
Learning by Switching Type of Information ∗

Sanjay Jain

School of Computing

National University of Singapore

3 Science Drive 2

Singapore 117543

Email: sanjay@comp.nus.edu.sg

Frank Stephan

Mathematisches Institut

Im Neuenheimer Feld 294

Universität Heidelberg

69120 Heidelberg, Germany, EU

Email: fstephan@math.uni-heidelberg.de

Abstract

The present work is dedicated to the study of modes of data-presentation in the
range between text and informant within the framework of inductive inference. In
this study, the learner alternatingly requests sequences of positive and negative data.
We define various formalizations of valid data presentations in such a scenario. We
resolve the relationships between these different formalizations, and show that one of
these is equivalent to learning from informant. We also show a hierarchy formed (for
each of the formalizations studied) by considering the number of switches between
requests for positive and negative data.

1 Introduction

Astronomers observing the sky with telescopes cannot obtain all available information but
have to focus their study on selected areas and might from time to time change to another
area of the sky. Forty years after the discovery of Uranus, it was found that Uranus was not
following the predicted orbit exactly. Taking into account the influence of the other known
planets, the astronomer Alexis Bouvard came up with the hypothesis that there exists
a further unknown planet which disturbs the orbit of Uranus. John Couch Adams and
Urbain Jean Joseph Le Verrier both computed independently the position of the unknown
planet. In 1846, Le Verrier communicated his results to Johann Gottfried Galle, who then
found Neptune with his telescope at the given position.

Similar to astronomy, one can also in inductive inference consider the scenario that
the learner cannot track all available data but has to focus on some type of data and

∗A preliminary version of this paper appeared in ALT 2001. We would like to thank the anonymous
referees for useful comments. Sanjay Jain was supported in part by NUS grant number R252-000-127-112.
Frank Stephan was supported by the Deutsche Forschungsgemeinschaft (DFG) under the Heisenberg grant
Ste 967/1–1.

1



can only few times switch the focus of attention. The purpose of the present work is to
formalize such switching between the two main modes of data-presentation in inductive
inference, namely between reading positive data which are elements of the set to be learned
or negative data which are the non-elements. There are several ways to formalize this and
it is investigated how these formalizations relate to each other and how they fit into the
hierarchy of the already established notions of learning from positive data (text) or both,
positive and negative data (informant).

In the scenario of learning from positive data, the learner is fed all the elements and no
non-elements of a language L (the so called text of L), in any order, at most one element
at a time. The learner, as it is receiving the data, outputs a sequence of grammars. The
learner is said to identify (learn, infer) L just in case the sequence of grammars converges
to a grammar for L. A class of languages is learnable if some machine learns each language
in the class. This is essentially the paradigm of identification in the limit (called TxtEx)
introduced by Gold [11]. Gold also considered the situation of learning from informant,
where the learner receives both positive and negative data, that is elements of the graph
of the characteristic function of L (called informant for L) as input. This leads to the
identification criterion known as InfEx.

Gold [11] showed a central result that learning from text is much more restrictive than
learning from informant. Gold gave an easy example of a class which can be learned from
informant but not from text: the collection consisting of one infinite recursively enumerable
set together with all its finite subsets.

The main motivation for this work is to explore the gap between these two extreme
forms of data-presentation. Previous authors have already proposed several methods to
investigate this gap, some of these are described below.

Gasarch and Pleszkoch [10] considered allowing learners access to non-recursive oracles.
However Jain and Sharma [14] showed that even the most powerful oracles do not permit
to learn all recursively enumerable (or even all recursive) sets from texts whereas the oracle
K allows one to learn all recursively enumerable sets from informant.

Restrictions on the texts (such as allowing only primitive recursive texts or ascending
texts) reduce their non-regularity and permit to pass on further information implicitly [20,
23]. For example, ascending texts permit to reconstruct the complete negative information
in the case of infinite sets, but fail to do so in the case of finite sets. Thus the class of
one infinite set and all its finite subsets is still not learnable from ascending text. On
the other hand, the class of all recursively enumerable languages can be learned from
primitive recursive texts. Merkle and Stephan [18] also considered strengthening the text
by permitting additional queries to retrieve information not contained in standard texts.

Motoki [19] and later Baliga, Case and Jain [2] added to the positive information of
the text some, but not all, negative information about the language to be learned. They
considered two notions of supplying the negative data: (a) there is a finite set of negative
information S ⊆ L such that the learner always succeeds learning the language L from
input S plus a text for L, and (b) there is a finite set S ⊆ L such that the learner always
succeeds learning the language L from a text for L plus a text for a set H disjoint to L
which contains S, that is, which satisfies S ⊆ H ⊆ L. In case (a) one is able learn the class

2



of all recursively enumerable languages. Thus, the notion (b) is the more interesting one.
The present work treats positive and negative data symmetrically and several of our

notions are much less powerful than those notions considered by Baliga, Case and Jain [2].
The most convenient way to define these notions is to use the idea of a minimum adequate
teacher as, for example, described by Angluin [1]. A learner requests positive or negative
data-items from a teacher which has – depending on the exact formalization – to fulfill cer-
tain requirements. These formalizations (and also the number of switches permitted) then
define the model. We consider three formalizations (called BasicSwEx, RestartSwEx,
NewSwEx) of requirements a teacher needs to satisfy. The naturalness of this approach
is witnessed by the fact that all classes separating the various formalizations can be de-
fined in easy topological terms. Due to the topological nature of the separating classes,
these results hold even if the learners are non-computable. Out of the three formalizations,
NewSwEx turns out to be the most natural definition in the gap between TxtEx-learning
and learning from informant. RestartSwEx (without constraints on number of switches)
coincides with learning from informant, whereas BasicSwEx has some strange properties.

