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Abstract

In this paper we study the question of whether identifiable classes have subclasses
which are identifiable under a more restrictive criterion. The chosen framework
is inductive inference, in particular the criterion of explanatory learning (Ex) of
recursive functions as introduced by Gold in 1967. Among the more restrictive
criteria is finite learning where the learner outputs, on every function to be learned,
exactly one hypothesis (which has to be correct). The topic of the present paper
are the natural variants (a) and (b) below of the classical question whether a given
learning criterion like finite learning is more restrictive than Ex-learning. (a) Does
every infinite Ex-identifiable class have an infinite finitely identifiable subclass? (b)
If an infinite Ex-identifiable class S has an infinite finitely identifiable subclass, does
it necessarily follow that some appropriate learner Ex-identifies S as well as finitely
identifies an infinite subclass of S? These questions are also treated in the context
of ordinal mind change bounds.
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1 Introduction

Gold [6] introduced a model of learning computable functions, where a learner
receives increasing amounts of data about an unknown function and outputs
a sequence of hypotheses. The learner has learned or identified the function,
if it converges to a single explanation, that is, a program for the function
at hand. This concept of explanatory or Ex-learning has been widely studied
[3,6,10,14]; see Definition 2.2 below for formal details.

An explanatory learner is often not aware of the fact whether it has already
learned the function f or whether the current hypothesis is a preliminary
one which must be revised later. It is well-known that, for various restric-
tive learning criteria, there is a class S which is explanatorily learnable but
cannot be learned according to the more restrictive learning type. One might
ask, whether there are at least sufficiently large subclasses U of S with bet-
ter learnability properties. For example, one could impose that the learner on
functions from U follows the criterion of finite learning [6], where the learner
outputs exactly one hypothesis (which must be correct) on functions from the
class, see Definition 2.3 below. In this paper we will consider similar questions
for some commonly used criteria of learning, which are at least as restrictive
as Ex. Motivation for this comes from various studies in mathematics where
one pursues the general theme of when a difficult object can be approximated
by a simple object. For example, it is well known that every infinite recursively
enumerable set has an infinite recursive subset.

A well-behaved learner satisfies some natural requirements on its beha-
viour, see Definition 3.1. Such a learner only outputs hypotheses which are
extended by total functions from the class to be learned. Furthermore such
a learner is consistent whenever it outputs a hypothesis. It turns out that
every uniformly recursive class S can be learned by a well-behaved learner
(here S is uniformly recursive if there is an enumeration f0, f1, . . . such that
S = {f0, f1, . . .} and the function e, x → fe(x) is recursive in both param-
eters). Theorem 4.1 shows that the converse is not true: the theorem gives
an example of an infinite class, which has a well-behaved learner, while every
intersection of the class with a uniformly recursive class is finite.

It is shown that there is an infinite uniformly recursive class without any
infinite finitely learnable subclass. This result can be generalized by consider-
ing confident learning instead of finite learning. While a finite learner outputs
at most one hypothesis on any function, a confident learner may output un-
bounded, but finitely many, hypothesis on any function (even nonrecursive
ones). Theorem 4.2 provides directly this generalized result by giving an ex-
ample of an infinite uniformly recursive class which does not have an infinite
intersection with any confidently learnable class.

Sublearning deals with questions like the following: Is there a learner M
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which explanatorily learns a class S and – at the same time – finitely learns an
infinite subclass U? In Theorem 5.1 it is shown that there is an explanatorily
learnable class S which has an infinite finitely learnable subclass but which
does not have a sublearner.

Ordinal counters are used to introduce a hierarchy of mind changes within
the concept of confident learning. It turns out that ordinals which are a power
of ω, in the way defined in Remark 2.8, play a special role in this theory. The-
orem 4.7 states that for a recursive ordinal α = ωγ , with γ ≥ 1, the following
holds: There is an infinite class, which has a learner using α mind changes,
but no infinite subclass of this class can be learned by a learner using β mind
changes, for β < α. For other recursive ordinals α ≥ 2 such a class does not
exist. Theorem 5.4 is the version of Theorem 4.7 in the context of sublearning.

2 Preliminaries

Notation 2.1. Recursion theoretic notation mainly follows the books of Odi-
freddi [13,14] and Soare [16]. Let IN = {0, 1, . . .} be the set of natural numbers.
For any set A ⊆ IN, A∗ is the set of finite strings over A and A∞ the set of
total functions from IN to A (viewed as infinite strings). Furthermore, sets are
often identified with their characteristic functions, so we may write A(n) = 1
for n ∈ A and A(n) = 0 for n ∈ A. For a function f , f [n] denotes the string
f(0)f(1)f(2) . . . f(n − 1). λ denotes the empty sequence. Strings are viewed
upon as partial functions; σ ⊆ ψ denotes that ψ extends σ as a partial func-
tion. σ ⊂ τ denotes that τ extends σ properly. στ denotes the concatenation
of strings σ and τ . σam denotes the function coinciding with σ on the domain
of σ, taking the value a on the next m inputs and being undefined after that in
the case of m <∞; σa∞ is total. Let ϕ be a standard acceptable numbering,
and ϕe denote the e-th partial recursive function in this numbering.

Definition 2.2 (Explanatory Learning) [6]. A learner is a total recursive
function mapping finite sequences of natural numbers to IN∪{?}. An output of
M is called hypothesis if it is different from ?. Hypotheses are viewed upon as
indices for partial recursive functions according to our underlying acceptable
numbering ϕ.

We say that a learner M converges on f to a hypothesis e iff for all but
finitely many n, M(f [n]) = e. A learner M Ex-learns (= Ex-identifies) a
recursive function f if, on input f , it converges to a hypothesis which is a
program (or code) for f . We say that M Ex-identifies a class S of recursive
functions if and only if M Ex-identifies each function in the class. Ex denotes
the family of classes that are learnable by a recursive Ex learner.
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The letters “Ex” stand for “explanatory learning”.
For learning, we always consider non-empty classes of total and recursive

functions. So we can avoid to deal with uninteresting special cases which mess
up the statements and proofs of the results but do not give any insight on
learning-theory.

Note that the symbol ? stands for the case that the learner cannot make up
its mind about what hypothesis to output. The concept of Ex-learning itself
does not need this special symbol but additional requirements like bounds on
the number of mind changes below will make use of ?, in order to avoid mind
changes caused by the lack of data which shows up later.

Definition 2.3 (Mind Change Bounds) [3]. We say that a learner M
makes a mind change on f at n, if there is an m < n such that (i) M(f [n]) 6=
M(f [k]) for k = m,m + 1, . . . , n − 1 and (ii) M(f [n]),M(f [m]) are both
different from ?. A class of recursive functions S is in Exm, if there is a recursive
learner that Ex-learns every f ∈ S by making at most m mind changes on f .
Ex0-learning without any mind changes is also called finite learning.

