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Abstract

A number of natural models for learning in the limit is introduced to deal with the
situation when a learner is required to provide a grammar covering the input even
if only a part of the target language is available. Examples of language families are
exhibited that are learnable in one model and not learnable in another one. Some
characterizations for learnability of algorithmically enumerable families of languages
for the models in question are obtained. Since learnability of any part of the target
language does not imply monotonicity of the learning process, we consider also our
models under additional monotonicity constraint.

1 Introduction

Models of algorithmic learning in the limit have been used for quite a while
for study of learning potentially infinite languages. In the widely used mathe-
matical paradigm of learning in the limit, as suggested by Gold in his seminal
article [Gol67], the learner eventually gets all positive examples of the lan-
guage in question, and the sequence of its conjectures converges in the limit
to a correct description. However, in the Gold’s original model, the learner is
not required to produce any reasonable description for partial data — whereas
real learning process of languages by humans is rather a sort of incremental
process: the learner first actually finds grammatical forms — in the beginning,
probably, quite primitive — that describe partial data, and refines conjectures
when more data becomes available. (Incremental nature of the process here
may be understood as purely monotonic: every new conjecture always extends
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the previous one. However, a learner can, in fact, sometimes choose conjec-
tures that are too wide and later are refined to cover smaller languages; we
discuss these aspects of sublanguage learning in Section 5.)

Moreover, if some data never becomes available, a successful learner can still
eventually come up with a feasible useful description of the part of the language
it has learned so far. This situation can be well understood by those who have
been exposed to a foreign language for a long time, but then stopped learning
it. For example, English has many common grammatical forms with Russian,
which makes them relatively easy to learn. However, the system of tenses in
English is much more complex than in Russian, and remains a tough nut to
crack for many adult Russians who mastered English otherwise relatively well.
A similar argument can be made for many other situations when even partial
descriptions based on partial input data might be important: diagnosing the
complete health status of a patient versus detecting only some of his/her
deficiencies, forecasting weather for a whole region, or just for some small
towns, etc.

In this paper, we introduce several variants of the Gold’s model for learning
languages in the limit requiring a learner to converge to a reasonable descrip-
tion for just a sublanguage if the data from this sublanguage only is avail-
able (this approach to learning recursive functions in the limit was studied in
[JKW04]). In particular, we consider

(1) a model (called AllSubEx), where, for any input representing a part P of
a language L from the learnable class L, the learner converges to a grammar
describing a part of L containing P ;

(2) a model (called AllWSubEx; here W stands for weak), where for any
input representing a part P of some language L in the learnable class L,
the learner converges to a grammar describing a part (containing P ) of some
(maybe other) language L′ in L. The reason for considering this model is that
the first model, AllSubEx, may be viewed as too restrictive — partial data
P seen by the learner can belong to several different languages, and in such
a case, the learner, following the model AllSubEx, must produce a grammar
describing a part containing P and being a part of ALL languages in L which
contain P ;

(3) a model (called AllMWSubEx; here M stands for minimal), similar to
AllWSubEx above, but the language L′, containing the part P , is required
to be a minimal language in the class L which contains P .

Later in the paper (Theorem 10), we will feature the following example of a
family of languages in AllSubEx: any language in the family contains pairs of
a function 〈x, f(x)〉, where the function f has a finite range, and every value
f(x) encodes an index for the set of all those z that have the value f(z) = f(x).
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Once the learner has received a pair 〈x, f(x)〉, it can always describe the part
of the target language defined by f−1(x) , and, thus, will eventually build a
grammar for the target language as a union of the grammars for its parts.

For all three models, we also consider the variant where the final conjecture
itself is required to be a grammar describing a language in the class L (rather
than being a subset of such a language, as in the original models (1) — (3)).
A slightly different variants of the models (1) and (3), with a slightly different
motivation, and in somewhat different forms, were introduced in [Muk94] and
[KY95,KY97b,KY97a].

We also consider a weaker variant of all the above models: for a learner to be
able to learn just a part of the language, the part must be infinite. Sometimes,
we may be interested in learning just potentially infinite languages: often con-
cepts are infinite, and it is unreasonable to say that one does any reasonable
deduction from just finite data. Also, even though we may not obtain all data,
it is reasonable to say that, over time in this universe, we will keep getting
more and more data, infinite over infinite time (assuming the universe does
not collapse). Similarly, for language learning, even though we may not hear
every sentence, it is reasonable to assume that we will get infinitely many
sentences over infinite time. In these and similar cases, correct learning of just
a finite fragment of a target language may be inessential.

We compare all these models, examining when one model has advantages over
the other. This gives us opportunity to build some interesting examples of
learnable families of languages, for which learnability of a part is possible in
one sense, but not possible in the other. In particular, we show that all three
models are different (Theorems 11 and 12) and demonstrate how the require-
ment of the last (correct) conjecture being a member of the learnable class
(Theorem 10), or requiring sublearning of only infinite sublanguages (Theo-
rem 13) affects sublanguage learners. We also look at how the requirement of
being able to learn all (or just infinite) parts fairs against other known models
of learnability — in particular, the one that requires the learner to be con-
sistent [Bār74a,Ang80b,WZ95] with the input seen so far. It turns out that
learners in all our models that are able to learn all sublanguages can be made
consistent (Theorem 17). We obtain some characterizations for learnability
within our models when the final conjecture is required to be a member of the
learnable class of languages (Theorems 19, 21 and 22).

Some of our examples separating one model from another use the fact that,
while, in general, learning increasing parts of an input language can be per-
ceived as an incremental process, actual learning strategies can, in fact, be
nonmonotonic — each next conjecture is not required to contain every data
item covered by the prior conjecture. Consequently, we also consider how our
models of learnability fair in the context where monotonicity [Jan91,Wie90]
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is explicitly required. It turns out that monotonicity requirement is, in fact,
a severe limitation on sublanguage learners. In particular, WSub, MWSub

and Sub variants collapse for strong monotonic learning when one does not
require the final conjecture to be within the class being learnt (Theorem 27).

Overall, our results show that the requirement of being able to learn sub-
languages, while being a serious limitation of learners’ capabilities, adds an
interesting and important insight on how learners can learn when only partial
data may be provided.

Learning from incomplete texts (with just finite amount of data missing) has
earlier been studied in the context where the final grammar still was required
to be a correct (or nearly correct) description of the full target language (see,
for example, [OSW86,FJ96]). There have also been studies when the input text
may contain extra (noisy) data (see for example [OSW86,FJ96,Ste97,Sch85]).
These notions, in general, are incomparable with our approach.