2 Preliminaries

Notation. Any unexplained recursion theoretic notation can be found in Roger’s text-
book [21]. The symbol lN denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Symbols ∅,
⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper subset, superset, and proper superset,
respectively. Cardinality of a set S is denoted by card(S). Domain and range of a partial
function ψ is denoted by domain(ψ) and range(ψ), respectively.

Infinite sequences are mappings from lN to lN∪{#}; finite sequences are mapping from
{y ∈ lN : y < x} (for some x ∈ lN) to lN∪{#}. In the first case, the length of the sequence
is ∞, whereas in the second case its length is x. We denote the length of a sequence η by
|η|. Sequences may take a special value # to indicate a pause (when considered as a source
of data). Therefore the notion content is introduced to denote the set of the numbers
contained within the range of some finite or infinite sequence. The content of a sequence
η is defined as content(η) = range(η) ∩ lN. Furthermore, if x ≤ |η|, then η[x] denotes
the restriction of η to the domain {y ∈ lN : y < x}. We let σ and τ range over finite
sequences. We denote the sequence formed by the concatenation of τ at the end of σ by
στ . Furthermore, we use σx to denote the concatenation of sequence σ and the sequence
of length 1, which contains the element x.

By ϕ we denote a fixed acceptable programming system for the partial computable
functions that are mapping lN to lN [17, 21]. By ϕi we denote the partial recursive func-
tion computed by the program with number i in the ϕ-system. Such a program i is a
(characteristic) index for a set L if

ϕi(x) =
{

1, if x ∈ L;
0, otherwise.

Programs for enumeration procedures (so called r.e. indices) are not considered in the

3



present work. From now on, we call the recursive subsets of lN just languages and only
consider characteristic indices and not enumeration procedures. The symbols L,H range
over languages. L denotes the complement, lN−L, of L. The symbol L ranges over classes
of languages.

Learning theory often also considers learning non-recursive but still recursively enu-
merable sets. In this work we restrict ourselves to the recursive case since, for notions of
learning considered in this paper: (i) all inclusions hold for the case of recursive sets iff
they hold for the case of recursively enumerable sets; (ii) recursive sets already permit
us to construct candidates for separations of learning criteria – our diagonalization proofs
use mainly the topological properties. Furthermore, recursive sets have, compared to re-
cursively enumerable sets, the advantage that their complement also possesses a recursive
enumeration. This is an interesting property to have, as we are considering positive and
negative information in a symmetric way.

Notation from Learning Theory. The main scenario of inductive inference is that a
learner reads more and more data on an object and outputs a sequence of hypotheses which
eventually converge to the object to be learned.

Definition 2.1 (Gold [11]) A text T for a language L is an infinite sequence such that
its content is L, that is, T contains all elements of L but none of L. T [n] denotes the finite
initial sequence of T with length n.

Definition 2.2 (Gold [11]) A learner (or learning machine) is an algorithmic device
which computes a mapping from finite sequences into lN.

We let T range over texts and M range over learning machines. M(T [n]) is interpreted as
M’s conjecture for the input language based on data T [n]. We say that M converges on
T to i, (written M(T )↓= i) iff (∀∞n) [M(T [n]) = i].

There are several criteria for a learning machine to be successful on a language. Below
we define learning in the limit introduced by [11].

Definition 2.3 (Gold [11]) (a) M TxtEx-learns a language L from text T iff, for some
index i for L, for almost all n, M(T [n]) = i.
(b) M TxtEx-learns a language L (written: L ∈ TxtEx(M)) just in case M TxtEx-
learns L from each text for L.
(c) M TxtEx-learns a class L of languages (written: L ⊆ TxtEx(M)) just in case M
TxtEx-learns each language from L.
(d) TxtEx = {L : some learner M TxtEx-learns L}.

The following propositions on learning from text are useful in proving some of our results.

Proposition 2.4 (Based on Proposition 2.2A by Osherson, Stob and Weinstein [20]) Let

L be any infinite language and Pos be a finite subset of L. Then {H : Pos ⊆ H ⊆ L
∧ card(L−H) ≤ 1} /∈ TxtEx.

4



Proposition 2.5 (Gold [11]) Let L be any infinite language. If L contains L and the

sets L ∩ {0, 1, . . . , n}, for infinitely many n ∈ lN, then L 6∈ TxtEx.

We now generalize the concept of learning and permit the learners to request explicitly
positive or negative data from a teacher in order to define learning by switching between
types of information received.

Definition 2.6 Learning is a game between a learner M and a teacher T . Both send
alternately information in the following way: in the k-th round (for ease of notation we
start with round 0), the learner first sends a request rk ∈ {+,−}; the teacher then answers
with an information xk; thereafter the learner outputs a hypothesis ek. There are three
types of interactive protocols between the learner and the teacher; every teacher satisfying
the protocol is permitted.

(a) The basic switch-protocol. The teacher has two texts T+ and T− of L and L,
respectively. After receiving rk the teacher transmits Trk

(k).
(b) The restarting switch-protocol. The teacher has two texts T+ and T− of L and L,

respectively. After receiving rk the teacher computes the current position l = card{h :
0 ≤ h < k ∧ rh = rk} and transmits Trk

(l).
Intuitively, in restarting switch-protocol, one may consider learner as asking the “next

item” from the selected text (of language or its complement).
(c) The newtext switch-protocol. The teacher sends an xk ∈ L ∪ {#}, if rk = + and

xk ∈ L ∪ {#}, if rk = −. Furthermore, if there is a k such that rh = rk, for all h ≥ k, and
either k = 0 or rk−1 6= rk, then the sequence xk, xk+1, . . . is a text for L (if rk = +) or a
text for L (if rk = −).