Definition 2.4 (Consistency) [1,17]. A learner M is consistent on σ if
either (i) M(σ) = ? or (ii) M(σ) outputs an index e such that ϕe(x)↓= σ(x),
for all x ∈ domain(σ). A learner is consistent iff it is consistent on all strings
σ ∈ IN∗.

Note that the case M(σ) = ? was not allowed in the original definition
of consistency. Indeed one could remove this case by transforming M to a
new learner N which, on input σ, outputs an index for σ if M(σ) = ?, and
outputs the hypothesis M(σ) otherwise. However, in order to make it possible
that a consistent learner can also be confident or pessimistically reflective (as
defined in Definition 2.5) we have explicitly permitted the option that M can
output ?.

Furthermore, variants of consistency have been considered. For example,
a learner M for a class S is consistent on S if it is only required that M is
consistent on the strings f [n] with f ∈ S. There are classes S which have a
learner which is consistent on S but which do not have a consistent learner.
An example is the class {f : ϕf(0) = f} of all self-describing functions.

Definition 2.5 (Further Learning-Criteria). A learner M is prudent [15]
if it Ex-identifies a total extension of ϕe, for each e in its range. A learner M
is pessimistically reflective [7,8] if M Ex-identifies an extension of σ whenever
M(σ) 6= ?. A learner M is said to be confident [15] if it converges on every
total function, even the non-recursive functions.

Exact-learning defined below gives a closer connection between the learner and
the class to be learned, which goes beyond the fact that the learner identifies
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the class.

Definition 2.6 (Exact Learning). (Osherson, Stob and Weinstein [15]) For
a criterion I which is at least as restrictive as Ex, one says that M exactly

I-identifies a class S if and only if M I-identifies every function f ∈ S and
does not even Ex-identify any function f /∈ S.

Note that in the present work, the term exact learning is used as in the book
“Systems that learn” [10, Definition 4.48]. Therefore this notion differs from
the one with the same name used in the field of learning classes represented
by indexed families [18,19]. In [10], the following motivation is given for the
notion of exact learning in the context of language learning.

The converse of the dictum that natural languages are learnable by children
(via casual exposure) is that nonnatural languages are not learnable. Put
differently, the natural languages are generally taken to be the largest col-
lection of child-learnable languages. We are thus led to consider paradigms
in which learners are required to respond successfully to all languages in a
given collection and to respond unsuccessfully to all other languages.

Similar considerations also motivate the notion of exact learning for functions
as considered in this paper.

A family f0, f1, . . . of total functions is called uniformly recursive if the two-
place function e, x → fe(x) is recursive. In order to simplify notation, we
say that a class S is uniformly recursive iff S = {f0, f1, . . .} for a uniformly
recursive family f0, f1, . . . of functions. The following notion Num captures the
subclasses of uniformly recursive classes.

Definition 2.7. A class S of recursive functions is in Num if some superclass
S ′ of S is a uniformly recursive class.

Remark 2.8 (Ordinals). Let <0, <1, . . . be an enumeration of all recursively
enumerable partial orders. If an ordering <e is a well-ordering, it is called a
notation for ordinals. The natural numbers equipped with <e are isomorphic
to an initial segment of the class of all countable ordinals and one can identify
every number x with that ordinal α for which {y : y <e x} and {β : β < α}
are order-isomorphic sets.

Cantor introduced a non-commutative addition + on the ordinals which is
invertible: if α ≤ β, there is a unique γ such that α + γ = β. This difference
γ is denoted as β − α. Halmos [9, Section 21] gives an overview on ordinal
arithmetic. If <e is a notation for ordinals having a representative x for α,
then there is a notation <e′ such that whenever y represents an ordinal α+ β
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with respect to <e then y represents the ordinal β with respect to <e′ . The
ordering <e′ is constructed by shifting the part of the ordering strictly below
x to the top so that <e′ is still a well-ordering and x represents 0:

y <e′ z ⇔ (x ≤e y <e z) ∨ (y <e z <e x) ∨ (z <e x ≤e y)

where x ≤e y stands for x = y ∨ x <e y.
Furthermore, Cantor introduced the formal powers of ω, the first infinite

ordinal. Cantor showed that one can represent every non-null ordinal by a
finite sum

α = a1ω
α1 + a2ω

α2 + . . .+ anω
αn

where 0 ≤ αn < . . . < α2 < α1 as ordinals and a1, a2, . . . , an are non-null
natural numbers [14, page 280].

This representation permits us to view the ordinals as a semimodule over
the semiring of the natural numbers with pointwise operations ⊕,	,⊗. Given
ordinal α and natural number c, one can define c ⊗ α as follows. If c = 0 or
α = 0 then c⊗α is just 0. Otherwise α has the unique representation a1ω

α1 +
a2ω

α2 +. . .+anω
αn and one defines c⊗α = (a1c)ω

α1 +(a2c)ω
α2 +. . .+(anc)ω

αn.
Similarly, one can define the pointwise addition α⊕ β which is different from
+ as it is commutative but has the minimum compatibility α ⊕ 1 = α + 1.
Note that α	 β, the pointwise subtraction, can be undefined even in the case
that β < α: for example, ω 	 1 is undefined.

Definition 2.9 [4]. A class S is Exα-identifiable for a recursive ordinal α iff
there is an Ex-learner M , a notation for ordinals <e having a notation rα for
α, and a total recursive function ord mapping IN∗ to IN such that the following
hold.

(a) M Ex-identifies every f ∈ S.
(b) ord(λ) ≤e rα.
(c) For all total f and m,n such that m < n, ord(f [n]) ≤e ord(f [m]).
(d) For all f ∈ S and m,n such that m < n, M(f [n]) 6=?, M(f [m]) 6=?, and
M(f [n]) 6= M(f [m]): ord(f [n]) <e ord(f [m]).

Remark 2.10. Freivalds and Smith [4] postulated that (d) holds also for all
function f /∈ S. The resulting concept is the same, but in the present paper
the restrictions to functions in S will be necessary for studying simultaneous
learners. For example, we will consider the case where a learner M simulta-
neously Ex-identifies R and Exα-identifies some S ⊆ R. As this class R itself
might not be Exα-identifiable, the existence of such a simultaneous learner is
only possible in a setting where condition (d) is defined as above.

Note that for some α ≥ ω and some classes S ∈ Exα, one must carefully
choose the adequate notation for ordinals in order to construct a recursive
Exα-learner using this notation. If the notation is chosen inadequately, it might
happen that the corresponding learner cannot be recursive.
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3 Well-Behaved Learners

In this section we introduce the notion of well-behaved learners. Well behaved
learners combine the properties of exact, prudent, pessimistically reflective
and consistent learners.

