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Abstract. We introduce, discuss, and study a model for inductive in-
ference from samplings, formalizing an idea of learning different “pro-
jections” of languages. One set of our results addresses the problem of
finding a uniform learner for all samplings of a language from a certain
set when learners for particular samplings are available. Another set of
results deals with extending learnability from a large natural set of sam-
plings to larger sets. A number of open problems is formulated.
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1 Introduction

Consider the following model of learning. A learner gets data about a target
concept, one piece at a time. As the learner is receiving the data, it outputs
its conjectures on what the target might be. If the sequence of conjectures of
the learner converges to a correct hypothesis about the target concept, then one
might say that the learner has successfully learnt the concept. This is essentially
the model of TxtEx-learning considered by Gold [Gol67].

In our paper, the target concept is a language L from a class L of possible lan-
guages. The learner gets as input, one element at a time, in arbitrary order with
repetitions allowed, members of the target language (such a presentation is called
a text of the language; note that negative data is not presented to the learner
in this model). The conjectures made by the learner take the form of a gram-
mar or acceptor in some acceptable programming system [Rog67]. The learner
is then successful (that is, the learner TxtEx-identifies the target language) if
the sequence of conjectures converges to a grammar which generates/accepts the
target language L.

Expecting that the learner gets all elements of the target language is unreal-
istic. Often it is difficult to obtain full data, and a learner gets actually elements
of only a subset X of the target language L. Of course, then it may be unrealistic
to expect the learner to learn the full language. Thus, in such a situation one
says that the learner is successful if it converges to a grammar for a language L’
such that X C I’ C L. In [JKO08], the authors considered this model of learning.
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Note that here, the learner is supposed to be successful in the above sense for
all subsets X of the target language L.

In this paper, we consider a different variant of the model explored in [JKO08]:
every language from a target class is being learnt from inputs defined by the
same sampling. As in the model in [JKO08], the learner must produce in the limit
a grammar covering the input sampling of the target language, and the final
grammar must represent a subset of the target language containing all data
from the input sampling. The difference of our variant from the model in [JKO08]
is that, in [JKO08], any arbitrary subset of the target language may appear on the
input, whereas in our model the input is defined by a certain (fixed) sampling.

Since positive data in the process of inductive inference can be viewed as
being supplied by a teacher, it is natural to assume that, in some situations, the
teacher may have difficulty providing full positive data — because, for example,
it is too time-consuming, or it is too lengthy. In such a situation, the teacher may
provide just a part of the target language using some natural representation of
the language known to the teacher. For example, the teacher may provide, say,
the 2nd, 4th, 6th, etc. elements of this representation, or some other sequence
of positive data that is representative of the target language as a whole and/or
represents one or another salient aspect of it. Say, if the target language consists
of all primes, the teacher may provide the sampling containing just every other
prime (or another sampling of a similar sort) to give the learner a good idea of
what the language is about. Or, if all languages in the target class are infinite,
the teacher may omit some elements of the target language as being of lesser
importance for the overall understanding of the concept. (Our idea of sampling
can be traced to Trakhtenbrot’s paper [Tra73]).

The learner is required to be able to produce in the limit a grammar that
covers the input part (representing a given sampling) of the target language and
does not exceed the target language (in set containment sense). Now, obviously,
there are many different issues of interest: for example, does learnability of every
specific sampling (from some class of samplings) imply overall (uniform) learn-
ability for all samplings, how does knowledge of the sampling choice (provided
by the teacher) affect learning capabilities, etc.

The idea of considering inductive inference from inputs defined by different
samplings was first suggested by R. Freivalds in [Fre74], where he studied how
learnability on different specific orderings of the input function graph (provided
by the teacher) can affect overall learnability of the function regardless of the
order of input. When one assumes that languages are sets of positive integers
(as, following the tradition of classic inductive inference, it is done in our pa-
per), and considers learning languages from positive data only, the teacher may
use samplings based on many different natural representations of all positive
data. For example, one can fix some standard way of enumerating all recur-
sively enumerable sets, and then, for a given enumeration ag, a1, as,as,... of a
(recursively enumerable) language L, the sampling, say, A = {1,3,5,...} will
define the sublanguage a1, as,as,.... However, it turns out that this approach



makes learnability dependent on the choice of enumerating mechanism, and,
thus, rather unnatural.

We have chosen a formalization of the concept of sampling based on the rep-
resentation of target languages in the increasing order. Namely, for any language
L, consider the increasing order of all elements ag, a1, as, as, . ... Then a sampling
A is a set of positive integers, say, i1, s,... and the corresponding A-sampling
(sublanguage) of L is the language {a;,, a;,, @4, .. .}. For example, for the sam-
pling A ={5,6,7,...}, one gets the A-sampling of L containing all the elements
of L except the first five smallest ones.