Intuitively, in newtext switch-protocol, the teacher starts with a new text for L or L
every time a switch occurs.

A class L is learnable according to the given protocol iff there is a learner M such that,
for every L ∈ L and for every teacher satisfying the protocol for this L, the hypotheses of
the learner M converge to an index e of L. The corresponding learning-criteria are denoted
by BasicSwEx, RestartSwEx and NewSwEx, respectively.

Note that M is a TxtEx-learner iff M always requests positive data (rk = + for all k).
Therefore, all three notions are generalizations of TxtEx-learning.

In the following we define similar restrictions on the number of switches as has been
done for the number of mind changes by Case and Smith [7] and Freivalds and Smith [8].
We consider counting number of switches by ordinals. The learner has a counter for an
ordinal, which is downcounted at every switch. Due to the well-ordering of the ordinals,
the counter can be downcounted only finitely often. In order to ensure that the learner is
computable, we consider throughout this work only recursive ordinals. In particular, we
use a fixed notation system, Ords, and a partial ordering of ordinal notations [16, 21, 22].
We use �,≺,� and � to compare ordinals according to the partial ordering mentioned
above. We do not go into the details of the notation system used, but instead refer the
reader to the methods outlined in the papers [5, 8, 15, 16, 21, 22].

5



Definition 2.7 BasicSw∗Ex denotes the variant of BasicSwEx where the requests of
M have to converge to some r, whenever M deals with a teacher following basic switch-
protocol, for any given L ∈ L.

For an ordinal notation α, we now define the variant BasicSwαEx of BasicSwEx.
The learner (as in Definition 2.6) is additionally equipped with a counter. The value of
counter at the beginning of round k is denoted by γk. Now in addition to the properties
required for BasicSwEx-learnability, we require

(1) γ0 = α.

(2) If rk+1 = rk, then γk+1 = γk.

(3) If rk+1 6= rk, then γk+1 ≺ γk.

Similarly, one defines the four notions RestartSw∗Ex, NewSw∗Ex, RestartSwαEx and
NewSwαEx for the restart and newtext switching protocols.

One can consider the generalization of above notions by replacing Ex by other convergence
criteria such as BC [6] or FEx [4].

Remark 2.8 The notions, BasicSwEx, RestartSwEx and NewSwEx might change a
bit if instead of arbitrary texts some restrictive variants are used.

A fat text for a language L, is a text in which every element of L appears infinitely
often (and non elements of L never appear). Therefore, arbitrary long initial segments
of the text may be missing without losing essential information. For criteria of inference
considered in this paper, one may consider learning from “fat information” where all the
texts considered in Definition 2.6, are fat texts. In this situation, one can, to a certain de-
gree, compensate the loss of information when switching in the basic switch-protocol. The
notions NewSw∗Ex and RestartSw∗Ex do not change if one considers fat information,
but the notion of BasicSw∗Ex increases its power and becomes equivalent to NewSw∗Ex
— note that in the standard “non-fat” case by Proposition 3.1 and Theorem 3.2 below,
the notion BasicSw∗Ex is properly contained in NewSw∗Ex. Similar result applies if
one replaces ∗ by an ordinal α in the previous statement.

It can be shown that learning from recursive texts does not give any advantage in
TxtEx-criteria, see, for example, the textbook [13] by Jain, Osherson, Royer and Sharma.
All diagonalization results considered in this paper, can be done using recursive texts.

Gold [11] showed that the class of all recursively enumerable sets can be learned from
primitive recursive text, which are generated by a primitive recursive function. Thus,
the generalized criteria considered in this paper coincide with learning from text, if one
considers only primitive texts as input in Definition 2.6.

Remark 2.9 Consider the class L which contains the four subsets of {0, 1}. This class is
TxtEx-learnable, but not learnable by a BasicSwEx-learner which is required to make
at least one switch on every possible data-sequence.

To see this, assume that the learner starts with requesting positive examples. As, 0∞

is a valid text for language {0}, if the teacher answers 0 on requests for positive examples,

6



eventually the learner must switch and ask for a negative example. Suppose the switch
occurs at the n-th round. But then the learner cannot distinguish between the following
two situations:

(1) teacher is giving the answers for language {0}, where T+ = 0∞ and T− = 1 2 3 . . .;

(2) teacher is giving the answers for language {0, 1}, where T+ = 0n 1 0∞ and T− =
2 2 3 . . .;

the T− in the above two cases differ at the first position and the T+ differ at the (n+ 1)-th
position. As r0 was + and rn was −, the learner is not able to distinguish between the two
cases.

If the learner starts by requesting negative data, it can be trapped similarly.

As the above remark shows, although BasicSwEx is more powerful than TxtEx, it still
has a severe restriction that information might be lost — it might happen, that a given
learner receives, due to switches, a data sequence which satisfies the protocol for several
possible languages. This cannot occur for the criteria of NewSwEx-learning (for finite
number of switches) and RestartSwEx-learning (for finite or infinite number of switches),
which from this point of view are more natural.

3 Basic Relations between the Concepts

Within this section, we investigate the basic relations between the various criteria of learn-
ing by switching type of information.

Proposition 3.1 (a) For all ordinalsα, BasicSwαEx ⊆ NewSwαEx ⊆ RestartSwαEx.

(b) BasicSw∗Ex ⊆ NewSw∗Ex ⊆ RestartSw∗Ex.

(c) BasicSwEx ⊆ NewSwEx ⊆ RestartSwEx.

Proof. We first show that any teacher using the newtext switch-protocol also satisfies the
basic switch-protocol. Thus every learner succeeding with a teacher satisfying the newtext
switch-protocol also succeeds with every teacher using the basic switch-protocol. It follows
that the inclusion holds for any constraints on the number of switches permitted as the
learner does not change.

