
Learning All Subfunctions of a Function

Sanjay Jain a,1 Efim Kinber b Rolf Wiehagen c

aSchool of Computing, National University of Singapore, 3 Science Drive 2,
Singapore 117543. Email: sanjay@comp.nus.edu.sg

b Department of Computer Science, Sacred Heart University, Fairfield, CT
06432-1000, U.S.A. Email: kinbere@sacredheart.edu

c Department of Computer Science, University of Kaiserslautern, D-67653
Kaiserslautern, Germany. Email: wiehagen@informatik.uni-kl.de

Abstract

Sublearning, a model for learning of subconcepts of a concept, is presented. Sub-
learning a class of total recursive functions informally means to learn all functions
from that class together with all of their subfunctions. While in language learning
it is known to be impossible to learn any infinite language together with all of its
sublanguages, the situation changes for sublearning of functions.

Several types of sublearning are defined and compared to each other as well as to
other learning types. For example, in some cases, sublearning coincides with robust
learning. Furthermore, whereas in usual function learning there are classes that
cannot be learned consistently, all sublearnable classes of some natural types can
be learned consistently.

Moreover, the power of sublearning is characterized in several terms, thereby
establishing a close connection to measurable classes and variants of this notion. As
a consequence, there are rich classes which do not need any self-referential coding
for sublearning them.

1 Introduction

In Gold’s model of learning in the limit, see [15], the machine learner gets all
examples of a total recursive function f , without loss of generality in natural
order (0, f(0)), (1, f(1)), (2, f(2)), Based on this information, the learner
creates a sequence of hypotheses which eventually converges to a hypothesis

1 Supported in part by NUS grant number R252–000–127–112.

Preprint submitted to Elsevier Science 11 March 2007

exactly describing this function f . One might argue that getting all examples
may be somewhat unrealistic, at least in some situations. On the other hand,
what one can learn depends, intuitively, on the information one gets. Thus,
also intuitively, the less information the learner gets the less it can learn. If
it receives only information describing some subconcept of a certain “master”
concept, then it seems reasonable that it can learn only this subconcept. From
another, positive, point of view, the less data the learner is provided with, the
wider is the spectrum of hypotheses which are consistent with these data and
hence can serve as correct descriptions of the corresponding (sub-)concept
to be learned. Situations like these of learning subconcepts of concepts we
want to model and to study in the present paper. Possible scenarios of such
“hierarchies” of concepts and corresponding subconcepts might include:

- learning a “theory of the universe”, or learning only “subconcepts of nature”
such as gravitation, quantum theory, or relativity,

- diagnosing the complete health status of a patient, or detecting only some
of his/her deficiencies, or only one illness,

- forecasting the weather for a whole country or for some smaller region, or
for a town only.

We do not intend, of course, to solve these problems within a model from
abstract computation theory. What we want is to present a, in our opinion,
technically easy model for learning of concepts and subconcepts and to study
the corresponding learning capabilities.

In our model, we represent concepts by total recursive functions, i.e. com-
putable functions mapping the natural numbers into the natural numbers and
being everywhere defined (total). Subconcepts are then, consequently, repre-
sented by subfunctions of total recursive functions. Informally, we will call
a class C of total recursive functions sublearnable iff all the functions from
that class C together with all of their subfunctions, finite and infinite ones, are
learnable. This goal might seem too ambitious, since, for example, in learn-
ing of languages from positive data it is known to be already impossible to
learn any infinite language together with all of its finite sublanguages, see [15].
However, in learning of functions, the situation changes provided we consider
a hypothesis as correct if this hypothesis is consistent with all the data pre-
sented to the learner. In other words, we allow the learner to converge to a
hypothesis describing a superfunction of the (finite, infinite or total) function
to be learned. This approach was introduced in the paper of the Blums [6].
Within this approach, if the learner is provided with all examples of any total
function, then it is supposed to learn that function exactly. But if the learner
is provided with exactly all examples of any finite or infinite subfunction of
some total function, then it suffices to create a final hypothesis which, on the

2

one hand, is consistent with this subfunction, but which, on the other hand,
describes a function that, on arguments never shown, can be arbitrarily de-
fined or even undefined. Thus, indeed, when learning a proper subfunction of
a total function by being presented only all the examples of that subfunction,
the learner has “more freedom” to generate a correct final hypothesis.

We will also modify this approach, namely by strengthening and by weakening
it, respectively. Strengthening means that we always require the final hypoth-
esis to be total even when the learner was presented only a partial function.
However, we do not require that this total final hypothesis has to describe
a (total) function from the learnable class C. The reason for not considering
this additional strengthening is that then already simple classes (namely sub-
classes of recursively enumerable classes) would be no longer sublearnable.
Nevertheless, it may be worth to study this additional strengthening as well
in more detail in future work. Weakening the approach above means to require
to learn only all the infinite subfunctions of the functions from C, that is miss-
ing the finite subfunctions. As it turns out, this weakening indeed increases
the learning possibilities. Finally, we will also combine this strengthening and
this weakening, that is learning only infinite subfunctions but requiring total
hypotheses as the final result of the learning process.

As for some historical background, note that in the seminal paper [15], Gold
showed that in his model every recursively enumerable class of total recursive
functions is learnable by the so-called identification-by-enumeration principle.
Informally, this kind of learning strategy always outputs the minimal hypoth-
esis (with respect to a given total recursive enumeration of the class to be
learned) which is consistent with all the data seen so far. It is then easy to
see that this strategy converges to the minimal correct hypothesis within the
given enumeration. The naturalness of this strategy led Gold to conjecture
that every learnable class can be learned using identification-by-enumeration.
In other words, Gold’s conjecture was that every learnable class is contained
in a recursively enumerable class. However, as Bārzdiņš [2] proved, this con-
jecture is false. He exhibited the following “self-describing” class SD of total
recursive functions, SD = {f | f(0) is a program for f}. Each function f in
SD can be trivially learned by just outputting the program f(0). On the other
hand, no recursively enumerable class contains SD.

It seems worth to be noted that the class SD above can also be learned
without making explicit use of its self-coding, namely by some “generalized”
identification-by-enumeration. The same is true for other classes learnable
in Gold’s model. This in turn led to the thesis that for each type of Gold-
style learning, there is an adequate enumeration technique, i.e. an enumeration
technique which can be used to learn exactly the concept classes of that type.
This thesis is stated and technically motivated in [19]. In the present paper,
we verify this thesis for several types of sublearning, see Theorems 48 and 50.

3

Also in the 1970’s, Bārzdiņš suggested a more sophisticated version of Gold’s
conjecture above designed to transcend such self-referential counterexamples
as the class SD. He reasoned that if a class is learnable by way of such a self-
referential property, then there would be an “effective transformation” that
would transform the class into another one that is no longer learnable. The
idea is that if a learner is able to find the embedded self-referential information
in the functions of the class, so can an effective transformation, which then
can weed out this information. A reasonable way to make the notion of an
effective transformation precise consists in using the concept of general recur-
sive operators, i.e. effective and total mappings from total functions to total
functions, see Definitions 51 and 52. In order to illustrate Bārzdiņš’ intuition
in the context of the class SD above, consider the operator Θ weeding out the
self-referential information f(0) as follows: Θ(f) = g, where g(x) = f(x + 1)
for all arguments x. Then one can show that Θ(SD) = {Θ(f) | f ∈ SD} = R,
the class of all the total recursive functions. Since R is not learnable, see [15],
Θ(SD) is not learnable as well. Informally, Bārzdiņš’ conjecture can then be
stated as follows: If all the projections of a class of total recursive functions
under all general recursive operators are learnable (or, in other words, if the
class is learnable robustly), then the class is contained in a recursively enu-
merable class of total recursive functions, and, consequently, it is learnable
by use of identification-by-enumeration. This was how the notion of robust
learning appeared historically. This notion was then studied in several papers,
see [27,18,14,21,8,16,9].

Clearly, the notion of sublearning in the present paper can intuitively be
viewed as some special case of learning robustly. Indeed, while general ro-
bust learning requires that all projections of a given class of total recursive
functions under all general recursive operators be learnable, in sublearning
only a special kind of projections is required so, namely the given class of
total recursive functions together with all of their subfunctions (or all of their
infinite subfunctions, respectively). Thus, the question of comparing the ca-
pabilities of these two learning paradigms, sublearning and robust learning,
naturally arises. As we will show, in general, these capabilities turn out to be
set-theoretically incomparable, see Theorems 59 and 63. Consequently, each
of these notions has its “right of existence”, since no one of them majorizes
the other one by its learning power. On the other hand, in some natural cases,
sublearning and robust learning coincide! This is true if the function classes
to be learned are closed under finite variations, i.e. if some total function f
belongs to such a class then any total function, which differs from f at most on
finitely many arguments, also belongs to that class. Thus, intuitively, changing
a function a “little bit” will keep the resulting function still within the class.
In this case, we can show that sublearning and robust learning are of the
same power, and, moreover, any such class is even contained in a recursively
enumerable class, see Theorem 64.

4

Further note that Gold’s classical identification-by-enumeration was later shown
to be successfully applicable to learning of more than merely the recursively
enumerable classes of functions. Actually, this technique can directly be ap-
plied also to learning of so-called measurable classes, see Definition 43. Infor-
mally, a function class is measurable iff it can be embedded into a computable
numbering η such that the predicate ηi(x) = y is decidable uniformly in i, x
and y. For example, the running times of the total recursive functions form
a measurable class. Somewhat more generally, any complexity measure in the
sense of [7] also constitutes a measurable class. Clearly, measurability here
just ensures the computability of the identification-by-enumeration strategy,
i.e. the effectiveness of finding the corresponding minimal hypothesis which
is consistent with the data received so far. As to our concept of sublearning,
we will see that some of the corresponding types of sublearning contain all
the measurable classes, as it follows from Theorem 44. This result has yet
another interesting consequence, namely that there are sublearnable classes
beyond the world of recursive enumerability which turn out to be not at all
self-referential!

There are further results showing that the connection between sublearnable
classes and measurable classes is really close. Actually, if we confine ourselves
again to classes being closed under finite variations, then sublearnability and
measurability coincide, see Theorem 45. Moreover, if we drop the property
of closedness under finite variations, then sublearnability coincides with weak
measurability, see Definition 47 and Theorem 48. Furthermore, the close con-
nection between sublearnability and measurability can be considered as the
substantial reason for another unexpected phenomenon. It is known that in
Gold’s model there are learnable classes which cannot be learned consistently;
i.e. every learner of such a class must be allowed to produce intermediate hy-
potheses that are not consistent with the data seen so far, see [3,24,26]. Thus,
paradoxically, the learners of such classes are forced to output intermediate
hypotheses which contradict known data. Conversely, as it will be shown in
Theorem 28, sublearnable classes can always be learned consistently!

