
Computational Limits on Team Identification of Languages ∗

Sanjay Jain

Department of Information Systems and Computer Science

National University of Singapore

Singapore 0511, Republic of Singapore

Email: sanjay@iscs.nus.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

Email: arun@cse.unsw.edu.au

Abstract

A team of learning machines is a multiset of learning machines. A team is said to successfully
identify a concept just in case each member of some nonempty subset, of predetermined size,
of the team identifies the concept. Team identification of programs for computable functions
from their graphs has been investigated by Smith. Pitt showed that this notion is essentially
equivalent to function identification by a single probabilistic machine.

The present paper introduces, motivates, and studies the more difficult subject of team
identification of grammars for languages from positive data. It is shown that an analog of Pitt’s
result about equivalence of team function identification and probabilistic function identification
does not hold for language identification, and the results in the present paper reveal a very
complex structure for team language identification. It is also shown that for certain cases
probabilistic language identification is strictly more powerful than team language identification.

Proofs of many results in the present paper involve very sophisticated diagonalization ar-
guments. Two very general tools are presented that yield proofs of new results from simple
arithmetic manipulation of the parameters of known ones.

Categories and Subject Descriptors: F.1.m [Computation by Abstract Devices]: Miscellaneous;
I.2.2 [Artificial Intelligence]: Automatic Programming – program synthesis; I.2.6 [Artificial In-
telligence]: Learning – induction
General Terms: Theory
Additional Key Words and Phrases: Inductive Inference

1 Introduction

Identification of grammars (acceptors) for recursively enumerable languages from positive data
by a (single) algorithmic device is a well studied problem in Learning Theory. The present paper
investigates the computational limits on language identification by a ‘team’ of (deterministic)
machines. A team of machines is a multiset of machines. A team is said to identify a language

∗Some preliminary results were reported at the 17th International Colloquium on Automata, Languages and Pro-

gramming , Warwick University, July 1990 [18] and at the Sixth Annual ACM Conference on Computational Learning

Theory , Santa Cruz, July 1993 [19].

1

if each member of some nonempty subset, of predetermined size, of the team identifies the
language.

Identification of programs for functions from their graph is another extensively studied area
in Learning Theory. For this related problem, L. Pitt [23, 25] established that team identification
is essentially equivalent to identification by a single probabilistic machine. He showed that for
any positive integer n and any probability p, if 1/(n + 1) < p ≤ 1/n, then the collections of
computable functions that can be identified by a single probabilistic machine with probability
at least p are exactly the same as the collections of computable functions that can be identified
by a team of n (deterministic) machines requiring at least one to be successful.

The present paper makes the following contributions to the study of team identification of
languages.

(a) It is shown that an analog of Pitt’s connection between probabilistic function and team
function identification does not hold for languages. In fact our results show that the
structure of team language identification is far more complex than the simple structure of
team function identification.

(b) For k ≥ 2, the relationship between probabilistic language identification with probabilities
of the form 1/k and team language identification requiring at least 1/k of the machines to
be successful is established.

(c) Techniques to simplify complicated diagonalization arguments are presented.

(a) follows from our results (for example, Theorem 12 and Theorem 14). Results in Sec-
tion 5.5 illustrate the complexity of team language identification. We achieve (b) by showing
that for k ≥ 2, probabilistic identification of languages with probability at least 1/k is strictly
more powerful than team language identification where at least 1/k of the members in the team
are required to be successful. Proofs of results leading to this answer require very sophisti-
cated diagonalization arguments. Two very general results (Theorems 7 and 8) are presented
which allow us to prove new diagonalization theorems by simple arithmetic manipulation of the
parameters of known results.

We also suggest that a plausible reason for Pitt’s connection not holding for language iden-
tification may be the unavailability of negative data (information about what is not in the
language) to the learning agent. We argue this by showing that an analog of Pitt’s connection
does hold for language learning if the learning agent is also given negative information. It should
be noted that in the context of function identification, where Pitt’s connection holds, negative
information is implicitly available to the learning agent because it can eventually determine if a
given ordered pair doesn’t belong to the graph of a function.

Rest of the paper is organized as follows. Section 2 informally discusses our main results and
motivates the study by describing scenarios which are partly modeled by team language learning.
Some identification criteria are informally introduced in this section. Section 3 introduces the
notation and Section 4 describes the identification criteria formally. Section 5 contains proofs
of our results.

2 Discussion

In the present section we informally introduce the definitions and discuss some of our findings.
The main subject of our investigation is identification of languages. However, with a view to
compare and contrast our results with analogous investigations in the context of function iden-
tification, we will present notions from both function identification and language identification.
Usually, we will first describe a notion in the context of function identification followed by the
description of an analogous notion for language identification.

Learning machines may be thought of as Turing machines computing a mapping from ‘finite
sequences of data’ into computer programs. A typical variable for learning machines is M. At
any given time, the input to a learning machine M is to be construed as a code for the data
available to M until that time. The output of M is taken to be a hypothesis conjectured by

2

M in response to the data available to it. For example, in the context of function learning, the
input is an initial segment of the graph of a function and the output is the index of a program
in some fixed acceptable programming system. We now describe what it means for a machine
to learn a function.

Let N denote the set of natural numbers. Let f be a total function and let n ∈ N . Then, the
initial segment of f of length n is denoted f [n]. The set of all initial segments of total functions,
{f [n] | f is a total function and n ∈ N}, is denoted SEG. It is easy to see that there exists a
computable bijection between SEG and N . Members of SEG are inputs to machines that learn
programs for functions, and we avoid notational clutter by using f [n] to denote the code for the
initial segment f [n]. We also fix an acceptable programming system and the output of a learning
machine is interpreted as the index of a program in this system. We say that M converges on
f to i just in case, for all but finitely many n, M(f [n]) = i. The following definition is Gold’s
criterion for successful identification of functions by learning machines.

Definition 1 [15] (a) M Ex-identifies f just in case M, fed the graph of f , converges to an
index of a program for f . In this case we say that f ∈ Ex(M).

(b) Ex denotes all such collections S of computable functions such that some machine Ex-
identifies each function in S.

The class Ex is a set theoretic summary of the capability of single machines to Ex-identify
collections of functions.

L. Blum and M. Blum [3] and Barzdin [1] showed that the class Ex is not closed under union.
This result may be viewed as a fundamental limitation on building general purpose devices
for learning functions, and, to an extent, justifies the use of heuristic methods in Artificial
Intelligence. However, this result also suggests a more general criteria of successful learning of
functions in which a team of machines is employed and success of the team is the success of
any one or more members in the team. The idea of team identification for functions was first
suggested by Case and extensively studied by Smith [31, 32]. The next definition describes team
identification of functions. Recall that a team of machines is a multiset of machines.

Definition 2 (a) A team of n machines, {M1,M2, . . . ,Mn}, is said to Teamm
n Ex-identify a

function f just in case at least m members in the team Ex-identify f . In this case we say that
f ∈ Teamm

n Ex({M1,M2, . . . ,Mn}).
(b) Teamm

n Ex is defined to be the class of sets S of computable functions such that some
team of n machines Teamm

n Ex-identifies each function in S.

Team1
nEx-identification was investigated by Smith [31, 32] and Teamm

n Ex-identification
was studied by Osherson, Stob, and Weinstein [21]. Pitt [23] noticed an interesting connection
between Team1

nEx-identification and function identification by a single probabilistic machine.
Probabilistic machines behave very much like computable machines except that every now and
then they have the ability to base their actions on the outcome of a random event like a coin flip.
(For a discussion of probabilistic Turing machines see Gill [14].) The next definition informally
describes probabilistic identification of functions; we refer the reader to [25] for detailed discus-
sion on probabilistic identification of functions. Below, P ranges over probabilistic machines.

Definition 3 [23, 25] Let p be such that 0 ≤ p ≤ 1.
(a) P Prob

p
Ex-identifies f just in case P Ex-identifies f with probability at least p. In

this case we say that f ∈ ProbpEx(P).
(b) ProbpEx = {S | (∃P)[S ⊆ ProbpEx(P)]}.

Pitt [23, 25]showed that if 1/(n+1) < p ≤ 1/n, then Team1
nEx = ProbpEx. In other words,

the collections of computable functions that can be identified by a single probabilistic machine
with probability at least p are exactly the same as the collections of computable functions that
can be identified by teams of n deterministic machines requiring at least one to be successful.

3

Using the above connection, Pitt and Smith [26, 27] studied the general case of Teamm
n Ex-

identification1 in which the criterion of success requires at least m out of n machines to be
successful. They showed that for each m, n > 0 such that m ≤ n, Teamm

n Ex = Team1
b n

m cEx.
However, the story is completely different for languages. We next describe preliminary

notions about language identification.

Definition 4 A sequence σ is a mapping from an initial segment of N into (N ∪ {#}). The
content of a sequence σ, denoted content(σ), is the set of natural numbers in the range of σ.
The length of σ, denoted by |σ|, is the number of elements in σ. For n ≤ |σ|, the initial segment
of σ of length n is denoted by σ[n].

Intuitively, #’s represent pauses in the presentation of data. SEQ denotes the set of all finite
sequences.

We now consider language learning machines.

Definition 5 A language learning machine is an algorithmic device that computes a mapping
from SEQ into N .

The output of a language learning machine M on finite sequence σ, denoted M(σ), is in-
terpreted as the index of a program (a grammar) in our fixed acceptable programming system
ϕ.

The set of all finite sequences of natural numbers and #’s, SEQ, can be coded onto N . Thus,
we can view these machines as taking natural numbers as input and emitting natural numbers
as output. Henceforth, we will refer to language-learning machines as just learning machines,
or simply as machines. We let M, with or without decorations, range over learning machines.

Definition 6 A text T for a language L is a mapping from N into (N ∪ {#}) such that L is
the set of natural numbers in the range of T . The content of a text T , denoted content(T), is
the set of natural numbers in the range of T .

Intuitively, a text for a language is an enumeration or sequential presentation of all the
objects in the language with the #’s representing pauses in the listing or presentation of such
objects. For example, the only text for the empty language is just an infinite sequence of #’s.

We let T , with or without decorations, range over texts. T [n] denotes the finite initial
sequence of T with length n. Hence, domain(T [n]) = {x | x < n}.

Initial sequences of texts are inputs to machines that learn grammars (acceptors) for r.e.
languages. In Definition 7 below we spell out what it means for a learning machine on a text to
converge in the limit.

Definition 7 Suppose M is a learning machine and T is a text. M(T)↓ (read: M(T) converges)

⇐⇒ (∃i)(
∞

∀ n) [M(T [n]) = i]. If M(T)↓, then M(T) is defined = the unique i such that

(
∞
∀ n)[M(T [n]) = i], otherwise we say that M(T) diverges (written: M(T)↑).

The following definition introduces Gold’s criterion for successful identification of languages.

Definition 8 [15]
(a) M TxtEx-identifies a text T just in case M, fed T , converges to a grammar for

content(T).
(b) M TxtEx-identifies an r.e. language L just in case M TxtEx-identifies each text for L.

In this case we say that L ∈ TxtEx(M).
(c) TxtEx denotes all such collections L of r.e. languages such that some machine TxtEx-

identifies each language in L.

The class TxtEx is a set theoretic summary of the capability of machines to TxtEx-identify
collections of r.e. languages.

We now define team identification of languages.

1The general case of team function identification was also studied by Osherson, Stob, and Weinstein [21].

4

Definition 9 (a) A team of n machines, {M1,M2, . . . ,Mn}, is said to Teamm
n TxtEx-identify

a text T just in case at least m members in the team TxtEx-identify T .
(b) A team of n machines {M1,M2, . . . ,Mn} is said to Teamm

n TxtEx-identify a language
L just in case {M1,M2, . . . ,Mn} Teamm

n TxtEx-identify each text for L. In this case we write
L ∈ Teamm

n TxtEx({M1,M2, . . . ,Mn}).
(c) Teamm

n TxtEx is defined to be the class of sets L of recursively enumerable languages
such that some team of n machines Teamm

n TxtEx-identifies each language in L.

Probabilistic language identification is the subject of next definition.

Definition 10 [23, 25] Let 0 ≤ p ≤ 1.
(a) P ProbpTxtEx-identifies L just in case for each text T for L, P TxtEx-identifies T

with probability at least p. In this case we write L ∈ ProbpTxtEx(P).
(b) Prob

p
TxtEx = {L | (∃P)[L ⊆ Prob

p
TxtEx(P)]}.

As already mentioned, the study of team language identification not only turns out to be
more difficult than team function identification, but it also has many surprises. Below, we
discuss some of these unexpected results.

In the context of function identification, we have the following result immediately following
from the results of Pitt and Smith [27].

Team2
4Ex = Team1

2Ex

The above result says that the collections of functions that can be identified by teams em-
ploying 4 machines and requiring at least 2 to be successful are exactly the same as those
collections which can be identified by teams employing 2 machines and requiring at least 1 to
be successful.

However, in the context of language identification, we are able to show the following result
which says that there are collections of languages that can be identified by teams employing
4 machines and requiring at least 2 to be successful, but cannot be identified by any team
employing 2 machines and requiring at least 1 to be successful. ⊃ denotes proper superset.

Team2
4TxtEx ⊃ Team1

2TxtEx

As a consequence of the above result, which follows from our Theorem 10, an analog of
Pitt’s connection does not hold for language identification. This fact turns out to be somewhat
surprising because many results about function identification were found to have analogous
counterparts in the context of language identification. Even more surprising is the following
result which follows from our Theorem 11.