Given the aforementioned formalization, we study several natural questions.
The first question is if, given a class of languages £ and a set of samplings A,
learnability of A-samplings of languages from L for every specific A € A implies
uniform learnability (that is, by one learner) of all A-samplings of languages
from L for all A € A. We answer this question in the negative in Theorem 7,
using the set of all possible samplings. For some special set of samplings, we also
show that a class witnessing separation of non-uniform and uniform learnability
for this set of samplings can be uniformly learned with just one error in the final
conjecture (Theorem 8). A related result addresses the question whether uni-
form learnability on each of the two different sets of samplings implies uniform
learnability on all samplings from the union of these two sets: as we show in
Theorem 10, the answer is negative even if each set contains just one recursive
sampling. On the other hand, we suggest a simple sufficient condition for learn-
ability on the union of two sets of samplings when the learner gets access to the
sampling A (from the oracle, or as a separate input), see Proposition 12.

We also studied the following problem: what are the circumstances when
learnability of a class from some natural set of samplings ensures learnability
of the class from a larger natural set of samplings? For example, is learnability
of a class on the set of A-samplings for all infinite recursively enumerable A-s
powerful enough to ensure learnability of the class from all infinite samplings?
We were able to get only some negative results so far. In particular, we have
shown that learnability of a class from all A-samplings for all infinite recursively
enumerable A-s does not imply the learnability of the class from all infinite
samplings (Theorem 16). Similarly, it turns out that learnability of a class from
all simple recursively enumerable samplings does not imply learnability of the
class from all infinite recursively enumerable samplings (Theorem 17). Moreover,
it turns out that the learnability of a class from all samplings but some recursive
sampling A (and all its subsets), does not imply that the class is learnable from
all samplings (Theorem 18).

2 Preliminaries

2.1 Notations

Any unexplained recursion theoretic notation is from [Rog67]. Let N denote the
set of natural numbers, {0,1,2,3,...}. Symbols §, C, C, 2, and D denote the



empty set, subset, proper subset, superset, and proper superset, respectively.
Symmetric difference of A and B is denoted by AAB. That is, AAB = (A —
B)U (B — A). P(A) denotes the power set of A, that is, P(A) = {B | B C A}.
The maximum and minimum of a set are respectively denoted by max(-), min(-),
where we take max(f)) = 0 and min(})) = oo. For a set S = {xg, z1,...}, where
xg < 21 < ..., we call x; the i-th minimal element (or just the i-th element)
of S (thus, the 0-th (minimal) element is the minimal element of a set). The
cardinality of a set S is denoted by card(S). We use card(S) < # to denote
that the cardinality of S is finite. For a € N U {*}, A =* B denotes that
card(AAB) < a. Quantifiers V>° and 3 respectively denote ‘for all but finitely
many’ and ‘there exist infinitely many’.

We let (-,-) denote a computable 1-1 and onto mapping from N x N to
N (see [Rogb67]). We assume without loss of generality that (-,-) is increas-
ing in both its arguments. Let 77 ((z,y)) = = and 73((x,y)) = y. The pair-
ing function can be extended to coding of n-tuples in a natural way by taking
(1,22, ..., xn) = (21, (T2, 23,...,2p)), for n > 2. The corresponding projection
functions are 7" ((x1, T2, ..., Tpn)) = ;.

For a partial function 1, n(x)| denotes that n(z) is defined. n(x)1 denotes that
n(x) is undefined. We let n[n| denote the partial function, {(z,n(x)) | z < n}.
By ¢ we denote a fixed acceptable programming system for the partial com-
putable functions from N to N [Rog67,HU79]. Then, ¢, denotes the i-th partial
computable function in this programming system, and ¢ is called a program
for the partial function ;. By @ we denote a fixed Blum complexity measure
[Blu67,HU79] for the p-system. Intuitively, @;(z) denotes the resources (say time
or space) needed to compute @;(x).

Languages are subsets of N. By W; we denote domain(y;). Thus, W; is the
recursively enumerable (r.e.) set/language accepted by ;. We also say that i
is a grammar for W;. Symbol £ denotes the set of all r.e. languages. By W;
we denote the set {z < s | &;(x) < s}. L, with or without decorations, ranges
over £. We let yr denote the characteristic function of L. We let L = N — L,
that is the complement of L. Symbol £, with or without decorations, ranges over
subsets of £.

A set S is called immune [Rog67] iff S is infinite, and for all infinite r.e. sets
X, X ZS. AsetS is called simple [Rog67] iff S is recursively enumerable and
S is immune.

For a total function f, let Ly = {(x, f(z)) | « € N}. For any, possibly
partial, function g, let Zext, be the function defined as follows: Zexty(x) = g(z),
if x € domain(g); Zexty(x) = 0, otherwise.

We will consider the following classes of languages and functions:

— INF is the class of all infinite sets.

— REinf is the class of all infinite recursively enumerable sets.