The paper is organized as follows. In Section 2, the needed definitions and
results from existing function learning theory are presented. In Section 3, the
types of sublearning are formally introduced and some basic facts will be
derived. In Section 4, we compare these types with respect to their corre-
sponding learning power. In Section 5, we prove some characterizations for
several sublearning types. In Section 6, we compare sublearning with robust
learning. Finally, in Section 7, we present further comparisons of sublearning
types with known types of function learning.

5

2 Notation and Preliminaries

Recursion-theoretic concepts not explained below are treated in [22]. N de-
notes the set of natural numbers. ∗ denotes a non-member of N and is as-
sumed to satisfy (∀n)[n < ∗ < ∞]. a ∈ A denotes a is a member of set A.
⊆,⊂,⊇,⊃,4, respectively, denote the subset, proper subset, superset, proper
superset, and incomparability relations for sets. The empty set is denoted by
∅. We let card(S) denote the cardinality of the set S. So “card(S) ≤ ∗” means
that card(S) is finite. The minimum and maximum of a set S are denoted by
min(S) and max(S), respectively. We take max(∅) to be 0 and min(∅) to be
∞. χA denotes the characteristic function of A, that is, χA(x) = 1, if x ∈ A,
and 0 otherwise.

〈·, ·〉 denotes a 1-1 computable mapping from pairs of natural numbers onto
natural numbers. π1, π2 are the corresponding projection functions. 〈·, ·〉 is
extended to n-tuples of natural numbers in a natural way. η, with or without
subscripts, superscripts, primes and the like, ranges over partial functions. If
η1 and η2 are both undefined on input x, then, we take η1(x) = η2(x). We say
that η1 ⊆ η2 iff for all x in domain of η1, η1(x) = η2(x). We let domain(η) and
range(η) respectively denote the domain and range of the partial function η.
η(x)↓ denotes that η(x) is defined. η(x)↑ denotes that η(x) is undefined. For
a partial function η, η−1(y) denotes the set {x | η(x) = y}.

We say that a partial function η is consistent with η′ (denoted η ∼ η′) iff
for all x ∈ domain(η) ∩ domain(η′), η(x) = η(x′). η is non-consistent with η′

(denoted η 6∼ η′) iff there exists an x such that η(x)↓ 6= η′(x)↓.

For r ∈ N , the r-extension of η denotes the function f defined as follows:

f(x) =
{

η(x), if x ∈ domain(η);
r, otherwise.

f, g and h, with or without subscripts, superscripts, primes and the like, range
over total functions. R denotes the class of all total recursive functions, i.e.,
total computable functions with arguments and values from N . T denotes the
class of all total functions. R0,1 (T0,1) denotes the class of all total recursive
functions (total functions) with range contained in {0, 1}. C and S, with or
without subscripts, superscripts, primes and the like, range over subsets of
R. ϕ denotes a fixed acceptable programming system. ϕi denotes the partial
recursive function computed by the ϕ-program i. Below we will interpret the
hypotheses of our learning machines just as programs in this numbering ϕ.
We let Φ be an arbitrary Blum complexity measure [7] associated with the ac-
ceptable programming system ϕ; many such measures exist for any acceptable
programming system [7]. We assume without loss of generality that Φi(x) ≥ x,

6

for all i, x. ϕi,s is defined as follows:

ϕi,s(x) =
{

ϕi(x), if x < s and Φi(x) < s;
↑, otherwise.

We let Wi = domain(ϕi), and Wi,s = domain(ϕi,s).

For a given partial computable function ψ, we define MinProg(ψ) = min({i |
ϕi = ψ}).

For an r.e. set S of programs, we let Union(S) denote a program for the partial
recursive function defined as follows: ϕUnion(S)(x) = ϕp(x), for the first p ∈ S
found such that ϕp(x) is defined, using some standard dovetailing mechanism
for computing ϕp’s. If ϕp(x) is undefined for all p ∈ S, then ϕUnion(S)(x) is
undefined. Note that one can get a program for Union(S) effectively from
an index for the r.e. set S. When programs q1, q2, . . . , qn for partial recur-
sive functions η1, η2, . . . , ηn are implicit, we sometimes abuse notation and use
Union({η1, η2, . . . , ηn}), to denote Union({q1, q2, . . . , qn}).

A class C ⊆ R is said to be recursively enumerable iff there exists an r.e. set X
such that C = {ϕi | i ∈ X}. For any non-empty recursively enumerable class
C, there exists a total recursive function f such that C = {ϕf(i) | i ∈ N}.

A class C ⊆ R is said to be closed under finite variations iff for all f, g ∈ R
such that card({x | f(x) 6= g(x)}) <∞, f ∈ C iff g ∈ C.

We say that a function F dominates [23] a function f iff F (x) ≥ f(x) for all
but finitely many x.

The following functions and classes are commonly considered below. Zero is
the everywhere 0 function, i.e., Zero(x) = 0, for all x ∈ N . CONST = {f |
(∀x)[f(x) = f(0)]} denotes the class of the constant functions. FINSUP =
{f | (∀∞x)[f(x) = 0]} denotes the class of all total recursive functions of
finite support.

2.1 Function Identification

We first describe inductive inference machines. In this paper we will be con-
cerned about learning of functions, often being partial ones. For the purpose
of learning the (partial) functions, the data given to the learner is the graph
of the function presented in the form of infinite sequence of pairs from that
graph (or a special pause symbol #).

A text is a mapping from N to (N×N)∪{#}, such that if (x, y) and (x, z) are
in the range of the text, then y = z. T denotes the set of all texts. A segment

7

is an initial sequence of a text. That is, a segment is a mapping from {x ∈ N |
x < n} to (N×N)∪{#}, for some natural number n (where if (x, y) and (x, z)
are in the range of the segment, then y = z). For a segment σ, content(σ)
denotes the set of pairs in the range of σ: content(σ) = range(σ) − {#}.
Similarly, for a text T , content(T) = range(T)−{#}. SEG denotes the set of
all finite segments. SEG0,1 = {σ ∈ SEG | (x, y) ∈ content(σ) ⇒ y ∈ {0, 1}}.
We let σ and τ , with or without subscripts, superscripts, primes and the like,
range over SEG. Λ denotes the empty segment. For f ∈ R and n ∈ N , we let
f [n] denote the finite segment (0, f(0)), (1, f(1)), . . . , (n−1, f(n−1)). Clearly,
f [0] denotes the empty segment. We let INITSEG = {f [n] | f ∈ R ∧ n ∈
N}. Similarly, INITSEG0,1 = {f [n] | f ∈ R0,1 ∧ n ∈ N}. For elements
of INITSEG, we sometimes abuse notation and represent f [n] by the string
f(0), f(1), . . . , f(n− 1). We assume some computable ordering of elements of
SEG. σ < τ , if σ appears before τ in this ordering. Similarly one can talk
about the least element of a subset of SEG.

We let σ ·τ denote the concatenation of σ and τ . Sometimes we abuse notation
slightly and use σ · (x,w) to denote the concatenation of σ with the segment
of length one consisting of (x,w).

Let |σ| denote the length of σ. T [n] denotes the initial segment of T of length
n. If |σ| ≥ n, then we let σ[n] denote the prefix of σ of length n. σ ⊆ τ denotes
that σ is a prefix of τ .

A text T is for a (partial) function η, iff content(T) = η.

An inductive inference machine (IIM) M [15] is an algorithmic device that
computes a (possibly partial) mapping from SEG into N . Since the set of all
finite initial segments, SEG, can be coded onto N , we can view these machines
as taking natural numbers as input and emitting natural numbers as output.
For a text T and i ∈ N , we say that M(T) = i iff the sequence M(T [n])
converges to i. We write M(T)↓ iff there is some i ∈ N such that M(T) = i.
M(T) is undefined if no such i exists. M0,M1, . . . denotes a recursive enumer-
ation of all the IIMs. The next definitions describe several criteria of function
identification.

Definition 1 [15] Let f ∈ R and C ⊆ R.

(a) M Ex-identifies f (written: f ∈ Ex(M)) just in case, for all texts T for
f , there exists a ϕ-program i for f such that M(T) = i.

(b) M Ex-identifies C iff M Ex-identifies each f ∈ C.

(c) Ex = {C ⊆ R | (∃M)[C ⊆ Ex(M)]}.

By the definition of convergence, only finitely many data points from a function

8

f have been observed by an IIM M at the (unknown) point of convergence.
Hence, some form of learning must take place in order for M to identify f .
For this reason, hereafter the terms identify, learn and infer are used inter-
changeably.

Note that in the literature, often canonical ordering of data for the input
function is considered: the input consists of (0, f(0)), (1, f(1)), For Ex-
learning of total functions, the ordering is not important. However, for the
criteria considered in this paper, ordering is often important. Thus, it is more
suitable for us to use arbitrary ordering in the input.

Definition 2 [20] A machine M is said to be set-driven iff for all σ and τ
such that content(σ) = content(τ), M(σ) = M(τ).

Definition 3 [13,6] A machine M is said to be rearrangement-independent iff
for all σ and σ′ such that content(σ) = content(σ′), and |σ| = |σ′|, M(σ) =
M(σ′).

A machine M is said to be order-independent iff for all texts T and T ′ such
that content(T) = content(T ′), M(T) = M(T ′).

Theorem 4 [13,6] For every C ∈ Ex, there exists a rearrangement-independent
and order-independent machine M such that M Ex-identifies C.

Theorem 4 holds for many criteria of learning besides Ex. In particular
it can be shown for AllTotSubEx, InfTotSubEx, AllPartSubEx and
InfPartSubEx defined below.

Definition 5 [13] σ is said to be an Ex-stabilizing sequence for M on η, iff
(i) content(σ) ⊆ η, and (ii) for all σ′ such that σ ⊆ σ′ and content(σ′) ⊆ η,
M(σ) = M(σ′).

Definition 6 [6,20] σ is said to be an Ex-locking sequence for M on η, iff
(i) content(σ) ⊆ η, (ii) for all σ′ such that σ ⊆ σ′ and content(σ′) ⊆ η,
M(σ) = M(σ′), and (iii) ϕM(σ) ⊇ η.

Theorem 7 [6,20] Suppose for all texts T for η, ϕM(T) ⊇ η. Then, there
exists an Ex-locking sequence for M on η.

A similar theorem as above holds for many other criteria of inference, in par-
ticular, for AllPartSubEx, InfPartSubEx, AllTotSubEx, InfTotSubEx,
defined below.

Definition 8 [4,10] Let f ∈ R and C ⊆ R.

(a) M Bc-identifies f (written: f ∈ Bc(M)) iff, for all texts T for f , for all
but finitely many n ∈ N , M(T [n]) is a ϕ-program for f .

9

(b) M Bc-identifies C ⊆ R iff M Bc-identifies each f ∈ C.

(c) Bc = {C ⊆ R | (∃M)[C ⊆ Bc(M)]}.