Consider the interaction between the learner and teacher for any language L. Let rk

denote the request of learner and xk denote the answer of the teacher in the k-th round,
where the answers by the teacher satisfy the newtext switch-protocol. To show that the
teacher also satisfies the basic switch-protocol we need to construct texts T+ (for L) and
T− (for L) such that xk = Trk

(k). This can be done by induction. Let s+(k) and s−(k)
be the number of the k′ < k for which rk′ is positive or negative, respectively. Now one
defines

T+(k) =











xk if rk = +;
s−(k) if rk = − and s−(k) ∈ L;
# if rk = − and s−(k) /∈ L;

7



T−(k) =











xk if rk = −;
s+(k) if rk = + and s+(k) ∈ L;
# if rk = + and s+(k) /∈ L.

Note that all elements of T+ are either # or in L since they are either given by the newtext
teacher or explicitly required to be in L. Furthermore, if almost all rk are positive, then
the newtext protocol guarantees that all elements of L show up and that T+ is a text for
L. If infinitely many rk are negative then the function s− is not bounded and so there is
for every x ∈ L a k such that x = s−(k) and rk = −. It follows that x goes into the text.
Thus T+ is a text for L and similarly one can verify that T− is a text for L.

Also, any teacher using the restart switch-protocol can be used to simulate answers using
a newtext switch-protocol – by appropriately repeating the already given positive/negative
elements before giving any new elements presented in the restart switch-protocol. The
proposition follows.

In the following it is shown that the hierarchy from Proposition 3.1 (c) is strict, that is,

TxtEx ⊂ BasicSwEx ⊂ NewSwEx ⊂ RestartSwEx.

Besides this main goal, the influence of restricting the number of switches to be finite or
even to respect an ordinal bound, is investigated.

Note that the inclusion TxtEx ⊆ BasicSw0Ex follows directly from the definition.
Furthermore, the class {L ⊆ lN : card(L) ≤ 1}, using Proposition 2.4, is not TxtEx-
learnable; however, as the class contains only cofinite sets, it can be learned via some
learner always requesting negative data. Thus the inclusion TxtEx ⊂ BasicSw0Ex is
strict.

Combining finite and cofinite sets is the basic idea to separate newtext switching from
basic switching using parts (a) and (c) of Theorem 3.2 below. The class used to show this
separation is quite natural:

Lfin,cofin = {L : card(L) <∞ or card(L) <∞}.

Theorem 3.2 below also characterizes the optimal number of switches needed to learn
Lfin,cofin (where possible): one can do it for the criteria NewSw∗Ex and RestartSw∗Ex
with finitely many switches, but an ordinal bound on the number of switches is impossible.

Theorem 3.2 (a) Lfin,cofin ∈ NewSw∗Ex.

(b) For all ordinals α, Lfin,cofin 6∈ RestartSwαEx.

(c) Lfin,cofin 6∈ BasicSwEx.

Proof. (a) The machine M works in stages. At any point of time it keeps track of elements
in L and L that it has received.

Construction.

Initially let Pos = ∅, Neg = ∅ and go to stage 0.

8



Stage s: If card(Pos) ≤ card(Neg)

Then request a positive example x;
update Pos = Pos ∪ {x} − {#};
conjecture the finite set Pos;

Else request for negative data x;
update Neg = Neg ∪ {x} − {#};
conjecture the cofinite set lN − Neg.

Go to stage s+ 1.

End stage s.

It is straight forward to enforce that the learner always represents each conjectured set
with the same index. Having this property, it is easy to verify that M NewSw∗Ex-learns
Lfin,cofin.

(b) Suppose by way of contradiction that M RestartSwαEx-learns the class Lfin,cofin.
Since every finite sequence of data can be extended to the one of a set in Lfin,cofin, M has
to behave correctly on all data sequences and does not switch without downcounting the
ordinal. There is a minimal ordinal β which M can reach in some downcounting process.
For this β, there is a corresponding round k, a sequence of requests by M and a sequence
of answers given by a teacher such that M’s ordinal counter is β after the k-th round;
let Pos be the positive data and Neg be the negative data provided by the teacher until
reaching β. As β is minimal, M does not make any further downcounting but stabilizes
to one type request, say to requesting positive data; the case of requesting only negative
data is similar. Let L = Neg. If H satisfies Pos ⊆ H ⊆ L and card(L−H) ≤ 1 then M is
required to learn H without a further switch. So M would essentially be a TxtEx-learner
for {H : Pos ⊆ H ⊆ L ∧ card(L−H) ≤ 1}, a contradiction to Proposition 2.4.

(c) Suppose by way of contradiction that M BasicSwEx-learns Lfin,cofin. Due to
symmetry-reasons one can assume that the first request of M is + and assume that the
teacher gives # as an answer. Now consider the special case that T− is either #∞ or
y#∞ for some number y. The set to be learned is either lN or lN − {y} and the only
remaining relevant information is the text T+. Thus if one could learn Lfin,cofin under the
criterion BasicSwEx, then one could also TxtEx-learn the class {L ⊆ lN : card(L) ≤ 1},
a contradiction to Proposition 2.4.

Item (c) in Theorem 3.2 can be improved to show that even classes which are very easy
for NewSwEx cannot be BasicSwEx-learned.

Corollary 3.3 NewSw1Ex 6⊆ BasicSwEx.