INIT = {L | (3n)[L = {z | z < n}]}, the class of initial segments of N.
COINIT = {L | (3n)[L = {x | x > n}]}, the class of coinitial segments of N.
SD = {f € R | ¢s(0) = f}.

— AZext = {f € R | domain(py()) € INIT, and f = Zexty,, }-



2.2 Preliminaries for Learning

A text T is a mapping from N into (NU{#?}). Thus, T'(¢) represents the (i+1)-st
element in the text. Intuitively, a text denotes the presentation of elements of
a language, with #s representing pauses in the presentation. We let T, with or
without decorations, range over texts. Content of a text T', denoted content(T),
is the set of natural numbers in the range of T. A text T is for a language L
iff content(7') = L. T[n] denotes the initial sequence of T of length n, that is
Tn]=T0)T(1)...T(n—1).

A finite sequence is a mapping from an initial segment of N into (N U {#}).
The empty sequence is denoted by A. Content of o, denoted content(o), is the
set of natural numbers in the range of o. The length of o, denoted by |o|, is the
number of elements in 0. For n < |o|, o(i) denotes the (i + 1)-th element in o.
For n < |o|, o[n] denotes the initial sequence of ¢ of length n. SEQ denotes the
set of all finite sequences. Thus, SEQ = {T'[n] | n € N, T is a text}. We let o
and 7, with or without decorations, range over SEQ. We denote the sequence
formed by the concatenation of 7 at the end of o by o7.

An inductive inference machine (IIM) [Gol67] is an algorithmic mapping
from SEQ to N. We also use the term learner or learning machine for IIM. We
let M, with or without decorations, range over IIMs. We say that M converges
on T to 4, (written: M(T')] = 4) iff (V*°n)[M(T'[n]) = i].

The following define some of the notions of learning.

Definition 1. [Gol67,CL82]

(a) M TxtEx-identifies an r.e. language L (written: L € TxtEx(M)) just
in case, for all texts T for L, M(T[n]) is defined for all n and (i | W; =
L)(v>n)[M(T[n]) = i].

(b) M TxtEx-identifies a class L of r.e. languages (written: £ C TxtEx(M))
just in case M TxtEx-identifies each language from L.

(c) TxtEx ={L C¢& | (IM)[L C TxtEx(M)]}.

Definition 2. [OW82,Gol67,CL82]

(a) M TxtBc-identifies an r.e. language L (written: L € TxtBc(M)) just
in case, for all texts 1" for L, for all but finitely many n, Wiy(rn)) = L-

(b) M TxtBc-identifies a class L of r.e. languages (written: £ C TxtBc(M))
just in case M TxtBc-identifies each language from L.

(¢c) TxtBc ={L£C €& | (IM)[L C TxtBc(M)]|}.

There exists a recursive sequence of total IIMs, Mg, My, ... such that, for
the criteria of learning I discussed in this paper, for each £ € I, some M;
witnesses that £ € I. This can be shown essentially along the same lines as done
for TxtEx-learning in [OSW86]. Thus, any learner M can be considered to be
equivalent to some M; from such an enumeration (with respect to being able to
learn a class of languages under a criterion of inference considered in this paper).
We fix one such enumeration My, My, ..., and will from now on consider only
learners from this list.



Definition 3. (a) [Ful90] o is said to be a TxtEx-stabilizing sequence for M on
L, iff (i) content(o) C L, and (ii) for all 7 such that content(r) C L, M(oT) =
M(o).

(b) [BB75,Ful90] o is said to be a TxtEx-locking sequence for M on L, iff
(i) o is a TxtEx-stabilizing sequence for M on L and (ii) Wn() = L.

If M TxtEx-identifies L, then every TxtEx-stabilizing sequence for M on L is
a TxtEx-locking sequence for M on L. Furthermore, one can show that if M
TxtEx-identifies L, then for every o such that content(c) C L, there exists a
TxtEx-locking sequence, which extends o, for M on L (see [BB75,Ful90]).

Similar locking sequence results can be proved for other criteria of inference
considered in this paper.

3 Definitions for Learning from Samplings

Suppose S = {yo0,Y1,Y2,...}, where yo < y1 < ..., and R C S. Then, define
Order(R,S) = {i | y; € R}. We call any subset of N a sampling. For a sampling
A and a set S, we call X an A-sampling of S iff Order(X,S) = A.

Note that, if A is infinite and S is finite, then there is no A-sampling of S. On
the other hand, for every infinite set S, and every sampling A, there is a (unique)
A-sampling of S. Thus, for ease of notation, when learning from samplings, we
will only consider infinite languages, without always explicitly mentioning so.
This does not effect our results, as all the diagonalizations in this paper can be
achieved using classes of infinite languages. Note that the samplings themselves
may or may not be infinite.