Definition 3.1. A learner M is well-behaved for S iff

(a) M exactly Ex-learns S, that is, M Ex-learns f iff f ∈ S;
(b) M is prudent, that is, for all σ with M(σ) 6= ?, M Ex-learns a function
f extending ϕM(σ);

(c) M is consistent, that is, for all σ with M(σ) 6= ?, ϕM(σ) extends σ.

Every well-behaved learner is pessimistically reflective: If M(σ) is an index e,
then ϕe extends σ (by consistency) and some f Ex-learned by M extends ϕe

(by prudence). Thus, M identifies an extension of σ, whenever M(σ) 6=?.
If one would add the property of being pessimistically reflective to the

postulated conditions for well-behaved learners, then one could weaken (c) in
such a way that M is only required to be consistent on S (since M , being
pessimistically reflective, will always output ? on data not belonging to any
function in S).

Remark 3.2. Every uniformly recursive class S = {f0, f1, . . .} has a well-
behaved learner M . This is shown by choosing M as follows: M(a0a1 . . . an)
outputs the least e ≤ n such that fe(m) = am, for m = 0, 1, . . . , n, and outputs
? if such an e is not found.

On the one hand, there are Ex-learnable classes in Num which are not uni-
formly recursive and even not prudently learnable by an exact learner. An
example is the class S = {c∞ : c /∈ K} where K is the halting problem. An
exact Ex-learner for S can be constructed as follows. On input cn, such that
n > 0 and c is not enumerated into K within n computation-steps, the learner
outputs a hypothesis for c∞; otherwise the learner outputs the symbol ?. For
any Ex-learner M for S, the set {c : (∃σ) (∃x) [M(σ) is a hypothesis that
computes c on argument x]} is a recursively enumerable superset of K. Thus,
M cannot be an exact prudent Ex-learner for S.

On the other hand, there are classes which have a well-behaved learner
but which are not in Num. This result can even be strengthened as shown in
Theorem 4.1 below.

We now give some results relating well-behaved learners and exact learners
which are in addition prudent or pessimistically reflective.
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Proposition 3.3. If a prudent learner M exactly Ex0-identifies S, then S is

uniformly recursive.

Proof. Recall that in Definition 2.6 it was defined that the learner M exactly
Ex0-identifies S iff the learner M Ex0-identifies all functions in S and does
not Ex-identify any function outside S. Since M is also prudent, every index
output by M is extended by a function in S.

Let E = {e : (∃σ) [M(σ) = e ∧ ϕe extends σ]}. The set E is recursively
enumerable. If f ∈ S then there is a prefix σ ⊆ f such that M(σ) outputs an
index e for f and this index e is in E. So S ⊆ {ϕe : e ∈ E}.

If e ∈ E and σ witnesses e ∈ E, then a function f ∈ S extends ϕe and
thus σ. Since M Ex0-learns f and M outputs exactly one hypothesis while
reading f , this hypothesis is e and thus f = ϕe. Hence, {ϕe : e ∈ E} ⊆ S.

Thus, S = {ϕe : e ∈ E} and S is uniformly recursive.

The condition of being prudent is necessary. For example, the class {f :
ϕf(0) = f} of self-describing functions has an exact Ex0-learner which on
input f(0)f(1) . . . f(n) outputs f(0). However, this class is not in Num.

Theorem 3.4. There is a class R having an exact pessimistically reflective

Ex1-learner but no well-behaved Ex-learner.

Proof. Consider the class R containing all functions f satisfying one of the
following conditions.

• f = σ0∞ for some σ ∈ {1, 2}∗;
• f = ϕe and f ∈ {1e2} · {1, 2}∞ for some e ∈ IN.

R has no well-behaved Ex-learner. For given well-behaved M and number
e, construct the following function fe:

fe(x) =
{

1 if x < e or (x > e and M(fe[x]) = M(fe[x]2));
2 if x = e or (x > e and M(fe[x]) 6= M(fe[x]2)).

Assume now that x > e and M(fe[x]) is the hypothesis ẽ. By condition (c)
of the definition of a well-behaved Ex-learner, there is at most one a ∈ {1, 2}
such that M(fe[x]a) outputs ẽ. If a = 2 then fe(x) = 1 else fe(x) = 2. So
M(fe[x + 1]) 6= ẽ. Thus Me does not converge to a hypothesis on any of
the functions fe. However, by the Fixed-Point Theorem [13, Theorem II.2.10],
there is an e such that fe = ϕe. Since fe ∈ {1e2}·{1, 2}∞, it follows that fe ∈ R
and M does not Ex-learn R. So R does not have a well-behaved learner.

There is a pessimistically reflective exact Ex1-learner N for R. On
input σ, N behaves as follows. If σ ∈ {1e2} · {1, 2}∗ and ϕe(x)↓= 1 for x < e
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and ϕe(e)↓= 2 within |σ| computation-steps, then N(σ) = e′ where

ϕe′(x) =
{

ϕe(x) if ϕe(y)↓∈ {1, 2} for all y ≤ x;
↑ otherwise.

If σ = τ0k for a k > 0 and a τ ∈ {1, 2}∗, then N(σ) is a canonical index for
τ0∞. In all other cases, N(σ) = ?.

It is easy to verify that N Ex1-identifies R and that all indices output by
N are either for functions in R or for non-total functions. Furthermore, N
outputs a hypothesis only on σ of the form {1, 2}∗ or {1, 2}∗ · {0}∗ all of which
are extended by functions in R. So N is an exact pessimistically reflective
learner for R.

Theorem 3.5. Every class having an exact pessimistically reflective Ex-

learner has also an exact prudent learner, but the converse does not hold.

Proof. Implication. Consider a class S having an exact and pessimistically
reflective Ex-learner M . The Padding Lemma [13, Proposition II.1.6] states
that, for every index e, one can effectively find infinitely many equivalent
indices (that is, indices computing the same function ϕe). Thus one can assume
without loss of generality that M never returns to an abandoned index e (if
M needs to reconsider the function ϕe, it can output an equivalent index not
used earlier). Thus, if M outputs on a function f an index e infinitely often,
then M converges on f to e.

Now assign to every e the index e′ such that ϕe′(x) = y iff there is a z > x
such that 0, 1, . . . , z ∈ dom(ϕe), ϕe(x) = y and M(ϕe[z]) = e; otherwise ϕe′(x)
is undefined.

Now one transforms the pessimistically reflective learner M into a prudent
learner N by replacing all hypotheses e of M by the corresponding e′. The
new learner has the following properties.

• If M Ex-identifies f by converging to the index e, then ϕe = f , and M
converges on ϕe to e. Thus, by definition of e′, ϕe′ = ϕe. Thus N also
Ex-identifies f and is an Ex-learner for S.

• If N outputs e′ on some input and ϕe′ is a total function f , then M infinitely
often outputs e on f . By the assumption on M , M converges on f to e, that
is, M Ex-identifies f . Since M is exact, f ∈ S.