Team3
6TxtEx = Team1

2TxtEx

We actually complete the picture for team language identification for success ratio 1/2 and as
a consequence of our results, we have the following result which says that probabilistic language
identification with probability at least 1/2 is strictly more powerful than team identification
with success ratio 1/2.

Prob
1
2 TxtEx −

⋃

j≥1

Team
j
2jTxtEx 6= ∅

The above findings are the subject of Section 5.3. Some of our proofs of the above results
use two diagonalization tools described in Section 5.2. These tools, presented in the form of
very general theorems, allow us to deduce new diagonalization results from simple arithmetic
manipulation of the parameters of known diagonalization arguments. For example, Theorem 7
allows us to employ results of the form Teami

jTxtEx − Teamk
l TxtEx 6= ∅ to prove results

of the form Teami′

j′TxtEx − Teamk′

l′ TxtEx 6= ∅ for ‘suitable’ values of i′, j′, k′, l′ obtainable
under ‘certain conditions’ from i, j, k, l.

5

In Section 5.4, we again employ the tools of Section 5.2 to give partial picture for success
ratios of the form 1/k, k > 2. For example, the following result sheds light on when introducing
redundancy in the team yields extra language learning ability.

(∀k ≥ 2)(∀ even j > 1)(∀i | j does not divide i)[Team
j
j·kTxtEx − Teami

i·kTxtEx 6= ∅]

As a consequence of the above result, we have the following relationship between probabilistic
language identification with probabilities of the form 1/k and team language identification.

(∀k ≥ 2)[Prob
1
k TxtEx −

⋃

j≥1

Team
j
j·kTxtEx 6= ∅]

Thus, we are able to establish that for probabilities of the form 1/k, probabilistic language
identification is strictly more powerful than team identification where at least 1/k of the members
in the team are required to be successful.

In Section 5.5, we present results for some other success ratios and shed light on why general
results are difficult to obtain.

Finally, in Section 5.6, we address the problem of why Pitt’s connection fails for language
identification from positive data, and conjecture that a plausible reason for probabilistic and
team identification behaving differently for language identification is the unavailability of neg-
ative data. In support of this conjecture, we consider a hypothetical learning criteria called
InfEx-identification. This criteria is like TxtEx-identification except that the learning ma-
chine is fed an informant of the language instead of a text for the language being learned. An
informant, unlike a text which only contains information about what is in the language, contains
information about both elements and non-elements of the language.2 We show that an analog of
the Pitt’s connection holds for probabilistic InfEx-identification and team InfEx-identification,
as they turn out to be essentially the same notions.

Before we undertake a formal presentation of our study, it is worth noting an aspect of team
identification that cannot be overlooked, namely, it may not always be possible to determine
which members in the team are successful. This property seems to rob team identification of any
possible utility. However, we present below scenarios in which the knowledge of which machines
are successful is of no consequence, all that matters is some are.

First, consider a hypothetical situation in which an intelligent species, somewhere in outer
space, is attempting to contact other intelligent species (such as humans on earth) by trans-
mitting radio signals in some language (most likely alien to humans). Being a curious species
ourselves, we would like to establish a communication link with such a species that is trying to
reach out. For this purpose, we could employ a team of, not necessarily cooperating, language
learners each of which perform the following three tasks in a loop:

(a) receive and examine strings of a language (eg., from a radio telescope);

(b) guess a grammar for the language whose strings are being received;

(c) transmit messages back to outer space based on the grammar guessed in step 2.

If one or more of the learners in the team is actually, but, possibly unknowingly, successful in
learning a grammar for the alien language, a correct communication link would be established
between the two species.

Consider another scenario in which two countries, A and B, are at war with each other.
Country B uses a secret language to transmit movement orders to its troops. Country A, with
an intention to confuse the troops of country B, wants to learn a grammar for country B’s
secret language so that it can transmit conflicting troop movement instructions in that secret
language. To accomplish this task, country A employs a “team” of language learners, each of
which perform the following three tasks in a loop:

2It is worth noting that the notion of informants is merely theoretical, as for any non-recursive r.e. language, the
only informants available are non-recursive. We consider informants purely for gaining a theoretical insight about
language learning.

6

(a) receive and examine strings of country B’s secret language;

(b) guess a grammar for the language whose strings are being received;

(c) transmit conflicting messages based on the grammar guessed in step 2 (so that B’s troops
think that these messages are from B’s Generals).

If one or more of the learners in the team is actually, but possibly unknowingly, successful
in correctly learning a grammar for country B’s secret language, then country A achieves its
purpose of confusing the troops of country B.

In both the scenarios described above, we have a team of learners trying to infer a grammar
for a language from positive data. The team is successful, just in case, some of the learners
in the team are successful. It should be noted that the notion of team language identification
models only part of the above scenario, as we ignore in our mathematical model the aspect of
learners transmitting messages back. We also mathematically ignore possible detrimental effects
of a learner guessing an incorrect grammar and transmitting messages that could interfere with
messages from a learner that infers a correct grammar (for example, the string ‘baby milk powder
factory’ in one language could mean the string ‘ammunition storage’ in another!). In no way
are these issues trivial; we simply don’t have a formal handle on them at this stage.

3 Notation

Recursion-theoretic concepts not explained below are treated in [29]. N denotes the set of
natural numbers, {0, 1, 2, . . .}. N+ denotes the set of positive integers, {1, 2, 3, . . .}. ∈, ⊆, and
⊂ denote, respectively, membership, containment, and proper containment for sets.

∗ denotes unbounded but finite; we let (∀n ∈ N)[n < ∗ < ∞]. Unless otherwise specified,
e, i, j, k, l, m, n, r, s, t, u, v, w, x, y, z, with or without decorations3, range over N . a, b, c,
with or without decorations, range over N ∪ {∗}. [m . . n] denotes the set {i | m ≤ i ≤ n}. We
say that a pair (i, j) is less than (k, l) iff [i < k ∨ [i = k ∧ j < l]].

∅ denotes the empty set. A, B, C, S, X, Y, Z, with or without decorations, range over sub-
sets of N . We usually denote finite sets by D. Cardinality of a set D is denoted by card(D).
Maximum and minimum of a set S are denoted by max(S) and min(S) respectively. By con-
vention, min(∅) = ∞ and max(∅) = 0.

Let η, with or without decorations, range over partial functions. For a ∈ (N ∪ {∗}), we say
that η1 is an a-variant of η2 (written η1 =a η2) just in case card({x | η1(x) 6= η2(x)}) ≤ a. For
example, η1 =∗ η2 means that η1 and η2 are finite variants. If card({x | η1(x) 6= η2(x)}) 6≤ a,
then we say that η1 is not an a-variant of η2 (written η1 6=a η2).

〈i, j〉 stands for an arbitrary computable one to one encoding of all pairs of natural numbers
onto N [29]. Corresponding projection functions are π1 and π2. (∀i, j ∈ N) [π1(〈i, j〉) = i and
π2(〈i, j〉) = j and 〈π1(x), π2(x)〉 = x]. Similarly, 〈i1, i2, . . . , in〉 denotes a computable one to
one encoding of all n-tuples onto N .

The set of all total recursive functions of one variable is denoted by R. f ranges over R. In
some situations q, g range over R; in other situations q, g range over N . In some situations p
ranges over R; in other situations p is a real number (construed as a probability). For a partial
recursive function η, domain(η) denotes the domain of η and range(η) denotes the range of η.
η(x)↓ iff x ∈ domain(η); η(x)↑ otherwise.

E denotes the class of all recursively enumerable languages. L, with or without decorations,
ranges over E . L, with or without decorations, ranges over subsets of E . We call the set
{〈x, y〉 | 〈x, y〉 ∈ L}, the x-th cylinder of L. L1∆L2 denotes (L1 − L2) ∪ (L2 − L1). For
a ∈ N ∪ {∗}, we say that L1 is an a variant of L2 (written: L1 =a L2) iff card(L1∆L2) ≤ a.

ϕ denotes a standard acceptable programming system (also referred to as standard acceptable
numbering) [28, 29]. ϕi denotes the partial recursive function computed by the ith program in
the standard acceptable programming system ϕ. Wi denotes the domain of ϕi. Wi is, then, the

3Decorations are subscripts, superscripts, primes and the like.

7

r.e. set/language (⊆ N) accepted by ϕ-program i. We can (and do) also think of i as (coding)
a (type 0 [16]) grammar for generating Wi. Φ denotes an arbitrary Blum complexity measure
[4] for ϕ. Wi,n denotes the set {x ≤ n | Φi(x) ≤ n}.

The quantifiers ‘
∞

∀ ’ and ‘
∞

∃ ’ mean ‘for all but finitely many’ and ‘there exists infinitely many’,
respectively.

We let σ, τ , and γ, with or without decorations, range over finite sequences. σ � τ denotes
concatenation of σ and τ . We sometimes abuse notation slightly, and use σ1 � k to denote the
concatenation of k at the end of sequence σ1; thus σ = σ1 � k is defined as follows:

σ(x) =







σ1(x), if x < |σ1|;
k, if x = |σ1|;
↑, otherwise.

4 Definitions

4.1 Language Identification

Definition 11 [15, 6, 22] Let a ∈ N ∪ {∗}.
(i) M TxtExa-identifies T ⇔ [M(T)↓ and WM(T) =a content(T)].
(ii) M TxtExa-identifies L (written: L ∈ TxtExa(M)) ⇐⇒ M TxtExa-identifies each text
for L.
(iii) TxtExa = {L | (∃M)[L ⊆ TxtExa(M)]}.

Definition 12 Let a learning machine M and language L be given. σ is said to be a stabilizing
sequence for M on L just in case the following hold:

(a) content(σ) ⊆ L, and

(b) (∀τ | content(τ) ⊆ L) [M(σ) = M(σ � τ)].

Definition 13 [3] σ is called a TxtExa-locking sequence for M on L just in case WM(σ) =a L
and σ is a stabilizing sequence for M on L.

Lemma 1 [3] If M TxtExa-identifies L, then there exists a TxtExa-locking sequence for M

on L.

4.2 Team Identification

A team of learning machines is any multiset of learning machines. We let M, with or without
decorations, range over teams of machines. In describing teams of machines, we use the nota-
tion for sets with the understanding that these sets are to be treated as multisets. Also, set
operations, ∪, ∩, ⊂, set difference, etc., on teams result in multiset of machines.

Definition 14 introduces team identification of languages.

Definition 14 Let m, n ∈ N+ and a ∈ N ∪ {∗}.
(a) A team of n machines {M1,M2, . . . ,Mn} is said to Teamm

n TxtExa-identify T just in
case there exist m distinct numbers i1, i2, . . . , im, 1 ≤ i1 < i2 < · · · < im ≤ n, such that each
of Mi1 ,Mi2 , . . . ,Mim

TxtExa-identifies T .
(b) Let L ∈ E . A team of n machines {M1,M2, . . . ,Mn} is said to Teamm

n TxtExa-
identify L (written: L ∈ Teamm

n TxtExa({M1,M2, . . . ,Mn})) just in case {M1,M2, . . . ,Mn}
Teamm

n TxtExa-identify each text for L.
(c)

Teamm
n TxtExa = {S | (∃M1,M2, . . . ,Mn)[S ⊆ Teamm

n TxtExa({M1,M2, . . . ,Mn})]}.

For Teamm
n TxtExa-identification criteria, we refer to the fraction m/n as the success ratio

of the criteria. In the following, for i > j, we take Teami
jTxtExa = {∅}.

8

Note that in the above definition we have allowed the possibility that for a given language
L, different machines in the team may be successful on different texts for L. The following
definition describes an alternative formulation in which successful machines in the team are
required to be successful on all texts for L.

Definition 15 (a) A team of n machines, {M1,M2, . . . ,Mn}, Lteamm
n TxtExa-identifies a

language L just in case at least m members in the team TxtExa-identify L.
(b) Lteamm

n TxtExa is defined to be the class of sets L of recursively enumerable languages
such that some team of n machines Lteamm

n TxtExa-identifies each language in L.

The next proposition shows that the above two formulations of team language are equivalent.

Proposition 1 Let m, n such that m ≤ n be given. Then, Teamm
n TxtExa = Lteamm

n TxtExa.

Proof. (Proposition 1) Clearly, Lteamm
n TxtExa ⊆ Teamm

n TxtExa. A proof of the other
direction requires Fulk’s [12, 13] adaptation of the technical machinery first introduced by Blum
and Blum [3].

We now show that Teamm
n TxtExa ⊆ Lteamm

n TxtExa. Suppose M1,M2, . . . ,Mn are
given. We construct M′

1,M
′
2, . . . such that

(∀L)[(∀ texts T for L)[card({i | 1 ≤ i ≤ n ∧ Mi(T)↓ ∧ WMi(T) = L}) ≥ m] ⇒ card({i |
1 ≤ i ≤ n ∧ L ∈ TxtExa(M′

i)}) ≥ m]
Given, L, let σL

1 , σL
2 , . . ., σL

n , be as follows (some of them may be undefined). If σL
i does

not get defined then, σL
i+1 also does not get defined. Along with σL

i we also define mL
i , for

1 ≤ i ≤ n.
Let σ be the lexicographically least sequence, if any, such that
(a) content(σ) ⊆ L, and
(b) there exists a j ∈ {1, . . . , n}, such that σ is a stabilizing sequence for Mj on L.
If such a (lexicographically least) σ exists, then let σL

1 = σ, and mL
1 = j, as in (b).