Definition 9 (Based on [6,20]) σ is said to be a Bc-locking sequence for M

on η, iff (i) content(σ) ⊆ η, (ii) for all σ′ such that σ ⊆ σ′ and content(σ′) ⊆ η,
[η ⊆ ϕM(σ′)].

Theorem 10 (Based on [6,20]) Suppose for all texts T for η, for all but
finitely many n, ϕM(T [n]) ⊇ η. Then, there exists a Bc-locking sequence for M

on η.

An analogous theorem holds for the sublearning types AllPartSubBc,
InfPartSubBc, AllTotSubBc and InfTotSubBc, defined below.

Definition 11 [3] M is said to be consistent on f iff, for all texts T for f , for
all n, M(T [n])↓ and content(T [n]) ⊆ ϕM(T [n]).

The above consistency notion is referred to as Consarb in the literature (to
denote that ordering of the input may be arbitrary rather than in canonical
order), see [17]. As we will only be dealing with arbitrary input in this paper,
we drop “arb” from the notation.

Definition 12 (a) [3] M Cons-identifies f ∈ R iff M is consistent on f , and
M Ex-identifies f .

(b.1) [3] M Cons-identifies C ⊆ R iff M Cons-identifies each f ∈ C.

(b.2) Cons = {C ⊆ R | (∃M)[M Cons-identifies C]}.

(c.1) [17] M RCons-identifies C ⊆ R iff M is total, and M Cons-identifies
C.

(c.2) RCons = {C ⊆ R | (∃M)[M RCons-identifies C]}.

(d.1) [25] M T Cons-identifies C ⊆ R iff M is consistent on each f ∈ T , and
M Cons-identifies C.

(d.2) T Cons = {C ⊆ R | (∃M)[M T Cons-identifies C]}.

Note that for M to Cons-identify a function f , it must be defined on each
initial segment of each text for f .

Definition 13 M TEx-identifies f ∈ R, iff M Ex-identifies f , and for all
texts T for f , for all n, M(T [n]) is a program for a total function.

M TEx-identifies class C ⊆ R, iff M TEx-identifies each f ∈ C.

10

TEx = {C ⊆ R | (∃M)[M TEx-identifies C]}.

Definition 14 NUM = {C | (∃C ′ | C ⊆ C ′ ⊆ R)[C ′ is recursively enumerable]}.

For inductive inference within NUM, the set of all recursively enumerable
classes and their subclasses, the reader is referred to [15,5,11].

The following theorems relate the criteria of inference discussed above.

Theorem 15 [25,26,3,4,6,24,10]

NUM ⊂ T Cons ⊂ RCons ⊂ Cons ⊂ Ex ⊂ Bc.

Theorem 16 [17] NUM ⊂ TEx ⊂ Cons.

T Cons − TEx 6= ∅.

TEx −RCons 6= ∅.

3 Definitions for Sublearning

In this section, we formally define our types of sublearning. Notice that each
of these types includes, by definition, only classes of total recursive functions –
though a class be sublearnable means, as said above, to be learnable together
with all (or all infinite, respectively) of the corresponding subfunctions as
well. The formal reason for confining us to classes of total recursive functions
in the definitions of the sublearning types below is the following. We then
can compare these types to the established types of function learning (which
also contain only classes of total recursive functions, see the definitions in
Subsection 2.1) without any formal difficulty. On the other hand, obviously,
once a class of total recursive functions has been fixed, then the class of all (or
all infinite, respectively) corresponding subfunctions is uniquely determined
and, hence, needs no additional specification. After giving these definitions we
show that all the recursively enumerable classes are sublearnable with respect
to every of our sublearning criteria, see Proposition 22. Consequently, in the
following, we will mainly deal with those sublearnable classes which are not
contained in any recursively enumerable class.

In our first definition, the learner is required to stabilize on a program for a
total function extending the concept to be learned.

Definition 17 (a) We say that M AllTotSubEx-identifies f ∈ R (written:
f ∈ AllTotSubEx(M)), iff, for all subfunctions η ⊆ f , for all texts T for η,
M(T)↓, ϕM(T) ⊇ η, and ϕM(T) ∈ R.

11

(b) M AllTotSubEx-identifies C ⊆ R, iff M AllTotSubEx-identifies each
f ∈ C.

(c) AllTotSubEx = {C ⊆ R | (∃M)[C ⊆ AllTotSubEx(M)]}.

In the next definition, the final conjecture is not required to be total.

Definition 18 (a) We say that M AllPartSubEx-identifies f ∈ R (written:
f ∈ AllPartSubEx(M)), iff, for all subfunctions η ⊆ f , for all texts T for η,
M(T)↓, and ϕM(T) ⊇ η.

(b) M AllPartSubEx-identifies C ⊆ R, iff M AllPartSubEx-identifies each
f ∈ C.

(c) AllPartSubEx = {C ⊆ R | (∃M)[C ⊆ AllPartSubEx(M)]}.

In the next definition, the final conjecture must be total, but only all infinite
subconcepts are required to be learned.

Definition 19 (a) We say that M InfTotSubEx-identifies f ∈ R (written:
f ∈ InfTotSubEx(M)), iff, for all subfunctions η ⊆ f with infinite domain,
for all texts T for η, M(T)↓, ϕM(T) ⊇ η, and ϕM(T) ∈ R.

(b) M InfTotSubEx-identifies C ⊆ R, iff M InfTotSubEx-identifies each
f ∈ C.

(c) InfTotSubEx = {C ⊆ R | (∃M)[C ⊆ InfTotSubEx(M)]}.

The next definition requires only infinite subconcepts to be learned, but does
not require the final conjecture to be total.

Definition 20 (a) We say that M InfPartSubEx-identifies f ∈ R (written:
f ∈ InfPartSubEx(M)), iff, for all subfunctions η ⊆ f with infinite domain,
for all texts T for η, M(T)↓, and ϕM(T) ⊇ η.

(b) M InfPartSubEx-identifies C ⊆ R, iff M InfPartSubEx-identifies each
f ∈ C.

(c) InfPartSubEx = {C ⊆ R | (∃M)[C ⊆ InfPartSubEx(M)]}.

One can extend the above definitions to use other criteria of inference such as
Bc or require consistency by the learning machine. Such criteria are named
AllTotSubBc and InfPartSubCons, etc. We define AllTotSubBc as an
example.

Definition 21 (a) We say that M AllTotSubBc-identifies f ∈ R (written:
f ∈ AllTotSubBc(M)), iff, for all subfunctions η ⊆ f , for all texts T for η,

12

for all but finitely many n, ϕM(T [n]) ⊇ η and ϕM(T [n]) ∈ R.

(b) M AllTotSubBc-identifies C ⊆ R, iff M AllTotSubBc-identifies each
f ∈ C.

(c) AllTotSubBc = {C ⊆ R | (∃M)[C ⊆ AllTotSubBc(M)]}.

Using identification-by-enumeration one can easily show that already the
strongest among the sublearning types, AllTotSubEx, contains all the re-
cursively enumerable classes. Notice that, by Proposition 55 and Theorem 63
below, the inclusion of Proposition 22 is even proper.

Proposition 22 NUM ⊆ AllTotSubEx.

4 Comparison of Sublearning Criteria

In this section, we first compare various criteria of sublearning to each other.
Then we deal with consistent sublearning. In particular, we show that the
classes from AllPartSubEx and from AllTotSubEx can even be learned
consistently. Finally, we consider behaviourally correct sublearning.

A summary of the results of this section can be seen in Figure 1. If there
is no sequence of directed arrows connecting two types then these types are
incomparable.

4.1 Comparing the Basic Types of Sublearning to Each Other

As it turns out, the trivial inclusions immediately implied by the definitions
are all proper, while AllPartSubEx and InfTotSubEx are incomparable,
see Corollaries 26 and 27.

Theorem 23 AllPartSubEx − InfTotSubEx 6= ∅.

Proof. Let C = {f ∈ R | [card(range(f)) < ∞] and (∀e ∈ range(f))[We =
f−1(e)] }.

It is easy to verify that C ∈ AllPartSubEx. The learner on input σ, first
computes D = {e | (∃x)[(x, e) ∈ content(σ)]}. Then, the learner outputs a
program for the following function g: g(x) = e, for the first e ∈ D found (in
some standard search) such that x ∈ We; if no such e exists, then g(x) =↑.
(Here for Ex-identification we assume that the program output by the learner,
on input σ, depends only on D as computed above).

13

AllTotSubBc=

InfPartSubEx ExInfTotSubEx

InfTotSubCons

InfTotSubBc
AllPartSubBc=
InfPartSubBc

Bc

AllTotSubEx

NUM

AllPartSubCons=
InfPartSubCons=
AllPartSubEx

AllTotSubCons=

Denotes Proper Subset

Fig. 1. Comparison of Sublearning Criteria

Instead of proving C /∈ InfTotSubEx, we will prove a stronger result (which
is needed in the proof of both Corollary 24 and Theorem 35 below), namely
C /∈ InfTotSubBc. Thus, suppose by way of contradiction M InfTotSubBc-
identifies C. Then, by Smullyan’s double recursion theorem [22], there exist
distinct a, b such that Wa,Wb may be described as follows. We will simulta-
neously define a function f , subfunctions of which will be used for the diago-
nalization.

Before stage 0, let f be the empty function. Let xs denote the least x such
that f(xs) is not defined before stage s. Let σ0 = Λ. It will be the case that
content(σs) = graph of f [xs]. Initially, Wa = Wb = ∅. At the beginning of
any stage s, Wa would contain {x < xs | f(x) = a} and Wb would contain
{x < xs | f(x) = b}.

14

Stage s
1. Dovetail steps 1.1, 1.2, until step 1.1 succeeds. If and when 1.1. succeeds,

go to step 2.
1.1 Search for τ extending σs such that

a) content(τ) − content(σs) ⊆ {(x, a) | x > xs}, and
b) ϕM(τ)(xs) converges.

1.2 Enumerate in Wa, one by one, elements x > xs.
2.

Let xm = max((Wa enumerated up to now)∪{x | (x, a) ∈ content(τ)}).
Let f(x) = a, for xs < x ≤ xm.
Enumerate xs + 1, . . . , xm in Wa.
Let f(xs) = a if ϕM(τ)(xs) 6= a, otherwise let f(xs) = b. Correspond-

ingly enumerate xs in Wa or Wb, respectively.
Let σs+1 be an extension of τ such that content(σs+1) is the same as

the graph of f defined up to now.
Go to stage s+ 1.

End stage s

Clearly, if infinitely many stages exist then f defined above is total and in C.
Let T denote the text

⋃

s σs+1 for f . Now M(τ) makes convergent errors on
infinitely many initial segments τ of T (for the τ found at each stage).

On the other hand, if stage s does not end, then extend f as follows. Let c be
such that Wc = {xs}. Let f(xs) = c. Let f(x) = a, for x > xs. (f for x < xs is
already defined before stage s). Clearly, f ∈ C. Now M on any input τ , such
that σs ⊆ τ and content(τ) ⊆ f − {(xs, c)}, does not output a program for a
total function (as step 1.1 did not succeed).