A preliminary version of this paper appeared in [JK06].

2 Notation and Preliminaries

Any unexplained recursion theoretic notation is from [Rog67]. N denotes the
set of natural numbers, {0, 1, 2, 3, . . .}. ∅ denotes the empty set. ⊆, ⊂, ⊇,
⊃ respectively denote subset, proper subset, superset and proper superset.
Dx denotes the finite set with the canonical index x [Rog67]. We sometimes
identify finite sets with their canonical indices. The quantifier ‘∀∞’ essentially
from [Blu67], means ‘for all but finitely many’.

↑ denotes undefined. max(·), min(·) denotes the maximum and minimum of
a set, respectively, where max(∅) = 0 and min(∅) =↑. 〈·, ·〉 stands for an
arbitrary computable one-to-one encoding of all pairs of natural numbers onto
N [Rog67]. Similarly we can define 〈·, . . . , ·〉 for encoding tuples of natural
numbers onto N . πn

k denotes the k-th projection for the pairing function for
n-tuples, i.e., πn

k (〈x1, . . . , xn〉) = xk.

ϕ denotes a fixed acceptable programming system for the partial computable
functions: N → N [Rog58,Rog67,MY78]. ϕi denotes the partial computable
function computed by program i in the ϕ-system. The set of all total recur-
sive functions of one variable is denoted by R. Wi denotes domain(ϕi). Wi

is, then, the recursively enumerable (r.e.) set/language (⊆ N) accepted (or
equivalently, generated) by the ϕ-program i. E denotes the set of all r.e. lan-
guages. Any L, with or without subscripts and superscripts, is a member of
E . Any L, with or without subscripts and superscripts, is a subset of E .
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By Φ we denote an arbitrary fixed Blum complexity measure [Blu67,HU79]
for the ϕ-system. Intuitively, Φi(x) denotes the time taken to compute ϕi(x).
Wi,s = {x | x < s, Φi(x) < s}.

A class L is said to be an indexed family [Ang80b] of recursive languages iff
there exists an indexing (Li)i∈N (possibly with repetition) of languages in L
and a recursive function f such that f(i, x) = 1 iff x ∈ Li. When learning
indexed families L (with indexing (Li)i∈N as above), we often consider the
hypotheses space being (Li)i∈N . In such cases, L-grammar i is a grammar for
Li.

We now consider some basic notions in language learning. We first introduce
the concept of data that is presented to a learner. A text T is a mapping from
N into (N∪{#}) (see [Gol67]). The content of a text T , denoted content(T ), is
the set of natural numbers in the range of T . T is a text for L iff content(T ) =
L. T [n] denotes the initial segment of T of length n. We let T , with or without
superscripts, range over texts. Intuitively, #’s in the text denote pauses in the
presentation of data. For example, the only text for the empty language is just
an infinite sequence of #’s.

A finite sequence σ is an initial segment of a text. Λ denotes the empty se-
quence. content(σ) is the set of natural numbers in the range of σ. |σ| denotes
the length of σ, and if n ≤ |σ|, then σ[n] denotes the initial segment of σ of
length n. στ denotes the concatenation of σ and τ . σ ⊆ τ (σ ⊆ T ) denotes
that σ is an initial segment of τ (initial sequence of T ).

A language learning machine is an algorithmic device which computes a map-
ping from finite initial segments of texts into N ∪ {?}. (Here ? intuitively
denotes the fact that M does not wish to output a conjecture on a partic-
ular input). We let M, with or without subscripts and superscripts, range
over learning machines. Intuitively, learning machines process a text T as infi-
nite sequences of initial segments T [n], n ∈ N . Thus, one considers M(T [n]),
n ∈ N , as a sequence of conjectures made by learning machine M on the input
text T . We say that M(T )↓ = i ⇔ (∀∞n)[M(T [n]) = i]. Thus, M(T )↓ = i

denotes that the infinite sequence of hypotheses, M(T [n]), n ∈ N , output by
M, when processing text T , converges to i.

We now introduce criteria for a learning machine to be considered successful
on languages. Our first criterion requires that a learner, given a text for some
language in the class being learnt, converges to a grammar for that language.

Definition 1 [Gol67] (a) M TxtEx-identifies L (written: L ∈
TxtEx(M)) ⇔ (∀ texts T for L)(∃i | Wi = L)[M(T )↓ = i].

(b) M TxtEx-identifies L, if it TxtEx-identifies each L ∈ L.
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(c) TxtEx = {L | (∃M)[L ⊆ TxtEx(M)]}.

The influence of the Gold’s paradigm [Gol67] to analyze human language
learning is discussed by various authors, for example [Pin79,WC80,OSW86].

Note that the hypotheses space used for interpreting the conjectures of the
learner in the above definition is the acceptable numbering W0,W1, . . .. In some
cases we use special hypotheses spaces (for example, when learning indexed
families L, we often use the indexing (Li)i∈N for L as the hypotheses space).
We will make it explicit when we use such a hypotheses space.

Note that in TxtEx learning, the learner does not know when it has arrived
at its final conjecture. Motivated by the need to know when the learner has
arrived at its final hypothesis, Gold [Gol67] also considered the case when
the learner is required to learn a language without making any mind changes
(which is equivalent to knowing when the learner has arrived at its final con-
jecture).

Definition 2 [Gol67] (a) M TxtFin-identifies L (written: L ∈
TxtFin(M)) ⇔ (∀ texts T for L)(∃i | Wi = L)(∃n)[M(T [n]) = i ∧ (∀m <

n)[M(T [m]) =?]].

(b) M TxtFin-identifies L, if it TxtFin-identifies each L ∈ L.

(c) TxtFin = {L | (∃M)[L ⊆ TxtFin(M)]}.

The following definition is based on a learner semantically, rather than syntac-
tically, converging to a grammar (or grammars) for an input language. Here
note that equivalence of grammars is non-computable. The corresponding no-
tion for learning functions was introduced by [Bār74b,CS83].

Definition 3 [CL82,OW82a].

(a) M TxtBc-identifies L (written: L ∈ TxtBc(M)) ⇔ (∀ texts T for
L)(∀∞n)[WM(T [n]) = L].

(b) M TxtBc-identifies L, if it TxtBc-identifies each L ∈ L.

(c) TxtBc = {L | (∃M)[L ⊆ TxtBc(M)]}.