Proof. The proof of Theorem 3.2 (c) shows that the class

{L ⊆ lN : card(L) ≤ 1 or card(L) ≤ 1}

9



is not BasicSwEx-learnable; the sets with card(L) ≤ 1 are added for the case that the
request r0 in the proof of Theorem 3.2 (c) is −. It remains an easy verification that the
considered class is NewSw1Ex-learnable: A machine first asks for positive examples and
outputs an index for the set consisting of the examples seen so far, unless it discovers that
there are at least two elements in the language. At which point it switches to requesting
negative examples to find the at most one negative example.

The following theorem shows the strength of restarting switch protocol by showing that
it has the same learning power as the criterion InfEx, where the learner gets the full
information on the set L to be learned by reading its characteristic function instead of a
text for it, see [11].

Theorem 3.4 RestartSwEx = InfEx.

Proof. Clearly, RestartSwEx ⊆ InfEx. In order to show that InfEx ⊆ RestartSwEx,
we show how to construct an informant for the input language using a teacher which follows
the restart switch-protocol. Clearly, this suffices to prove the theorem. The learner requests
alternatingly, positive and negative information. This gives the learner a text for L as well
as for L, which allows one to construct an informant for the input language L.

The following theorem shows that newtext switching protocols can simulate restart switch-
ing protocols, if the number of switches is required to be bounded by an ordinal.

Theorem 3.5 For all ordinals α, RestartSwαEx = NewSwαEx.

Proof. By Proposition 3.1, it suffices to show the inclusions

RestartSwαEx ⊆ NewSwαEx.

Note that for RestartSwαEx and NewSwαEx learning, we may assume without loss of
generality that the learning machine makes finite number of switches on all inputs (i.e.,
even for inputs for languages outside the class, or for teachers not following the protocol).
Furthermore, if the machine makes only finitely many switches, then it is easy to verify that
any teacher following the newtext switch-protocol also follows the restart switch-protocol.
Theorem follows.

In contrast to Theorem 3.5 the following theorem shows the advantage of restarting switch-
ing protocol, compared to newtext switching protocol if the number of switches is not
required to be finite.

Theorem 3.6 RestartSw∗Ex 6⊆ NewSwEx.

Proof. Let Odd denote the set of odd numbers. Let

L1 = {Odd} ∪ {Odd − {2x+ 1} : x ∈ lN},

L2 = {Odd ∪ {0}} ∪ {Odd ∪ {0} ∪ {2x+ 2} : x ∈ lN},

L = L1 ∪ L2.

10



It is easy to see that L1 can be learned using negative data, and L2 can be learned using
positive data. Thus, a machine can RestartSw∗Ex-identify L by first finding (by alter-
natingly requesting positive and negative data) whether 0 belongs to the input language
L or not. After this the machine uses just positive data (if 0 ∈ L) or just negative data (if
0 6∈ L), to identify L.

To show that L 6∈ NewSwEx, we use the fact that any infinite subset of L1 containing
the language Odd, cannot be learned from positive data alone (Proposition 2.4) and that
any infinite subset of L2 containing the language Odd∪{0}, cannot be learned from negative
data alone (symmetric version of Proposition 2.4).

Suppose by way of contradiction that L ∈ NewSwEx as witnessed by M. Let Even
denote the set lN − Odd of even numbers. We then consider the following cases.

Case 1: There exists a way of answering the requests of M such that positive requests
are answered by elements from Odd, negative requests are answered by elements from
Even − {0} and M makes infinitely many switches.

In this case, clearly M cannot distinguish between the cases of input language being
Odd and input language being Odd ∪ {0}.

Case 2: Not case 1. Let x0, x1, . . . , xk be an initial sequence of answers such that

• for i ≤ k, if ri = +, then xi ∈ Odd,

• for i ≤ k, if ri = −, then xi ∈ Even − {0},

• if the teacher is consistent with Odd and Odd∪{0}, then M does not make a further
switch, that is, the following two conditions hold:

– if rk+1 = + and the teacher takes its future examples xk+1, xk+2, . . . from the
set Odd, then rj = rk+1 for all j > k;

– if rk+1 = − and the teacher takes its future examples xk+1, xk+2,. . . from the set
Even − {0}, then rj = rk+1 for all j > k.

Note that there exists such k, x0, x1, . . . , xk, since otherwise one can construct an infinite
sequence of answers as needed for case 1, by infinitely often extending a given sequence to
force a switch by the learner — leading to infinitely many switches by the learner.

Case 2a: rk+1 = +.
In this case, M has to learn the set Odd and every set Odd−{2x+ 1}, where 2x+ 1 /∈

{x0, x1, . . . , xk}, from positive data. This is impossible by Proposition 2.4.

Case 2b: rk+1 = −.
This is similar to Case 2a. M needs to learn the set Odd and every set Odd ∪ {0, 2x},

where 2x /∈ {0, x0, x1, . . . , xk}, from negative data. Again this is impossible by symmetric
version of Proposition 2.4.

The previous result completes the proof that all inclusions of the hierarchy TxtEx ⊂
BasicSwEx ⊂ NewSwEx ⊂ RestartSwEx are proper.

11



4 Counting the Number of Switches

Theorem 4.1 and Corollary 4.2 below show a hierarchy based on the number of switches
allowed to the learner.

Theorem 4.1 For α � β, NewSwαEx 6⊆ RestartSwβEx.

Proof. Extend ≺ to Ords ∪ {−1} by letting −1 ≺ γ, for every γ ∈ Ords. There is a
computable function od from lN to Ords ∪ {−1} such that

• for every γ � α there are infinitely many x ∈ lN such that od(x) = γ;

• there are infinitely many x ∈ lN such that od(x) = −1;

• the set {(x, y) : od(x) ≺ od(y)} is recursive.

A set F = {x1, x2, . . . , xk} ⊆ lN is α-admissible iff

• 0 < x1 < x2 < . . . < xk;

• α � od(x1) � od(x2) � . . . � od(xk) � −1.