The following definition now formalizes our notion of learning from samplings.
Note that the model for learning sublanguages of a target language in [JKO08] is
different from the one formalized in the definition below, as the model in [JKO08]
requires learners to learn arbitrary input sublanguages, rather than the ones
defined by specific samplings as considered in this paper. In other words, the
model in [JK08] is UniSublangp ), a special case of the models considered in
this paper.

Definition 4. (a) Suppose a sampling A C N is given. M SublangEx 4-
identifies an infinite language L iff, for A-sampling X of L, for any text T for
X, there exists an n such that, (i) for all m > n, M(T[m]) = M(T'[n]), and (ii)
X C Wty € L.

M SublangEx 4-identifies a class £ of infinite languages iff M SublangEx 4-
identifies each language in L.

SublangEx 4 denotes the collection of all £ which can be SublangEx 4-
identified by some learner M.

(b) Let A C P(N) be a set of samplings.

(b.1) SublangEx 4 denotes the collection of all £ such that, for each A € A,
L € SublangEx 4 (this is the non-uniform version).



(b.2) UniSublangEx 4 denotes the collection of all £ for which there exists
a learner M such that, for each A € A, M SublangEx 4-identifies £ (this is the
uniform version).

(b.3) PUniSublangEx 4 denotes the collection of all £ for which there exists
a learner M such that, for each A € A, M using an oracle for A, SublangEx 4-
identifies £ (this is the pseudo-uniform version, where the learner has access to
the sampling A in oracle form).

One can similarly define the criteria for SublangBc-learning. We say that M
SublangBc 4-identifies L iff for all L € £, for X C L such that Order(X, L) = A,
for any text T' for X, for all but finitely many n, X C Wygrpn)) € L.

In this paper, we will be mainly concentrating on Sublang and UniSublang-
learning paradigms. The criterion PUniSublangEx is used more for emphasiz-
ing what happens if a uniform learner “knows”, in some way, the sampling A
which it is getting. The usage of an oracle here is more for convenience, and the
results presented in the paper will hold even if one gives the set A to the learner
in the form of a separate text containing exactly the elements of A.

4 Results

Our first goal is to show that there are classes of languages non-uniformly learn-
able on all samplings, but not uniformly learnable, even just on samplings from
COINIT. We begin with the following useful proposition and a corollary from it.

Proposition 5. £L = {Ly | f € SDU AZext} ¢ TxtBc, even when the texts
given to the learner are increasing texts.

Proof. This proposition can be proved essentially along the same lines as the
proof of the non-union theorem [BB75]. For ease of presentation, we will give
the proof for learning from arbitrary texts. As the class £ used consists only of
Ly such that f € R, such texts can be effectively converted to increasing texts.
Suppose, by way of contradiction, that M TxtBc-identifies £. Then, by implicit
use of Kleene’s recursion theorem [Rog67], there exists an e such that ¢, may be
defined as follows. Let ¢.(0) = e. ¢2 denotes @, defined before stage s, and
denotes the largest = such that ¢.(z) is defined before stage s. Let o contain just
one element: (0, ¢e). It will be the case that content(os) = {(z, ve(z)) | x < xs}.
Go to stage 0.

Stage s:
1. Search for a ¢ 2 o5 and y € N such that: content(c) C LZeXt¢s7 Yy > T,
(y,0) & content (o) and (y,0) € Wyy(o)- ’
2. If and when such a ¢ and y are found,
let z be maximum such that (z,0) € content(c),
let pe(y) =1,
let .(x) =0, for  # y such that s <z <y+z+ 1.
let 2541 =y+2+ 1.



let 0441 be an extension of o such that content(os4+1) = {{z, ve(z)) |
x < Tgt1}
Go to stage s+ 1
End stage s

It is easy to verify that, if all stages terminate, then ¢, is total, ¢, € SD,
T = Usen 0s is a text for Ly, , and Wigrpn)) # L., for infinitely many n (as
Wn(oy # Lo, , for each of o found in the stages).

On the other hand, if stage s starts but does not finish, then for g = Zext,,, €
AZext, we have that for any text T for L, which extends o, M(T'[n]) is not a
grammar for L, for any n > |o,| (otherwise, the search in step 1 would succeed).

Thus, we have that M cannot TxtBc-identify L. |

Corollary 6. Let SD; = {f | (3g € SD)[(Vz < j)[f(z) = (J,9(0),1)] and
(Vo > j)[f(z) = (4, 9(0), g(z — j) + 2)]]}.

Let AZext; = {f | (39 € AZext)[Vz < j)[f(x) = (4,9(0),0)] and (Vx >
D @) = (5,9(0), g(x — §) + 2)]]}.

Let L; ={L; | f € SD; U AZext;}.

Then L; ¢ UniSublangBcy, where A = {j,j+ 1,7 +2,...}. Thus, L; ¢
UniSublangBc oo

Note: We used +2 above just to make sure that (j,e, f(z)) for © < j are
smaller than (j, e, f(x)), for z > j.