Now suppose σL
i has been defined (note that if σL

i does not get defined then σl
i+1 does not

get defined). Then, let σ be the lexicographically least extension of σL
i , if any, such that

(a’) content(σ) ⊆ L, and
(b’) there exists a j ∈ ({1, . . . , n}−{mL

1 , mL
2 , . . . , mL

i }), such that σ is a stabilizing sequence
for Mj on L.

If such a (lexicographically least) σ exists, then let σL
i+1 = σ, and mL

i+1 = j, as in (b’).
It is easy to see that if σL

i is defined, then σL
i and mL

i can be determined in the limit from
a text T for L. Note that this is possible since, if σ is not a locking sequence for M on L, then
one can determine so in the limit (from a text for L). This allows one to determine σL

1 , then
σL

2 , . . ., in the limit.
Now we describe the behaviour of M′

i on text T for L
M′

i(T) = MmL
i
(σL

i), if σL
i is defined. M′

i(T) is undefined otherwise.
Now, consider any L.
Let i ≤ n, be the largest number such that σL

i , is defined. Let T be a text for L such that
σL

i ⊆ T , and, for all j ∈ ({1, . . . , n}−{m1, m2, . . . , mi}), Mj(T)↑. Note that there exists such a
T , since, for all j ∈ ({1, . . . , n} − {m1, m2, . . . , mi}), there does not exist a stabilizing sequence
extending σL

i , for Mj on L. Now, on all texts T ′ for L, for 1 ≤ l ≤ i, M′
l(T

′) = MmL
l
(T). Also,

note that for 1 ≤ l ≤ n, such that l 6∈ {m1, m2, . . . , mi}, Ml(T)↑.
It immediately follows that, [card({i | 1 ≤ i ≤ n ∧ Mi(T)↓ ∧ WMi(T) = L}) ≥ m] ⇒

[card({i | 1 ≤ i ≤ n ∧ L ∈ TxtExa(M′
i)}) ≥ m].

In the sequel, we only consider Teamm
n TxtExa-identification.

4.3 Probabilistic Identification

A probabilistic learning machine may be thought of as an algorithmic device which has the
added ability of basing its actions on the outcome of a random event like a coin flip. More
precisely, let t be a positive integer greater that 1. Then, a probabilistic machine P may be

9

construed as an algorithmic machine that is equipped with a t-sided coin. The response of P to
input σ not only depends upon σ but also on the outcomes of coin flips performed by P while
processing σ. We refer the reader to Pitt [24, 25] for details of probabilistic learning machines.

Let Nm denote the set {0, 1, 2, . . . , m − 1}. An oracle for a t-sided coin, t > 1, also referred
to as a t-ary oracle, is an infinite sequence of integers i0, i1, i2, . . . such that for each j ∈ N ,
ij ∈ N t. (A typical variable for oracles is O.) Clearly, N∞

t , the infinite Cartesian product of
N t with itself, denotes the collection of all t-sided coin oracles. Let O be a t-ary oracle and let
P be a probabilistic learning machine. Then PO denotes a learner that behaves like P except
whenever P flips its coin, PO reads the result of the coin flip from the oracle O.

We now describe a probability measure on a single coin flip. For a t-sided coin, let (N t,Bt, prt)
be a probability space on the sample space N t, where Bt is the Borel field {S | S ⊆ N t} and
prt = card(S)/t. We employ this measure to describe a probability measure on t-ary oracles
next.

The sample space of events for oracles of a t-sided coin is N∞
t —the set of all infinite sequences

of numbers less than t. Let B∞
t be the smallest Borel field of subsets of N∞

t containing all the
sets N j−1

t × Aj × N∞
t , where for each j, Aj ∈ Bt. Then, let (N∞

t ,B∞
t , pr∞t) be a probability

space where pr∞t is defined as follows.
Given a nonempty set of n integers, i1, i2, i3, . . . , in, such that 0 < i1 < i2 < i3 < · · · < in,

let Ai1,i2,i3,...,in
denote the set N i1−1

t ×Ai1 ×N i2−i1−1
t ×Ai2 ×N i3−i2−1

t ×Ai3 ×· · ·×Ain
×N∞

t ,
where each Aij

∈ Bt. Then, pr∞t is defined on B∞
t such that pr∞t (Ai1,i2,...,in

) =
∏n

j=1 prt(Aij
).

Clearly, sets Ai1,i2,i3,...,in
are measurable (i.e. are members of B∞

t) [2].

4.3.1 Probabilistic Language Identification

Let P be a probabilistic machine equipped with a t-sided coin and let T be a text for some
language L ∈ E . Then, the probability of P TxtExa-identifying T is taken to be pr∞t ({O |
POTxtExa-identifies T}). The next lemma establishes that the set {O | POTxtExa-identifies T}
is measurable.

Lemma 2 [24] Let P be a probabilistic machine and let T be a text. Then {O |
PO TxtExa-identifies T} is measurable.

The following definition, motivated by the above lemma, introduces probability of identifi-
cation of a text.

Definition 16 [24] Let T be a text and P be a probabilistic machine equipped with a t-sided
coin (t ≥ 2). Then, pr∞t (P TxtExa-identifies T) = pr∞t ({O | PO TxtExa-identifies T}).

There is no loss of generality in assuming a two sided coin.

Lemma 3 (Adopted from [24, 25]) Let t, t′ ≥ 2. Let P be a probabilistic machine with a t-sided
coin. Then, there exists a probabilistic machine P′ with a t′-sided coin such that for each text
T , pr∞t′ (P′ TxtExa-identifies T) = pr∞t (P TxtExa-identifies T).

The next definition describes language identification by probabilistic machines. The above
lemma frees us from specifying the number of sides of the coin, thereby allowing us to talk about
probability function pr∞t without specifying t. For this reason, we will refer to pr∞t as simply
pr in the sequel.

Definition 17 [24] Let 0 ≤ p ≤ 1.
(a) P Prob

p
TxtExa-identifies L (written: L ∈ Prob

p
TxtExa(P)) just in case, for each

text T for L, pr(P TxtExa-identifies T) ≥ p.
(b) ProbpTxtExa = {L ⊆ E | (∃P)[L ⊆ ProbpTxtExa(P)]}.

10

5 Results

5.1 Team Language Identification with Success Ratio ≥ 2

3

We first consider the problem of when can a team be simulated by a single machine.
In the context of function identification, Osherson, Stob, and Weinstein [21] and Pitt and

Smith [27] have shown that the collections of functions that can be identified by teams with
success ratio greater than one-half (that is, a majority of members in the team are required to
be successful) are the same as those collections of functions that can be identified by a single
machine.

Theorem 1 [21, 27] (∀j, k | j
k > 1

2)[Team
j
kEx = Ex].

An analog of Theorem 1 for language identification holds for success ratio 2/3 as opposed
to success ratio 1/2 for function identification. Corollary 1 to Theorem 2 below says that the
collections of languages that can be identified by teams with success ratio greater than 2/3 (that
is, more than two-thirds of the members in the team are required to be successful) are the same
as those collections of languages which can be identified by a single machine.4 Corollary 2 is a
similar result about TxtEx∗-identification.

Theorem 2 (∀j, k | j
k > 2

3)(∀a ∈ N ∪ {∗})[Team
j
kTxtExa ⊆ TxtExd(j+1)/2e·a].

Corollary 1 (∀j, k | j
k > 2

3)[Team
j
kTxtEx = TxtEx].

Corollary 2 (∀j, k | j
k > 2

3)[Team
j
kTxtEx∗ = TxtEx∗].

To facilitate the proof of Theorem 2 and other simulation results, we define the following
technical notion:

We define grammar majority(g1, g2, . . . , gk) as follows:

Wmajority(g1,g2,...,gk) = {x | card({i | 1 ≤ i ≤ k ∧ x ∈ Wgi
}) > k/2}

Clearly, majority(g1, g2, . . . , gk) can be defined using the s-m-n theorem [30]. Intuitively,
majority(g1, g2, . . . , gk) is a grammar for a language that consists of all such elements that are
enumerated by a majority of grammars in g1, g2, . . . , gk.

Proof of Theorem 2. Let j, k, and a be as given in the hypothesis of the theorem. Let L
be Team

j
kTxtExa-identified by the team of machines {M1,M2, . . . ,Mk}. We define a machine

M that TxtExd(j+1)/2e·a-identifies L.
For a finite sequence σ, a text T and a machine M′, let

conv(M′, σ) = max({|τ | | τ ⊆ σ ∧ M′(τ) 6= M′(σ)})

conv(M′, T) = max({n | M′(T [n]) 6= M′(T [n + 1])})

Let mσ
1 , mσ

2 , . . . , mσ
k be a permutation of 1, 2, . . . , k, such that, for 1 ≤ r < k,

[(conv(Mmσ
r
, σ), mσ

r) < (conv(Mmσ
r+1

, σ), mσ
r+1)]. The reader should note that the “<” in the

previous expression refers to ordering on pairs.
Let M(σ) = majority(Mmσ

1
(σ),Mmσ

2
(σ), . . . ,Mmσ

j
(σ)).

We first show that if {M1,M2, . . . ,Mk} Team
j
kTxtExa-identifies L ∈ L, then M TxtEx∗-

identifies L. We will then prove the bound on errors. So suppose {M1,M2, . . . ,Mk}
Team

j
kTxtExa-identifies L ∈ L. Suppose T is a text for L. Now at least j of the machines

in {M1,M2, . . . ,Mk} TxtExa-identify L. In particular we have at least j of the machines

4Corollary 1 also appears in Osherson, Stob, and Weinstein [21], and may also be shown using an argument from
Pitt [24] about probabilistic language learning. The expression “aggregation” is used to denote the simulation of a
team by a single machine; see [20] for aggregation results for other identification criteria.

11

in {M1,M2, . . . ,Mk} converge on T . Thus, for 1 ≤ r ≤ j, limn→∞ m
T [n]
r ↓ (to say mr) and

Mmr
(T)↓. Moreover, card({r | 1 ≤ r ≤ j ∧ WMmr (T) =a L}) ≥ j − (k− j) = 2j − k > j

2 (since
at most k− j of the machines in {M1, . . . ,Mk} do not TxtExa-identify L). It thus follows that
M(T)↓ = majority(Mm1

(T),Mm2
(T), . . . ,Mmj

(T)), is a grammar for ∗-variant of L.
To see the bound on errors, consider a text T for a language L ∈ L. Note that each error

committed by the final grammar output by M on T is also committed by the final grammars of
at least d(j +1)/2e of the j earliest converging machines (on T) in the team {M1,M2, . . . ,Mk}.
Note that at least d(j + 1)/2e of the j earliest converging machines TxtExa-identify L. Thus
the errors committed by the final grammar of M is bounded by d(j + 1)/2e · a. Thus, if

{M1,M2, . . . ,Mk} Team
j
kTxtExa-identify L ∈ L, then M TxtExd(j+1)/2e·a-identifies L.

A slightly better analysis of the errors committed by the simulation given in the above proof
shows that

Theorem 3 (∀j, k | j > 2k/3)(∀a ∈ (N ∪ {∗}))[Team
j
kTxtExa ⊆ TxtEx

b 2j−k
b(3j−2k−1)/2c

·ac].

Corollary 3 to Theorem 4 below says that the collections of languages that can be identified
by a team with success ratio 2/3 (that is, at least two-thirds of the members in the team are
required to be successful) are the same as those collections of languages that can be identified
by a team of three machines at least two of which are required to be successful. Corollary 4 is
a similar result about TxtEx∗-identification with success ratio exactly 2/3.

Theorem 4 (∀j > 0)(∀a ∈ N ∪ {∗})[Team
2j
3jTxtExa ⊆ Team2

3TxtEx(j+1)·a].

Corollary 3 (∀j > 0)[Team
2j
3jTxtEx = Team2

3TxtEx].

Corollary 4 (∀j > 0)[Team
2j
3jTxtEx∗ = Team2

3TxtEx∗].

Proof of Theorem 4. Let j and a be as given in the hypothesis of the theorem. Suppose
{M1, . . . ,M3j} Team

2j
3jTxtExk-identify L. We describe machines M′

1,M
′
2, and M′

3 such that

L ⊆ Team2
3TxtEx(j+1)·a({M′

1,M
′
2,M

′
3}).

Let conv be as defined in the proof of Theorem 2. Let mσ
1 , mσ

2 , . . . , mσ
3j be a permutation of

1, 2, . . . , 3j, such that, for 1 ≤ r < 3j, [(conv(Mmσ
r
, σ), mσ

r) < (conv(Mmσ
r+1

, σ), mσ
r+1)].

M′
1(σ) = Mmσ

1
(σ).

M′
2(σ) = majority(Mmσ

2
(σ),Mmσ

3
(σ), . . . ,Mmσ

2j
(σ)).

M′
3(σ) = majority(Mmσ

1
(σ),Mmσ

2
(σ), . . . ,Mmσ

2j+1
(σ)).

Now suppose T is a text for L ∈ L. Consider the following two cases.
Case 1: At least 2j + 1 of the machines in {M1,M2, . . . ,M3j} converge on T .