The empty set is also α-admissible. By definition no infinite set is α-admissible (also note
that the second condition postulates a descending chain of ordinals which is always finite).
Let the class L be defined by

LF = {x : card({0, 1, . . . , x} ∩ F ) is odd};

Lα = {LF : F is α-admissible}.

Note that the set L∅ is just ∅. Intuitively, for F = {x1, x2, x3, . . . , xk}, where 0 < x1 <
x2 < . . . < xk, one can consider the set of natural numbers to be divided into blocks:
Bi = {x ∈ lN : xi ≤ x < xi+1}, for i ≤ k, where we take x0 = 0 and xk+1 = ∞. The odd
blocks B2i+1 belong to LF and even blocks B2i belong to LF .

Now we show that the class Lα witnesses the separation.

Claim. Lα ∈ NewSwαEx.

Proof of Claim. The machine M has variables n for the number of switches done so
far, E for the finite set of examples seen after the last switch, mn for the maximal element
seen so far and γn the value of the ordinal-counter after n switches. The initialization
before stage 0 is E = ∅, n = 0, m0 = 0 and γ0 = α; maxordinals Y denotes the maximum
element of a non-empty finite set Y of ordinals with respect to their ordering. Intuitively,
for F = {x1, x2, . . . , xk}, the aim of the algorithm below is to eventually have mn ≥ xk−1

(without downcounting the ordinal counter below ordinal 0). It will be shown later that
mn and data of type opposite that of mn, is enough to identify the language LF . Go to
stage 0.

12



Construction. Stage s (what is done when the s-th example x is read).

(1) If n is even, request a positive example x;
If n is odd, request a negative example x.

(2) If x /∈ {#, 0, 1, . . . ,mn} and X = {y ≤ x : 0 � od(y) ≺ γn} is not empty

Then switch the data type by doing the following:
Reset E = ∅;
Update n = n+ 1;
Let mn = x and γn = maxordinals {od(y) : y ∈ X};

Else let E = E ∪ {x} − {#}.

(3) If E 6⊆ {0, 1, . . . ,mn},
then let a be the least example outside the set {0, 1, . . . ,mn} which had shown up
after the n-th switch
else let a = mn.

(4) If n is even and a = mn then conjecture E;
If n is even and a > mn then conjecture E ∪ {a, a+ 1, . . .};
If n is odd and a = mn then conjecture E;
If n is odd and a > mn then conjecture E ∩ {0, 1, . . . , a}.

(5) Go to stage s+ 1

It is clear that the ordinal is downcounted at every switch of the data presentation. Thus
the ordinal bound on the number of mind changes is satisfied.

Assume that F is α-admissible, k = card(F ) and F = {x1, x2, . . . , xk}, and the input
language is LF . Let Bi = {x ∈ lN : xi ≤ x < xi+1}, for i ≤ k, where we take x0 = 0 and
xk+1 = ∞.

Below let n denote the limiting value of n in the above algorithm. At every switch, M
downcounts the ordinal from α through γ1, γ2, . . . to γn and thus keeps the ordinal bound.
The values m0,m1, . . . ,mn satisfy the condition that LF (mh) 6= LF (mh+1), and belong to
different block Bi’s. Note that the values mh with odd h are positive and the values mh

with even h are negative examples; m0 = 0 and thus m0 /∈ LF by definition. Thus, by
definition of LF it follows that m1 ≥ x1,m2 ≥ x2, . . . ,mn ≥ xn. By induction, one can
easily verify that γh � od(xh), for h = 1, 2, . . . ,n.

After making the n-th switch, mn has the opposite type of information than the ex-
amples seen from then on.

Thus if no information x > mn arrives after n-th switch, it follows that x0, x1, . . . ,
xk ≤ mn and thus every y, such that the type of information of y is opposite to the one
of mn, will eventually belong to E. If n is even then LF = E (in the limit) and the
algorithm is correct. If n is odd then LF = E (in the limit) and the algorithm is correct
again.

If some x > mn arrives after the last switch, then one knows that M abstains from
switching due to the fact that whenever an example x > mn arrives then, at step 2, X = ∅.

13



Since γn � od(xn) � od(xn+1) and xn+1 ≤ x, for any x > mn which arrives after the last
switch, we must have that od(xn+1) = −1, and thus k = n + 1. Thus, the least example
a > mn to show up satisfies a ≥ xk. Furthermore, every x ≥ a satisfies LF (x) = LF (a)
and it is sufficient to know which of the x ≤ a are in LF and which are not in LF . This is
determined in the limit and thus the sets conjectured by M are correct.

It is straight forward to ensure that M always outputs the same index for the same set
and thus does not only semantically but also syntactically converge to an index of LF .

Claim. If a RestartSwαEx-learner M starts with requesting a negative example first,
then M cannot RestartSwαEx-learn the whole class Lα.

Proof of Claim. Let data of type n be negative data if n is even and positive data if
n is odd. So, for this claim, data of type n is what M requests after n switches. In the
following, a set F is constructed such that M does not RestartSwαEx-learn LF .

Construction of F. The inductive construction starts with F = ∅, n = card(F ) and M
requesting examples of type n. There is a finite sequence σ0σ1 . . . σn defined inductively
such that one of the following cases applies:

Switch: For some σn consisting of examples of type n for LF , M requests examples of
type n after having received σ0σ1 . . . σn−1τ , for all proper prefix τ of σn, but requests
example of type n+ 1 after having received σ0σ1 . . . σn−1σn.