Now we can prove the separation result for the uniform and non-uniform
learnability from samplings. The following Theorem holds even if we replace
Uni by PUni.

Theorem 7. SublangExp(y) — UniSublangBe ooy # 0.

Proof. Let L; be as in the Corollary 6. Fix L; € £; that witnesses that M does
not UniSublangBcoonyr-identify £;. Let £ = {L; | j € N}. Then, clearly
L ¢ UniSublangBcooNT-

To see that £ € SublangExp(y), let A € P(N) be given. If A = (), then £
is trivially in SublangEx 4, as the learner can just output (.

If A # (, then let ¥ € A. Now, the learner can SublangEx 4-learn £ as
follows. If the input text contains an element (z, (j,e,y)), for some j < k, then
output a grammar for L; (as there are only finitely many such j, the learner can
“code” these finitely many cases).

Otherwise, the input text will contain (k, (j,e,y)) for some j > k, for some
y € {0,1} (as the k-th least element in L; is (k, (j,e,y)), for some y € {0,1}).
If y = 1, then output a grammar for Ly, where f(z) = (j,e, 1), if z < j, and
f(x) = (,e,pe(x—5)+2),if & > j. If y = 0, then, in the limit, search for
the least xo such that ¢.(z¢) is not defined. Then, output a grammar for Ly,
where f(x) = (j,e,0), if z < j, and f(x) = (j,e,g(x — j) + 2), if x > j, where
g = Zexty,, [z,]- It is easy to verify that the above learner will SublangEx 4-
identify L. |



Now we exhibit a different result on separation of non-uniform and uniform
learnability from samplings: for a certain set .4 of samplings, there exists a class
of languages, which is non-uniformly learnable on all samplings from the given
set A, uniformly learnable with just one error in the final conjecture, but not
uniformly learnable without errors in conjectures even in Bc style.

Here a learner M SublangEx%-identifies £ iff, for all L € £, if X C L is
an A-sampling of L, then for any text T for X, there exists an n and a set Z
such that, (i) for all m > n, M(T[m]) = M(T'[n]), (ii) X € Z C L, and (iii)
Z =* Wan(T{n))-

Theorem 8. There exists a class L such that for A= {N}U{N—{k} | k € N},
L € SublangEx 4, UniSublangExh, but not in UniSublangBc 4.

Proof. Let cyle; = {(j,2x) | x € N}.
Let cylef = {(j,22) |z € N,z # k} U{(j, 2k + 1)}
Let £; = {cyle;} U {cyle? | ke N}
Let L = cyle;, it M; does not TxtBc-learn cyle;. Otherwise, let L; =

cyle?j , where k; is the least number such that (j,2k;) does not belong to the
least TxtBe-locking sequence (say 7;) for M; on cyle;. Note that on any text

extending 7; for the set cylefj —{(4,2k; + 1)}, M, almost always outputs a
grammar for cyle;.

Let £L={L; | j € N}. It follows immediately by definition of L; above that
L ¢ UniSublangBc 4.

On the other hand, £ is easily seen to be in SublangEx 4. To see, this
suppose A € A is given. A learner can obtain the unique j such that the input
text contains only elements of the form (j,-). Now, if the input text contains
(j, 2k 4+ 1), for some k, then the target language must be cyle? and the learner
can appropriately converge to a grammar for cyle;?; otherwise the target language
is either cyle; or cyle?, for the unique k, if any, which is missing from A, and
the learner can converge to a grammar for cyle; or cyle; — {{j,2k)} depending
on whether (j, 2k) belongs to the given input text or not.

Also, L € UniSublangExi, as witnessed by a learner which converges to a
grammar for cyle? , if it sees an element of the form (j, 2k + 1) in the input text;
otherwise, the learner converges to a grammar for cyle;, where the input text
only contains elements from cyle;. |

Next, we establish a non-union result: learnability of a class of languages
on each of two recursive samplings does not imply uniform learnability of the
class on the set consisting of the two given samplings. First we establish a useful
proposition.

Proposition 9. Fiz j,m € N and an IIM M. Let S; be a subset of {(j,1,z) |
x <m}.

Let 20 = 8;U{(j,2, (2, /(0), f(2) +m) | z € N}.

Then one of the following holds:



(a) there exists an f € SD such that for an increasing text T for X; = Z/,
for infinitely many n, Wa(rpm)) N{(J,2,y) |y € N} # X; — 5j;

(b) there exists an f € AZext such that for an increasing text T for X; = Z/,
for infinitely many n, W) 0{(,2,9) |y € N} # X; — S;.

Proof. Follows from Proposition 5. |
Now we establish the desired non-union result.

Theorem 10. Suppose A1 = {A1} and Ay = {As}, where A1 and As are
two distinct infinite recursive sets. Then, SublangEx 4, N SublangEx 4, —
UniSublangBc 4,4, # 0.