In this case, in a way similar to that used in the proof of Theorem 2, we can show
that M′

3 TxtEx(j+1)·a-identifies T . Moreover, M′
1 (respectively, M′

2) TxtEx(j+1)·a-
identifies T if M

lims→∞ m
T [s]
1

TxtExa-identifies T (respectively, does not TxtExa-

identify T).

Case 2: Not case 1.

In this case clearly, M′
1 and M′

2 TxtEx(j+1)·a identify T .

Above proof can be modified to show the following result which says that probabilistic iden-
tification of languages with probability of success at least 2/3 is the same as team identification
of languages with success ratio 2/3.

Theorem 5 Prob2/3TxtEx = Team2
3TxtEx.

Theorem 6 below establishes that 2/3 is indeed the cut-off point at which team identification
of languages becomes more powerful than identification by a single machine.

Theorem 6 Team2
3TxtEx − TxtEx∗ 6= ∅.

12

Proof of Theorem 6.

Let L = {L | card({i ≤ 2 | max({y | 〈i, y〉 ∈ L}) = y0 < ∞ and Wy0
= L}) ≥ 2}.

We now show that L ∈ Team2
3TxtEx. Consider a team consisting of three machines M0,

M1, and M2. For 0 ≤ i ≤ 2, machine Mi behaves as follows: On T [n], Mi, outputs the
maximum y, if any, such that 〈i, y〉 ∈ content(T [n]). It is easy to verify that if T is a text for
some language in L, then at least two of the machines will converge in the limit to a grammar
for content(T). Thus L ∈ Team2

3TxtEx.
We now show that L 6∈ TxtEx∗. Suppose by way of contradiction that some machine M

TxtEx∗-identifies L. Without loss of generality, we assume that M is order independent [3]. We
then show that there exists a language in L that M fails to TxtEx∗-identify. The description
of this witness proceeds in stages and uses the operator recursion theorem [5]. We first give an
informal description of the staging construction, as more complicated versions of this idea are
used in some later proofs.

The construction uses a sequence of grammars p(0), p(1), p(2), . . . defined using the operator
recursion theorem. Two grammars p(0) and p(1) play a special role in the construction. Initially
p(0) and p(1) are coded into Wp(0) and Wp(1). This is to ensure that if infinitely many stages
are executed, then the language enumerated by p(0) (which would be the same as language
enumerated by p(1)) is in L.

In stage s, p(0) (in cooperation with p(2s)) and p(1) (in cooperation with p(2s + 1)) try
to enumerate two potentially infinitely distinct languages in L. This is achieved by “growing”
distinct cylinders infinitely often. Simultaneously an attempt is made to find if M changes its
mind either on Wp(0) defined so far or on Wp(1) defined so far. If a mind change is found, then
both Wp(0) and Wp(1) defined until the end of stage s are made equal and the next stage is
executed.

Now if an attempt to find a mind change is successful at every stage, then both Wp(0) and
Wp(1) are equal and belong to L. But then M makes infinitely many mind changes on a text
for this language and hence fails to TxtEx∗-identify it.

On the other hand, if some stage s starts but does not finish, then Wp(0)(= Wp(2s)) and
Wp(1)(= Wp(2s+1)) are two infinitely distinct languages in L. But, M converges to the same
grammar (on some text) for each of these languages, and hence it fails to TxtEx∗-identify at
least one of them.

We now proceed formally.
By the operator recursion theorem [5], there exists a 1-1 increasing, nowhere 0, recursive

function p such that the Wp(i)’s can be described as follows.
Enumerate 〈0, p(0)〉 and 〈1, p(1)〉 in both Wp(0) and Wp(1). Let σ0 be such that content(σ0) =

{〈0, p(0)〉, 〈1, p(1)〉}. Let W s
p(i) denote Wp(i) enumerated before stage s. Go to stage 1.

Begin {stage s}

Invariant: W s
p(0) = W s

p(1) = content(σs).
1. Enumerate W s

p(0) into Wp(2s) and Wp(2s+1).

Enumerate 〈2, p(2s)〉 in Wp(0), Wp(2s).
Enumerate 〈2, p(2s + 1)〉 in Wp(1), Wp(2s+1).
Let τ0 be an extension of σs such that content(τ0) = [Wp(0) enumerated until now].
Let τ1 be an extension of σs such that content(τ1) = [Wp(1) enumerated until now].

2. Set x = 0. Dovetail steps 2a and 2b until, if ever, step 2b succeeds. If and when step 2b
succeeds, go to step 3.

2a. Go to substage 0.
Begin {substage s′}

Enumerate 〈4, x〉 in Wp(0), Wp(2s).
Enumerate 〈5, x〉 in Wp(1), Wp(2s+1).
Set x = x + 1.
Go to substage s′ + 1.

End {substage s′}

13

2b. Search for i ∈ {0, 1} and n ∈ N such that M(τi �〈4+ i, 0〉� 〈4+ i, 1〉� . . .�〈4+ i, n〉) 6=
M(σs).

3. If and when 2b succeeds, let i, n be as found in step 2b.
Let S =

[Wp(0) enumerated until now]
⋃

[Wp(1) enumerated until now]
⋃

{〈4 + i, 0〉, 〈4 + i, 1〉, . . . , 〈4 + i, n〉}.
4. Let σs+1 be an extension of τi�〈4+i, 0〉�〈4+i, 1〉�. . .�〈4+i, n〉 such that content(σs+1) = S.

Enumerate S into Wp(0) and Wp(1).
Go to stage s + 1.

End {stage s}

Consider the following cases:
Case 1: All stages terminate.

In this case, let L = Wp(0) = Wp(1) ∈ L. Let T =
⋃

s σs. Clearly, T is a text for L. But, M

on T makes infinitely many mind changes (since the only way in which infinitely many stages can
be completed is by the success of step 2b infinitely often). Thus, M does not TxtEx∗-identify
L.
Case 2: Some stage s starts but does not terminate.

In this case, let L1 = Wp(0) = Wp(2s) ∈ L and L2 = Wp(1) = Wp(2s+1) ∈ L. Also, L1, L2 are
infinitely different from each other. For i ∈ {0, 1}, let Ti = τi � 〈4 + i, 0〉 � 〈4 + i, 1〉 � . . ., where
τi is as defined in stage s. Clearly, Ti is a text for Li. Now, M converges to M(σs) for both T1

and T2. Since L1, L2 are infinitely different from each other, WM(σs) is infinitely different from
at least one of L1 and L2. Hence, M does not TxtEx∗-identify at least one of L1 and L2.

From the above cases we have that M does not TxtEx∗-identify L.

5.2 Diagonalization Tools

Our proof of Theorem 6 above turns out to be the basic phase of most of the diagonaliza-
tion results presented in this paper. In fact most diagonalization results can be thought of as
dovetailing of this basic diagonalization step. We illustrate the idea in the context of another
diagonalization result (a more general version of which will be presented later in this section).

Team2
4TxtEx − Team1

2TxtEx 6= ∅.

A collection of languages that witnesses the above diagonalization is as follows.
Let L = {L | card({i ≤ 3 | max({y | 〈i, y〉 ∈ L}) = y0 < ∞ and Wy0

= L}) ≥ 2}.
The reader should note the similarity of the above class with the class witnessing the diag-

onalization in the proof of Theorem 6. Again, it not too difficult to establish that this class
belongs to Team2

4TxtEx. The proof that the above class does not belong to Team1
2TxtEx

is, however, more complex. This complexity arises from the fact that now the diagonalization
has to be carried out against any team consisting of two machines instead of just one machine.
This is achieved by nesting the diagonalization in the proof of Theorem 6 twice along differ-
ent “cylinders.” We omit the details (see [18]); a more general result for team ratio 1

2 will be
presented later in this section.

The above discussion points to the desirability of some general tools for diagonalization. All
the diagonalization proofs in this paper for Teami

jTxtEx vs Teamk
l TxtEx can be seen to

display the following properties:

• They can be made to work even if we force certain elements to be in each language of the
diagonalizing class (this is the purpose of set S1 in the following construction).

• They can be made to work even if we place restrictions on which cylinders are to be infinite
and which cylinders are to be empty (sets S4 and S3, respectively, serve this role in the
following construction).

14

• They can be made to work even if we specify which cylinders are to contain the coded
grammar (below, the set S2 specifies the cylinders into which a grammar for the language
can be coded).

Additionally, the changes in the diagonalization proof to ensure the above restrictions can be
carried out algorithmically (the predicate PROP below addresses this algorithmic nature of the
modification required).

Taking the above discussion into account, we now show how to generalize diagonalization ar-
guments of the form Teami

jTxtEx−Teamk
l TxtEx 6= ∅. In particular we show how, given a the-

orem of the above form, for parameters i, j, k, l satisfying certain conditions and for new parame-

ters i′, j′, k′, l′ satisfying certain conditions, we get a proof of Teami′

j′TxtEx−Teamk′

l′ TxtEx 6=
∅.

We first define these conditions and then present a general result (Theorem 7 below) which
yields new diagonalization results from known ones. We note that these conditions are satisfied
by all the diagonalization proofs in the present paper.

We first define a predicate (additional intuitive feel for the predicate is given after the
definition). For a recursive function q, and i, j, k, l ∈ N+, we define predicate PROP(q, i, j, k, l)
to be true just in case the following holds: Suppose,

(a) finite sets S1, S2, S3, S4, S
′
2 ⊆ N ,

(b) a team of ≤ l machines M,

are given, such that S2, S3, S4 are pairwise disjoint, S′
2 ⊆ S2, card(S2) = j, and

card(S′
2) ≤ i;

then Lq,i,j,k,l,S1,S2,S3,S4,S′
2,M 6⊆ Teamk

card(M)TxtEx(M), where

Lq,i,j,k,l,S1,S2,S3,S4,S′
2,M = {L | the following conditions are satisfied

(a) S1 ⊆ L,
(b) (∀x ∈ S4)[{y | 〈x, y〉 ∈ L} is infinite],
(c) card({x ∈ S2 | max({y | 〈x, y〉 ∈ L}) = y0 < ∞ ∧ Wy0

= L}) ≥ i,
(d) (L − S1) ∩ {〈x, y〉 | x ∈ S3 ∧ y ∈ N} = ∅,
(e) (∀x ∈ S′

2)[max({y | 〈x, y〉 ∈ L}) = q(S1, S2, S3, S4, S
′
2,M, x)],

(f) (∀x ∈ S′
2)[S1 ⊆ Wq(S1,S2,S3,S4,S′

2,M,x) ⊆ S1 ∪{〈z, y〉 | z 6∈ S3 ∧ y ∈ N}].
}

So, S1 is simply a finite subset of the language (this is to ensure that the diagonalization
can still be performed when one requires some finite sets, such as S1, to be contained in the
languages). For each element x ∈ S4, an infinite subset of the x-th cylinder of N is present
in the language. For each element x ∈ S3, no element from the x-th cylinder of N , except
perhaps members of S1, appears in the language. (S1, S3, S4 thus place certain constraints on
what elements are allowed in the language). For at least i elements x ∈ S2, a finite subset of the
x-th cylinder of N is present in the language and the maximum element of this subset codes a
grammar for the language (this ensures Teami

jTxtEx-identification as the cardinality of S2 is
j). In addition condition (e) requires that, for all x ∈ S ′

2 ⊆ S2, the grammar coded in the x-th
cylinder can be effectively found, and these grammars behave in a “nice” manner (condition
(f)).

We employ the above predicate to prove a theorem which given any known diagonalization
of the form Teami

jTxtEx − Teamk
l TxtEx 6= ∅, yields several related diagonalization results.

Theorem 7 Let 1 ≤ i ≤ j and 0 ≤ i1 ≤ i. If PROP(q, i, j, k, l), then, for i′, j′, k′, l′ satisfying
the following conditions,

(a) i′ ≤ i,
(b) k ≤ k′,

(c) l′ ≤ l + dk′ − k′

bi/i1c
e,

15

(d) j′ ≥ j + i − i1,
(e) 1 ≤ i′ ≤ j′ and 1 ≤ k′ ≤ l′,

there exists a recursive q′ such that, PROP(q′, i′, j′, k′, l′).

Note that it is sufficient to prove the theorem for equality in conditions (a) i′ = i, (b) k = k′,

(c) l′ = l+dk′− k′

bi/i1c
e, (d) j′ = j + i− i1. This is sufficient, since requiring more machines to be

successful can only hurt and allowing extra machines in the team (without corresponding increase
in the machines required to be successful) can only help. Different values of the parameter i1 in
the above theorem yield different diagonalization results. The use of i1 in the diagonalization
will become clear as we proceed.

Note that if PROP(q, i, j, k, l), then Teami
jTxtEx−Teamk

l TxtEx 6= ∅. This is so because

L =
⋃

{M|card(M)=l} Lq,i,j,k,l,{〈0,code(M)〉},{1,...,j},{0},∅,∅,M ∈ Teami
jTxtEx − Teamk

l TxtEx

(where code(·) denotes some fixed coding of sets of machines). To see this, first note that
one can construct a set of j machines (effectively in q, i, j, k, l, S1, S2, S3, S4, S

′
2,M) witnessing

Lq,i,j,k,l,S1,S2,S3,S4,S′
2,M ∈ Teami

jTxtEx. Thus L ∈ Teami
jTxtEx (value of M can be obtained

from the input text). Also, since Lq,i,j,k,l,{〈0,code(M)〉},{1,...,j},{0},∅,∅,M 6⊆ Teamk
l TxtEx(M), it

follows that L 6∈ Teamk
l TxtEx.