It can be shown that TxtEx ⊂ TxtBc (for example, see [CL82,OW82a]).

The following concept is useful for proving some of our results.

Definition 4

(a) [Ful85] σ is a TxtEx-stabilizing sequence for M on L just in case
content(σ) ⊆ L and (∀τ | content(τ) ⊆ L ∧ σ ⊆ τ)[M(τ) = M(σ)].
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(b) [BB75,OW82b] σ is a TxtEx-locking sequence for M on L just in case σ

is a TxtEx-stabilizing sequence for M on L and WM(σ) = L.

Lemma 5 [BB75] If M TxtEx-identifies L, then there exists a TxtEx-
locking sequence for M on L. Furthermore, all stabilizing sequences for M

on L are locking sequences for M on L.

Similarly one can define TxtBc-stabilizing sequences and TxtBc-locking se-
quences for M on L. A lemma similar to Lemma 5 can be established for
TxtBc-learning as well as other criteria of inference considered below. We
often drop TxtEx- (TxtBc-, etc.) from TxtEx-(TxtBc-, etc.)-stabilizing
sequence, when it is clear from context.

Definition 6 [Bār74a,Ang80b] (a) M is consistent on text T iff, for all n,
content(T [n]) ⊆ WM(T [n]).

(b) M is consistent on L iff it is consistent on all texts for L.

(c) M is consistent on L iff it is consistent on all L ∈ L.

(d) M TxtCons-identifies L iff it is consistent on L and TxtEx-identifies L.

TxtCons = {L | some M TxtCons-identifies L}.

3 Learning Sublanguages: Definitions and Separations

Below we define our three models for learning sublanguages, as explained in
the Introduction, as well as their variants reflecting the requirement of the
final correct conjecture describing a language in the learnable class. We give
our definitions for the Ex and Bc paradigms of learnability in the limit.

Intuitively, we vary three parameters in our learning criteria (in addition to
the base criterion such as Ex or Bc): (a) whether we want the extensions
to be subsets of every language in the class of which the input is a subset
(denoted by Sub in the name of the criterion), or of a minimal language in
the class of which the input is a subset (denoted by MWSub in the name
of the criterion), or only one of the languages in the class of which the input
is a subset (denoted by WSub in the name of the criterion), (b) whether all
sublanguages are to be extended (denoted by All in the name of the criterion),
or only the infinite ones (denoted by Inf in the name of the criterion), and
(c) whether we require the final hypothesis extending the input to be within
the class or not (denoted by presence or absence of Res in the name of the
criterion).
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A language L ∈ L is said to be a minimal language [Muk94] containing S in
L, iff S ⊆ L, and no L′ ∈ L satisfies S ⊆ L′ ⊂ L.

Below, Sub denotes learning subsets, WSub, denotes weak learning of sub-
sets, and MWSub denotes minimal weak learning of subsets. We first consider
extending all subsets.

Definition 7 (a) M AllSubEx-identifies L, iff for all L ∈ L, for all texts
T such that content(T ) ⊆ L, M(T ) converges to a grammar i such that
content(T ) ⊆ Wi ⊆ L.

(b) M AllWSubEx-identifies L iff M TxtEx-identifies L and for all L ∈ L,
for all texts T such that content(T ) ⊆ L, M(T ) converges to a grammar i

such that content(T ) ⊆ Wi ⊆ L′, for some L′ ∈ L.

(c) M AllMWSubEx-identifies L iff for all L ∈ L, for all texts T such that
content(T ) ⊆ L, M(T ) converges to a grammar i such that content(T ) ⊆
Wi ⊆ L′, for some L′ ∈ L, such that L′ is a minimal language containing
content(T ) in L.

(d) For I ∈ {AllSubEx,AllWSubEx,AllMWSubEx}, we say that M

ResI-identifies L iff M I-identifies L, and for all L ∈ L, for all texts T such
that content(T ) ⊆ L, WM(T ) ∈ L.

As for the latter part of the above definition, it must be noted that Mukouchi
[Muk94] considered a variation of ResAllMWSubEx for indexed families
and provided some sufficient conditions for learnability in the model. Essen-
tially his model allowed a learner to diverge if the input language did not
have any minimal extension in L. Kobayashi and Yokomori [KY95] considered
a variation of ResAllSubEx learning (and briefly also ResAllMWSubEx

learning) for indexed families of recursive languages and provided some char-
acterizations. Essentially, they required a learner to learn on all inputs, even
those which may not be contained in any language in the class (in other words,
they required N to be a member of the class). Mukouchi and Kobayashi and
Yokomori arrived at their definitions via a slightly different motivation (to
find minimal extensions within the class), and, thus, had definitions some-
what different from ours. Here note that Kobayashi and Yokomori’s technique
also gives that the class of pattern languages [Ang80a] belongs to AllSubEx.

Note also that learning from incomplete texts (with just finite amount of
data missing) has been studied in the context where the final grammar still
was required to be a correct (or nearly correct) description of the full target
language (see, for example, [OSW86,FJ96]). In general, this is incomparable
with our approach.

In part (b) of the above definition, we explicitly added TxtEx-identifiability
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as the rest of the definition in part (b) does not imply TxtEx-identifiability
(for parts (a) and (c), this was not needed, as the conditions imply TxtEx-
identifiability).

We now consider Bc-learnability of sublanguages.

Definition 8 (a) M AllSubBc-identifies L iff for all L ∈ L, for all texts
T such that content(T ) ⊆ L, for all but finitely many n, content(T ) ⊆
WM(T [n]) ⊆ L.

(b) M AllWSubBc-identifies L iff M TxtBc-identifies L and for all L ∈ L,
for all texts T such that content(T ) ⊆ L, for all but finitely many n, for some
L′ ∈ L, content(T ) ⊆ WM(T [n]) ⊆ L′.

(c) M AllMWSubBc-identifies L iff for all L ∈ L, for all texts T such that
content(T ) ⊆ L, for all but finitely many n, for some L′ ∈ L such that L′ is a
minimal language containing content(T ) in L, content(T ) ⊆ WM(T [n]) ⊆ L′.

(d) For I ∈ {AllSubBc,AllWSubBc,AllMWSubBc}, we say that M

ResI-identifies L iff M I-identifies L, and for all L ∈ L, for all texts T such
that content(T ) ⊆ L, for all but finitely many n, WM(T [n]) ∈ L.

In the above definitions, when we only require extending infinite subsets, then
we replace All by Inf in the name of the criterion (for example, InfSubEx).