Proof. Without loss of generality we assume that the pairing function is increas-
ing in all its arguments and that, for each j, if {wg,w1,...} = {{j,r,x) | r €
{1,2}}, where for all i, w; < w;t1, then card({(4,0,z) | x € N} n{x | w; <
& < wiy1}) > (i 4 2)-th minimal elements of both A; and As. This ensures that
there are enough gaps between elements of the form (j,1,-) and (j,2,-) to insert
several elements of the form (7,0, -) as needed in the construction of L; from X
below.

Let ip = min(A; A Ay). Without loss of generality assume that ig € A;. Let
i1 be the smallest element in Ay — {x | x < ip}.

Let S; = {(j, 1, z) | 2 < o,z € A1 }U{(j, 1, 2i0+2)}U{(j, 1, 2ig+2+2y+1) |
o<y <11,y € Al}

Let m; = 2t + 2 + 217 + 1.

Now, if in Proposition 9(a) holds for S = S;, m = m; and M = M, then let
X be as in Proposition 9 and let L; be an r.e. set formed by adding elements of
the form (4,0, -) to X; U{(j, 1, 2ip+2+2i1+1) } such that Order(X;U{(j, 1, 2¢o+
242i1+1)}, L) = A1U{i1} (here we assume that the elements of the form (5, 0, -)
which are added are the least ones possible so that one can, effectively from X},
determine the elements which are added). We added (j,1,2ig + 2 + 2i; + 1)
above just to make sure that the i;-th element of L; is (j,1,2i¢ + 2 + 2i; + 1)
in case i1 & Ai; in case i1 € A1, (4, 1,249 + 2 + 241 + 1) would already be in X.
Note that the ip-th element of L; is (j, 1,29 + 2) and the ¢;-th element of L; is
(4,1,2ip + 2+ 2i; + 1) (that is, the io-th element of L; is of the form (j, 1, 2z)
for some z, and the 41-th element of L; is of the form (7,1, 2x + 1) for some z).

Otherwise, if Proposition 9(b) holds for S = S;, m = m;, and M = M}, then
let X; be as in Proposition 9 and let L; be an r.e. set formed by adding elements
of the form (5,0,-) to X; U {(j,1,2io + 1)} such that Order(X; U {(j,1,2i +
1)}, Lj) = Ay U {ip} (here we assume that the elements of the form (5,0, ")
which are added are the least ones possible so that one can, effectively from
X, determine the elements which are added). Note that the g-th element of L,
is (4,1,2i9 + 1) and the 4;-th element of L; is (j,1,2ip + 2) (that is, the i-th
element of L; is of the form (j, 1,2z + 1) for some z, and the i;-th element of
L; is of the form (7,1, 2x) for some x).

Let £L ={L; | j € N}. Note that for all j, if one can determine whether (a) or
(b) holds in Proposition 9 for S = S;, m = m;, M = M;, then from any element



for X; — 59, one can determine X; and thus L;. Note that one can determine
whether (a) or (b) holds in Proposition 9 for § = S;, m = m;, M = M,, from
the 4p-th element of L;. Similarly, one can determine whether (a) or (b) holds
in Proposition 9 for S = §;, m = m;, M = M, from the ¢;-th element of L;.
Thus, £ € SublangEx 4, and £ € SublangEx 4,.

On the other hand, it follows from the construction of X, and L; that
M, cannot SublangBc-identify L; from a text for X;. It follows that, £ ¢
UniSublangBc 4,04, -

Corollary 11. There exists a class A of samplings such that PUniSublangEx 4
— UniSublangBc 4 # 0.

The next proposition establishes a sufficient condition for the existence of a
uniform learner on the union of the two sets of samplings when a class is learnable
on each of the two sets of samplings separately, provided that all learners have
access to samplings A (using an oracle).

Proposition 12. Let Ay, Ay be two sets. Suppose there exists a computable F
such that F' on any text T for A converges to 1, if A € Ay — As; F on any text
T for A converges to 2, if A € Ay — A1; and F on any text T for A converges
to either 1 or 2, if A € Ay N A;. Then,

PUniSublangEx 4, N PUniSublangEx 4, C PUniSublangEx 4,04, -

Now we turn our attention to the problem of extending learners from large
natural sets of samplings to larger sets of samplings. For example, can a learner
inferring correct grammars on all recursive samplings be extended to a learner
on all recursively enumberable samplings? Or, can a learner on all recursively
enumerable samplings be extended to a learner on all infinite samplings? So far,
we have been able to establish only negative results. Our first result demonstrates
that there is a class of languages uniformly learnable from all infinite recursively
enumerable samplings, but not learnable from all infinite samplings, even non-
uniformly.

We begin with a number of technical propositions.

Proposition 13. Let R = {xg,21,%2,...}, be any infinite recursive set such
that, for all i, x;41 —x; > i+ 2. Then, there exists a recursively enumerable set
S D R such that Order(R,S) is immune, xo is the least element of S, and, for
all i, card(S N{z | z; <x < ®j31}) <i+1.