Thus M does not InfTotSubBc-identify C.

Corollary 24 AllPartSubEx − InfTotSubBc 6= ∅.

Proof. Immediately from the proof of Theorem 23.

Theorem 25 InfTotSubEx − AllPartSubEx 6= ∅.

Proof. Let C = {f ∈ R | (∃e | ϕe = f)(∀∞x)[π1(f(x)) = e]}.

Clearly, C ∈ InfTotSubEx.

Now suppose by way of contradiction that M witnesses that C ∈
AllPartSubEx.

15

We will first construct a function ϕe. If ϕe is total, then ϕe will be in C and
ϕe will be a diagonalizing function.

If ϕe is not total, then we will construct another diagonalizing function ϕe′

based on ϕe.

By Kleene recursion theorem [22], there exists an e such that ϕe may be
described as follows. Let xs denote the least x such that ϕe(x) has not been
defined before stage s. Initially, x0 = 0. Let σ0 = Λ. Go to stage 0.

Stage s
Dovetail steps 1 and 2, until one of them succeeds. If step 1 succeeds before

step 2, then go to step 3. If step 2 succeeds before step 1, then go to step
4.

1. Search for a τ extending σs such that:
(a) content(τ) ⊆ {(x, 〈e, z〉) | x, z ∈ N},
(b) M(τ) 6= M(σs).

2. Search for a w such that
(a) for all y, (w, y) 6∈ content(σs),
(b) ϕM(σs)(w)↓.

3. Let ϕe(x) = 〈e, z〉, for all (x, 〈e, z〉) in content(τ).
Let x′ be the maximum x such that, for some z, (x, 〈e, z〉) ∈ content(τ).
Let ϕe(x) = 〈e, 0〉 for x ≤ x′ such that ϕe(x) has not been defined up to

now.
Let σs+1 be an extension of τ such that content(σs+1) is the graph of ϕe

defined up to now.
Go to stage s+ 1.

4. Let ϕe(w) = 〈e, 0〉, if ϕM(σs)(w)↓ = 〈e, 1〉; ϕe(w) = 〈e, 1〉, otherwise.
Let ϕe(x) = 〈e, 0〉 for xs ≤ x < w.
Let σs+1 be an extension of σs such that content(σs+1) is the graph of ϕe

defined up to now.
Go to stage s+ 1.

End stage s

If all stages in the above construction complete, then clearly, ϕe is total, is
a member of C and M either makes infinitely many mind changes on

⋃

s σs

(due to success of step 1 infinitely often), or the final program output by
M on

⋃

s σs makes infinitely many convergent errors on ϕe (due to success
of step 2 infinitely often, and diagonalization in step 4). Thus, M cannot
AllPartSubEx-identify C.

We now consider the case that some stage s does not complete. This means
that step 1 in stage s does not succeed. In particular, it means that for some
finite function η extending σs, M does not partially extend η on some input

16

text for η. Fix one such η. Now again using Kleene recursion theorem [22]
there exists an e′ such that

ϕe′ =
{

η(x), if x ∈ domain(η);
〈e′, 0〉, otherwise.

Clearly, ϕe′ is in C. However, M does not partially extend the subfunction η
of ϕe′ , on some text for η. Thus, M does not AllPartSubEx-identify C.

An alternative proof of above theorem suggested by one of the anonymous
referees can be obtained as follows: Let Ω(f)(x) = 〈x, f(0), f(1), . . . , f(x)〉.
Let Ω(C) = {Ω(f) | f ∈ C}. Then, it is easy to see that:

(a) C ∈ Ex iff Ω(C) ∈ Ex iff Ω(C) ∈ InfTotSubEx.

(b) C ∈ Conscan iff Ω(C) ∈ Cons iff Ω(C) ∈ AllPartSubCons =
AllPartSubEx. (The last equality is due to Theorem 28 below).

Here we say that M Conscan-identifies f iff, the sequence M(f [n]) converges
to a ϕ-program for f , and for all n, for all x < n, ϕM(f [n])(x) = f(x). Thus
M is required to be consistent only when f is given in canonical rather than
in arbitrary order. One can now define the type Conscan in a way similar to
Definition 12(b.1–b.2).

Now take a class C ∈ Ex−Conscan [3]. Then, Ω(C) belongs to InfTotSubEx−
AllPartSubEx using (a) and (b) above.

Corollaries 26 and 27 immediately follow from Theorems 23 and 25.

Corollary 26 AllPartSubEx 4 InfTotSubEx.

Corollary 27 AllTotSubEx ⊂ AllPartSubEx.

InfTotSubEx ⊂ InfPartSubEx.

AllPartSubEx ⊂ InfPartSubEx.

AllTotSubEx ⊂ InfTotSubEx.

4.2 Consistent Sublearning

While in Gold’s model there are Ex-learnable classes which cannot be learned
consistently, see Theorem 15, all the classes from AllPartSubEx as well as
from AllTotSubEx can be learned consistently. This surprising fact will be

17

proved now in Theorem 28 using a technique from [9]. Note that this result
will be useful at several subsequent places.

Theorem 28 AllPartSubEx = AllPartSubCons.

AllTotSubEx = AllTotSubCons.

Proof. Suppose M AllPartSubEx-identifies (AllTotSubEx-identifies) C.
Without loss of generality, we can assume M to be total on SEG. We define
a (monotonic) mapping F from SEG to SEG ∪ T, such that either (a) or (b)
holds.

(a) F (σ) is infinite, content(F (σ)) ⊆ content(σ), and either M(F (σ)) is not
defined or ϕM(F (σ)) is not an extension of content(F (σ)). (Thus content(σ) is
not extended by any function in C).

(b) F (σ) is of finite length, content(F (σ)) = content(σ), and ϕM(F (σ)) extends
content(σ).

This can be done by defining F (Λ) = Λ,

F (σ ·(x,w)) =

F (σ), if F (σ) is of infinite length;
F (σ) · (x,w) · #∞, if F (σ) is of finite length, and

there does not exist a j such that
ϕM(F (σ)·(x,w)·#j),j ⊇ content(σ · (x,w));

F (σ) · (x,w) · #j, if F (σ) is of finite length, and
j is the least number such that
ϕM(F (σ)·(x,w)·#j),j ⊇ content(σ · (x,w)).

F is clearly computable and satisfies the properties (a) and (b) above. Fur-
thermore, for all η with an extension in C, for all texts T for η, it is easy to
verify that

⋃

n F (T [n]) is also a text for η.

Define M′ as follows. M′(σ) = M(F (σ)), if F (σ) is finite in length. M′(σ) is
undefined otherwise.

Now, as M AllPartSubEx-identifies (AllTotSubEx-identifies) C, it fol-
lows using property (b) of F above, that M′ AllPartSubCons-identifies
(AllTotSubCons-identifies) C.

Proposition 29 InfTotSubCons ⊂ InfTotSubEx.

Proof. Let C = {f ∈ R | (∃e | ϕe = f)(∀∞x)[π1(f(x)) = e]}. C is clearly in
InfTotSubEx. C 6∈ Cons, and hence C 6∈ InfTotSubCons, can be shown as
follows. Suppose by way of contradiction otherwise. Suppose M is a machine
which Cons-identifies C.

18

If M is inconsistent on some inputs, then let σ be one such input (i.e.
content(σ) 6⊆ ϕM(σ)). By Kleene recursion theorem [22], there exists an e
such that

ϕe(x) =
{

y, if for some y, (x, y) ∈ content(σ);
〈e, 0〉, otherwise.

Now ϕe ∈ C, but M is not consistent on ϕe.

On the other hand, if M is consistent on all inputs and y 6= z, then M(σ ·
(x, y)) 6= M(σ · (x, z)), for all σ such that x is not in domain of content(σ).
Thus one may define ϕe using Kleene recursion theorem [22] as follows: ϕe(x) =
〈e, w〉, for a w ∈ {0, 1}, which causes a mind change M(ϕe[x]) 6= M(ϕe[x] ·
(x, 〈e, w〉)). This ϕe is in C, but M on ϕe makes infinitely many mind changes.

By requirement of consistency, we have that any machine M InfPartSubCons-
identifying f is consistent with all σ such that content(σ) ⊆ f . For any σ,
let trunc(σ) be obtained by deleting any repetition in σ. Now let M′(σ) =
M(trunc(σ)). It is easy to see that M′ AllPartSubCons-identifies any f
which is InfPartSubCons-identified by M. Thus,

Proposition 30 InfPartSubCons = AllPartSubCons.

Corollary 31 InfPartSubCons ⊂ InfPartSubEx.

Now consider the class C = {f ∈ R | (∃e | ϕe = f)(∀∞x)[π1(f(x)) = e]
and (∀x > 0)[f [x] ⊆ ϕπ1(f(x−1))}. C clearly belongs to InfTotSubCons.
A modification of the proof of Theorem 25 can be used to show that C 6∈
AllTotSubEx = AllTotSubCons. We leave the details to the reader. Thus,
we get the following proposition.

Proposition 32 AllTotSubCons ⊂ InfTotSubCons.

4.3 Behaviourally Correct Sublearning

We now derive some, partly surprising, effects for behaviourally correct sub-
learning. We start with the following observation. While AllPartSubEx is a
proper subset of InfPartSubEx, see Corollary 27, this is no longer true for
Bc-sublearning.

Theorem 33 AllPartSubBc = InfPartSubBc.

Proof. Suppose C ∈ InfPartSubBc as witnessed by machine M. Now de-
fined M′ as follows.

19

M′(σ) = p such that

ϕp(x) =

{

y, if (x, y) ∈ content(σ);
ϕM(σ)(x), if for all z, (x, z) 6∈ content(σ).

Note that for any finite function η, for any text T for η, ϕM(T [n]) ⊇ η, for all
but finite many n.

Furthermore, if T is a text for infinite partial function η, and ϕM(T [n]) ⊇ η,
then ϕM′(T [n]) ⊇ η too. Theorem follows.

Note that this proof does not work for “Tot” instead of “Part”, as the initial
partial functions from the InfTotSubBc-machine cannot be made total by
the above patching.

Another difference comes with the AllTot-type of sublearning. While in tra-
ditional learning Ex ⊂ Bc holds, see [4,10], this is not valid for AllTot-
sublearning.

Theorem 34 AllTotSubBc = AllTotSubEx.

Proof. Suppose M AllTotSubBc-identifies a class C. Note that, without
loss of generality, we may assume that M is consistent on all inputs, i.e., for
all σ ∈ SEG, content(σ) ⊆ ϕM(σ).

For each segment σ, define F (σ) as follows: Let Candσ = {M(σ′) | σ ⊆
σ′ ∧ content(σ) = content(σ′)}. Then, F (σ) = Union(Candσ).

F satisfies the following properties.