Based on [OSW86], one can show that there exists a recursive sequence
M0,M1, . . . , of total learning machines such that, for all the learning cri-
teria I discussed in this paper (except for those involving consistent learning),
if L ∈ I, then some Mi in the sequence witnesses that L ∈ I. From now on we
fix such a recursive sequence M0,M1, . . . of learning machines.

Our first proposition establishes a number of simple relationships between
our different models that easily follow from the definitions. For example,
AllSubEx ⊆ AllMWSubEx ⊆ AllWSubEx. This is so, since any lan-
guage X ⊇ L, which is a subset of all languages in L containing L, is also
a subset of any minimal language in L containing L. Similarly, any language
X ⊇ L, which is a subset of a minimal language, A, in L containing L, is also
a subset of some language (in particular A) in L containing L.

Proposition 9 Suppose I ∈ {All, Inf}, J ∈ {Sub,WSub,MWSub}, K ∈
{Ex,Bc}.

(a) ResIJK ⊆ IJK.

(b) AllJK ⊆ InfJK.

(c) ISubK ⊆ IMWSubK ⊆ IWSubK.
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(d) IJEx ⊆ IJBc.

(b), (c), (d) above hold for Res versions too.

Proof. Follows directly from definitions.

Results below will show that the above inclusions are proper. They give the
advantages of having a weaker restriction, such as the final conjecture not
being required to be within the class (Theorem 10), WSub vs MWSub vs
Sub (Theorems 12 and 11) and Inf vs All (Theorem 13).

First we show that the requirement of the last correct conjecture being a mem-
ber of the learnable class makes a difference for the sublanguage learners: there
are classes of languages learnable in our most restrictive model, AllSubEx,
and not learnable in the least restrictive model, ResInfWSubBc, satisfying
this requirement.

Theorem 10 AllSubEx − ResInfWSubBc 6= ∅.

Proof. For any function f : N → N , let Lf = {〈x, f(x)〉 | x ∈ N}. Let
L = {Lf | f ∈ R ∧ card(range(f)) < ∞ ∧ (∀e ∈ range(f))[We = f−1(e)]}.
It is easy to verify that L ∈ AllSubEx: a learner can just form the set S of
all (the finitely many) e such that 〈x, e〉 appears in the input text for some x,
and then output a grammar (depending only on S) for

⋃

e∈S{〈x, e〉 | x ∈ We}.
However L is not in ResInfWSubBc (proof of Theorem 23 in [JKW04] can
be easily adapted to show this).

The above proof also shows AllSubCons − ResInfWSubBc 6= ∅.

On the other hand, an AllMWSubEx-learner, even satisfying the Res vari-
ant of sublanguage learnability, can sometimes do more than any SubBc-
learner even if just learnability of only infinite sublanguages is required.

Theorem 11 ResAllMWSubEx − InfSubBc 6= ∅.

Proof. Let Y = {〈1, x〉 | x ∈ N}.

Let Ze = {〈1, x〉 | x ≤ e} ∪ {〈1, 2x〉 | x ∈ N} ∪ {〈0, 0〉}.

Let L = {Y } ∪ {Ze | e > 0}.

Note that Y is not contained in any other language in the class, nor contains
any other language of the class.

L ∈ ResAllMWSubEx as, on input σ, a learner can output as follows.
If content(σ) ⊆ Y , then output a (standard) grammar for Y . If content(σ)
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contains just 〈0, 0〉, then output a standard grammar for {〈0, 0〉}. Otherwise
output Ze, where e is the maximum odd number such that 〈1, e〉 ∈ content(σ)
(if there is no such odd number, then one takes e to be 1).

On the other hand, suppose by way of contradiction that L ∈ InfSubBc

as witnessed by M. Let σ be a Bc-locking sequence for M on Y (that is,
content(σ) ⊆ Y , and on any τ such that σ ⊆ τ and content(τ) ⊆ Y , M

outputs a grammar for Y ). Now, let e be the largest odd number such that
〈1, x〉 ∈ content(σ) (we assume without loss of generality that there does
exist such an odd number). Now let L′ = Y ∩ Ze. So M, on any text for L′

extending σ, should output (in the limit) grammars for L′ rather than Y , a
contradiction.

The above proof also shows ResAllMWSubCons − InfSubBc 6= ∅.

Similarly to the above result, a ResAllWSubEx-learner can learn sometimes
more than any MWSubBc-learner even if learnability for just infinite sub-
languages is required.

Theorem 12 ResAllWSubEx − InfMWSubBc 6= ∅.

Proof. Let Lk
0 = {〈k, i, x〉 | i > 0, x ∈ N} ∪ {〈k, 0, 0〉}.

For j ∈ N , let Lk
j+1 = {〈k, i, x〉 | i > 0, x ≤ j} ∪ {〈k, 0, j + 1〉}.

Let L = {N} ∪ {Lk
rk

| k ∈ N}, where we will determine rk below.

First we show that, irrespective of the values of rk, L ∈ ResAllWSubEx.
Let M be defined as follows. Let gN be a grammar for N , and let gk

j be a
grammar for Lk

j .

M(σ) =











gk
j , if content(σ) ∩ {〈x, 0, y〉 | x, y ∈ N} = {〈k, 0, j〉} and

content(σ) ⊆ Lk
j ;

gN , otherwise.

M witnesses that L ∈ ResAllWSubEx, as except for N , all languages in the
class are minimal languages in the class, containing exactly one element from
{〈x, 0, y〉 | x, y ∈ N}.

For any given k, we now select rk appropriately to show that Mk does not
InfMWSubBc-identify L. Consider the behaviour of Mk on inputs being
Sk

j = Lk
j − {〈k, 0, j〉}. Note that Mk cannot TxtBc1-identify the class {Sk

j |

j ∈ N} (based on [Gol67]; here TxtBc1-identification is similar to TxtBc-
identification except that on texts for a language L, M is allowed to output
grammars which enumerate L, except for upto one error (of either omission
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or commission)). Pick rk such that Mk does not TxtBc1-identify Sk
rk

. Now,
if the input text is for the language Sk

rk
, then Mk, in the limit, is supposed

to output grammars for either Sk
rk

or Lk
rk

, and thus TxtBc1-identify Sk
rk

, a

contradiction as rk was picked so that Mk does not TxtBc1-identify Sk
rk

. Since
k was arbitrary, the theorem follows.

The above proof also shows ResAllWSubCons − InfMWSubBc 6= ∅.