As an application of the above theorem, suppose Teami
jTxtEx − Teamk

l TxtEx 6= ∅
can be shown using a suitable proof. Then the above theorem allows us to conclude that
Teami

j+iTxtEx−Teamk
l+kTxtEx 6= ∅ can be shown using a suitable proof. By suitable proof

we mean a proof such that for some q, PROP can be satisfied.
Since all our diagonalization proofs can be easily modified to satisfy PROP, we will use

Theorem 7 implicitly to obtain general theorems. Note that in the usage of the above theorem

to obtain Teami′

j′TxtEx − Teamk′

l′ TxtEx 6= ∅ from Teami
jTxtEx − Teamk

l TxtEx 6= ∅, we
will usually only specify the value of i1 and leave the details of verifying that the properties
hold to the reader.

Proof of Theorem 7. Suppose i, j, k, l, q, i′, k′, j′, l′, i1 are given as above. Suppose a team
of ≤ l′ machines M is given. Suppose S1, S2, S3, S4, S

′
2 be any finite sets such that S2, S3, S4

are pairwise disjoint, S′
2 ⊆ S2, card(S2) = j′, and card(S′

2) ≤ i′.

Without loss of generality we assume that i′ = i (since Teami
j′TxtEx ⊆ Teami′

j′TxtEx, for

i′ ≤ i). Also, without loss of generality, we assume that card(M) = l′ (since Teamk′

l′′TxtEx ⊆

Teamk′

l′ TxtEx, for l′′ ≤ l′).
We now have to show that there exists a recursive function q′ such that

Lq′,i′,j′,k′,l′,S1,S2,S3,S4,S′
2,M 6⊆ Teamk′

card(M)TxtEx(M).

We construct q′ using the operator recursion theorem. The proof is based on the following idea.
In this proof we work with i special grammars. The argument proceeds in stages. At each
stage the following two processes are executed in parallel until a search for the mind change is
successful in the first process:

• An attempt is made to find if any one of the k′ seemingly most stable machines (in M)
makes a mind change.

• The i special grammars are divided into bi/i1c groups of cardinality i1 each. Then using
these groups we perform distinct diagonalization of the kind done for Teami

jTxtEx versus

Teamk
l TxtEx (because j′ − i′ ≥ j − i1, we would be able to use this diagonalization: in

case i1 is zero we do not need any of the earlier special grammars in this diagonalization).

If the search for a mind change is successful at each stage, then each of the i special grammars
yield the same language and less than k′ members of the team, M, converge on this language.
If on the other hand, some stage s starts but does not finish, then one of the bi/i1c groups

will yield the desired language witnessing the failure of team M to Teamk′

l′ TxtEx-identify
Lq′,i′,j′,k′,l′,S1,S2,S3,S4,S′

2,M.

16

We now proceed formally.
By a suitably padded version of the operator recursion theorem [5] there exists a recur-

sive, 1–1, q′ such that the sets Wq′(S1,S2,S3,S4,S′
2,M,x), may be defined as follows in stages.

We assume that the padding (to obtain q′) is such that, for all S1, S2, S3, S4, S
′
2,M, and x,

q′(S1, S2, S3, S4, S
′
2,M, x) > max({y | 〈x, y〉 ∈ S1}). Below, taking S1, S2, S3, S4, S

′
2,M to be

fixed we define, for all x, p(x) = q′(S1, S2, S3, S4, S
′
2,M, x). Let S′′

2 be a set of cardinality i
such that S′

2 ⊆ S′′
2 ⊆ S2. Let conv be as defined in the proof of Theorem 2. For σ, let Zσ be

the (lexicographic least) subset of M of cardinality k′ such that, for each M ∈ Zσ, for each
M′ ∈ M− Zσ, conv(M, σ) ≤ conv(M′, σ). Intuitively Zσ denotes the k′ seemingly most stable
machines in M on σ.

For each y ∈ S′′
2 , enumerate S1 ∪ {〈x, p(x)〉 | x ∈ S′′

2 } into Wp(y). Let σ0 be a sequence such
that content(σ0) = S1 ∪ {〈x, p(x)〉 | x ∈ S′′

2 }. Let S5 be a set disjoint from {x | (∃y)[〈x, y〉 ∈
S1]}, S2, S3, S4 such that card(S5) = i1. Let S6 be such that S5 ⊆ S6 ⊆ S5 ∪ (S2 − S′′

2), and
card(S6) = j. Let W s

p(x) denote Wp(x) enumerated before stage s. Go to stage 0.

Stage s

Dovetail steps 1 and 2 until step 1 succeeds. If and when step 1 succeeds go to step 3.
1. Search for an extension τ of σs such that Zσs

6= Zτ and content(τ)− content(σs) ⊆ {〈x, y〉 |
x 6∈ S3 ∪ S′′

2 }.
2. (∗ We now set up b i

i1
c distinct diagonalizations of the form Teami

jTxtEx−Teamk
l TxtEx.

Refer to these diagonalization by diagonalization number w, 0 ≤ w < b i
i1
c. ∗)

(∗ We also set up the parameters for these b i
i1
c diagonalizations. Intuitively, in diagonaliza-

tion number w, X1,w, X2, X3,w, X4,w, X ′
2, (M−Zσs

)∪Mw, correspond to the parameters
S1, S2, S3, S4, S

′
2,M in Lq,i,j,k,l,S1,S2,S3,S4,S′

2,M. ∗)
Let X2 = S6.
Let X ′

2 = S5.
Let Y0, Y1, . . . , Ybi/i1c−1 be pairwise disjoint subsets of S ′′

2 each of cardinality i1.
Let u0, u1, . . . , ubi/i1c−1 be pairwise distinct numbers such that each is greater than max(S2∪

S3∪S4∪S5∪S6∪{x | (∃y)[〈x, y〉 ∈ W s
p(z) for some z ∈ S′′

2]}). (∗ Intuitively, uw’s are new
cylinders. They are used to make the languages considered in different diagonalizations
different. ∗)

For each w < bi/i1c, let X3,w = {ur | r < bi/i1c ∧ r 6= w} ∪ S3 ∪ S′′
2 .

For each w < bi/i1c, let X4,w = {uw} ∪ S4.
Let map be a mapping from S ′′

2 to S5 such that for each w < bi/i1c, map(Yw) = S5.
Go to substage 0.
Substage s′

For each w < bi/i1c, let Mw = {M ∈ Zσs
| (∃y)[〈uw, y〉 ∈ WM(σs),s′] ∧ (∀w′ <

bi/i1c | w′ 6= w)(∀y)[〈uw′ , y〉 6∈ WM(σs),s′]}.
(∗ Intuitively, machines that converge to grammars which output elements of the

form 〈uw, y〉 cannot identify languages constructed in the w′-th diagonalization,
for w 6= w′. This is the motivation for the above definition. Machines in Mw

can participate in diagonalization number w and no other diagonalization (we say
that these machines are committed to diagonalization number w). Machines in
Zσs

−
⋃

w<b i
i1

cMw currently seem uncommitted to any particular diagonalization.

We will change substage in case these uncommitted machines, are later on found to
commit to some diagonalization (see step 2.1). Note that size of (M− Zσs

) ∪Mw

is ≤ l, for some diagonalization number w ∗).
For each w < bi/i1c, let X1,w =

⋃

x∈Yw
[Wp(x) enumerated until now].

Dovetail steps 2.1 and 2.2 until step 2.1 succeeds. If and when step 2.1 succeeds, go
to substage s′′ + 1, where s′′ is as found in step 2.1.

2.1 Search for an s′′ > s′ and an M ∈ Zσs
−

⋃

w Mw, such that (∃w < bi/i1c)(∃y)[〈uw, y〉 ∈
WM(σs),s′′] ∧ (∀w′ < bi/i1c | w′ 6= w)(∀y)[〈uw′ , y〉 6∈ WM(σs),s′′].

2.2 Set t = 0.

17

repeat

For each w < bi/i1c, for each x ∈ Yw such that card(Mw) ≤ l − (l′ − k′),
enumerate

Wq(X1,w,X2,X3,w,X4,w,X′
2,(M−Zσs)∪Mw,map(x)),t−{〈x, y〉 | x ∈ X3,w} into Wp(x).

Set t = t + 1.
forever

End substage s′

3. Let X =
⋃

x∈S′′
2
[Wp(x) enumerated until now].

Let σs+1 be an extension of τ such that content(σs+1) = content(τ)∪X ∪ {〈x, s〉 | x ∈ S4}.
Enumerate content(σs+1) into Wp(x), for x ∈ S′′

2 .
Go to stage s + 1.

End stage s

Let L = Lq′,i′,j′,k′,l′,S1,S2,S3,S4,S′
2,M. We show that L 6⊆ Teamk′

l′ TxtEx(M). We consider
the following cases.
Case 1: All stages terminate.

In this case, let T =
⋃

s content(σs). Clearly, for all x ∈ S′′
2 , Wp(x) = content(T) ∈

L. Moreover at most k′ − 1 of the machines in M converge on T . Thus L 6⊆

Teamk′

l′ TxtEx(M).

Case 2: Stage s starts but never terminates.

Note that, in each stage, there can be at most finitely many substages which terminate
(i.e. have a successful step 2.1). This is so since step 2.1 can succeed at most once
due to each machine in Zσs

. Let s′ be the substage in stage s which starts but
never terminates. Let Mw be as defined in stage s, substage s′. For each w <
bi/i1c, let Lw = Lq,i,j,k,l,X1,w,X2,X3,w,X4,w,X′

2,(M−Zσs)∪Mw
. Now for each w < bi/i1c,

Lw ⊆ L (to see this, first note that languages in Lw do not contain any element in
{〈x, y〉 | x ∈ X3,w}; thus step 2.2 in stage s, substage s′, makes, for each x ∈ Yw,
Wp(x) = Wq(X1,w,X2,X3,w,X4,w,X′

2,(M−Zσs)∪Mw,map(x)). Now the clauses (a)–(f) in the
definition of L can be easily verified using the corresponding clauses in the definition
of Lw and the definition of the parameters). Now, for each w < bi/i1c, Lw ∈ Lw,

M ∈ Zσs
−Mw, [WM(σs) 6= Lw]. Also, for some w < bi/i1c, card(Mw) ≤ b k′

bi/i1c
c.

Hence, using the fact that Lw 6⊆ Teamk
card((M−Zσs)∪Mw)TxtEx((M−Zσs

)∪Mw),

it follows that L 6⊆ Teamk′

card(M)TxtEx(M).

As an immediate application of the above theorem, we have the following corollary that will
be referred to later.

Corollary 5 (∀n ∈ N+)[Team2n
4n−1TxtEx − Teamn

2n−1TxtEx 6= ∅].

Proof. Note that Team2n
2nTxtEx−Teamn

n−1TxtEx 6= ∅ (since Teamn
n−1TxtEx = ∅). Now

the Corollary follows, by using Theorem 7, with i = i′ = 2n, j = 2n, j′ = 4n − 1, k = k′ = n,
l = n − 1, l′ = 2n − 1 and i1 = 1.

We now squeeze some more advantage out of this technique by showing a variant of Theo-
rem 7 which allows us to extend diagonalization results of the form

Teami
jTxtEx − Teamk

l TxtEx∗ 6= ∅

to related results of the form Teami′

j′TxtEx−Teamk′

l′ TxtEx∗ 6= ∅ for suitable values of i′, j′, k′,
and l′. To this end we define a predicate analogous to PROP.

18

For a recursive function q, and i, j, k, l ∈ N+, we define the predicate PROPS(q, i, j, k, l) iden-
tically to PROP(q, i, j, k, l) except that we have Lq,i,j,k,l,S1,S2,S3,S4,S′

2,M 6⊆ Teamk
card(M)TxtEx∗(M),

instead of Lq,i,j,k,l,S1,S2,S3,S4,S′
2,M 6⊆ Teamk

card(M)TxtEx(M). Our treatment below is brief.
We now employ the predicate PROPS to prove the following theorem which is analogous to

Theorem 7. The proof of the following theorem is similar to that of Theorem 7 (except that we
do not have anything similar to step 2.1, since we cannot use it for ∗-errors).

Theorem 8 Suppose 1 ≤ i ≤ j and 0 ≤ i1 ≤ i. If PROPS(q, i, j, k, l), then, for i′, j′, k′, l′

satisfying the following conditions,

(a) i′ ≤ i,

(b) k ≤ dk′ − k′

bi/i1c
e,

(c) l′ ≤ l + k′,
(d) j′ ≥ j + i − i1,
(e) 1 ≤ i′ ≤ j′ and 1 ≤ k′ ≤ l′,

there exists a recursive q′ such that, PROPS(q′, i′, j′, k′, l′).

Proof. Suppose i, j, k, l, q, i′, k′, j′, l′, i1 are given as above. Without loss of generality we as-
sume i′ = i.