(a) For all σ ∈ SEG such that content(σ) has an extension in C, F (σ) is a pro-
gram for a total function extending content(σ) (by definition of AllTotSubBc

and consistency assumption on M).

(b) For all partial functions η with an extension in C, there exists a σ ∈ SEG
such that content(σ) ⊆ η ⊆ ϕF (σ) (since there exists a locking sequence for M

on η, for AllTotSubBc-identification, see remark after Theorem 10).

Now define M′ as follows. M′ on input σ outputs F (τ), for the least segment
τ (in some ordering of elements of SEG) such that content(τ) ⊆ content(σ)
and ϕF (τ) extends content(σ).

Now consider any subfunction η of f ∈ C and any text T for η. It follows using
property (b) that M′(T) converges to F (τ) such that τ is the least element
of SEG satisfying content(τ) ⊆ η ⊆ ϕF (τ) (such τ exists due to property

20

(b)). Furthermore, ϕF (τ) in the previous statement is total (by property (a)).
Theorem follows.

We now exhibit some tradeoff between weakening the sublearning criterion,
on the one hand, and strengthening the mode of convergence of the sequence
of hypotheses, on the other hand.

Theorem 35 InfTotSubBc 4 InfPartSubEx.

Proof. By Corollary 24, AllPartSubEx−InfTotSubBc 6= ∅. Consequently,
InfPartSubEx − InfTotSubBc 6= ∅ as well. Conversely, the class {f |
(∀∞x)[ϕf(x) = f]} obviously belongs to InfTotSubBc. However, this class
is not in Ex, see [10], and hence it does not belong to InfPartSubEx.

Theorem 35 together with Theorem 33 yield the following corollary.

Corollary 36 InfTotSubBc ⊂ AllPartSubBc.

Finally, in order to complete Figure 1, we need the following separations. In
particular, these results imply that, in contrast to AllTotSubBc, all the other
types of Bc-sublearning go beyond the borders of usual Ex-learning.

Proposition 37 (a) Ex − InfPartSubBc 6= ∅.

(b) InfTotSubBc − Ex 6= ∅.

Proof. (a) The class C = {f ∈ R | ϕf(0) = f} witnesses the separation. C is
clearly in Ex. However, it is not in InfPartSubBc, as a machine missing the
input (0, f(0)), cannot identify C. To see this, suppose by way of contradiction
that M InfPartSubBc-identifies C. Then we show how to Bc-identify R,
contradicting a result of Case and Smith [10]. Note that for every function
f ∈ R, there exists an e such that ϕe(x) = e, if x = 0; ϕe(x) = f(x), otherwise.
Thus, for every program f ∈ R, there exists a function g ∈ C, which differs
from f only on input 0. Thus, M extends every partial recursive function with
domain N − {0}. We will use this property to get a contradiction.

For a segment σ, let σ′ denote the segment obtained from σ by replacing all
occurences of (0, w) in σ by #, for any w ∈ N . For a program p, and a number
z, let E(p, z) be defined as follows:

ϕE(p,z)(x) =
{

z, if x = 0;
ϕp(x), otherwise.

21

Now define machine M′ as follows.

M′(σ) =
{

E(M(σ′), z), if (0, z) ∈ content(σ);
0, otherwise.

As M extends every partial recursive function which is not defined on input
0, it is easy to verify that M′ Bc-identifies R. However, this is not possible
[10]. Thus, C 6∈ InfPartSubBc.

(b) In proof of Theorem 35 we showed that InfTotSubBc− Ex 6= ∅.

As Ex ⊂ Bc (see [10]), Proposition 37 yields the following corollary.

Corollary 38 InfPartSubBc ⊂ Bc.

5 Characterizations for Sublearning

In this section, we derive some characterizations for several types of sublearn-
ing. The first of these characterizations, for AllTotSubEx, turns out to be
useful for proving other results.

Theorem 39 C ∈ AllTotSubEx iff there exists a total recursive function F
mapping SEG to programs such that:

(a) For all σ ∈ SEG, such that content(σ) has an extension in C, F (σ) is a
program for a total function extending content(σ).

(b) For all partial functions η with an extension in C, there exists a σ ∈ SEG
such that content(σ) ⊆ η ⊆ ϕF (σ).

Proof. ⇒: By Theorem 28, AllTotSubEx = AllTotSubCons. Suppose
C ∈ AllTotSubCons as witnessed by M. Then for each segment σ, define
F (σ) as follows:

Let Candσ = {M(σ′) | σ ⊆ σ′ ∧ content(σ) = content(σ′)}. Then, F (σ) =
Union(Candσ).

It is easy to see that F satisfies the requirement (a) of theorem, by consistency
requirement on M. To see (b), note that for each subfunction η of f ∈ C, there
exists a locking sequence for M on η (see remark after Theorem 7). Let this
locking sequence be σ. This σ shows part (b).

⇐: Suppose F as in theorem is given. Then M on input σ, outputs F (τ),
for the least segment τ (in some ordering of elements of SEG) such that

22

content(τ) ⊆ content(σ), and ϕF (τ) extends content(σ).

For any subfunction η of f ∈ C, and any text T for η, it follows using clause
(b) that M would find a σ as in (b) (or a lesser one according to the fixed
ordering of segments), such that F maps σ to a total extension of η.

The following corollary “liberalizes” the characterization of AllTotSubEx

from Theorem 39 in a sense, by making the function F mapping now from
arbitrary finite functions rather than from the set SEG of segments.

Corollary 40 C ∈ AllTotSubEx iff there exists a total recursive function F
mapping finite functions to programs such that:

(a) For all finite functions α with an extension in C, F (α) is a program for a
total function extending α.

(b) For all infinite partial functions η with an extension in C, there exists a
finite subfunction α of η such that F (α) is a program for an extension of η.

Proof. Note that M constructed in the ⇐ direction of the proof of The-
orem 39 is set-driven. Thus, we may assume without loss of generality that
C ∈ AllTotSubEx is witnessed by a set-driven machine. Corollary now fol-
lows by noting that ⇒ direction of the proof of Theorem 39 gives F to be
set-driven, if M is set-driven.

Corollary 42 below shows that a class which is closed under finite variations
belongs to AllTotSubEx iff this class is a subclass of a recursively enumerable
class. In order to prove this result we need Corollary 41 which, in turn, is a
consequence from the characterization in Theorem 39.

Corollary 41 Suppose C ∈ AllTotSubEx. Suppose further that C contains
an extension of every finite partial function. Then C ∈ NUM.

Proof. Let C be as in the hypothesis. Thus, the characterization Theorem 39,
implies that range of F (as defined in Theorem 39) contains programs for
only total functions. As range of F contains programs for all functions in C,
corollary follows.

Recall that a class C ⊆ R is closed under finite variations iff for all f, g ∈ R
such that card({x | f(x) 6= g(x)}) <∞, f ∈ C iff g ∈ C.

Corollary 42 Suppose C is closed under finite variations. Then C ∈
AllTotSubEx iff C ∈ NUM.

Proof. Immediately from Corollary 41 and Proposition 22.

23

Note that Corollary 42 does not hold for InfTotSubEx as the class: {f ∈
R | (∃e | ϕe = f)(∀∞x)[π1(f(x)) = e]} shows. This class and its closure under
finite variations are in InfTotSubEx. However, the class is not contained in
NUM.

Our next results show that there is a close connection between AllPartSubEx-
learnability and measurability.

Definition 43 [7] A class C ⊆ R is said to be measurable iff there exists a
numbering η such that (a) C ⊆ {ηi | i ∈ N}, and (b) there exists a total
recursive function F such that, for all i, x, y,

F (i, x, y) =
{

1, if ηi(x) = y;
0, otherwise.

Theorem 44 If C is measurable, then C ∈ AllPartSubEx.

Proof. Suppose C is measurable, as witnessed by numbering η. Let h be a
total recursive function reducing η-programs to equivalent ϕ-programs. Then
one can define M as follows:

M(σ) = h(min({i | content(σ) ⊆ ηi}))

By measurability, it immediately follows that M AllPartSubEx-identifies C
(moreover, M is also consistent on any input from the class).

The converse of Theorem 44 is also valid provided the corresponding classes
are closed under finite variations.

Theorem 45 Suppose C is closed under finite variations. Then C ∈
AllPartSubEx iff C is measurable.

Proof. The sufficiency follows from Theorem 44. For the necessity, note that
AllPartSubEx ⊆ AllPartSubCons, by Theorem 28. Thus, if C is closed
under finite variations, then C must be in T Cons. The theorem now follows
using Theorem 46 below.

Theorem 46 If C ∈ T Cons, then C is measurable.

Proof. Suppose M T Cons identifies C. For σ ∈ SEG, define a (possibly
partial) function ησ as follows.

24

ησ(x) =

y, if (x, y) ∈ content(σ);
y, if (x, z) 6∈ content(σ) for all z, and ϕM(σ)(x) = y

and M(σ) = M(σ · (x, y)).
↑, otherwise.

Note that one can test whether ησ(x) = y as follows. If content(σ) contains
(x, z), for some z, then clearly, ησ(x) = y iff (x, y) ∈ content(σ). Otherwise,
ησ(x) = y iff M(σ · (x, y)) = M(σ). To see this, suppose M(σ · (x, y)) = M(σ).
Then, by consistency of M on all inputs, we have ϕM(σ)(x) = y, and thus
ησ(x) = y. On the other hand, if M(σ · (x, y)) 6= M(σ), then, by definition of
ησ, we have that ησ(x) cannot be y.

Thus, in all cases, we can determine if ησ(x) = y.

Moreover, for every function f ∈ C, there is σ ∈ SEG with ησ = f due to the
locking sequence property (see remark after Theorem 7) for M on functions
from C. Finally, define a numbering ψ by ψi = ησi

, where σ0, σ1, . . . is an
effective enumeration of SEG. Then, obviously, C is measurable as witnessed
by the numbering ψ.

In general, a class is AllPartSubEx-learnable iff it is weakly measurable, as
we will show now. Intuitively, for a weakly measurable class C, the measura-
bility property is required only for those functions within the corresponding
numbering which have a “good chance” to belong to C.

Definition 47 A class C ⊆ R is said to be weakly measurable iff there exist a
computable numbering η and a recursive sequence α0, α1, . . . of finite functions
(here recursive sequence α0, α1, . . . means that there exists a program which,
on input i, enumerates all of αi and then stops) such that

(1) for each i, αi ⊆ ηi,

(2) for each partial function ψ which has an extension in C, there exists an i
such that αi ⊆ ψ ⊆ ηi,

(3) there exists a partial recursive function F such that, for all i, x, y such that
αi ∪ {(x, y)} has an extension in C,

F (i, x, y) =
{

1, if ηi(x) = y;
0, otherwise.

Theorem 48 C ∈ AllPartSubEx iff C is weakly measurable.