• If N outputs e′ on some input and ϕe′ is partial, then there is some σ
extending ϕe′ with M(σ) = e. It follows that there is a function f ∈ S
which extends σ and thus ϕe′ .

So N is a prudent Ex-learner for S. Furthermore, all total functions computed
by some output of N are in S as shown above. It follows that N is exact.

Separation. The following class R′ witnesses that the converse direction
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fails and the implication is proper. R′ is obtained by modifying R from Theo-
rem 3.4, by making the first condition more restrictive. R′ contains the func-
tions f satisfying one of the following conditions.

• f = 1e2σ0∞ and 1e2σ ⊆ ϕe for some σ ∈ {1, 2}∗;
• f = ϕe and f ∈ {1e2} · {1, 2}∞ for some e ∈ IN.

R′ has no exact pessimistically reflective Ex-learner. Consider the set
E = {e : ϕe is total and {1, 2}-valued and extends 1e2}. The set E is Π0

2 com-
plete and thus not K-recursive. But if there were a pessimistically reflective
learner M for R′, then M would satisfy the following conditions.

• If e ∈ E then there is a hypothesis ẽ such that, for almost all s, there is
σ ∈ {1e2} · {1, 2}s with M(σ) = ẽ.

• If e /∈ E then, for almost all s and all σ ∈ {1e2} · {1, 2}s, M(σ) = ?.

This would give that E is recursive in the limit, a contradiction.

There is an exact prudent Ex1-learner N for R′. On input σ, N behaves
as follows. If σ ∈ {1e2} · {1, 2}∗ and ϕe(x)↓= 1 for all x < e and ϕe(e)↓= 2
within |σ| computation-steps, then N(σ) = e′ where

ϕe′(x) =
{

ϕe(x) if ϕe(y)↓∈ {1, 2} for all y ≤ x;
↑ otherwise.

If σ = τ0k for k > 0, e ≥ 0 and τ ∈ {1e2} · {1, 2}∗ and if it can be verified
in k computation steps that ϕe extends τ , then N(σ) is a canonical index for
τ0∞. In all other cases, N(σ) = ?.

It is easy to verify that N is an exact Ex-learner for R′. Furthermore,
every non-total, partial function conjectured by N is of the form ϕe′ where e′

derives from some e as defined above. Then ϕe′ is a finite function such that
ϕe′ extends 1e2 and is extended by ϕe′0

∞ which is in R′. It follows that N is
a prudent Ex-learner for R′.

4 Easier Learning of Infinite Subclasses

Recall the question considered in the introduction: Does every infinite Ex-
learnable class have an infinite finitely learnable subclass? In this section, we
study this and similar questions for confident and well-behaved learners.

We start by giving an infinite class learnable by a well-behaved learner, which
doesn’t have an infinite subclass in Num.
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Theorem 4.1. There is an infinite class S, which is Ex-identifiable by a

well-behaved learner, such that for every R in Num the intersection S ∩ R is

a finite class.

Proof. The basic idea of this proof is to construct a class S = {Ψ0,Ψ1, . . .}
of total functions with the following properties:

• There is an enumeration Θ of partial-recursive functions containing the
functions Ψ0,Ψ1, . . . and some finite functions such that the uniform prefix-
closed graph of Θ is recursive. This permits to adapt the technique of learn-
ing by enumeration adequately and to guarantee properties (a) and (c) of
the definition of well-behaved learners.

• S is dense. Since Θ contains only finite functions and the total functions
Ψ0,Ψ1, . . ., property (b) of well-behaved learners, that is prudence, will be
satisfied.

• Ψe dominates all total complexity measures Φd with d ≤ e. Thus every
recursive function can only dominate finitely many Ψe and therefore every
uniformly recursive class can only contain finitely many functions from S.

Now the construction in detail: Let σ0, σ1, . . . be an enumeration of all strings.
Let Φ0,Φ1, . . . be the step counting functions associated with ϕ0, ϕ1, . . . such
that Φe(x) is the number of steps needed to compute ϕe(x), if ϕe(x) is defined,
and Φe(x) = ∞ otherwise. Now define for every e the value ae as

ae = min({∞} ∪ {x : Φe(x) = ∞∨ (∃y < x) [Φe(x) < Φe(y)] } ).

The ae’s can be approximated from below; that is, there is a total recursive
mapping e, s → ae,s such that ae = lims ae,s, and ae,s ≤ ae,s+1, for all e, s.
Note that one can, without loss of generality, have that ae,s ≤ s and thus the
approximation never takes the value ∞. Now let

Ψe(x) =











σe(x) if x ∈ domain(σe);
max({0} ∪ {Φd(y) : d ≤ e ∧

y < min({1 + x, ad}) } ) otherwise.

We cannot recursively know the values a0, a1, . . . but can only approximate
them in the limit. So we consider the following enumeration of partial functions
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containing all the Ψe. For each tuple (b0, b1, . . . , be) ∈ (IN ∪ {∞})∗, let

Θ(b0,b1,...,be)(x) =











































































σe(x) if x ∈ domain(σe);
max(B ∪ {0}) if the following conditions hold:

(i) B = {Φd(y) : d ≤ e ∧
y < min({1 + x, bd}) } exists and
can be completely enumerated,
(ii) ad,x ≤ bd for all d ≤ e,
(iii) Φd(y) ≤ Φd(y + 1), for all
y < min({1 + x, bd}) − 1 and d ≤ e,
(iv) x /∈ domain(σe);

↑ otherwise.

Note that in (i) above, B exists if bd ≤ ad, for all d ≤ e.
On the one hand, one can show that the set

{(b0, b1, . . . , be, x, y) : x <∞∧ y <∞∧ Θ(b0,b1,...,be)(x) = y}

is recursive. Therefore, there exists a learner M which consistently learns the
class of all total Θ(b0,b1,...,be), where M outputs only hypotheses for functions of
the form Θ(b0,b1,...,be). As Θ(b0,b1,...,be) is total iff a0 = b0 ∧ a1 = b1 ∧ . . .∧ ae = be,
it follows that the total functions in this list are exactly the functions Ψe and
so M is a consistent learner for S = {Ψ0,Ψ1, . . .}. In particular, M satisfies
conditions (a) and (c) in Definition 3.1 of well-behaved learner.

Furthermore, if some bk 6= ak for k ≤ e, then Θ(b0,b1,...,be) is equal to a finite
string σe′ and the function Ψe′ extends σe′ . As all indices output by M are
indices for functions of form Θ(b0,b1,...,be), one can conclude that condition (b)
in Definition 3.1 of well-behaved learner is also satisfied.

On the other hand, if f0, f1, . . . is a recursive enumeration of total func-
tions, then the function g given by

g(x) = f0(x) + f1(x) + . . .+ fx(x) + 1

dominates all these functions and there is a total and ascending function Φe

dominating g. It follows that the functions Ψe,Ψe+1, . . . are different from
all functions f0, f1, . . . and so the intersection of S and any class in Num is
finite.

