following holds. Let xs denote the

least x such that ϕe(x) is not defined before stage s. Let ϕe(0) = e. Go to stage 0.

Begin stage s

If and when ϕM(ϕe[xs])(xs)↓, let ϕe(xs) = ϕM(ϕe[xs])(xs) + Φe(xs − 1) + 1 and go to stage s + 1.

End stage s

Now consider the following cases.

Case 1: All stages halt.

In this case let f = ϕe ∈ C. Now M(f)↑ or for all but finitely many x, ϕM(f)(x) 6= f(x) (by

construction).

Case 2: Some stage s starts but never finishes.

12

Then let f be the zero extension of ϕe[xs]. Clearly, f ∈ C. But ϕM(f [xs]) is not total (otherwise

stage s will halt!).

From the above cases we have that C 6∈ Tex. Now suppose M is given, we give M′ satis-

fying the statement of the theorem. Let zeroext be such that, for all f, n: ϕzeroext(f [n]) =

the zero extension of f [n].

M′(f [n]) =

f(0) if (∀x < n − 1)[Φf(0)(x) < f(x + 1) ∧ ϕf(0)(x) = f(x)];

zeroext(ϕe[nf]) if (∃x < n − 1)[Φf(0)(x) ≥ f(x + 1) ∨ ϕf(0)(x) 6= f(x)]∧

(∀x | nf ≤ x < n)[f(x) = 0];

M(f [n]) otherwise.

It is easy to see that M′, Ex-identifies C ∪Tex(M).

5 Acknowledgements

This work was supported by NSF grants MCS 8010728 and CCR 8713846. We would like to thank

the anonymous referees for several helpful comments.

References

Angluin, D. and Smith, C. (1983). A survey of inductive inference: Theory and methods. Computing Surveys,
15, 237–289.

Barzdin, J. M. (1974). Two theorems on the limiting synthesis of functions. In Theory of Algorithms and
Programs, Latvian State University, Riga, 210, 82–88. In Russian.

Barzdin, J. M. and Podnieks, K. (1973). The theory of inductive inference. In Mathematical Foundations of
Computer Science.

Blum, L. and Blum, M. (1975). Toward a mathematical theory of inductive inference. Information and
Control, 28, 125–155.

Blum, M. (1967a). A machine independent theory of the complexity of recursive functions. Journal of the
ACM, 14, 322–336.

Blum, M. (1967b). On the size of machines. Information and Control, 11, 257–265.

Case, J. (1974). Periodicity in generations of automata. Mathematical Systems Theory, 8, 15–32.

Case, J. (1986). Learning machines. In W. Demopoulos and A. Marras (Eds.), Language Learning and
Concept Acquisition. Ablex Publishing Company.

Case, J. (1988). The power of vacillation. In Haussler, D. and Pitt, L. (Eds.), Proceedings of the Workshop
on Computational Learning Theory, (pp. 133–142). Morgan Kaufmann Publishers, Inc.

Case, J., Jain, S., and Sharma, A. (1991). Complexity issues for vacillatory function identification. In Pro-
ceedings, Foundations of Software Technology and Theoretical Computer Science, Eleventh Conference,
New Delhi, India. Lecture Notes in Computer Science 560, (pp. 121–140). Springer-Verlag.

Case, J. and Ngo Manguelle, S. (1979). Refinements of inductive inference by Popperian machines. Technical
Report 152, SUNY/Buffalo.

Case, J. and Smith, C. (1983). Comparison of identification criteria for machine inductive inference. Theo-
retical Computer Science, 25, 193–220.

Chen, K. (1981). Tradeoffs in Machine Inductive Inference. PhD thesis, SUNY at Buffalo.

13

Feldman, J. (1972). Some decidability results on grammatical inference and complexity. Information and
Control, 20, 244–262.

Fulk, M. (1985). A Study of Inductive Inference machines. PhD thesis, SUNY at Buffalo.

Gold, E. M. (1967). Language identification in the limit. Information and Control, 10, 447–474.

Hopcroft, J. and Ullman, J. (1979). Introduction to Automata Theory Languages and Computation. Addison-
Wesley Publishing Company.

Klette, R. and Wiehagen, R. (1980). Research in the theory of inductive inference by GDR mathematicians
– A survey. Information Sciences, 22, 149–169.

Kopal, Z. (1961). Numerical Analysis. Chapman and Hall Ltd., London.

Machtey, M. and Young, P. (1978). An Introduction to the General Theory of Algorithms. North Holland,
New York.

Marcoux, Y. (1989). Composition is almost as good as s-1-1. In Proceedings, Structure in Complexity
Theory–Fourth Annual Conference. IEEE Computer Society Press.

Osherson, D., Stob, M., and Weinstein, S. (1986). Systems that Learn, An Introduction to Learning Theory
for Cognitive and Computer Scientists. MIT Press, Cambridge, Mass.

Popper, K. (1968). The Logic of Scientific Discovery (Second ed.). Harper Torch Books, New York.

Riccardi, G. (1980). The Independence of Control Structures in Abstract Programming Systems. PhD thesis,
SUNY/ Buffalo.

Riccardi, G. (1981). The independence of control structures in abstract programming systems. Journal of
Computer and System Sciences, 22, 107–143.

Rogers, H. (1958). Gödel numberings of partial recursive functions. Journal of Symbolic Logic, 23, 331–341.

Rogers, H. (1967). Theory of Recursive Functions and Effective Computability. McGraw Hill, New York.
Reprinted, MIT Press 1987.

Royer, J. (1987). A Connotational Theory of Program Structure. Lecture Notes in Computer Science 273.
Springer Verlag.

Wiehagen, R. (1978). Zur Therie der Algrithmischen Erkennung. PhD thesis, Humboldt-Universitat, Berlin.

14