Proof. ⇐: Suppose η and αi are given as in the definition of weakly mea-
surable. Then M(σ) is defined as follows. Notice that M may be undefined
on some inputs (even for some inputs which are initial segments of texts for

25

functions in the class). However, for all texts T for subfunctions of functions
in C, M converges on almost all initial segments of T .

If there exists an i such that: (a) αi ⊆ content(σ), and (b) for each (x, y) ∈
content(σ), F (i, x, y) converges to 1 within |σ| steps, or F (i, x, y) does not halt
within |σ| steps, then M(σ) outputs a standard ϕ program for ηi, for least such
i (note that least such i, if it exists, can be found effectively). Otherwise, M(σ)
is undefined.

Now suppose ψ is an input function, which is extended by some function f in
C. Let T be a text for ψ. Let m be least program such that αm ⊆ ψ ⊆ ηm. Let
n be large enough so that: for all j < m, (c) and (d) below are satisfied.

(c) If αj ⊆ ψ, then for minimum x such that ψ(x)↓ and ηj(x) 6= ψ(x) (note
that there exists such an x due to assumption on m), F (j, x, ψ(x)) converges
within n steps, and (x, ψ(x)) ∈ content(T [n])

(d) αm ⊆ content(T [n]).

Note that there exists such an n, due to condition (3) in definition of weakly
measurable, and the fact that T is a text for ψ, and αm ⊆ ψ ⊆ ηm. Thus for
all n′ ≥ n, M(T [n′]) is m.

⇒: By Theorem 28, we know that AllPartSubEx ⊆ AllPartSubCons.
Suppose M witnesses that C ∈ AllPartSubCons.

Define (possibly partial) function gσ as follows.

gσ(x) =

y, if (x, y) ∈ content(σ);
y, if (x, z) 6∈ content(σ) for all z, and ϕM(σ)(x) = y

and M(σ) = M(σ · (x, y));
↑, otherwise.

Assume some recursive ordering σ0, σ1, . . ., of all the members of SEG. Now
let ηi = gσi

, and αi = content(σi).

Now define F (i, x, y) as follows.

F (i, x, y) =

1, if (x, y) ∈ content(σi);
0, if (x, z) ∈ content(σi) for some z 6= y;
1, if (x, z) 6∈ content(σi) for all z

and M(σi · (x, y))↓ = M(σi)↓;
0, if (x, z) 6∈ content(σi) for all z

and M(σi · (x, y))↓ 6= M(σi)↓;
↑, otherwise.

26

Now, if σi · (x, y) is extended by a function in C, then by consistency we have
that M(σi)↓ and M(σi · (x, y))↓, and ϕM(σi·(x,y))(x) = y. Thus, gσi

(x) = y,
iff M(σi) = M(σi · (x, y)). It follows that F satisfies (3) in the definition of
weakly measurable.

(1) in the definition of weakly measurable follows by construction.

(2) in the definition of weakly measurable holds by locking sequence argu-
ment: for all ψ which have extension in the class, there exists a σ such that
content(σ) ⊆ ψ ⊆ ϕM(σ), and for all x such that ψ(x)↓, M(σ) = M(σ ·
(x, ψ(x))). Thus, for i such that σi = σ, we have αi = content(σi) ⊆ ψ ⊆ ηi.
Thus (2) is satisfied.

Finally, we characterize the classes from AllTotSubEx to be exactly the
weakly enumerable classes. In a certain analogy to the notion of weak measur-
ability, intuitively, a class C is weakly enumerable if any function within the
corresponding numbering is total in case this function has a “good chance” to
belong to C.

Definition 49 A class C ⊆ R is said to be weakly enumerable iff there exist a
computable numbering η and a recursive sequence α0, α1, . . . of finite functions
such that

(1) for each i, αi ⊆ ηi,

(2) for each partial function ψ which has an extension in C, there exists an i
such that αi ⊆ ψ ⊆ ηi,

(3) for all i, such that αi has an extension in C, ηi is total.

Theorem 50 C ∈ AllTotSubEx iff C is weakly enumerable.

Proof. ⇐: Suppose C is weakly enumerable as witnessed by η. Let ηi,s denote
the time-bounded computation of η:

ηi,s =
{

ηi(x), if x < s, and ηi(x) converges within s steps;
↑, otherwise.

Let h be such that, for all i, ϕh(i) = ηi. Define M as follows. Note that M may
be undefined on some initial segments of texts T for partial functions with
extensions in C. However, M would be defined on almost all initial segments
of T . M(σ) = h(i), for the least i such that αi ⊆ content(σ), and content(σ) ∼
ηi,|σ|. If no such i exists, then M(σ) diverges. Now fix any ψ with an extension
in C, and a text T for ψ. By property (2) of weak enumerability, M is defined
on almost all initial segments of T , and by property (3) outputs only programs

27

for total functions on T . By property (2), and using consistency check done
by M, M(T)↓ = h(i) for the least i, such that αi ⊆ ψ ⊆ ηi.

⇒: Assume some recursive ordering σ0, σ1, . . ., of all the members of SEG.
Suppose C ∈ AllTotSubEx. Suppose F is as given by Theorem 39. Let αi =
content(σi), and

ηi =

{

αi(x), if x ∈ domain(αi);
ϕF (σi)(x), otherwise.

It is easy to verify that η satisfies the requirements (1), (2), (3) of the definition
of weakly enumerable.

Notice that all the characterizations above rely on certain finite subfunctions
of the functions to be sublearned. These finite subfunctions may remind to the
so-called telltale sets which were used in [1] for characterizing language learning
from positive data. On the one hand, such a relation is not surprising, since
any function can also be interpreted as a (special) language. Moreover, for
All-sublearning which has been characterized in this section, we need every
finite subfunction of any function from the class to be sublearned in order to
form a stabilizing sequence for that finite function, that is, for learning itself.
This, too, is an analogue to learning of finite languages, where, as a rule, also
the whole (finite) languages constitute the corresponding telltale sets. On the
other hand, our characterizations are, in a sense, more general than those
from [1]. Indeed, while those were established for enumerable language classes,
many sublearnable function classes are not contained in any enumerable class,
see Figure 1.

6 Sublearning Versus Robust Learning

We start with defining robust learning formally.

Definition 51 [22] A recursive operator is an effective total mapping, Θ, from
(possibly partial) functions to (possibly partial) functions, which satisfies the
following properties:

(a) Monotonicity: For all functions η, η′, if η ⊆ η′ then Θ(η) ⊆ Θ(η′).
(b) Compactness: For all η, if (x, y) ∈ Θ(η), then there exists a finite function
α ⊆ η such that (x, y) ∈ Θ(α).

(c) Recursiveness: For all finite functions α, one can effectively enumerate (in
α) all (x, y) ∈ Θ(α).

28

Definition 52 [22] A recursive operator Θ is called general recursive iff Θ
maps all total functions to total functions.

For each recursive operator Θ, we can effectively (from Θ) find a recursive
operator Θ′ such that,

(d) for each finite function α, Θ′(α) is finite, and its canonical index can be
effectively determined from α; furthermore if α ∈ INITSEG then Θ′(α) ∈
INITSEG, and

(e) for all total functions f , Θ′(f) = Θ(f).

This allows us to get a nice effective sequence of recursive operators.

Proposition 53 [16] There exists an effective enumeration, Θ0,Θ1, . . ., of
recursive operators satisfying condition (d) above such that, for all recursive
operators Θ, there exists an i ∈ N satisfying:

for all total functions f , Θ(f) = Θi(f).

Since we will be mainly concerned with the properties of operators on total
functions, for diagonalization purposes, one can restrict attention to operators
in the above enumeration Θ0,Θ1,

Now, we are ready to define robust learning.

Definition 54 [14,16]

RobustEx = {C ⊆ R | (∀ general recursive operators Θ)[Θ(C) ∈ Ex]}.

RobustCons = {C ⊆ R | (∀ general recursive operators Θ)[Θ(C) ∈ Cons]}.

Proposition 55 [27,16] NUM ⊆ RobustEx.

In this section, we compare the capabilities of sublearning and robust learn-
ing. The question of comparing these capabilities arises naturally insofar, as
sublearning can intuitively be viewed as some special case of learning robustly.
Actually, while robust learning requires that all projections of a given class of
total recursive functions under all general recursive operators be learnable, see
Definition 54, in sublearning only a special kind of projection is required so,
namely, the given class of total recursive functions together with all of their
subfunctions (or all of their infinite subfunctions, respectively). Nevertheless,
as it follows from Theorems 59 and 63 below, the capabilities of robust learn-
ing and sublearning turn out to be incomparable. For proving this, we show
that, on the one hand, RobustCons, and hence RobustEx contains classes
which do not belong to the largest type of Ex-sublearning, InfPartSubEx,
see Theorem 59. Notice that the proof of Theorem 59 is based on the proof of
separation of robust and uniform robust learning in [9]. On the other hand,

29

we derive that already the smallest sublearning type, AllTotSubEx, contains
classes which are out of RobustEx, see Theorem 63. Propositions 56 and 57
will be needed in order to prove Theorem 59. Finally, we exhibit that, under
certain circumstances, the power of sublearning and robust learning coincides,
see Theorem 64.

Proposition 56 [9] There exists a K-recursive sequence of initial segments,
σ0, σ1, . . . ∈ INITSEG0,1, such that for all e ∈ N , the following are satisfied.

(a) 0e1 ⊆ content(σe).

(b) For all e′ ≤ e, if Θe′ is general recursive, then either Θe′(σe) 6∼ Θe′(0
|σe|)

or for all f ∈ T0,1 extending content(σe), Θe′(f) = Θe′(Zero).

Proof. We define σe (using oracle forK) as follows. Initially, let σ0
e = 0e1. For

e′ ≤ e, define σe′+1
e as follows: if there exists an extension τ ∈ INITSEG0,1 of

σe′

e , such that Θe′(τ) 6∼ Θe′(0
|τ |), then let σe′+1

e = τ ; otherwise, let σe′+1
e = σe′

e .

Now let σe = σe+1
e as defined above. It is easy to verify that the proposition

is satisfied.

Proposition 57 [9] There exists an infinite increasing sequence a0, a1, . . . of
natural numbers such that for A = {ai | i ∈ N}, the following properties are
satisfied for all k ∈ N .

(a) The complement of A is recursively enumerable relative to K.

(b) ϕak
is total.

(c) For all e ≤ ak such that ϕe is total, ϕe(x) ≤ ϕak+1
(x) for all x ∈ N .

(d) For σe as defined in Proposition 56, |σak
| ≤ ak+1.

Proof. The construction of ai’s is done using movable markers (using oracle
for K). Let as

i denote the value of ai at the beginning of stage s in the con-
struction. It will be the case that, for all s and i, either as

i = as+1
i , or as+1

i > s.
This allows us to ensure property (a). The construction itself directly imple-
ments properties (b) to (d). Let pad be a 1–1 padding function [22] such that
for all i, j, ϕpad(i,j) = ϕi, and pad(i, j) ≥ i+ j.