Now we show that limiting learnability to just infinite sublanguages, even in
the most restrictive model, can give us sometimes more than learners in the
least restrictive model, WSub, required to learn descriptions for all sublan-
guages.

Theorem 13 ResInfSubEx − AllWSubBc 6= ∅.

Proof. Using Kleene’s Recursion Theorem [Rog67], for any i, let ei be such
that Wei

= {〈i, ei, x〉 | x ∈ N}. If Mi does not TxtBc-identify Wei
, then let

Li = Wei
. Otherwise, let σi be a TxtBc-locking sequence for Mi on Wei

. With-
out loss of generality assume that content(σi) 6= ∅. Using Kleene’s Recursion
Theorem [Rog67], let ei

′ > ei be such that We′
i
= content(σi)∪{〈i, e′i, x〉 | x ∈

N}, and then let Li = We′
i
. (Note that e′i need not be uniformly constructed

from ei).

Let L = {Li | i ∈ N}. Now clearly, L is in ResInfSubEx, as the learner can
just output the maximum value of π3

2(x), where x is in the input language.

Now we show that L 6∈ AllWSubBc. For any i either Mi does not TxtBc-
identify Wei

= Li or on any text extending σi for content(σi) ⊆ Li, beyond σi,
Mi outputs only grammars for Wei

— which is not contained in any language
in L.

It follows that Mi does not AllWSubBc-identify L. Since i was arbitrary,
the theorem follows.

The above proof also shows ResInfSubCons − AllWSubBc 6= ∅.

Now we note that not all classes learnable within the traditional paradigm
of algorithmic learning — even without requirement of providing the right
conjecture in the limit — are learnable in our weakest model even if learnability
of infinite sublanguages only is required.

Theorem 14 TxtFin − InfWSubBc 6= ∅.

Proof. Let SVT = {L | (∀x ∈ N)(∃ a unique y ∈ N)[〈x, y〉 ∈ L]}. Let
Le = {〈1, e〉} ∪ {〈0, x〉 | x ∈ We}. Let L = {Le | We ∈ SVT}. It is easy
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to verify that L ∈ TxtFin. However L ∈ InfWSubBc implies that for any
text T for Le − {〈1, e〉}, the learner must output grammars for Le − {〈1, e〉}
(except, maybe, for an extra element of form 〈1, e′〉, for some e′), on almost all
initial segments of T . This learner can be modified to TxtBc identify SVT as
follows. For any grammar i, let g(i) be a grammar for {x | 〈0, x〉 ∈ Wi}. Given
a text T , define T ′(i) = 〈0, T (i)〉, if T (i) ∈ N ; T ′(i) = #, if T (i) = #. Now, let
T be a text for an SVT language We. Then, T ′ is a text for Le−{〈1, e〉}. Thus,
the learner from the above must output grammars for Le − {〈1, e〉} (except,
maybe, for an extra element of form 〈1, e′〉, for some e′), on almost all initial
segments of T ′. One can convert these grammars to grammar for We using g

defined above. This would give us SVT ∈ TxtBc, a contradiction to a result
from [CS83].

We next show another cost of learning sublanguages: increase in mind changes
[CS83].

Theorem 15 There exists an L such that

(a) L ∈ AllSubEx.

(b) L ∈ TxtFin.

(c) L ∈ ResAllMWSubEx.

(d) For all n ∈ N , no learner which makes at most n mind changes can witness
L ∈ InfSubEx.

Proof. Let Le = {〈0, e〉} ∪ {〈1, x〉 | x ∈ N} ∪ {〈2, x〉 | x ∈ We}. L = {Le |
card(We) < ∞}.

(a) Consider a learner which, on input σ, outputs a (canonical) grammar for
(content(σ) ∩ {〈0, x〉, 〈2, x〉 | x ∈ N}) ∪ {〈1, x〉 | x ∈ N}. It is easy to verify
that the learner AllSubEx-identifies L.

(b) Consider a learner which, on input σ, outputs ?, if content(σ) does not
contain any element of form 〈0, e〉. Otherwise, the learner outputs a grammar
for Le for the least e such that 〈0, e〉 ∈ content(σ). It is easy to verify that the
learner TxtFin-identifies L.

(c) Consider a learner which, on input σ, outputs a grammar for Le for the
least e such that 〈0, e〉 ∈ content(σ), if there exists such an e. Otherwise
the learner outputs a grammar for Le, where e is obtained using effective
version of Kleene’s Recursion Theorem [Rog67] such that We = {x | 〈2, x〉 ∈
content(σ)}. It is easy to verify that the learner ResAllMWSubEx-identifies
L.
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(d) Suppose by way of contradiction that M InfSubEx-identifies L, and
makes at most n mind changes on any input. Let σ be such that content(σ) ⊆
{〈1, x〉, 〈2, x〉 | x ∈ N}, and the number of mind changes done by M on σ

is maximal (note that such a σ exists, as M makes at most n mind changes
on any input). It follows that WM(σ) ∩ {〈2, x〉 | x ∈ N} is finite. But then,
consider an e such that We is finite and {〈2, x〉 | x ∈ We} 6⊆ WM(σ) (note that
there exists such an e). Let L′ = {〈1, x〉 | x ∈ N} ∪ {〈2, x〉 | x ∈ We}, and
L = L′ ∪ {〈0, e〉}. Clearly, L′ ⊆ L and L ∈ L. However, M, on any text for L′

extending σ, converges to WM(σ), which is not an extension of L′.

On the other hand, Bc-learners in the most restrictive model of sublanguage
learnability can sometimes learn more than traditional Ex-learners that are
not required to learn sublanguages.

Theorem 16 ResAllSubBc − TxtEx 6= ∅.

Proof. Let Li = {〈i, x〉 | x ∈ N}.

Let L = {∅} ∪ {Si | i ∈ N}, where Si would be defined below. Si will satisfy
the following properties.

There exists an ei such that

A) ∅ ⊂ Si ⊆ Lei
,

B) Wei
enumerates an infinite set of elements such that all but finitely many

of these are grammars for Si.

It follows immediately from the above that L ∈ ResAllSubBc, as on an
input being a nonempty subset of Lei

, a learner can just output an increasing
sequence of elements from Wei

.

We now define Si such that Mi does not TxtEx-identify Si. By implicit use
of Kleene’s Recursion Theorem [Rog67], there exists an ei such that Wei

can
be defined as follows.

Let X = {σ | content(σ) ⊆ Lei
∧ ∅ ⊂ content(σ) ⊂ WMi(σ)}.