Proof. Let R = {xg,x1,...} be as given in the hypothesis of the proposition.
By implicit use of Kleene’s recursion theorem [Rog67] one can define S = W, in
stages as follows. Initially, W, contains all of R, and for all k, saty is false and
br, = 0. Intuitively, if saty is true at the beginning of any stage, then

Reqy, : Wy, intersects with Order(S — R, S)

is satisfied at the beginning of stage s, and this holds as long as we do not
change membership in W, for elements < b;. We will also enumerate at most
r + 1 elements x in W, such that z, < x < z,4;.

Go to stage 0.



Stage s

1. If there exists a k < s such that sat; is currently false and Wj, s enumerates
an element w > {b, | r < k} and the w-th element of W, (as of now) is
> x, then pick the least such k£ and go to step 2. Otherwise, go to stage
s+ 1.

2. Let z be the w-th element in W, as of now.

3. If z = x,41 for some r, then insert a new element (z, + k + 1) in W.

4. Set saty = true and set by, = z.

5. Set saty = false, for all k' > k.

6. Go to stage s+ 1.

End stage s

By induction on k, one can show that saty eventually takes a fixed value:
once saty get stabilized for k' < k, then sat; can change at most once, from
false to true. Furthermore, if Wy, is infinite then saty is eventually always true.
Thus, Reqy eventually holds for all infintie Wy,. Also clearly, the algorithm adds
at most r + 1 elements in between z, and z,11 to W, (see the requirement on
the w-th element of W, being > xzj in step 1). It follows that S = W, satisfies
the requirements of the Proposition.

Proposition 14. Let R, S be as in Proposition 13. Fix j € N. Let {zo, 21, ...},
where zg < z1 < ..., be an infinite recursive set such that, for all i and for all
e < i, number of elements in {{j,e+1,x) | (4,0,2;) < (j,e+1,z) < (4,0,2i41)} >
1+ 1.

Then, for R; = {(j,0,2;) | i € N}, there exists an e and a set S; O R; such
that

(a) S; — R; is an infinite subset of {(j,r+1,x) | r,z € N}.

(b) for all but finitely many (j,r +1,x) € S; — R;,r =,

(c) We =5, and

(d) Order(R;,S;) = Order(R, S).

Proof. Let R; = {z0,%1,...} be as in the hypothesis of the proposition. Let
R = {zp,z1,...} and S be as in Proposition 13. Then, by implicit use of Kleene’s
recursion theorem [Rog67] there exists an e such that W, may be defined as
follows.

W, contains R;, (4,0, zo) is the minimal element of W, and for each i, W,
contains exactly card(S N {z | x; < * < z;4+1}) elements from the set:

(1) {<j,€ + 1a$> ‘ <]a0,zz> < <j7€ + 1,Z> < <jvoazi+l>}a if i > e and

(11) {<J’ ].,SL'> | <j707 Zl> < <J’ ].,SL'> < <j707 Zi+1>}a ifi<e.

Note that, for each 4, the gap between (5,0, z;) and (4,0, z;11) is large enough
to allow the above, and thus, W, can be so defined. It is easy to verify that
S; = W, satisfies the requirements of the Proposition.

Proposition 15. Suppose X is an infinite recursive set and M is an [IM. Then
for all finite Y C X, there exists an infinite recursive Z such thatY C Z C X,
and for an increasing text T for Z, for infinitely many n, Wnyrpn)) N X # Z.



Proof. The proof of {L; | f € R} not being TxtBc-learnable (see [Gol67]), can
be easily modified to show this proposition.

Now we can prove the desired result.

Theorem 16. UniSublangExREmf — SublangBc g # 0.

Proof. For each j, let yg < y{ < ... be such that {yg, y{, ...} is recursive, and
for all ¢ and for all e < 4, number of elements in {(j,e + 1,z) | (4,0,y]) <
(Jre+1,2) <(5,0,97,,)} >i+ 1.

Let R; be Z as obtained by Proposition 15, when ¥ = 0, X = X, =
{(4,0,92) | r € N} and M = M;. Let S; be as obtained in Proposition 14
for this R;.

LetEZ{S]‘ |j€N}

Then, S; witnesses that £ is not SublanchOrder(R)S)—identiﬁed by M;.
Thus, £ ¢ SUblangBCOrder(R,S) and, therefore, £ ¢ SublangBceyNp-

On the other hand, £ is clearly in UniSublangExp ¢, as for any S; € L,
for any Y such that Order(Y, S;) is an infinite r.e. set, we have that ¥ contains
infinitely many elements in S; — R;. It follows that Y contains infinitely many
elements of the form (j,r + 1,z), and all but finitely many such r are equal to
some grammar e for S;. |

The next result shows that the learnability of a class from all simple recur-
sively enumerable samplings does not imply its learnability from all recursively
enumerable samplings.