An essential ingredient of the above proof is that one cannot bound the num-
ber of mind changes made by the well-behaved learner. In the extreme case
that one does not permit any mind changes, Proposition 3.3 gives a different
outcome.

Recall from Definition 2.5 that a learner M is confident iff M always converges
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on input function, that is,

(∀f) (∀∞n) [M(f [n+ 1]) = M(f [n])].

So a confident learner converges on every input function, even if this function
is not recursive and therefore cannot be learned at all. Note that any class
which can learned with a bound (whether constant bound or ordinal bound)
on the number of mind changes can also be learned by a confident learner.

The next result shows that some infinite learnable classes do not have infinite
confidently learnable subclasses.

Theorem 4.2. There is an infinite uniformly recursive class GEN such that

intersection of GEN with any confidently learnable class is finite.

Proof. Recall that a 1-generic set G has the following property: for every re-
cursive set U of strings there is a k such that either the stringG(0)G(1) . . . G(k)
itself is in U or no extension of G(0)G(1) . . . G(k) is in U . One can choose G
such that G is Turing reducible to K [14, Section XI.2]. Therefore, there is
a recursive enumeration f0, f1, . . . of {0, 1}-valued recursive functions point-
wise converging to (the characteristic function of) the set G. Let GEN =
{f0, f1, . . .} for these functions. As G is not recursive and differs from every
function fk, the set GEN is infinite.

Now consider any class S having a confident learner M . By confidence, M
converges on G. Thus there exists a σ ⊆ G such that M(η) = M(σ) whenever
σ ⊆ η ⊆ G. As G is 1-generic and as G does not contain any string of the
recursive set {η : η ⊇ σ ∧M(η) 6= M(σ)}, there is a τ satisfying: σ ⊆ τ ⊆ G
and M(η) = M(σ) for all η ⊇ τ . Furthermore, using the nonrecursiveness
of G, one may assume that τ is so long that the hypothesis M(σ) does not
compute an extension of τ .

As the functions fk approximate the set G and τ ⊆ G, almost all fk extend
τ . Thus the set {fk : τ 6⊆ fk} is finite and also contains all functions in the
intersection of S and {f0, f1, . . .}. The theorem follows.

As all uniformly recursive classes have a well-behaved learner, the following
corollary is immediate.

Corollary 4.3. There is an infinite class R having a well-behaved Ex-learner

such that R ∩ S is finite for every confidently learnable class S.

Theorem 4.4. If an infinite class S has a confident and well-behaved learner,

then S has an infinite uniformly recursive subclass U which is Ex0-identifiable.

13



Proof. Let M be a confident and well-behaved learner for S such that M(λ)
outputs a hypothesis for the everywhere undefined function. Now consider the
tree T ⊆ IN∗, with root λ, defined as follows. A node σ of T has as successors
all the nodes τ ⊃ σ such that M outputs at τ for the first time a hypothesis
different from M(σ); that is, (i) M(τ) /∈ {M(σ), ?} and (ii) M(η) ∈ {M(σ), ?}
for all η with σ ⊆ η ⊂ τ . An invariant of this construction is that M never
outputs ? on the nodes of T . The tree T is well-founded as M converges on all
functions, that is, the tree does not have infinite branches. By König’s Lemma,
T would be finite if T is finitely branching. As S is infinite, T must be infinite.
So there is a node σ ∈ T having infinitely many successors and there is a
recursive enumeration τ0, τ1, . . . producing them. The subclass U is generated
from these τk as follows.

The function fk is the limit of strings ηl, where η0 = τk and ηl+1 is the first
string found (in some standard search) such that ηl ⊂ ηl+1 and M(ηl+1) 6= ?.

To see that all fk are total, assume by way of contradiction that for
some fk, the process terminates at some ηl. Then it would hold that (∀τ ⊃
ηl) [M(τ) = ?] and M would not Ex-identify any extension of ηl. However
M(ηl), by condition (c) in Definition 3.1, computes a partial function extend-
ing ηl and, by condition (b), some total extension of ϕM(ηl) (which is also a
total extension of ηl) is in S. A contradiction. Thus each fk is total.

The definition of fk ensures that M outputs on fk infinitely often a hy-
pothesis. As M is confident, M converges on fk to a hypothesis e. The con-
sistency condition (c) from Definition 3.1 implies that ϕe extends infinitely
many σ ⊆ fk and so ϕe = fk. As ϕe is total, ϕe ∈ S and thus {f0, f1, . . .} ⊆ S.

An exact Ex0-learner for {f0, f1, . . .} can be built as follows: on input σ,
the learner outputs a hypothesis ek for fk whenever τk ⊆ σ ⊆ fk for some k.
Otherwise the learner outputs ?.

We now consider results that deal with the question when Exα-identifiable
classes have infinite Exβ-identifiable subclasses for β < α. For this, we need
the following two results from Freivalds and Smith [4].

Freivalds and Smith [4, Theorem 6] showed that classes of step functions like
the ones below separate the various levels of the hierarchy for learning with
an ordinal bound on the number of mind changes.

Proposition 4.5 [4]. For every ordinal α represented by an element rα with

respect to a suitable notation <e of ordinals, define the class DECα,e to be the

set of all decreasing functions f : IN → IN with f(0) ≤e rα and (∀x) [f(x +
1) ≤e f(x)]. Then DECα,e is Exα-identifiable. However, there is no β < α such

that some, even not necessarily recursive, learner M Exβ-identifies DECα,e.

Proof. DECα,e contains only functions which are decreasing with respect to
a well-ordering. So they can properly decrease only finitely often and are thus
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eventually constant. So the class DECα,e consists of recursive functions.
DECα,e has an Exα-learner M defined as follows. On input λ, M(λ) = ?

and the ordinal is initialized as rα. On input y0y1 . . . yn with rα ≥ y0 ≥e y1 ≥e

. . . ≥e yn let m be the minimal number with ym = yn. Then M outputs the
canonical index for y0y1 . . . ym(ym)∞ and the value of the ordinal counter is
ym. In particular for m > 1, the counter is counted down iff m = n. On all
other inputs, M outputs ? and does not change its ordinal counter.

Now we show that there is no Exβ-learner for DECα,e as follows. Suppose
by way of contradiction that there exists such a learner N with ordinal counter
ord using some notation <e′ . Define that y <′ z if the ordinal represented by y
with respect to <e is below that represented by z with respect to <e′ , similarly
define y =′ z and y ≤′ z.