We assume without loss of generality that ϕ0 is total. Initially, let a0
0 = 0, and

a0
i+1 = pad(0, |σa0

i
|) (this ensures a0

i+1 ≥ |σa0
i
| > a0

i). Go to stage 0.

Stage s
1. If there exist a k, 0 < k ≤ s, and x ≤ s such that:

30

(i) ϕas
k
(x)↑ or

(ii) for some e ≤ as
k−1, [(∀y ≤ s)[ϕe(y)↓] and ϕe(x) > ϕas

k
(x)]

Then pick least such k and go to step 2. If there is no such k, then for all
i, let as+1

i = as
i , and go to stage s+ 1.

2. For i < k, let as+1
i = as

i .
3. Let j be the least number such that

(i) (∀y ≤ s)[ϕj(y)↓] and
(ii) for all e ≤ as

k−1, if for all y ≤ s, ϕe(y)↓, then for all y ≤ s,
ϕj(y) ≥ ϕe(y).

Let as+1
k = pad(j, |σas

k−1
| + s+ 1).

4. For i > k, let as+1
i = pad(0, |σas+1

i−1
| + s+ 1).

5. Go to stage s+ 1.
End stage s

We claim (by induction on k) that lims→∞ as
k↓ for each k. To see this, note that

once all the ai, i < k, have stabilized, step 3 would eventually pick a j such
that ϕj is total, and for all e ≤ ak−1, if ϕe is total then ϕe ≤ ϕj. Thereafter
ak would not be changed.

We now show the various properties claimed in the proposition. One can enu-
merate A (using oracle for K) using the following property: x ∈ A iff there
exists a stage s > x such that, for all i ≤ x, as

i 6= x. Thus (a) holds. (b) and
(c) hold due to the check in step 1. (d) trivially holds due to padding used for
definition of as

i for all s.

Definition 58 Suppose h ∈ R. Let Bh = {ϕe | ϕe ∈ R0,1 ∧ (∀∞x)[Φe(x) ≤
h(x)]}.

Intuitively, Bh denotes the class of total recursive predicates whose complexity
is almost everywhere bounded by h. We assume without loss of generality that
ϕ0 is large enough to ensure FINSUP ⊆ Bϕ0 . Thus for ai as in Proposition 57,
FINSUP ⊆ Bϕai

, for all i.

Theorem 59 RobustCons − InfPartSubEx 6= ∅.

Proof. Fix σ0, σ1, . . . as in Proposition 56, and a0, a1, . . . as in Proposition 57.

Let Gk = Bϕak
∩ {f ∈ R0,1 | σak

⊆ f}.

The main idea of the construction is to build a diagonalizing class by taking
at most finitely many functions from each Gk.

Claim 60 For each i, Mi does not InfPartSubEx-identify
⋃

k≥iGk.

31

Proof. For each i ∈ N , σ ∈ INITSEG0,1, we define g〈i,σ〉 in stages as follows.
Initially, let g〈i,σ〉(x) = σ(x), for x in domain(σ). Let ns denote the least
number x such that g〈i,σ〉(x) is not defined before stage s. For σ ⊆ τ , let
X(τ, σ) denote the segment formed by replacing all elements in τ , which belong
to content(σ), by #.

Intuitively, the construction below would try to find a total extension gi,σ of
content(σ) such that Mi makes infinitely many mind changes on some text
for gi,σ − content(σ).

Stage s
Search for an extension τ ∈ INITSEG0,1 of g〈i,σ〉[ns] such that Mi(X(τ, σ)) 6=

Mi(X(g〈i,σ〉[ns], σ)).
If and when such a τ is found, extend g〈i,σ〉 to content(τ) and go to stage
s+ 1.

End stage s

Note that Gi contains every function in FINSUP which extends content(σai
).

Thus, if Mi InfPartSubEx-identifies Gi, then for all σ ∈ INITSEG0,1 such
that |σ| ≥ |σai

|, g〈i,σ〉 is total (as Mi must converge to an extension on texts
of all partial functions with finite support, whose domain is a subset of the
complement of the domain of σai

; thus search for mind change in the con-
struction above is always successful). Thus, the complexity of all functions in
{g〈i,σ〉 | σ ∈ INITSEG0,1 ∧ |σ| ≥ |σai

|} is dominated by a total recursive func-
tion, say h. It follows that for all but finitely many k, g〈i,σak

〉 ∈ Bϕak
. However,

Mi does not InfPartSubEx-identify g〈i,σak
〉, for all k ≥ i. Claim follows. 2

We continue with the proof of the theorem. For each e ∈ N , let fi denote a
function in

⋃

k≥iGk, such that Mi does not InfPartSubEx-identify fi.

Let S = {fi | i ∈ N}. Let Hk = S ∩ Gk. It is easy to verify that Hk is finite
(since fi 6∈

⋃

k<iGk).

Claim 61 S 6∈ InfPartSubEx.

Proof. Follows by the selection of fi diagonalizing against Mi. 2

Claim 62 S ∈ RobustCons.

Proof. Suppose Θ = Θk is general recursive. We need to show that Θk(S) ∈
Cons. Let A = {ai | i ∈ N}. Since A is r.e. in K, there exists a recursive
sequence c0, c1, . . ., such that each a ∈ A, a > ak, appears infinitely often
in the sequence, and each a 6∈ A or a ≤ ak, appears only finitely often in

32

the sequence. Let σe,t ∈ INITSEG0,1 be such that σe,t ⊇ 0e1, and σe,t can be
obtained effectively from e, t, and limt→∞ σe,t = σe. Note that there exist such
σe,t due to K-recursiveness of the sequence σ0, σ1,

Note that there exists a total recursive h such that, if ϕe is total recursive
then, Mh(e) Cons-identifies Θ(Bϕe

). Fix such a total recursive h.

Let H = {Zero} ∪ H0 ∪ H1 ∪ . . . ∪ Hk. H and Θ(H) are finite sets of total
recursive functions.

Define M as follows.

M(T [n])
1. If for some g ∈ Θ(H), content(T [n]) ⊆ g, then output a canonical program

for one such g.
2. Else, let t ≤ n be the largest number such that Θ(σct,n) ∼ content(T [n]),

and Θ(σct,n) 6∼ Θ(Zero). (Note: if no such t exists, then take t = 0.)
Dovetail the following steps until one of them succeeds. If steps 2.1 or 2.2

succeed, then go to step 3. If step 2.3 succeeds, then go to step 4.
2.1 There exists an s > n, such that cs 6= ct, and Θ(σcs,s) ∼ content(T [n]),

and Θ(σcs,s) 6∼ Θ(Zero).
2.2 There exists an s > n, such that σct,s 6= σct,n.
2.3 Mh(ct)(T [n])↓, and content(T [n]) ⊆ ϕMh(ct)

(T [n]).
3. Output a program for 0-extension of content(T [n]).
4. Output Mh(ct)(T [n]).
End

It is easy to verify that whenever M(T [n]) is defined, content(T [n]) ⊆ ϕM(T [n]).
Also, if f ∈ Θ(H), then M Cons-identifies f .

Now, consider any f ∈ Θ(S) − Θ(H), and any text T for f . Note that there
exists a unique i > k such that f ∼ Θ(σai

) and Θ(σai
) 6∼ Θ(Zero) (due to

definition of σaj
’s). Fix such i. Also, since f 6= Θ(Zero), there exist only finitely

many e such that f ∼ Θ(0e1).

We first claim that M(T [n]) is defined for all n. To see this, note that if ct 6= ai

or σct,n 6= σai
, then step 2.1 or step 2.2 would eventually succeed. Otherwise,

since f ∈ Θ(Hi) ⊆ Θ(Bϕai
), step 2.3 would eventually succeed (since Mh(ai)

Cons-identifies Θ(Bϕai
)).

Thus, it suffices to show that M Ex-identifies f . Let r be such that f 6∼ Θ(0r).
Let m and n > m be large enough such that (i) to (iv) hold.

(i) content(T [n]) 6∼ Θ(0r).

33

(ii) cm = ai, and for all s ≥ m, σai,s = σai,m.

(iii) For all e < r and t > m, if e 6∈ A or e ≤ ak, then ct 6= e.

(iv) For all e < r and t > m, if e ∈ A − {ai} and e > ak, then Θ(σe,t) 6∼
content(T [n]) or Θ(σe,t) ∼ Θ(Zero).

Note that there exist such m,n. Thus, for all n′ ≥ n, in computation of
M(T [n′]), ct would be ai, and step 2.1 and step 2.2 would not succeed. Thus
step 2.3 would succeed, and M would output Mh(ai)(T [n′]). Thus M Ex-
identifies f , since Mh(ai) Ex-identifies f . 2

Theorem follows from the above claims.

We now show that sublearning is “rich” in comparison to robust learning.

Theorem 63 AllTotSubEx − RobustEx 6= ∅.

Proof. Let C = {f ∈ R | (∀x)[ϕπ1(f(x)) = f]}. C is clearly in AllTotSubEx,
as any data point gives away a program for f .

On the other hand, C 6∈ RobustEx. To see this, consider Θ(f)(x) = π2(f(x)).
Now Θ(C) contains every total recursive function, as for any total recursive
function g, there exists an e such that ϕe(x) = 〈e, g(x)〉. As R 6∈ Ex (see [15]),
we immediately have that C 6∈ RobustEx.

While the class from the proof of Theorem 63 is in a sense “maximally self-
describing”, this property turns out to be far from necessary for the classes
from AllTotSubEx−RobustEx. Actually, as an alternative proof of Theo-
rem 63, consider the following class:

C = {f | (∃e | ϕe = f)[(∀x < e)[f(x) ∈ {0, 1}] ∧ (∀x ≥ e)[f(x) ∈ {2, 3}]]}.

This class, in turn, could be called “minimally self-describing”, since, for
any function f ∈ C, there is only one point, namely the least x such that
f(x) ∈ {2, 3}, which yields a program for f in a self-describing manner. Nev-
ertheless, C belongs to AllTotSubEx − RobustEx as well. Indeed, C is in
AllTotSubEx despite the fact that this “self-describing” point may not be-
long to the corresponding subfunction to be learned. But this possibly missing
information can be compensated as follows. On input σ, the learner outputs a
program for the 0-extension of the input, if the input function has range only
in {0, 1}. Otherwise, the least x, such that (x, 2) or (x, 3) is in content(σ),
gives away a bound on the program for f . This bound allows us to learn an
extension of the input, by using the technique from [12]: we first cancel out
all programs less than the bound which are inconsistent with the input. Then

34

we use Union of the remaining programs.

On the other hand,

Θ(f)(x) =
{

f(x), if f(x) ≤ 1;
f(x) − 2, otherwise.

is general recursive, and Θ(C) = R0,1. To see the latter note that for every
{0, 1}-valued total recursive function g, there exists an e such that

ϕe(x) =
{

f(x), if x < e;
f(x) + 2, otherwise.