By a suitably padded version of the operator recursion theorem [5], there exists a recursive,
1–1, q′ such that the sets Wq′(S1,S2,S3,S4,S′

2,M,x) may be defined as follows. We assume that the
padding (to obtain q′) is such that, for all S1, S2, S3, S4, S

′
2,M, and x, q′(S1, S2, S3, S4, S

′
2,M, x) >

max({y | 〈x, y〉 ∈ S1}). Below, taking S1, S2, S3, S4, S
′
2,M to be fixed we refer to q′(S1, S2, S3, S4, S

′
2,M, x)

by p(x). Let S′′
2 be a set of cardinality i such that S ′

2 ⊆ S′′
2 ⊆ S2. Let conv be as defined in

the proof of Theorem 2. For σ, let Zσ be the (lexicographic least) subset of M of cardinality k′

such that, for each M ∈ Zσ, for each M′ ∈ M− Zσ, conv(M, σ) ≤ conv(M′, σ).
For each y ∈ S′′

2 , enumerate S1 ∪ {〈x, p(x)〉 | x ∈ S′′
2 } into Wp(y). Let σ0 be a sequence such

that content(σ0) = S1 ∪ {〈x, p(x)〉 | x ∈ S′′
2 }. Let S5 be a set disjoint from {x | (∃y)[〈x, y〉 ∈

S1]}, S2, S3, S4 such that card(S5) = i1. Let S6 be such that S5 ⊆ S6 ⊆ S5 ∪ (S2 − S′′
2), and

card(S6) = j. Let W s
p(x) denote Wp(x) enumerated before stage s. Go to stage 0.

Stage s

Dovetail steps 1 and 2 until step 1 succeeds. If and when step 1 succeeds go to step 3.
1. Search for an extension τ of σs such that Zσs

6= Zτ and content(τ)− content(σs) ⊆ {〈x, y〉 |
x 6∈ S3 ∪ S′′

2 }.
2. Let X1 = W s

p(x), where x is an element of S′′
2 .

Let X2 = S6.
Let X ′

2 = S5.
Let M1 = M− Zσs

.
Let Y0, Y1, . . . , Ybi/i1c−1 be pairwise disjoint subsets of S ′′

2 of cardinality i1 each.
Let u0, u1, . . . , ubi/i1c−1 be pairwise distinct numbers such that each is greater than max(S2∪

S3 ∪ S4 ∪ S5 ∪ S6).
For each w < bi/i1c, let X3,w = {ur | r < bi/i1c ∧ r 6= w} ∪ S3 ∪ S′′

2 .
For each w < bi/i1c, let X4,w = {uw} ∪ S4.
Let map be a mapping from S ′′

2 to S5 such that for each w < bi/i1c, map(Yw) = S5.
Set t = 0.
repeat

For each w < bi/i1c, for each x ∈ Yw, enumerate Wq(X1,X2,X3,w,X4,w,X′
2,M1,map(x)),t −

{〈x, y〉 | x ∈ X3,w} into Wp(x).
Set t = t + 1.

forever

3. Let X =
⋃

x∈S′′
2
[Wp(x) enumerated until now].

Let σs+1 be an extension of τ such that content(σs+1) = content(τ)∪X ∪ {〈x, s〉 | x ∈ S4}.
Enumerate content(σs+1) into Wp(x), for x ∈ S′′

2 .

19

Go to stage s + 1.

End stage s

Let L = Lq′,i′,j′,k′,l′,S1,S2,S3,S4,S′
2,M. We show that L 6⊆ Teamk′

l′ TxtEx∗(M). We consider
the following cases.
Case 1: All stages terminate.

In this case, let T =
⋃

s content(σs). Clearly, for all x ∈ S′′
2 , Wp(x) = content(T) ∈

L. Moreover, at most k′ − 1 of the machines in M converge on T . Thus, L 6⊆

Teamk′

l′ TxtEx∗(M).

Case 2: Stage s starts but never terminates.

Let M1 be as defined in stage s. For each w < bi/i1c, let Lw =
Lq,i,j,k,l,X1,X2,X3,w,X4,w,X′

2,M1
. Now, for each w < bi/i1c, Lw ⊆ L (since step 2

in stage s, makes for each x ∈ Yw, Wp(x) = Wq(X1,X2,X3,w,X4,w,X′
2,M1,map(x))). Also,

for each w < w′ < bi/i1c, Lw ∈ Lw, Lw′ ∈ Lw′ , Lw and Lw′ are infinitely different.

Thus, for some w < bi/i1c, at most b k′

bi/i1c
c of the machines in Zσs

, TxtEx∗-identify

a non empty subset of Lw. Thus, since Lw 6⊆ Teamk
card(M1)TxtEx∗(M1), we have

L 6⊆ Teamk′

card(M)TxtEx∗(M).

Note that for all i ≤ j and k > l, there exists a q such that PROP(q, i, j, k, l) (respectively,
PROPS(q, i, j, k, l)).

5.3 Team Language Identification with Success Ratio 1

2

In the context of functions, the following result immediately follows from Pitt’s connection [25]
between team function identification and probabilistic function identification.

Theorem 9 [24, 27] (∀j > 0)[Team
j
2jEx = Team1

2Ex].

This result says that the collections of functions that can be identified by a team with success
ratio 1/2 are the same as those collections of functions that can be identified by a team employing
2 machines and requiring at least 1 to be successful. Consequently, Team1

2Ex = Team2
4Ex =

Team3
6Ex = · · ·, etc.

Surprisingly, in the context of language identification, we are able to show the following
Theorem 10 below which implies that there are collections of languages that can be identified
by a team employing 4 machines and requiring at least 2 to be successful, but cannot be identified
by any team employing 2 machines and requiring at least 1 to be successful. As a consequence
of this result, a direct analog of Pitt’s connection [24] for function inference does not lift to
language learning!

Theorem 10 Team2
4TxtEx − Team1

2TxtEx∗ 6= ∅.

Corollary 6 (∀j ∈ N+)[Team
j
2j+1TxtEx − Team1

2TxtEx∗ 6= ∅].

Proof of Theorem 10. By Theorem 6 Team2
3TxtEx−Team1

1TxtEx∗ 6= ∅. Theorem now
follows by using Theorem 8, with i = i′ = 2, j = 3, j′ = 4, i1 = 1, k = k′ = 1, l = 1, l′ = 2.

Even more surprising is Corollary 7 to Theorem 11 below which implies that the collections
of languages that can be identified by teams employing 6 machines and requiring at least 3 to
be successful are exactly the same as those collections of languages that can be identified by
teams employing 2 machines and requiring at least 1 to be successful!

Theorem 11 (∀j)(∀i)[Team
2j+1
4j+2TxtExi ⊆ Team1

2TxtExi·(j+1)].

Corollary 7 (∀j)[Team
2j+1
4j+2TxtEx = Team1

2TxtEx].

20

Corollary 8 (∀j)(∀i)[Team
j+1
2j+1TxtExi ⊆ Team1

2TxtExi·d(j+1)/2e].

Corollary 9 (∀j)(∀i)[Team
j+1
2j+1TxtExi ⊆ Team

j+2
2j+3TxtExi·d(j+1)/2e]

Proof of Theorem 11. Suppose M1,M2, . . . ,M4j+2 Team
2j+1
4j+2TxtExi-identify L. Let

M′
1 and M′

2 be defined as follows.
Let conv be as defined in the proof of Theorem 2. Let mσ

1 , mσ
2 , . . . , mσ

4j+2 be a permutation of
1, 2, . . . , 4j + 2, such that, for 1 ≤ r < 4j + 2, [(conv(Mmσ

r
, σ), mσ

r) < (conv(Mmσ
r+1

, σ), mσ
r+1)].

Let match(r, σ) = max({n ≤ |σ| | card((content(σ[n])−Wr,|σ|)∪ (Wr,n − content(σ))) ≤ i}).
Intuitively, match(r, σ) tells us how much Wr,|σ| and σ are similar (modulo i errors).

Let Sσ ⊆ [1 . . 2j + 1] be the (lexicographically least) set of cardinality j such that, for
1 ≤ r, k ≤ 2j + 1, [r ∈ Sσ ∧ k 6∈ Sσ] ⇒ [match(Mmσ

r
(σ), σ) ≥ match(Mmσ

k
(σ), σ)].

M′
1(σ) = majority(Mmσ

1
(σ),Mmσ

2
(σ), . . . ,Mmσ

2j+1
(σ)).

Let nσ
1 , nσ

2 , . . . , nσ
j be the distinct elements of {mr | r ∈ Sσ}.

M′
2(σ) = majority(Mmσ

2j+2
(σ),Mmσ

2j+3
(σ), . . . ,Mmσ

3j+2
(σ),Mnσ

1
(σ), . . . ,Mnσ

j
(σ)).

Now suppose T is a text for L ∈ L. Then at least 2j + 1 of the machines M1, . . . ,M4j+2

converge on T to a grammar for i variant of L. Thus, for 1 ≤ r ≤ 2j +1, limn→∞ m
T [n]
r ↓, to say

mr, and Mmr
(T)↓. Now if card({r | 1 ≤ r ≤ 2j +1 ∧ WMmr (T) =i L}) ≥ j +1, then M′

1(T)↓ =
majority(Mm1

(T),Mm2
(T), . . . ,Mm2j+1

(T)) is a grammar for an i · (j +1) variant of L. On the
other hand if card({r | 1 ≤ r ≤ 2j +1 ∧ WMmr (T) =i L}) < j +1, then, for 2j +1 < r ≤ 3j +2,

limn→∞ m
T [n]
r ↓, to say mr, and Mmr

(T)↓. Moreover card({r | 1 ≤ r ≤ 3j + 2 ∧ WMmr (T) =i

L}) ≥ j + 1. Moreover, since card({r | 1 ≤ r ≤ 2j + 1 ∧ WMmr (T) =i L}) < j + 1, we have

that limn→∞ ST [n] converges, to say S, and (∀r ∈ {1, 2 . . . , 2j + 1} − S)[WMmr (T) 6=i L]. It

immediately follows that card({r | [2j + 1 < r ≤ 3j + 2 ∨ r ∈ S] ∧ WMmr (T) =i L}) ≥ j + 1.
Now, M′

2(T)↓ = majority(Mm2j+2
(T),Mm2j+3

(T), . . . ,Mm3j+2
(T),Mn1

(T), . . . ,Mnj
(T)),

where n1, . . . , nj are the different members of {mr | r ∈ S}. Thus M′
2(T) is a grammar for an

i · (j + 1) variant of L.

From the above analysis we have: {M′
1,M

′
2} witness that L ∈ Team1

2TxtExi·(j+1).

Finally, we settle the question for team success ratio 1/2 by establishing Theorem 12 and 13
below. We note that the proofs of these two theorems are the most complicated in this paper.

Theorem 12 (∀n ∈ N+)[Team2n
4nTxtEx − Teamn

2nTxtEx 6= ∅].

Proof of Theorem 12. Consider the following class of languages.
L = {L | max({i < 4n | card({x | 〈i, x〉 ∈ L}) = x0 < ∞∧ Wx0

= L}) ≥ 2n}.
For i ∈ N , we call the set {〈i, x〉 | 〈i, x〉 ∈ L} as the i-th cylinder of L. max({x | 〈i, x〉 ∈ L}),

if it exists, is called the grammar coded into the i-th cylinder of L.
It is easy to see that L ∈ Team2n

4nTxtEx. Suppose by way of contradiction that the team
{M0,M1,M2, . . . ,M2n−1} is such that L ⊆ Teamn

2nTxtEx({M0,M1, . . . ,M2n−1}). Then by
the implicit use of the operator recursion theorem [5], there exists a 1-1, recursive, increasing p
such that Wp(·) may be described as follows.

Recall that [x1 . . x2] denotes the set {x | x1 ≤ x ≤ x2}. In the following argument, the
bulk of the work for diagonalization is done in steps 4 and 5. On the completion of step 5,
step 6 easily achieves diagonalization using essentially the technique developed in the proof of
Theorem 6. We give an informal overview of the proof.

Step 3 in the construction attempts to find if one of the most seemingly stable n machines in
the team {M0,M1,M2, . . . ,M2n−1} makes a mind change. If the search for such a mind change
succeeds infinitely often, then less than n out of the 2n machines in the team are successful,
achieving the diagonalization. So suppose that step 3 succeeds only finitely often. Let stage s

21

be the stage in which the search for mind change does not succeed. Step 6 of this stage s, if
reached, essentially carries out a diagonalization of Team2n

4n−1TxtEx versus Teamn
2n−1TxtEx.

This is essentially the diagonalization argument used in Corollary 5. For this we need to “spoil”
the grammar output by at least one of the n seemingly most stable machines, while having
spoiled at most one of the grammars coded into the first 2n cylinders of the language being
considered for diagonalization. Steps 4 and 5 essentially try to achieve this aim. This is done as
follows. First, step 4 temporarily “spoils” a set X (of size n) of grammars coded into the first
2n cylinders forcing grammars output by at least dcard(X)/2e of the n seemingly most stable
machines to be temporarily spoiled. (This is essentially done using a Team2r

3rTxtEx versus
Teamu

vTxtEx diagonalization, where u > 2v/3). Step 5 essentially iterates the process of step
4 reducing the cardinality of X by nearly half in each iteration until X becomes a singleton
set. In case steps 4,5 do not succeed in their aim, the diagonalization performed in these steps,
gives us the required diagonalizing language. While going through the construction, we suggest
that the reader simultaneously go through the case analysis after the construction (Case 2.1
corresponding to step 4; Case 2.2 corresponding to step 5 and Case 2.3 corresponding to step
6).

We now proceed formally. Let lmc be a function such that lmc(M, σ) = max({|τ | | τ ⊆ σ ∧
M(τ) 6= M(σ)}). Enumerate 〈0, p(0)〉, 〈1, p(1)〉, . . . , 〈2n−1, p(2n−1)〉 in Wp(0), Wp(1), . . . , Wp(2n−1).
Let σ0 be such that content(σ0) = {〈0, p(0)〉, 〈1, p(1)〉, . . . , 〈2n−1, p(2n−1)〉}. Set avail = 2n−1
(intuitively, avail denotes the least number such that, for all i > avail, p(i) is available for diag-
onalization). W s

p(·) denotes Wp(·) enumerated before stage s. Go to stage 0.