Let Y = {σ | content(σ) ⊆ Lei
∧ (∃τ | σ ⊆ τ)[content(τ) ⊆ Lei

∧ Mi(σ) 6=
Mi(τ)]}.

Note that both X and Y are recursively enumerable.

We assume without loss of generality that X is not empty. Let τ0, τ1, . . . be an
infinite recursive sequence such that {τj | j ∈ N} = X.
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Let Y0, Y1, . . . be a sequence of recursive approximations to Y such that Yj ⊆
Yj+1 and

⋃

j∈N Yj = Y .

We now define Wei
as follows.

Let gj be defined such that

Wgj
=

{

content(τj), if τj 6∈ Y ;
Lei

, otherwise.

Let sr = max({j ≤ r | (∀j ′ < j)[τj′ ∈ Yr]}).

Now, if Mi does not have a stabilizing sequence, belonging to X, for Lei
, then

every gr is a grammar for Lei
, which is not TxtEx-identified by Mi. In this

case, let Si = Lei
. On the other hand, if j is the least number such that τj

is a stabilizing sequence for Mi on Lei
, then limr→∞ sr = j, and Wgj

is a
grammar for content(τj), which is not TxtEx-identified by Mi. In this case
let Si = content(τj). Clearly, (A) is satisfied, and Mi does not TxtEx-identify
Si.

Let pad be a 1–1 recursive function such that Wpad(i,j) = Wi, for all i, j. Let
Wei

= {pad(gsr
, r) | r ∈ N}. It is easy to verify that (B) is satisfied.

Our next result, following a similar result from [JKW04], shows that learners
in all our models that are required to learn all sublanguages can be made
consistent (with the input seen so far).

Theorem 17 Suppose I ∈ {Sub,WSub,MWSub}.

(a) AllIEx ⊆ AllICons.

(b) ResAllIEx ⊆ ResAllICons.

Proof. Can be shown in a way similar to proof of Theorem 28 in [JKW04].

On the other hand, similarly to a corresponding fact in [JKW04], if learnabil-
ity of infinite sublanguages only is required, consistency cannot be achieved
sometimes.

Theorem 18 ResInfSubEx − TxtCons 6= ∅.

Proof. Let L = {L | card(L) = ∞ and (∃e)[We = L and (∀∞x ∈ L)[π2
1(x) =

e]]}. It is easy to verify that L ∈ ResInfSubEx. A straightforward modifica-
tion of the proof of Proposition 29 in [JKW04] can be adapted to show that
L 6∈ TxtCons.
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4 Some Characterizations

In this section, we suggest some characterizations for sublanguage learnability
of indexed classes.

First, we get a characterization of ResAllSubEx in terms of requirements
that must be imposed on regular TxtEx-learnability.

For any set S, MinL(S) denotes a language X ∈ L, if any, such that (a)
S ⊆ X, and (b) for all Y ∈ L such that S ⊆ Y , X ⊆ Y . If there is no such
X, then MinL(S) is undefined. Note that MinL(S), if defined, is the unique
minimal language in L containing S. Also note that if L is closed under infinite
intersections, then MinL(S) is defined for all S which are contained in some
L ∈ L.

Theorem 19 Suppose L is an indexed family of recursive languages (with
indexing (Li)i∈N). Then L ∈ ResAllSubEx iff (a) to (d) below hold.

(a) L ∈ TxtEx;

(b) L is closed under non-empty infinite intersections (that is for any non-
empty L′ ⊆ L,

⋂

L∈L′ L ∈ L);

(c) For all finite S such that, for some L ∈ L, S ⊆ L, one can effectively find
in the limit an L-grammar for MinL(S);

(d) For all infinite S which are contained in some L ∈ L, MinL(S) = MinL(X),
for some finite subset X of S.

Proof. (=⇒) Suppose L ∈ ResAllSubEx as witnessed by M.

(a) and (b) follow from definition of ResAllSubEx.

(c): Given any finite set S which is contained in some language in L, for any
text TS for S, M(TS) converges to a (r.e.) grammar for the minimal language in
L containing S. This r.e. grammar can now be easily converted to a L-grammar
using TxtEx-identifiability of L (note that for an indexed family of recursive
languages, TxtEx-learnability implies learnability using the hypotheses space
(Li)i∈N ).

(d): Suppose by way of contradiction that (d) does not hold. We then construct
a text for S on which M does not converge to MinL(S). Let (Xi)i∈N be a family
of non-empty and finite sets such that

⋃

i∈N Xi = S and Xi ⊆ Xi+1 for all i.
Define σ0 = Λ. Let σi+1 be an extension of σi such that content(σi+1) = Xi,
and M(σi+1) is a grammar for MinL(Xi) (note that there exists such a σi+1

as M on any text for Xi converges to a grammar for MinL(Xi)). Now let
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T =
⋃

i∈N σi. Clearly, T is a text for S. However, M(T ) does not converge to
a grammar for MinL(S), as MinL(Xi) 6= MinL(S), for all i (by the assumption
about (d) not holding). A contradiction to M ResAllSubEx-identifying L.
Thus, (d) must hold.

(⇐=) Suppose (a) to (d) are satisfied. Let f be a recursive function such that
for all finite S, limt→∞ f(S, t) is an L-grammar for MinL(S) (by the clause
(c), there exists such an f). Then, define M′ as follows. M′ on any input T [n],
computes inj = f(content(T [j]), n), for j ≤ n. Then it outputs inj , for minimal
j such that content(T [n]) ⊆ Lin

j
. By definition of f , for each j, ij = limn→∞ inj

is defined and is an L-grammar for MinL(content(T [j])). As for all but finitely
many j, MinL(content(T [j])) = MinL(content(T )) (by the clause (d)), we have
that M′ will converge on T to ik, where k is minimal such j. It follows that
M′(T ) converges to an L-grammar for MinL(content(T )). Note that this also
implies TxtEx-identifiability of L by M′.

Our next theorem shows that, if an indexed class is learnable within the models
WSub or MWSub under the requirement that the last (correct) conjecture
is a member of the learnable class L, then the learner can use conjectures
from the class L itself. In particular, this result will be used in our next
characterizations.

Theorem 20 Suppose L (with indexing (Li)i∈N) is an indexed family
of recursive languages. Then L ∈ ResAllWSubEx (ResInfWSubEx,
ResAllMWSubEx, ResInfMWSubEx) iff there exists a machine
M such that M ResAllWSubEx-identifies (ResInfWSubEx-identifies,
ResAllMWSubEx-identifies, ResInfMWSubEx-identifies) L using index-
ing (Li)i∈N of L as its hypotheses space.