We construct a counterexample f to N being an Exβ-learner for DECα,e.
In this construction, we use that without loss of generality, N updates its
ordinal only if necessary, that is, N outputs a new hypothesis on some f ∈
DECα,e and there had already been a previous hypothesis. We now define the
diagonalizing f inductively. Let f(0) = y0 for some y0 with rβ <e y0 ≤e rα,
where rβ represents the ordinal β. Assume that f [x] is defined and x > 0. If
there is a b such that

(i) For every y, z such that y < z ≤ x and N(f [y]), N(f [z]) are neither equal
nor ?: ord(f [z]) <e′ ord(f [y]);

(ii) b =′ ord(f [x]) and b <e f(x− 1);
(iii) ϕN(f [x]) extends f [x] but does not extend (f [x])b;

then let f(x) = b else let f(x) = f(x− 1).
It is easy to see that the resulting function f is total and in DECα,e. Now

we look at the behaviour of N on f assuming that N satisfies (i) on f .
Note that the above construction has the following invariant: the ordinal

represented by ord(f [x]) (in <e′ notation) is not greater than the ordinal
represented by f(x) (in <e notation).

Let y be the least number with f(z) = f(y) for all z > y and x be the least
number with N(f [x]) being the final hypothesis of N . Let b be the number
with b =′ ord(f [x]).

If y = 0 then N(f [x]) is not a hypothesis for the function (y0)
∞ since

otherwise (i), (ii) and (iii) would be satisfied as y0 >
′ ord(f [x]).

If y > 0 and x ≤ y then N(f [x]) = N(f [y]) and ϕN(f [x]) does not extend
f [y + 1], so N does not learn f .

If x > y > 0 then ord(f [x]) <e′ ord(f [y]). It follows, using invariant stated
above, that b <e f(x). As f(x) 6= b, (iii) must be violated and whenever
ϕN(f [x]) extends f [x], it also extends f [x]b and is thus different from f .

This case-distinction is complete and in all cases, N does not Exβ-learn f .
Thus N is not Exβ-identifiable.

Freivalds and Smith [4, Theorem 10] showed that
⋃

α Exα is closed under union,
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where the number of mind changes needed to show the closure can go up. If
one does not require the new learner to be recursive, one can get very tight
bounds. Recall the definitions of ⊕ and ⊗ from Remark 2.8.

Proposition 4.6 [4]. Given classes S1, S2, . . . , Sn such that each Sm is Exβm
-

identifiable and given ordinal α = β1 ⊕ β2 ⊕ . . .⊕ βn ⊕ (n	 1), there is a (not

necessarily recursive) Exα-learner N for the union S1 ∪ S2 ∪ . . . ∪ Sn.

Proof. Assume that learners M1,M2, . . . ,Mn for S1, S2, . . . , Sn with mind
change bounds β1, β2, . . . , βn are given. The new learner N starts with hypoth-
esis ? and mind change counter β1⊕β2⊕ . . .⊕βn⊕(n	1). Furthermore, N has
variables γ1, . . . , γn such that each γm is initialized as βm⊕1. On input σ = τa
with τ ∈ IN∗ and a ∈ IN, N checks whether there is an m ∈ {1, 2, . . . , n} such
that the following holds.

• The previous hypothesis N(τ) is either ? or inconsistent with the data seen
so far;

• em = Mm(σ) computes a total function ϕem
extending σ, and the ordinal

counter of Mm (after seeing σ) is strictly below the value of γm at τ .

If so, we let N(σ) = em and γm is updated to the value of the ordinal counter
of Mm after seeing σ. The other γm′ remain unchanged. The ordinal counter
of N is set to the updated value of the expression γ1 ⊕ γ2 ⊕ . . .⊕ γn.

Otherwise, N(σ) = N(τ) and the ordinal counter ofN remains unchanged.
The variables γ1, . . . , γn also remain unchanged.

The verification is based on the following facts. The ordinal counter is
initialized as γ1 ⊕ γ2 ⊕ . . . ⊕ γn 	 1. Whenever N outputs a new hypothesis,
the value of γ1 ⊕ γ2 ⊕ . . . ⊕ γn strictly decreases and is then copied into the
ordinal counter of N . Whenever N makes a mind change, its ordinal counter
is counted down. On every input f ∈ S1 ∪ S2 ∪ . . . ∪ Sn, N converges to an
index e of a total function. Since N is not required to be recursive, it does not
matter how N represents the ordinals.

If N converges on f to an e such that ϕe 6= f then it holds for every
m that either Mm does not Ex-identify f or m never qualifies in the search
condition of N after Mm has converged to an index em of f . In this latter
case, the ordinal counter of Mm and the variable γm must have the same value
after Mm has converged to em. Since N never took the value em and since γm

was initialized as βm ⊕ 1 while the counter of Mm was initialized as βm, this
can only happen because Mm did not count down its ordinal at some mind
change. That is, Mm does not Exβm

-identify f . It follows that f /∈ Sm. Thus,
N is a (not necessarily recursive) Ex-learner for S1 ∪ S2 ∪ . . . ∪ Sn with the
ordinal bound β1 ⊕β2 ⊕ . . .⊕βn ⊕ (n	 1) on the number of mind changes.

We now give the promised result dealing with the question when Exα-identifi-
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able classes have infinite Exβ-identifiable subclasses for β < α.

Theorem 4.7. Fix a notation <e of ordinals used for all ordinal-learners

considered below such that ⊕ is recursive and 	 is partial-recursive. Let α ≥ 2
be a recursive ordinal and consider all recursive learners, including those which

are not exact. If α = ωγ for an ordinal γ

Then there is an infinite exactly Exα-identifiable class Sα such that for every

β < α, Sα does not have an infinite Exβ-identifiable subclass,

Else there is a β < α such that every infinite exactly Exα-identifiable class S
has an infinite exactly Exβ-identifiable subclass.

If one does not want to fix a notation of ordinals with the above property, then

the same theorem holds, but the learners considered may no longer be exact.

Note that the case α = 1 = ω0 is omitted as it is too sensitive to the definition
of ordinal counters: if one would count hypotheses instead of mind changes
and define that exactly the empty class can be learned with 0 hypotheses,
then one could omit the condition “α ≥ 2” in Theorem 4.7.

Proof. Then-Case. Let e be such that <e is a notation for ordinals having
a representative for α. Now one constructs Sα ⊆ DECα,e as follows.

Let M1,M2, . . . be a list of all partial-recursive learners equipped with an
ordinal mind change counter, using the notation given by <e, such that the ini-
tial value of the counter, βk, is strictly below α. Let Uk be the class of functions
which at least one of the machines M1,M2, . . . ,Mk infers without violating the
mind change bound. There is a, not necessarily recursive, learner Nk identify-
ing Uk exactly with mind change bound β1 ⊕β2 ⊕ . . .⊕βk ⊕ (k	1). Note that
β1 ⊕ β2 ⊕ . . .⊕ βk ⊕ k ≤ α. Thus there is a function fk = σa∞ ∈ DECα,e such
that fk(0) represents the ordinal β1 ⊕β2 ⊕ . . .⊕βk ⊕ k with respect to <e and
fk is not learned by Nk. In particular, fk is not in Uk. Since ⊕ is recursive,
the mapping k → fk(0) is recursive, has a recursive range and is one-one.