Begin stage s

Invariant W s
p(0) = W s

p(i) = content(σs), for all i < 2n.

1. Let Z ⊆ [0 . . 2n − 1] be such that, card(Z) = n and for all i ∈ Z and for all j ∈
([0 . . 2n − 1] − Z), lmc(Mi, σs) ≤ lmc(Mj , σs).

(∗ Intuitively, Z denotes the set of n machines which have not changed their conjectures
recently on σs, i.e., they are the seemingly n most “stable” machines on σs. ∗)

2. Dovetail steps 3 and 4–6 until step 3 succeeds. If and when step 3 succeeds, go to step 7.
3. Search for an extension τ of σs such that, for some i ∈ Z, Mi(σs) 6= Mi(τ) and content(τ)−

content(σs) ⊆ {〈x, y〉 | x ≥ 2n}.
(∗ Note that if this step succeeds infinitely often, then less than n members of the team

M1,M2, . . . ,M2n converge on a suitable text for some language in L. ∗)
4. (∗ Intuitively, the aim of this step is to temporarily spoil at least n/2 machines in Z,

while temporarily spoiling at most n of the grammars coded into the first 2n cylinders of
the diagonalizing language. Simultaneously a diagonalization similar to Team2n

3nTxtEx,
versus Teamu

vTxtEx, for u > 2v/3, is carried out. This diagonalization uses cylinders
[0 . . n−1] and [2n . . 4n−1] in the diagonalizing language for coding of grammars. It uses
the fact that if step 4a does not succeed then < 3n/2 of the machines in M0, . . . ,M2n−1

can potentially identify any language considered in the diagonalization in step 4b. Note
that if the aim of temporarily spoiling at least n/2 machines in Z is not successful then
the diagonalization will succeed. ∗)

For each i < n, let qi = p(avail + 1 + i).
Set avail = avail + n.
For each i < n, enumerate 〈2n + i, qi〉 in Wp(0).
For each i < n, enumerate [Wp(0) enumerated until now] into Wp(i) and Wqi

.
Set m = 1 + max({x | {〈4n, x〉, 〈4n + 1, x〉} ∩ [Wp(0) enumerated until now] 6= ∅}).
Dovetail steps 4a and 4b until, if ever, step 4a succeeds. If and when step 4a succeeds, go

to step 5.
4a. Search for Y ⊆ Z such that card(Y) ≥ n/2 and for each i ∈ Y , there exists an l ∈ {4n, 4n+1}

and an x ≥ m such that WMi(σs) enumerates 〈l, x〉.
4b. Let τ0 be an extension of σs such that content(τ0) = [Wp(0) enumerated until now]. Go to

substage 4b:0.
Begin substage 4b:t

22

(∗ Invariant: for all i < n, j < n, [Wp(i) enumerated until now] = [Wqj
enumerated

until now] = [Wp(0) enumerated until now]. ∗)
4b.1. For each i < n, let q1

n+i = p(avail + 1 + i).
For each i < n, let q2

n+i = p(avail + n + 1 + i).
Set avail = avail + 2n.
Let Z ′ ⊆ ([0 . . 2n − 1] − Z) be such that card(Z ′) = dn/2 + 1/2e and, for all i ∈ Z ′

and j ∈ ([0 . . 2n − 1] − (Z ∪ Z ′)), lmc(Mi, τt) ≤ lmc(Mj , τt).
4b.2. Set m1 = 1 + max({x | {〈4n, x〉, 〈4n + 1, x〉} ∩ [Wp(0) enumerated until now] 6= ∅}).

For each i < n, enumerate [Wp(0) enumerated until now] into Wq1
n+i

and Wq2
n+i

.

For each i < n and j < n, enumerate 〈3n + i, q1
n+i〉 in Wp(j) and Wq1

n+j
.

For each j < n, enumerate 〈4n, m1〉 in Wp(j) and Wq1
n+j

.

For each i < n and j < n, enumerate 〈3n + i, q2
n+i〉 in Wqj

and Wq2
n+j

.

For each j < n, enumerate 〈4n + 1, m1〉 in Wqj
and Wq2

n+j
.

4b.3. Search for a γ extending τt and i ∈ Z ′ such that Mi(γ) 6= Mi(τt) and content(γ) −
content(τt) ⊆ {〈3n + i, q1

n+i〉, 〈3n + i, q2
n+i〉 | i < n} ∪ {〈4n, m1〉, 〈4n + 1, m1〉}.

4b.4. If and when such a γ is found in step 4b.3.
Let S = content(γ) ∪[Wp(0) enumerated until now] ∪[Wq0

enumerated until now].
For each i < n, enumerate S into Wp(i) and Wqi

.
Let τt+1 be an extension of γ such that content(τt+1) = S.
Go to substage 4b:(t + 1).

End substage 4b:t
5. (∗ Note that card(Y) ≥ n/2. Thus at least n/2 grammars in Z are temporarily spoiled,

whereas at most n grammars coded into the first 2n cylinders (denoted by X below)
of the diagonalizing language are temporarily spoiled. The aim of this step is to in-
ductively reduce the size of X in each iteration of the while loop, while ensuring that
card(Y) ≥ card(X)/2 at the end of each iteration. If successful, this would eventually
give us card(X) ≥ 1 and card(Y) ≥ 1. Simultaneously, in each iteration, a diagonaliza-
tion of the form: Team2n

3nTxtEx versus Teamu
vTxtEx, for u > 2v/3, is carried out. If

the aim of step 5 is not successful, then this diagonalization will succeed, and give us a
diagonalizing language. ∗)

Let Y be as found in step 4a.
Set v = 4n + 2. Set X = [0 . . (n − 1)].
while card(X) > 1 do

Let S =
⋃

i∈([0 . . 2n−1]−X)[Wp(i) enumerated until now].

For each i ∈ ([0 . . 2n − 1] − X), enumerate S in Wp(i).
(∗ Invariants maintained by the while loop at this point are:

(i) (∀j, j′ ∈ ([0 . . 2n − 1] − X))[[Wp(j) enumerated until now] =
[Wp(j′) enumerated until now]].

(ii) (∀j ∈ Y)(∃x | 4n ≤ π1(x) < v)[x ∈ WMj(σs) ∧ (∀j′ ∈ [0 . . 2n −
1] − X)[x 6∈ [Wp(j′) enumerated until now]]]

(Note that invariant (ii) will also be satisfied when the loop is ex-
ited. Intuitively, this invariant means that currently machines in
Y and the grammars coded into cylinders in X are temporarily
“spoiled”. And thus they cannot take part in the diagonaliza-
tion in this iteration. These would remain spoiled till the end of
current iteration, when X and Y are redefined.)

(iii) card(Y) ≥ card(X)/2.
(iv) card(X) ≤ n. ∗)

(∗ Moreover, after each iteration of the while loop, card(X) decreases (actu-
ally card(X) nearly halves after each iteration) ∗).

(∗ Intuitively, the aim of this iteration is to temporarily spoil at least card(X)/4
machines in Z, while temporarily spoiling at most dcard(X)/2e of the first 2n
cylinders of the diagonalizing language. Simultaneously a diagonalization similar

23

to Team2n
3nTxtEx versus Teamu

vTxtEx, for u > 2v/3, is carried out. This di-
agonalization uses cylinders ([0 . . 2n − 1] ∪ [2n . . 3n + card(X) − 1]) − X in the
diagonalizing languages for coding of grammars. Note that if the aim of temporarily
spoiling at least card(X)/4 machines in Z is not successful then the diagonalization
will succeed. ∗)

For each i < card(X), let qi = p(avail + 1 + i).
Set avail = avail + card(X).
Let X1, X2 ⊆ ([0 . . 2n − 1] −X) be such that, card(X1) = bcard(X)/2c, card(X2) =
dcard(X)/2e and X1 ∩ X2 = ∅.

For i ∈ X1 and j < card(X), enumerate [Wp(i) enumerated until now] into Wqj
.

For each i < card(X) and j ∈ ([0 . . 2n − 1] − X) and k < card(X), enumerate
〈2n + i, qi〉 in Wp(j) and Wqk

.
5a. Let τ0 be an extension of σs such that content(τ0) = [Wq0

enumerated until now].
Go to substage 5:0.
Begin substage 5:t

(∗ Invariant: for all i ∈ [0 . . 2n−1]−X, for all j < card(X), [Wp(i) enumerated
until now] = [Wqj

enumerated until now]. ∗)
For each i < 2n − card(X), let q1

card(X)+i = p(avail + 1 + i).

For each i < 2n − card(X), let q2
card(X)+i = p(avail + 2n − card(X) + 1 + i).

Set avail = avail + 4n − (2 · card(X)).
Let Z ′ ⊆ ([0 . . 2n − 1] − Z) be such that card(Z ′) = card(Y) and, for all

i ∈ Z ′ and j ∈ ([0 . . 2n − 1] − (Z ∪ Z ′)), lmc(Mi, τt) ≤ lmc(Mj , τt).
Set m1 = 1+max({x | {〈v, x〉, 〈v+1, x〉}∩ [Wq0

enumerated until now] 6= ∅}).
For each i < 2n − card(X), enumerate [Wq0

enumerated until now] into
Wq1

card(X)+i
and Wq2

card(X)+i
.

For each i < 2n − card(X), j ∈ X1 and k < card(X2), enumerate 〈2n +
card(X) + i, q1

card(X)+i〉 in Wp(j), Wqk
, Wq1

card(X)+i
.

For each i < 2n − card(X), j ∈ X1 and k < card(X2), enumerate 〈v, m1〉
in Wp(j), Wqk

, Wq1
card(X)+i

.

For each i < 2n − card(X), j ∈ X2 and k < card(X1), enumerate 〈2n +
card(X) + i, q2

card(X)+i〉 in Wp(j), Wqcard(X2)+k
, Wq2

card(X)+i
.

For each i < 2n − card(X), j ∈ X2 and k < card(X1), enumerate 〈v + 1, m1〉
in Wp(j), Wqcard(X2)+k

, Wq2
card(X)+i

.

Dovetail steps 5a.1 and 5a.2 until, if ever, one of them succeeds. If step 5a.1
succeeds before step 5a.2 does, if ever, then go to step 5b. If step 5a.2
succeeds before step 5a.1 does, if ever, then go to step 5a.3.

5a.1. Search for a Y ′ ⊆ (Z−Y), such that card(Y ′) = card(Y) and, for each i ∈ Y ′,
there exists an l ∈ {v, v +1} and an x ≥ m1 such that WMi(σs) enumerates
〈l, x〉.

5a.2. Search for an extension γ of τt and an i ∈ Z ′ such that Mi(τt) 6= Mi(γ) and
content(γ)− content(τt) ⊆ {〈2n + card(X) + i, q1

card(X)+i〉, 〈2n + card(X) +

i, q2
card(X)+i〉 | i < 2n − card(X)} ∪ {〈v, m1〉, 〈v + 1, m1〉}.

5a.3. Let γ be as found in step 5a.2.
Let S = content(γ) ∪[Wq0

enumerated until now] ∪[Wqcard(X)−1
enumerated

until now].
For each j ∈ [0 . . 2n − 1] − X, enumerate S into Wp(j).
For each i < card(X), enumerate S into Wqi

.
Let τt+1 be an extension of γ such that content(τt+1) = S.
Go to substage 5:t + 1.

End substage 5:t
5b. Let Y ′ be as found in step 5a.1.

Set Y1 = {i ∈ Y ′ | WMi(σs) enumerates 〈v, x〉 for some x ≥ m1 as observed in step

24

5a.1}.
Set Y2 = {i ∈ Y ′ − Y1 | WMi(σs) enumerates 〈v + 1, x〉 for some x ≥ m1 as observed

in step 5a.1}.
if card(Y1)/card(X1) ≥ 1/2, then set X = X1, Y = Y1.
else set X = X2, Y = Y2.
endif

Set v = v + 2.
endwhile

6. (∗ Note that card(X) = 1 and card(Y) ≥ 1. Thus at least one of the machines in Z
is spoiled, whereas only one of the grammars coded into the first 2n cylinders of the
diagonalizing language is spoiled. Now it is possible to do a diagonalization of the form
Team2n

4n−1TxtEx versus Teamn
2n−1TxtEx. ∗)

Set v = v + 2.
Set q0 = p(avail + 1).
Set avail = avail + 1.
Let i0, i1, . . . , i2n−1 be such that {p(ij) | j < 2n} = {p(j) | j ∈ ([0 . . 2n − 1] − X)} ∪ {q0}.
Let S = {〈2n, q0〉} ∪

⋃

i∈[0 . . 2n−1]−X [Wp(i) enumerated until now].

For each i ∈ ([0 . . 2n − 1] − X), enumerate S into Wp(i) and Wq0
.

Let τ0 be an extension of σs such that content(τ0) = Wp(0) enumerated until now.
Go to substage 6:0.
Begin substage 6:t

For each i < 2n − 1 and j < 2n, let qj
1+i = p(avail + 1 + j · (2n − 1) + i).