Proof. We only show the case of ResAllWSubEx. The same proof applies
for ResInfWSubEx, ResAllMWSubEx, and ResInfMWSubEx.

Suppose M ResAllWSubEx-identifies L. Then, for all L′ such that L′ ⊆ L

for some L ∈ L, there exists a σ, τ, i such that

(a) σ is a stabilizing sequence for M on L′;

(b) τ is the least stabilizing sequence for M on WM(σ) as well as on Li;

(c) for any τ ′, i′ such that τ ′ is the least stabilizing sequence for M on WM(σ)

as well as on Wi′ , we must have that WM(σ) = Li′.

Note that (a) holds by definition of ResAllWSubEx-identifiability. So fix one
such σ. (b) holds as WM(σ) must be a member of L, and thus WM(σ) = Li for
some i, and τ is then the least stabilizing sequence for M on Li. (c) holds as
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M has different least stabilizing sequences for different languages in L (since
M TxtEx-learns L).

Define M′ as follows. On any input text T , search for σ, τ, i such that (a) and
(b) above hold for L′ = content(T ). Then, in the limit on T , output i.

Now from M ResAllWSubEx-identifying L and (c), we immediately have
that M′ ResAllWSubEx-identifies L using hypotheses space (Li)i∈N .

Now we show that learnability within the model ResAllWSubEx is equiva-
lent to regular learnability TxtEx if a learner just stabilizes on every input
sublanguage of every language in the learnable indexed family L.

Theorem 21 Suppose L (with indexing (Li)i∈N) is an indexed family of re-
cursive languages. Then L ∈ ResAllWSubEx iff there exists a machine M

such that:

(a) M TxtEx-identifies L using indexing (Li)i∈N as the hypotheses space.

(b) For all texts T such that, for some L ∈ L, content(T ) ⊆ L, we have:
M(T )↓.

Proof. (=⇒) If L ∈ ResAllWSubEx, then (a) and (b) follow from the
definition of ResAllWSubEx and Theorem 20.

(⇐=) Suppose M is given such that (a) and (b) hold. Define M′ as follows:

M′(σ) =
{

M(σ), if content(σ) ⊆ LM(σ);
j, otherwise, where j = min({|σ|} ∪ {i : content(σ) ⊆ Li}).

The first clause ensures TxtEx learnability of L by M′ using the hypotheses
space (Li)i∈N . Now consider any text T for L′ ⊆ L, where L ∈ L. Since M

converges on T , let i be such that M(T ) = i. If content(T ) ⊆ Li, then clearly
M′(T ) = i too. On the other hand, if content(T ) 6⊆ Li, then by the second
clause in the definition of M′, M′(T ) will converge to the least j such that
content(T ) ⊆ Lj. It follows that M′ ResAllWSubEx-identifies L using the
hypotheses space (Li)i∈N .

Proof technique used for Theorem 21 can also be used to show the following.

Theorem 22 Suppose L (with indexing (Li)i∈N) is an indexed family of re-
cursive languages. Then L ∈ ResInfWSubEx iff there exists a machine M

such that:
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(a) M TxtEx-identifies L using the hypotheses space (Li)i∈N .

(b) For all texts T such that content(T ) is infinite and content(T ) ⊆ L for
some L ∈ L, M(T )↓.

The next theorem presents a simple natural condition sufficient for learnability
of indexed classes in the model ResAllWSubEx.

Theorem 23 Suppose L is an indexed family of recursive languages (with
indexing (Li)i∈N) such that for any distinct languages L,L′ in L, L 6⊂ L′.
Then, L ∈ ResAllWSubEx.

Proof. M, on input σ, outputs the least i such that content(σ) ⊆ Li. It is
easy to verify that M ResAllWSubEx-identifies L.

Theorem 14 proof shows that the condition of indexed family in the above
theorem cannot be dropped.

Our main characterizations show how classes learnable within our models of
sublanguage learning can be described in terms of some different aspects of
learnability of the languages (or their sublanguages) in these classes. These
characterizations may be useful when the aspects in question are known, but
sublanguage learnability is yet to be established. It would be interesting to
obtain similar characterizations for ResAllMWSubEx, sublearning without
Res (i.e., for AllSubEx, AllWSubEx AllMWSubEx), and for the case
when sublearning only in the presence of infinite inputs is considered (the Inf

versions).

5 Monotonicity Constraints

In this section we consider sublanguage learnability satisfying monotonicity
constraints. Our primary goal is to explore how so-called strong monotonicity
([Jan91]) affects sublanguage learnability: the learners are strongly monotonic
for the criteria discussed in this paper in the sense that, when we get more
data in the text, then the languages conjectured are larger.

Definition 24 [Jan91] (a) M is said to be strong-monotonic on L just in case
(∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆ L)[M(σ) =? ∨ WM(σ) ⊆ WM(τ)].

(b) M is said to be strong-monotonic on L just in case M is strong-monotonic
on each L ∈ L.

(c) SMon = {L | (∃M)[M is strong-monotonic on L and L ⊆ TxtEx(M)]}.
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Now, following [Jan91], we will also define a much weaker notion of mono-
tonicity — and will show that general learners in our most restrictive model
ResAllSubEx do not satisfy even this requirement.

Definition 25 [Jan91] (a) M is said to be weak-monotonic on L just in case
(∀σ, τ | σ ⊆ τ ∧ content(τ) ⊆ L)[M(σ) =? ∨ [content(τ) ⊆ WM(σ) ⇒
WM(σ) ⊆ WM(τ)]].

(b) M is said to be weak-monotonic on L just in case M is weak-monotonic
on each L ∈ L.

(c) WMon = {L | (∃M)[M is weak-monotonic on L and L ⊆ TxtEx(M)]}.

Theorem 26 ResAllSubEx − WMon 6= ∅.

Proof. Let Lj = {〈j, x〉 | x ∈ N}. Lm
j = {〈j, x〉 | x < m}. Let Tj be a text

for Lj such that content(Tj[m]) = Lm
j . Let Sj = {〈m,n〉 | m > 0 ∧ {〈j, x〉 |

x ≤ m} ⊆ WMj(Tj [m]),n}.

Let L = {∅} ∪ {Lj | Sj = ∅} ∪ {Lm
j | Sj 6= ∅ ∧ (∃n)[〈m,n〉 = min(Sj)]}.