LS: For some σn consisting of examples of type n for LF , σ0σ1 . . . σn is a locking-sequence
for LF in the following sense

• for every prefix τ of σn, M requests for example of type n after having received
σ0σ1 . . . σn−1τ , and

• for every extension τ of σn, consisting of examples of type n for LF , M requests
for example of type n after having received σ0σ1 . . . σn−1τ , and

• for all extensions τ of σn, consisting of examples of type n for LF , M conjec-
tures LF as its output after having received σ0σ1 . . . σn−1τ .

Fail: There is a text T of data of type n for LF such that for all τ ⊆ T , M, on the sequence
σ0σ1 . . . σn−1τ , requests for example of type n. Furthermore M on σ0 . . . σn−1T does
not converge to a grammar for LF .

Note that the above cases are not mutually exclusive. Now the construction of F is
continued as follows, based on first case which applies:

Switch: After having seen σ0σ1 . . . σn, M downcounts the ordinal to a new value γ ′ ≺ γ.
Let xn+1 be such that

• od(xn+1) = γ ′;

• xn+1 > y for all y ∈ F ∪ content(σ0σ1 . . . σn) ∪ {0}

and add xn+1 to F . Continue the construction with the next inductive step.

14



LS: Choose a number xn+1 such that

• od(xn+1) = −1;

• xn+1 > y for all y ∈ F ∪ content(σ0σ1 . . . σn) ∪ {0}

and complete the construction by adding xn+1 to F .

Fail: Leave F untouched and complete the construction.

End construction

Verification. Note that in the inductive process, adding a number xn+1 to F never makes
any previously examples invalid, therefore it is legal to do these modifications during the
construction. Furthermore, in the case that it is not possible to satisfy the case “Switch”
in the construction at some stage n, one has that after having seen the example-sequence
σ0σ1 . . . σn−1 (which is the empty sequence in the case n = 0) M requests only data of type
n as long as it sees examples consistent with LF . Therefore using the locking sequence
argument as introduced by Blum and Blum [3], see also [9, 20], either (i) there is a finite
sequence σn of examples of type n for LF such that σ0σ1 . . . σn is a locking sequence for
LF , that is, case “LS” holds or (ii) case “Fail” holds. So it is possible to do the inductive
definition in every step.

As the sequence od(x1), od(x2), . . . is a falling sequence of ordinals, it must be finite
and therefore the construction eventually ends in the cases “LS” or “Fail”. In the case
“Fail” it is clear that the F constructed gives an LF not learned by M.

If case LS holds, then let F ′ = F − {xn+1}. Note that all y ≥ xn+1 are examples of
type n for LF ′, and LF and LF ′ do not differ on any z ∈ {0, 1, . . . , xn+1 − 1}. Thus the
information provided to M is consistent with both LF and LF ′ . It follows that, given any
text T of type n for LF , M converges on σ0σ1 . . . σnT to an index of LF ′ and thus does not
learn LF .

The first claim shows that Lα is RestartSwαEx-learnable while the second claim shows
that such a learner cannot start by requesting a negative example first. Therefore, if M
would be a RestartSwβEx-learner for LF and β ≺ α, then M has to start with requesting
a positive example. However, then one could consider a new RestartSwαEx-learner M′

which first requests a negative example (without loss of generality assumed to be #), and
then switches to positive data, downcounts the ordinal from α to β, and from then on
copycats the behaviour of M with an empty prehistory. It would then follow that M can
RestartSwβEx-learn LF iff the new learner M′ RestartSwαEx-learns LF and starts with
requesting a negative example. However this contradicts the second Claim above. Thus no
such M can exists, and the assertion that LF witnesses NewSwαEx 6⊆ RestartSwβEx,
for all β ≺ α is completed.

Corollary 4.2 Suppose α � β. Then BasicSwαEx 6⊆ RestartSwβEx, in particular:

(a) BasicSwαEx 6⊆ BasicSwβEx.

(b) NewSwαEx 6⊆ NewSwβEx.

(c) RestartSwαEx 6⊆ RestartSwβEx.

15



Proof. The main idea is to use the cylindrification Lcyl
α of the class Lα from Theorem 4.1

in order to show that

Lcyl
α ∈ BasicSwαEx − RestartSwβEx.

Then (a), (b) and (c) follow immediately.
Let 〈·, ·〉 code pairs of natural numbers bijectively into natural numbers: 〈x, y〉 =

(x+y)·(x+y+1)
2

+ x. The cylindrification of a set L is then defined by Lcyl = {〈x, y〉 : x ∈
L, y ∈ lN} and Lcyl

α = {Lcyl : L ∈ Lα}, where Lα is as defined in Theorem 4.1.
Note that any text for Lcyl (Lcyl) is essentially a fat text for L (L). Therefore the

fact Lα ∈ NewSwαEx implies that Lcyl
α ∈ BasicSwαEx by using Remark 2.8. On the

other hand, Lcyl
α 6∈ RestartSwβEx since Lα 6∈ RestartSwβEx and by using Remark 2.8

again.

5 Conclusion

The starting point of the present work was the fact that there is a large gap between the
data-presentation by a text and by an informant: a text gives only positive data while
an informant gives complete information on the set to be learned. So notions of data
presentation between these two extreme cases were proposed and the relations between
them were investigated. The underlying idea of these notions is that the learner may
switch between receiving positive and negative data, but these switches are either finite in
number or may cause the loss of information.

For example, the BasicSwEx-learner can at every stage only follow one of the texts T+

and T− of positive and negative information on the set L to be learned and might therefore
miss important information on the other side.

The results of the present work resolve all the relationships between different switching
criteria proposed in this paper. In particular it was established that the inclusion

TxtEx ⊂ BasicSwEx ⊂ NewSwEx ⊂ RestartSwEx

is everywhere proper. Furthermore, the notion RestartSwEx coincides with learning
from informant. When we consider restricting the number of switches to meet an ordinal
bound, RestartSwαEx coincides with NewSwαEx. The hierarchy induced by measuring
the number of switches with recursive ordinals is proper.