Since R0,1 6∈ Ex, see [15], it follows that C 6∈ RobustEx.

Finally, we show that sublearning and robust learning are of the same power
if we confine ourselves to classes that are closed under finite variations.

Theorem 64 Suppose C is closed under finite variations. Then C ∈
AllTotSubEx iff C ∈ RobustEx iff C ∈ NUM.

Proof. Let C ⊆ R be closed under finite variations. Then, by Corollary 42,
C ∈ AllTotSubEx iff C ∈ NUM. On the other hand, C ∈ RobustEx iff
C ∈ NUM was shown in [21].

7 Sublearning Versus Other Learning Criteria

7.1 Consistent Learning

We have already seen in Theorem 28 that there is a close connection between
general sublearning and consistent sublearning. Consequently, we find it in-
teresting enough to clarify the relations between consistent sublearning and
consistent learning as well. This will be done now by Theorems 65, 66, and 67.
These results tell us, informally, that each type of consistent sublearning con-
tains classes which cannot be learned by the “next stricter” (in the sense of
Theorem 15) type of consistent learning.

Theorem 65 AllTotSubCons −RCons 6= ∅

Proof. Let F be an increasing limiting recursive function which dominates
all total recursive functions, for example, F (x) = x +

∑

i≤x,y≤x,ϕi(y)↓ ϕi(y).

35

Let C = {f ∈ R0,1 | f 6= Zero ∧ F (min({x | f(x) 6= 0})) ≥ MinProg(f)}.
C 6∈ RCons was shown in [9].

We will now show that C ∈ AllTotSubBc. C ∈ AllTotSubCons will then
follow from Theorem 28 and Theorem 34.

Suppose F is computed in the limit by g(·, ·).

Consider the following machine M. If content(σ) ⊆ Zero, then output a stan-
dard program for Zero. Otherwise, let mσ = min({x | (x, 1) ∈ content(σ)}).
Let Candσ = {i | (∃s)[i ≤ g(mσ, s)] ∧ content(σ) ⊆ ϕi}. Output M(σ) =
Union(Candσ). For f ∈ C − {Zero}, and any η ⊆ f , for any text T for η, it is
easy to verify that, for all n, with content(T [n]) 6⊆ Zero, (i) CandT [n] contains
a program for f , (as, for m = min({x | f(x) = 1}), MinProg(f) ≤ F (m) and
thus there exists an s such that g(m, s) ≥ MinProg(f)); (ii) limn→∞CandT [n],
is finite and consists only of programs extending η. Thus, for all but finitely
many n, M(T [n]) would be a program for an extension of η.

Theorem 66 AllTotSubRCons − T Cons 6= ∅.

Proof. Let C = {f ∈ R | (∃e | ϕe = f)(∀x)[π1(f(x)) = e]}.

Clearly C ∈ AllTotSubRCons. However C 6∈ T Cons, using diagonalization
as follows.

Suppose M T Cons-identifies above class. Note that T Cons machine is al-
ways consistent with the input (even from outside the class). Thus, if y 6= z,
then M(σ · (x, y)) 6= M(σ · (x, z)), for all σ such that x is not in domain
of content(σ). Thus one may define ϕe using Kleene recursion theorem [22]
as follows: ϕe(x) = 〈e, w〉, for a w ∈ {0, 1}, which causes a mind change
M(ϕe[x]) 6= M(ϕe[x] · (x, 〈e, w〉)). This ϕe is in C, but M on ϕe makes in-
finitely many mind changes.

Theorem 67 InfTotSubEx − Cons 6= ∅.

Proof. Let C = {f ∈ R | (∃e | ϕe = f)(∀∞x)[π1(f(x)) = e]}. C is clearly in
InfTotSubEx. C 6∈ Cons was shown in the proof of Proposition 29.

An alternative proof of above theorem can also be obtained using the alter-
native proof given for Theorem 25.

36

7.2 Total Learning

Total learning requires that not only the final hypothesis of the learning
process must describe a total recursive function, namely the function to be
learned, but also the intermediate hypotheses have to be total ones as well, see
Definition 13. As Theorem 68 shows, this additional requirement can also be
fulfilled for all sublearnable classes from AllTotSubEx. Recall that in Tot-
sublearning, by definition, only the final hypothesis is required to describe a
total recursive function, see Definition 17. On the other hand, all the other
sublearning types turn out to be incomparable to total learning, see Corol-
lary 72.

Theorem 68 AllTotSubEx ⊆ TEx.

Proof. It suffices to note that the machine constructed in the proof of ⇐
direction of Theorem 39 witnesses the class C to be in TEx.

Theorem 69 TEx − InfPartSubEx 6= ∅.

Proof. The class C = {f ∈ R | ϕf(0) = f} witnesses the separation. C is
clearly in TEx. It was shown in Proposition 37 that C 6∈ InfPartSubBc, and
hence not in InfPartSubEx.

Theorem 70 InfTotSubEx − TEx 6= ∅.

Proof. Let C = {f ∈ R | (∃e | ϕe = f)(∀∞x)[π1(f(x)) = e]}. Clearly,
C ∈ InfTotSubEx. C 6∈ TEx can be shown as follows.

Suppose by way of contradiction that M TEx-identifies C. Clearly, C 6∈ NUM.
Thus there must exist an input σ such that M(σ) is not a program for a total
function. Now, by Kleene recursion theorem [22], there exists an e such that

ϕe(x) =
{

y, if (x, y) ∈ content(σ) for some y;
〈e, 0〉, otherwise.

Now ϕe ∈ C, but M does not TEx-identify ϕe.

Theorem 71 AllPartSubEx − TEx 6= ∅.

Proof. Let C = {f ∈ R | [card(range(f)) < ∞] and (∀e ∈ range(f))[We =
f−1(e)] }.

Clearly, C ∈ AllPartSubEx. The proof of Theorem 23 showing that C is not
in InfTotSubEx can also be used to show that C 6∈ TEx, as step 1.1 b) would

37

always succeed for diagonalizing against TEx machines.

Corollary 72 AllTotSubEx ⊂ TEx.

AllPartSubEx 4 TEx.

InfPartSubEx 4 TEx.

InfTotSubEx 4 TEx.

Proof. Immediately from Theorems 68 to 71.

8 Acknowledgements

Sanjay Jain was supported in part by NUS grant number R252-000-127-112.
We would like to thank the anonymous referees for valuable comments and
suggestions.

References

[1] D. Angluin. Inductive inference of formal languages from positive data.
Information and Control, 45:117–135, 1980.

[2] J. Bārzdiņš. Prognostication of automata and functions. Information
Processing, 1:81–84, 1971.

[3] J. Bārzdiņš. Inductive inference of automata, functions and programs. In Int.
Math. Congress, Vancouver, pages 771–776, 1974.

[4] J. Bārzdiņš. Two theorems on the limiting synthesis of functions. In Theory of
Algorithms and Programs, vol. 1, pages 82–88. Latvian State University, 1974.
In Russian.

[5] J. Bārzdiņš and R. Freivalds. Prediction and limiting synthesis of recursively
enumerable classes of functions. Latvijas Valsts Univ. Zimatm. Raksti, 210:101–
111, 1974.

[6] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[7] M. Blum. A machine-independent theory of the complexity of recursive
functions. Journal of the ACM, 14:322–336, 1967.

38

[8] J. Case, S. Jain, M. Ott, A. Sharma, and F. Stephan. Robust learning aided
by context. Journal of Computer and System Sciences (Special Issue for
COLT’98), 60:234–257, 2000.

[9] J. Case, S. Jain, F. Stephan, and R. Wiehagen. Robust learning – rich and
poor. Journal of Computer and System Sciences, 2004. To Appear.

[10] J. Case and C. Smith. Comparison of identification criteria for machine
inductive inference. Theoretical Computer Science, 25:193–220, 1983.

[11] R. Freivalds, J. Bārzdiņš, and K. Podnieks. Inductive inference of recursive
functions: Complexity bounds. In J. Bārzdiņš and D. Bjørner, editors, Baltic
Computer Science, volume 502 of Lecture Notes in Computer Science, pages
111–155. Springer-Verlag, 1991.

[12] R. Freivalds and R. Wiehagen. Inductive inference with additional information.
Journal of Information Processing and Cybernetics (EIK), 15:179–195, 1979.

[13] M. Fulk. Prudence and other conditions on formal language learning.
Information and Computation, 85:1–11, 1990.

[14] M. Fulk. Robust separations in inductive inference. In 31st Annual
IEEE Symposium on Foundations of Computer Science, pages 405–410. IEEE
Computer Society Press, 1990.

[15] E. M. Gold. Language identification in the limit. Information and Control,
10:447–474, 1967.

[16] S. Jain, C. Smith, and R. Wiehagen. Robust learning is rich. Journal of
Computer and System Sciences, 62(1):178–212, 2001.

[17] K. P. Jantke and H.-R. Beick. Combining postulates of naturalness in inductive
inference. Journal of Information Processing and Cybernetics (EIK), 17:465–
484, 1981.

[18] S. Kurtz and C. Smith. On the role of search for learning. In
R. Rivest, D. Haussler, and M. Warmuth, editors, Proceedings of the Second
Annual Workshop on Computational Learning Theory, pages 303–311. Morgan
Kaufmann, 1989.

[19] S. Kurtz, C. Smith, and R. Wiehagen. On the role of search for learning
from examples. Journal of Experimental and Theoretical Artificial Intelligence,
13:24–43, 2001.

[20] D. Osherson, M. Stob, and S. Weinstein. Systems that Learn: An Introduction
to Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

[21] M. Ott and F. Stephan. Avoiding coding tricks by hyperrobust learning. In
P. Vitányi, editor, Fourth European Conference on Computational Learning
Theory, volume 1572 of Lecture Notes in Artificial Intelligence, pages 183–197.
Springer-Verlag, 1999.

39

[22] H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, 1967. Reprinted by MIT Press in 1987.

[23] R. Soare. Recursively Enumerable Sets and Degrees. Springer-Verlag, 1987.

[24] R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle
Strategien. Journal of Information Processing and Cybernetics (EIK), 12:93–99,
1976.

[25] R. Wiehagen and W. Liepe. Charakteristische Eigenschaften von erkennbaren
Klassen rekursiver Funktionen. Journal of Information Processing and
Cybernetics (EIK), 12:421–438, 1976.

[26] R. Wiehagen and T. Zeugmann. Learning and consistency. In K. P. Jantke and
S. Lange, editors, Algorithmic Learning for Knowledge-Based Systems, volume
961 of Lecture Notes in Artificial Intelligence, pages 1–24. Springer-Verlag, 1995.

[27] T. Zeugmann. On Bārzdiņš’ conjecture. In K. P. Jantke, editor, Analogical and
Inductive Inference, Proceedings of the International Workshop, volume 265 of
Lecture Notes in Computer Science, pages 220–227. Springer-Verlag, 1986.

40