Theorem 17. Let Ay = {A | A is an infinite simple set }. Let Ay = {2y |y €
N}.
Then, UniSublangEx 4, — SublangBc 4, # 0.

Proof. For each j, let yg < y{ < ... be such that {yg, y{, ...} is recursive, and
for all 4 and for all e < 4, number of elements in {(j,e + 1,z) | (j,0,47) <
<],6+1,$><<]707yf+1>}21 .

Let R; = Z, as in Proposition 15 for M = M;, X = X; = {(j,0,¢J) | r € N}
and Y = 0.

By implicit use of Kleene’s recursion theorem [Rog67], there exists an e such
that W, = S; satisfies (i) S; —R; C {(j,y+1,z) | z,y € N}, (ii) Order(R;, S;) =
{2y | y € N}, and (iii) for all but finitely many (j,y + 1,z) € S;, y =e.

Let £ = {S; | j € N}. It is easy to verify that £ € UniSublangEx 4, ,
as any simple set intersects with {2y + 1 | y € N} infinitely often. Also, by
Proposition 15, it follows that M; does not SublanchOrder(Rj,Sj)—identify

S;. As Order(R;, S;) is {2y | y € N}, we have that £ ¢ SublangBca,. |

Our next result shows that, even learnability of a class from all samplings
but subsets of one sampling does not imply its learnability from all samplings.

Theorem 18. Suppose A is an infinite recursive set different from N. Then,
SublangExp(y)_p4) — SublangBc, # (.



Proof. Without loss of generality assume 0 € A. (Proof can be easily modified
for any other element in A, by considering appropriate modification of SD and
AZext).

Let po,p1,Dp2,... be a recursive sequence of increasing prime numbers. Let
A={xg,x1,...}, where o <1 < ....
For g € SD, let hy(x) = pg(o) 'pii(f) . Uy<m(pzﬂ_(f)+1).
For g € AZext, let

hg(z) = pg(o) ~piﬂ_(f) -Hy<x(p29(y)+1), ifx € A, and

y+1
hy(z) = p§ - 2 T, (2T i a ¢ A

Note that hy is an increasing function in both the above cases (thus the r-
th element of Ly, is (r, hy(r))). Also, every hy(x) gives away the value of g(0).
Furthermore, the only difference in the two cases (of g € SD or g € AZext) is
how hy(x) is defined for = ¢ A.

Let L= {Ln, | g € SDU AZext}.

It is easy to verify that £ € SublangExp(n)_p(4), as from any input element
(x, hg(x)), for z & A, one can determine ¢g(0) and whether g € SD or g € AZext.

Now for g, g’ € SD U AZext,

(i) one can effectively convert an infinite subgraph for h, into a graph for g,

(ii) one can effectively convert a graph for g into a graph for hy restricted to
the domain A,

(iii) if g # ¢', then hy(z) = hy () only for finitely many x.

Thus, £ € SublangBc, implies that {L; | f € SD U AZext} € TxtBc,
contradicting Theorem 5. It follows that £ ¢ SublangBc 4.

A corollary from the above theorem shows that Ex-learners from all positive
data may sometimes be more powerful than any Bc-learner from an A-sampling
defined by any infinite recursive sampling A # N.

Corollary 19. TxtEx — SublangBc4 # 0, for all infinite recursive A # N.

On the other hand, uniform Bc-learners from all infinite samplings can some-
times be more powerful than Ex-learners from all positive data.

Theorem 20. UniSublangBc yp — TxtEx # 0.

Proof. Let C = {f | (V>°x)[ps@) = f]}. Let L= {Ly | f € C}. Then, it is easy
to verify that £ € UniSublangBcynp. On the other hand [CS83] showed that
L ¢ TxtEx ([CS83] actually showed this for function learning, which implies
the result for language learning). |

5 Conclusion

This paper can be viewed as the first step in the study of learnability of various
projections of target languages. Firstly, as we mentioned in the Introduction,
several different formalizations of the concept of samplings are possible, and the



notion of projection itself can be formalized in several ways. For example, a
projection of a language may be defined as the set of examples satisfying some
predicate — say, when one considers a language of strings over the alphabet
{a,b,c}, a projection may be its sublanguage consisting of all strings over the
alphabet {a,b}.

Yet, even within the framework of formalization suggested in our paper,
many interesting questions remain open. We obtained some non-union type re-
sults, however, we have not been able to establish more general non-union results
for large (and natural, say, containing all recursive samplings) sets of samplings,
or, alternatively, find situations when learnability on two different sets of sam-
plings implies uniform learnability on the union of the given sets. The problem
of expanding learnability from all samplings from some natural large class to
another class of samplings embracing it is also far from being fully explored.
For example, we have not been able to find out if learnability from all recursive
infinite samplings implies learnability on all recursively enumerable samplings.
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