In summary, the notion NewSwEx and its variant by bounding the number of switches
turned out to be the most natural definition in the gap between TxtEx-learning and
learning from informant. The notion of BasicSwEx-learning is between TxtEx-learning
and learning from informant, but has some strange side-effects: requiring some minimum
number of switches may be more harmful than requiring no switches, as pointed out in
Remark 2.9. On the other hand, RestartSwEx coincides with other notions, as mentioned
above.

Note that these criteria differ from learning from negative open text as considered by
Baliga, Case and Jain [2], this is notion (b) from the introduction. Learning from open neg-
ative text is weaker than learning from informant and thus different from RestartSwEx.

16



On the other hand, the class Lfin,cofin and the class L from Theorem 3.6 are both learn-
able from negative open text and so separate this notion from the other switching criteria
mentioned in this paper.

There is an application of learning by switching type of information to the field of
learning algebraic substructures of vector spaces. Harizanov and Stephan [12] investigated
when it is possible to learn the class L of all recursively enumerable subspaces of the space
V∞/V . Here V∞ is the standard recursive vector space over the rationals with countably
infinite dimension and V is a given recursively enumerable subspace of V∞. The space
V∞/V is called k-thin iff there is a subspace W ∈ L such that V/W is k-dimensional and,
for every U ∈ L, U is an infinite dimensional subspace of V∞/V iff W ⊆ U . While L
is TxtBC-learnable iff V∞/V is finite dimensional, L is NewSwBC-learnable iff either
L is already TxtBC-learnable or V∞/V is 0-thin or 1-thin. InfBC-learning is much
more powerful; it covers the case of all k-thin spaces, but there is no effective algebraic
characterization of the spaces where L is learnable. So NewSwBC-learning turned out to
be the only notion where learnability of the class of recursively enumerable subspaces has
an interesting and non-trivial algebraic characterization.

References

[1] Dana Angluin. Learning regular sets from queries and counter-examples. Information

and Computation, 75:87–106, 1987.

[2] Ganesh Baliga, John Case and Sanjay Jain. Language learning with some negative
information. Journal of Computer and System Sciences, 51(5):273–285, 1995.

[3] Lenore Blum and Manuel Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

[4] John Case. The power of vacillation in language learning. SIAM Journal on Comput-

ing, 28(6):1941–1969, 1999.

[5] John Case, Sanjay Jain and Mandayam Suraj. Not-so-nearly-minimal-size program
inference. In K. Jantke and S. Lange, editors, Algorithmic Learning for Knowledge-

Based Systems, volume 961 of Lecture Notes in Artificial Intelligence, pages 77–96.
Springer-Verlag, 1995.

[6] John Case and C. Lynes. Machine inductive inference and language identification. In
M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium

on Automata, Languages and Programming, volume 140 of Lecture Notes in Computer

Science, pages 107–115. Springer-Verlag, 1982.

[7] John Case and Carl Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

17



[8] Rūsiņš Freivalds and Carl Smith. On the role of procrastination in machine learning.
Information and Computation, 107:237–271, 1993.

[9] Mark Fulk. Prudence and other conditions on formal language learning. Information

and Computation, 85:1–11, 1990.

[10] William Gasarch and Mark Pleszkoch. Learning via queries to an oracle. In R. Rivest,
D. Haussler, and M. Warmuth, editors, Proceedings of the Second Annual Workshop

on Computational Learning Theory, pages 214–229. Morgan Kaufmann, 1989.

[11] E. Mark Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

[12] Valentina Harizanov and Frank Stephan. On the Learnability of Vector Spaces.

Forschungsberichte Mathematische Logik 55/2002, Mathematical Institute, Univer-
sity of Heidelberg, 2002.

[13] Sanjay Jain, Daniel Osherson, James Royer and Arun Sharma. Systems that Learn:

An Introduction to Learning Theory. MIT Press, Cambridge, Mass., second edition,
1999.

[14] Sanjay Jain and Arun Sharma. On the non-existence of maximal inference degrees for
language identification. Information Processing Letters, 47:81–88, 1993.

[15] Sanjay Jain, Wolfram Menzel and Frank Stephan. Classes with easily learnable sub-
classes. In Algorithmic Learning Theory: Thirteenth International Conference (ALT

2002), 2002. To appear.

[16] Stephen Kleene. Notations for ordinal numbers. The Journal of Symbolic Logic,
3:150–155, 1938.

[17] Micheal Machtey and Paul Young. An Introduction to the General Theory of Algo-

rithms. North Holland, New York, 1978.

[18] Wolfgang Merkle and Frank Stephan. Refuting learning revisited. In Algorithmic

Learning Theory: Twelfth International Conference (ALT 2001), volume 2225 of Lec-

ture Notes in Artificial Intelligence, pages 299–314. Springer-Verlag, 2001.

[19] Tatsuya Motoki. Inductive inference from all positive and some negative data. Infor-

mation Processing Letters, 39(4):177–182, 1991.

[20] Daniel Osherson, Michael Stob and Scott Weinstein. Systems that Learn: An In-

troduction to Learning Theory for Cognitive and Computer Scientists. MIT Press,
1986.

[21] Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-
Hill, 1967. Reprinted, MIT Press 1987.

18



[22] Gerald E. Sacks. Higher Recursion Theory. Springer-Verlag, 1990.

[23] Rolf Wiehagen. Identification of formal languages. In Mathematical Foundations of

Computer Science, volume 53 of Lecture Notes in Computer Science, pages 571–579.
Springer-Verlag, 1977.

19