Furthermore, one can find a program for one such fk 6∈ Uk, effectively
in the limit, from k. To see this, note that such a function fk = σa∞ satis-
fies the following for l = 1, 2, . . . , k: There exist e, h, x (depending on l) such
that either (i) Ml(σa

h) is undefined or (ii) Ml(σa
h) has already made a mind

change without counting down its ordinal or (iii) the learner Ml converges to
the wrong index e (that is e = Ml(σa

h), Ml does not change its mind on σa∞

beyond σah and, for some x, ϕe(x) 6= (σa∞)(x)). For each l, the above condi-
tions on the k, σ, a, h, e, x are K-recursive. Thus, from k, one can compute in
the limit one such (σ, a), and thus a program for one such fk.

We now show that the class Sα = {f1, f2, . . .} can be exactly Exα-identi-
fied. Given an Exα-learner M for DECα,e, one defines an exact identifier N
as follows: If M(σ) = ? or σ = λ, then N(σ) = ?. Else N computes the k such
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that fk(0) = σ(0). If such a k does not exist, then N(σ) = ? as well. If the k is
found, then N considers a uniform approximation fk,s to fk and outputs the
following modification e′ of the index e = M(σ): ϕe′(x) = ϕe(x) iff there is
s ≥ x such that ϕe(y)↓= fk,s(y) for all y ≤ x. If there is no such s, then ϕe′(x)
is undefined. The convergence behaviour of M and N is the same. However,
N converges to an index of f iff M also does and f ∈ Sα — otherwise, N
converges to an index of a partial function or to ?.

If one does not require exact learning, and considers the extension men-
tioned in the theorem: one can use the learner M for the whole class DECα,e

instead of N and can therefore select the functions fk ∈ DECα,e − Uk arbi-
trarily. This in particular permits to deal with a nonrecursive ⊕ and the case
that representation for the ordinal counter of the Mk might depend on each k.

Else-Case. The ordinal α can be represented as c ωγ + δ for some ordinal γ
with c > 0 and ωγ > δ. If δ = 0, then let β = (c − 1)ωγ; else let β = cωγ.
Note that in both possible definitions it holds that β < α ≤ β + β (when
β = (c − 1)ωγ, we implicitly have c > 1 by the condition that α 6= ωγ). Let
M be an Exα-learner for a given class S and ord be its ordinal counter. Let
U be the set of all f ∈ S such that ord(f [x]) ≥ β for all x. Now consider the
following two subcases.

Subcase U finite. We define the following Exβ-learner N for the whole
class S and the associated ordinal counter ord′ as follows:

• If ord(σ) ≥e β, then ord′(σ) = β. Furthermore, if exactly one function in U
is consistent with the input σ, then N outputs an index for this function;
otherwise N outputs ?.

• If ord(σ) <e β, then ord′(σ) = ord(σ) and N(σ) = M(σ).

It is easy to see that N Exβ-identifies all the functions in U , as well as all the
functions in S on which the ordinal counter of M eventually goes below β.
Thus N (exactly) Exβ-identifies the whole class S.

Subcase U infinite. In this case we define the learnerN with ordinal counter
ord′ as follows.

• If ord(σ) ≥ β then N(σ) = M(σ) and ord′(σ) = ord(σ) 	 β;
• If ord(σ) < β then N(σ) = ? and ord′(σ) = 0.

Note that due to the special form of β, δ	β is defined for all δ with β ≤ δ ≤ α.
It is easy to see that N exactly Exβ-identifies U .

It remains to consider the case where one does not require that the learner
is exact and one wants to deal with orders not having recursive operations
⊕,	. In this case, one takes the original learner M for S which of course also
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Ex-identifies the subclass U ⊆ S. But one adjusts the mind change counter to
the following ord′. Let rβ be the representative of β with respect to <e and
let <e′ be such that whenever r′ represents β + ε with respect to <e, then r′

represents ε with respect to <e′ . The ordinal counter ord′ is defined as follows.
If ord(σ) ≥e rβ then ord(σ) represents some ordinal β + ε with respect to

<e. Now ord′(σ) = ord(σ) and represents the ordinal ε with respect to <e′ .
Otherwise ord(σ) <e rβ and the data is from a function not in U . Then

let ord′(σ) = rβ (note that rβ represents 0 with respect to <e′).
As a consequence, M is an Exβ-learner for the infinite class U using the

properties that ord′ starts with an ordinal less than or equal to β with respect
to the notation <e′ and that the Ex-learning capabilities remains the same.
Furthermore, as long as the data is from functions in U , each mind change is
accompanied by counting down the ordinal.

This completes the proof for the second (Else) part of the theorem.

Note that, in the above Theorem, in Then case, one cannot have that Sα has
a well-behaved Exα-learner. Otherwise, by Theorem 4.4, Sα would have an
infinite Ex0-identifiable subclass.

5 Sublearners

The main question considered in this section is the following: Given an Ex-
identifiable class S satisfying some additional constraints, is there an infinite
subclass U and an Ex-learner M for S such that M Exβ-identifies U? One
additional constraint is that S has an infinite Ex0-identifiable subclass. As
confidently identifiable classes are Exα-identifiable for some α, Theorem 4.2
has been adapted into this section as follows. There is a class S = GEN ∪
{g0, g1, . . .}, where GEN is from Theorem 4.2, such that {g0, g1, . . .} is Ex0-
identifiable, S is Ex-identifiable and no Ex-learner M for S is at the same
time an Exα-learner for an infinite subclass of S.

Theorem 5.1. There exists an infinite class S such that

(a) S is exactly Ex-identifiable;

(b) S contains an infinite exactly Ex0-identifiable subclass;

(c) For any learner M which Ex-identifies S and for any α, M does not

Exα-identify an infinite subclass of S.

Proof. Let G and f0, f1, . . . be as in the proof of Theorem 4.2. Furthermore,
let gk = fk(0)fk(1) . . . fk(k)2

∞, that is, gk coincides with fk on 0, 1, . . . , k and
takes the constant 2 from then on. Let S = {f0, g0, f1, g1, f2, g2, . . .}. The class
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S is clearly a uniformly recursive class. Thus S is exactly Ex-identifiable. Fur-
thermore the subclass {g0, g1, . . .} is exactly Ex0-identifiable since the function
gk is the unique one in this enumeration where k+ 1 is the first element to be
mapped to 2.