It is easy to verify that L ∈ ResAllSubEx. It was shown in [JS98] that
L 6∈ WMon.

Let AllWSubSMon, etc., denote the corresponding learning criteria. In those
criteria, Ex-type of learnability is assumed by default, unless Bc is explicitly
added at the end.

Unlike the general case of sublanguage learning, strong monotonicity require-
ment forces all variants of the least restrictive model, MWSub, to collapse
to the most restrictive model Sub. For Bc-learning, it can also be shown that
there is no difference whether only infinite sublanguages are required to be
learned, or all sublanguages. This latter result, though, does not hold when
we consider Ex-learning, or require the learners to converge to grammars for
a language within the class.

Theorem 27 (a) AllWSubSMon ⊆ AllSubSMon.

(b) InfWSubSMon ⊆ InfSubSMon.

(c) AllWSubSMonBc ⊆ AllSubSMonBc.

(d) InfWSubSMonBc ⊆ InfSubSMonBc.

(e) InfSubSMonBc ⊆ AllSubSMonBc.
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(a) to (d) above hold for Res versions too.

Proof. We show (a). (b) to (e) (and Res versions for (a) to (d)) can be
proved similarly. Suppose M AllWSubSMon-identifies L. We first note that
for all L ∈ L, for all σ such that content(σ) ⊆ L, WM(σ) ⊆ L. This is so,
since otherwise for any text T for L which extends σ, M does not output a
grammar contained in L for any extension of σ, due to strong monotonicity
of M. This, along with AllWSubSMon-identifiability of L by M, implies
AllSubSMon-identifiability of L by M.

A result similar to Theorem 27 holds (essentially by definition) if, instead of
requiring strong monotonicity of the learner, one requires that for all L ∈ L,
for all σ such that content(σ) ⊆ L, WM(σ) ⊆ L.

Note that the proof of Theorem 27 is not able to show InfSubSMon ⊆
AllSubSMon, as an InfSubSMon-learner may not converge on finite sets.
Similarly, we do not get ResInfSubSMonBc ⊆ ResAllSubSMonBc using
the above proof. The following two theorems show that the above failure is
not avoidable.

Theorem 28 ResInfSubSMon− AllSubSMon 6= ∅.

Proof. Let Xi,j = {〈i, j, x〉 | x ∈ N}. Using Kleene’s Recursion Theorem
[Rog67], for any i, let ei be such that Wei

is defined as follows. If there is
no TxtEx-stabilizing sequence for Mi on Xi,ei

, then Wei
= Xi,ei

. Otherwise,
Wei

is a finite set such that content(σi) ⊆ Wei
⊆ Xi,ei

, where σi is the least
TxtEx-stabilizing sequence for Mi on Xi,ei

(here, without loss of generality
we assume that content(σi) 6= ∅). Note that one can define such Wei

as one
can find the least TxtEx-stabilizing sequence, if any, in the limit.

If Mi does not have a TxtEx-stabilizing sequence on Xi,ei
, then let Li = Wei

.
Otherwise, let σi be the least TxtEx-stabilizing sequence for Mi on Xi,ei

.
Define Si based on following two cases.

Case 1: WMi(σi) contains an infinite subset of Xi,ei
. In this case let Si =

content(σi).

Case 2: Not case 1. In this case, let Si be a finite set such that content(σi) ⊆
Si ⊆ Xi,ei

and Si 6⊆ WMi(σi).

Using Kleene’s Recursion Theorem [Rog67], let ei
′ > ei be such that We′

i
=

Si ∪ Wei
∪ {〈i, e′i, x〉 | x ∈ N}, and then let Li = We′

i
.

Let L = {Li | i ∈ N}. Now clearly, L is in ResInfSubSMon, as (on an input
with non-empty content) the learner can just output the maximum value of
π3

2(x), where x is in the input language.
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Now suppose by way of contradiction that Mi AllSubSMon-identifies L.
If Mi does not have a TxtEx-stabilizing sequence on Xi,ei

, then Mi does
not TxtEx-identify Li = Wei

= Xi,ei
∈ L. Thus Mi cannot AllSubSMon-

identify L.

On the other hand, if Mi has σi as the least TxtEx-stabilizing sequence on
Xi,ei

, then: in Case 1 above, Mi cannot SMon-identify Li, as WMi(σi) is not
a subset of Li; in Case 2 above, Mi on any text for Si, which extends σi,
converges to WMi(σi), which is not a superset of Si.

It follows that L 6∈ AllSubSMon.

Theorem 29 ResInfSubSMon− ResAllSubBc 6= ∅.

Proof. Define Li as follows. Let Ti be a text for {〈i, 0〉}. If Mi(Ti) infinitely
often outputs a grammar containing 〈i, 2x〉, for some x > 0, then let Li =
{〈i, 0〉}∪{〈i, 2x+1〉 | x ∈ N}. Otherwise, let Li = {〈i, 0〉}∪{〈i, 2x〉 | x ∈ N}.

Let L = {Li | i ∈ N}.

By construction of Li, Mi on Ti infinitely often outputs a grammar different
from the grammar for Li, the only language in L which contains content(Ti).
Thus, L 6∈ ResAllSubBc.

On the other hand, it is easy to verify that L ∈ ResInfSubSMon (as one
can easily determine Li from a text for any subset of Li, which contains at
least one element other than 〈i, 0〉).

Note that proof of Theorem 10 also shows that

Theorem 30 AllSubSMon− ResInfWSubBc 6= ∅.

6 Conclusion

We introduced, discussed, and compared a number of different natural models
for correct learning in the limit from partial data. In particular, we established
how these models differ, and what is their relationship with other traditional
models of inductive inference. We also studied the effect of strong monotonicity
on learning sublanguages.

There are many different aspects of this topic that we have not addressed. In
particular, an interesting issue is how the requirement of being able to correctly
learn from partial data can affect complexity of learning (e.g., number of mind
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changes, long-term memory [FKS95], etc.; we considered just one example
showing the cost of learning sublanguages in terms of mind changes).

We obtained some characterizations for learnability within our models, how-
ever, this issue is far from being closed: it would be interesting to find some
more, possibly, structural characterizations of the classes learnable within the
given models. Yet another possible direction for future work can include ex-
ploring learnability of some other reasonable types of sublanguages, for ex-
ample, dense ones (we considered only infinite sublanguages as a reasonable
restriction).
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