Now consider any Ex-learner M for S equipped with an ordinal counter.
As M learns all functions fk, it follows from the proof of Theorem 4.2 that
M makes on the characteristic function of G infinitely many mind changes.
Thus there is a number l such that M has made a mind change on the input
G(0)G(1) . . . G(l) without counting down the ordinal. Since almost all func-
tions fk and gk extend the string G(0)G(1) . . . G(l), M can Exα-identify only
finitely many functions in S.

Theorem 5.2. For every infinite class S having a confident and well-behaved

learner M , there is a class U and a learner N such that

• U ⊆ S, U is infinite and U is uniformly recursive;

• N is an Ex1-learner for U ;

• N is a confident and well-behaved learner for S.

Proof. This is a generalization of the proof of Theorem 4.4. In the proof of
Theorem 4.4, we defined strings σ and τ0, τ1, . . . and functions f0, f1, . . . ∈ S
with the following properties.

(i) The τk’s are recursively enumerable and pairwise incomparable.
(ii) For any k, σ ⊆ τk and M(τk) /∈ {M(σ), ?}. Furthermore, for all k and all
η with σ ⊂ η ⊂ τk, M(η) ∈ {M(σ), ?}.

(iii) For all k, fk extends τk and belongs to S. Furthermore, there is a program
pk for fk which can be obtained effectively from k.

(iv) For all τ , if σ ⊆ τ and M(τ) /∈ {M(σ), ?}, then there exists a k such
that τk ⊆ τ .

We now define our learner N as follows.

N(τ) =











?, if τ ⊂ σ;
pk, for the unique k with τk ⊆ τ ⊆ fk, if there is such a k;
M(τ), otherwise.

We argue that the second clause above can be recursively decided. Note that
the τk are the places after σ where M outputs its first hypothesis not in
{M(σ), ?}. Also the τk and fk have both an effective enumeration. Thus, we
can determine effectively from τ , whether there exists a k (and find such a
k if it exists) such that τk ⊆ τ , and then use this k to check whether the
data seen so far is consistent with fk. It is now easy to verify that N Ex1-
identifies each fk — N only outputs M(σ) and then pk on fk; it is easy to
assign the corresponding ordinal counter to N . Furthermore, if the input is
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incomparable to any fk, then N follows M . Thus, N inherits the property of
being a well-behaved and confident learner for S from M .

Note that, in the above theorem, we are not able to achieve Ex0 instead of
Ex1, as shown by following example.

Example 5.3. Consider the class S = {0∞} ∪ {0h10∞ : h ∈ IN}.

• There is a well behaved Ex1-learner for S;
• No learner which Ex-identifies S, can Ex0-identify an infinite subclass of S.

The existence of the well-behaved Ex1-learner is easy to verify. On the other
hand, any Ex-learner for S has to identify 0∞ and outputs an index for it
on input of the form 0k for some k. Then it can Ex0-identify only the finite
subclass {0∞, 10∞, 010∞, . . . , 0k−110∞}.

We now consider the question: Does there exist a class Rα which is Exα-
identifiable, Rα contains an infinite finitely learnable subclass, but no learner
can simultaneously Ex-identify Rα and Exβ-identify an infinite subset of Exα,
for β < α.

The answer to the above question depends on α.

Theorem 5.4. Fix a notation <e of ordinals used for all ordinal-learners

considered below such that operation ⊕ is recursive and 	 partial-recursive.

Let α ≥ 2 be a recursive ordinal and consider all recursive learners, including

those which are not exact. If α = ωγ for an ordinal γ

Then there is an infinite exactly Exα-identifiable class Rα such that (i) Rα

contains an infinite Ex0-identifiable subclass and (ii) for all β < α, there

does not exist an Ex-learner M for Rα which Exβ-sublearns an infinite sub-

class of Rα using the notation <e.

Else there is a β < α such that every infinite exactly Exα-identifiable class S
has an exact Ex-learner M for S which Exβ-sublearns an infinite subclass

of S.

If one does not want to fix a notation of ordinals with the above property, then

the same theorem holds, but the learners considered may no longer be exact.

Proof. Then-Case. Assume that α = ωγ for some γ. The set Rα is defined
as the union of two sets {f1, f2, . . .} and {g1, g2, . . .} where the functions fk are
exactly as in Theorem 4.7. For each function fk, there is a number ak ≥ 2 such
that for all M ∈ {M1,M2, . . . ,Mk}, whenever M makes a mind change on fk

without counting down the ordinal, then this happens before seeing all the
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data fk[ak]. Without loss of generality suppose 0 also represents the ordinal
0. The function gk is taken to be fk[ak + 1]0∞.

Rα is clearly infinite. Furthermore, Rα ⊆ DECα,e and one can compute
the characteristic function of gk from the one of fk using the oracle K. Thus
one can adapt the Exα-learner from Theorem 4.7 to an Exα-learner N for Rα.

One can construct an exact Ex0 learner for {g0, g1, . . .} as follows. If the
input is not of form τ0r for some τ ∈ (IN − {0})+ then M outputs ?. Other-
wise, M computes the k such that gk(0) = σ(0). If such a k does not exist,
then N(σ) = ? as well. If the k is found, N considers a uniform approximation
gk,s to gk and outputs the following modification e′ of the index e for τ0∞:
ϕe′(x) = ϕe(x) iff there is s ≥ x such that ϕe(y) ↓= gk,s(y) for all y ≤ x. If
there is no such s, then ϕe′(x) is undefined. It is now easy to verify that M is
an exact Ex0-learner for {g0, g1, . . .}.

If Mk is an Ex-learner for Rα, then Mk is total and converges on all func-
tions fl to its correct index. By the construction in Theorem 4.7, Mk then fails
for all fl with l ≥ k to count down the ordinal at some mind change. Thus Mk

does not Exβk
-learn the functions fl, gl with l ≥ k. Thus no infinite subclass

of Rα is Exβ-sublearned for any β < α.

Else-Case. This proof differs from the one in Theorem 4.7 only at one place:
in the subcase that U is infinite and exact learners are desired, one defines
that N = M but changes ord to ord′ as done there. The reason for it is that
this time N must be an exact Ex-learner for S while in Theorem 4.7 N must
be an exact learner for U . All other parts of the proof remain unchanged.

Remark 5.5. The negative results made use of the fact that the subclass has
to be infinite. Indeed, dropping this constraint destroys all negative results.
Given any finite subclass U ⊆ S and any Ex-learner M for S, one can trans-
form M into an Ex-learner N for S, such that N is also an Ex0-learner for U :
There is a number n such that M has converged on every f ∈ U to the final
index for f by the time it has seen f [n]. In particular, M(f [m+1]) = M(f [m])
for all m ≥ n and f ∈ U . The new learner N given by

N(σ) =
{

? if |σ| < n;
M(σ) if |σ| ≥ n;

has the desired properties: N Ex-identifies the same functions as M but on the
functions f ∈ U , N only outputs the symbol ? before outputting the correct
hypothesis M(f [n]).
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