Set avail = avail + 2n · (2n − 1).
Let Y ′ ⊆ ([0 . . 2n − 1] − Z) be such that card(Y ′) = card(Y) and, for i ∈ Y ′ and

j ∈ ([0 . . 2n − 1] − (Z ∪ Y ′)), lmc(Mi, τt) ≤ lmc(Mj , τt).

For each i < 2n − 1, j < 2n, enumerate 〈2n + 1 + i, qj
1+i〉 in Wp(ij).

Set m1 = 1 + max({x | (∃w, j | j < 2n)[〈w, x〉 ∈ [Wp(ij) enumerated until now]]}).
For each j < 2n, enumerate 〈v + j, m1〉 in Wp(ij).
For each j < 2n and i < 2n− 1, enumerate [Wp(ij) enumerated until now] into Wqj

1+i
.

6a. Search for an extension γ of τt and i ∈ ((Z ∪Y ′)−Y), such that Mi(τt) 6= Mi(γ) and
content(γ)− content(τt) ⊆ {〈2n + 1 + i, qj

1+i〉 | j < 2n∧ i < 2n− 1} ∪ {〈v + j, m1〉 |
j < 2n}.

6b. Let γ be as found in step 6a.
Let S = content(γ) ∪

⋃

j<2n[Wp(ij) enumerated until now].
For each j < 2n, enumerate S into Wp(ij).
Let τt+1 be an extension of τt such that content(τt+1) = S.
Go to substage 6:t + 1.

End substage 6:t
7. If and when step 3 succeeds, let τ be as found in step 3.

Let S = content(τ) ∪
⋃

i<2n[Wp(i) enumerated until now].
For each i < 2n, enumerate S into Wp(i).
Let σs+1 be as extension of τ such that content(σs+1) = S.
Set avail = max({avail} ∪ {x | (∃i < 4n)[〈i, p(x)〉 ∈ S]}).
Go to stage s + 1.

End stage s

Now we consider the following cases.
Case 1: All stages terminate.

In this case, clearly Wp(0) = Wp(1) = Wp(2) = . . . = Wp(2n−1). Let L = Wp(0).
Clearly, for i < 2n, max({x | 〈i, x〉 ∈ L}) = p(i). Thus L ∈ L. Also T =

⋃

s σs is a
text for L. However at most n− 1 of the machines M0,M1, . . . ,M2n−1 converge on
T .

Case 2: Some stage s starts but does not terminate.

25

Let Z be as defined in stage s. Now for i ∈ Z and any text T such that σs ⊆ T ,
and content(T) ⊆ content(σs) ∪ {〈x, y〉 | x ≥ 2n, y ∈ N}, Mi(T) = Mi(σs). We now
consider following subcases. All step numbers and substages referred to below stand
for the corresponding steps and substages in stage s.
Case 2.1: In stage s the procedure enters but does not leave step 4.

For each i < n, let qi be as defined in step 4. Let m be as defined in step
4. Note that the number of i’s in Z, such that (∃x ≥ m)(∃l ∈ {4n, 4n +
1})[〈l, x〉 ∈ WMi(σs)] is less than n/2. Let τt be as defined in step 4b.
Case 2.1.1: All substages at step 4b terminate.

In this case, clearly for i < n and j < n, Wp(i) = Wqj
. Let

L = Wp(0). Clearly, L ∈ L. Moreover {〈4n, x〉 | 〈4n, x〉 ∈ L} is in-
finite. Also because step 4a does not succeed and step 4b.3 succeeds
infinitely often, card({i < 2n | Mi TxtEx identifies L}) < (dn/2+
1/2e−1)+n/2. Thus L 6∈ Teamn

2nTxtEx({M0,M1, . . . ,M2n−1}).

Case 2.1.2: Some substage 4b:t at step 4b starts but does not terminate.

In this case, for i < n, let q1
n+i, q

2
n+i, be as defined in step 4b.1

of substage 4b:t. Clearly, Wp(0) = Wp(1) = · · · = Wp(n−1) =
Wq1

n
= Wq1

n+1
= . . . = Wq1

2n−1
and Wq0

= Wq1
= · · · = Wqn−1

=

Wq2
n

= Wq2
n+1

= . . . = Wq2
2n−1

. Let L1 = Wp(0) and L2 = Wq0
.

It is easy to see that L1, L2 ∈ L and L1 6= L2. Moreover, for
all i ∈ Z ∪ Z ′, for any text T for L1 or L2 such that τt ⊆ T ,
Mi(T) = Mi(τt). This, along with the fact that step 4a does not
succeed, implies that at least one of L1 or L2 is TxtEx-identified

by less than n − dn/2 + 1/2e + n/2+dn/2+1/2e
2 of the machines in

M0,M1, . . . ,M2n−1.

Case 2.2: In stage s the procedure reaches step 5 but does not reach step 6.

Let X, Y be as in the last iteration of the while loop which is (partly) exe-
cuted in step 5. Also for at least card(Y) many i’s in Z, WMi(σs) enumerates
some element (since step 4a/5a.1 (in the previous while loop) succeeded)
which is neither in the language L defined in Case 2.2.1 below, nor in L1 or
L2 defined in Case 2.2.2 below; thus, Mi does not TxtEx-identify either
of the languages L, L1 and L2. For each i < card(X), let qi be as defined
in the last iteration of the while loop in step 5. Let τt be as defined in the
last iteration of the while loop in step 5.
Case 2.2.1: All substages in the last iteration of the while loop in step 5
terminate.

In this case, clearly for i ∈ ([0 . . 2n − 1] − X) and j < card(X),
Wp(i) = Wqj

. Let L = Wq0
. Clearly, L ∈ L. Let T =

⋃

t τt. It is
easy to verify that T is a text for L. Moreover, for less than card(Y)
many i’s in ([0 . . 2n−1]−Z), Mi converges on T . Thus, since there
are at least card(Y) many i’s in Z such that WMi(σs) enumerates
some element which is not in L (since step 4a/5a.1 (in the previous
while loop) succeeded and the invariants of the while loop are satis-
fied), we have M0,M1, . . . ,M2n−1 do not Teamn

2nTxtEx-identify
L.

Case 2.2.2: Some substage 5:t in step 5 starts but does not terminate.

In this case, for i < (2n − card(X)), let q1
card(X)+i and q2

card(X)+i

be as defined in substage 5:t of the last iteration of the while loop
in step 5. Clearly, for i ∈ X1, j < card(X2) and k < 2n− card(X),
Wp(i) = Wqj

= Wq1
card(X)+k

. Also, for i ∈ X2, j < card(X1) and

k < 2n − card(X), Wp(i) = Wqcard(X2)+j
= Wq2

card(X)+k
. Let L1 =

26

Wq0
and L2 = Wqcard(X)−1

. Clearly, both L1 and L2 are members
of L. Also, L1 6= L2.

Also since steps 5a.1, 5a.2 do not succeed in substage 5:t, ar-
guing in a way similar to that in case 2.1.2 we have that, at least
one of L1, L2 is TxtEx-identified by less than n many machines
in {M0,M1, . . . ,M2n−1}.

Case 2.3: In stage s the procedure reaches step 6.

In this case, for each i ∈ Y , WMi(σs) enumerates an element (due to com-
pletion of all iterations of the while loop in step 5) which neither is in the
language, L, defined in Case 2.3.1 below nor belongs to any language in
{Lj | j < 2n − 1} defined in Case 2.3.2 below; thus, Mi does not TxtEx

identify either L or any language in {Lj | j < 2n− 1}. Let τt be as defined
in step 6.
Case 2.3.1: All substages in step 6 terminate.

In this case clearly, for i ∈ ([0 . . 2n − 1] − X), Wp(i) = Wq0
. Let

L = Wq0
. Clearly, L ∈ L. Let T =

⋃

t τt. Now, the number
of i’s in ([0 . . 2n − 1] − Z) such that Mi converges on T is <
card(Y). Moreover, at least card(Y) of the machines in Z converge
to incorrect grammars (note that the invariant (ii) at the beginning
of the while loop in step 5 is also satisfied when the loop is exited).
Thus, L 6∈ Teamn

2n({M0,M1, . . . ,M2n−1}).

Case 2.3.2: Some substage 6:t at step 6 starts but does not terminate.

In this case for j < 2n and i < 2n − 1, let qj
1+i be as defined in

substage 6:t. Also, let i0, . . . , i2n−1 be as defined in step 6. Clearly,
for j < 2n and i < 2n − 1, Wp(ij) = Wqj

1+i
. Let Lj = Wp(ij).

Clearly, each of the languages in {Li | i < 2n} belong to L and are
pairwise distinct. Now for i < 2n, let Ti be a text for Li such that
τt ⊆ Ti. Now it is easy to verify that, for each j ∈ Z∪Y ′ and i < 2n,
Mj(Ti) = Mj(τt). Since, for each j ∈ ((Z ∪ Y ′)− Y), Mj(τt), can
each be grammars for at most one of L0, L1, . . . , L2n−1, we have
that {L0, L1, . . . , L2n−1} 6⊆ Teamn

2n({M0,M1, . . . ,M2n−1}).

From the above cases it follows that L 6∈ Teamn
2nTxtEx.

The above diagonalization can be generalized to show the following.

Theorem 13 (∀n, m ∈ N+ | 2n does not divide m)[Team2n
4nTxtEx − Teamm

2mTxtEx 6= ∅].

We omit a proof of the theorem because a simple modification of our proof of Theorem 12 suffices.
The only changes required are that in the diagonalization procedure instead of searching for ≥ r
machines to converge to a grammar (or, for ≥ r converged grammars to output a particular
value), we search for ≥ r ·m/n machines (or, grammars) in this case. Thus, at the end of step 5,
we will have at least d m

2ne of the m converged machines converge to a grammar which enumerates

something ‘extra.’ Step 6 then utilizes the fact that Team2n
4n−1TxtEx can diagonalize against

Teamr
wTxtEx, if r/w > 2n/(4n − 1). We leave the details to the reader.

Corollary 10 (∀m, n ∈ N+)[Teamm
2mTxtEx ⊆ Teamn

2nTxtEx ⇔ [m divides n
∨

m is odd]].

Corollary 11 Prob
1/2

TxtEx −
⋃

m Teamm
2mTxtEx 6= ∅.

Proof. Let L be defined as follows. Let Ln = {L | card({i < 4n | max({x | 〈i, x〉 ∈ L}) = x0 <
∞∧ Wx0

= L}) ≥ 2n}.
Let L = {L′ | (∃n, L ∈ Ln)[L′ = {〈0, n〉} ∪ {〈1, x〉 | x ∈ L}]}. It is easy to observe that

L ∈ Prob1/2TxtEx. By a simple modification of our proof of Theorem 12 it can be shown that
L 6∈

⋃

m Teamm
2mTxtEx.

27

The above corollary establishes that probabilistic identification of languages with probability
of success at least 1/2 is strictly more powerful than team identification of languages with success
ratio 1/2. In Corollary 13, we establish a similar result for the ratio 1/k, k > 2.

5.4 Team Language Identification for Success Ratio 1

k
, k > 2.

We now employ Theorem 7 to deduce the following using Theorem 13.

Theorem 14 (∀k ≥ 2)(∀ even j > 1)(∀i | j does not divide i)[Team
j
j·kTxtEx−Teami

i·kTxtEx 6=
∅].

Proof. By Induction on k. Note that base case (k = 2) follows by Theorem 13. Now
suppose Team

j
jkTxtEx − Teami

ikTxtEx 6= ∅. Using Theorem 7 with i1 = 0, we have

Team
j
(k+1)jTxtEx − Teami

(k+1)iTxtEx 6= ∅.

We do not know if the above theorem can be extended to show that, (∀k ≥ 2)(∀ even j >
1)(∀i | j does not divide i)[Team

j
j·kTxtEx − Teami

i·kTxtEx∗ 6= ∅].

Corollary 12 (∀a ∈ N)(∀k ≥ 2)(∀ even j > 1)(∀i | j does not divide i)
[Team

j
j·kTxtEx − Teami

i·kTxtExa 6= ∅].

Corollary 13 (∀k ≥ 2)[Prob
1/k

TxtEx −
⋃

j Team
j
j·kTxtEx 6= ∅].

The above Corollary can be proved using a trick similar to that used to prove Corollary 11. We
omit the details.

We next present some more applications of Theorems 7 and 8.

Theorem 15 For each m > n ∈ N+, r ≥ 3
Teamm

r·mTxtEx − Teamn
r·nTxtEx 6= ∅.

Proof. If m is even then the theorem follows from Theorem 14. Suppose m is odd. Then by
Theorem 14, Teamm+1

2m+2TxtEx − Teamn
2nTxtEx 6= ∅. Thus, we have Teamm

2m+1TxtEx −
Teamn

2nTxtEx 6= ∅. Using Theorem 7 with i1 = 1, we get Teamm
3mTxtEx−Teamn

3nTxtEx 6=
∅. Now using Theorem 7 repeatedly with i1 = 0 we get the result.

Theorem 16 For each r ∈ N , Team3
3+2rTxtEx − Team2

2rTxtEx∗ 6= ∅.

Proof. The theorem is trivially true for r = 0. Since Team2
3TxtEx − TxtEx∗ 6= ∅ and

Team2
3TxtEx ⊆ Team1

2TxtEx, we have Team3
5TxtEx − Team2

2TxtEx∗ 6= ∅. Using Theo-
rem 8 repeatedly with i1 = 1, we get Team3

3+2rTxtEx − Team2
2rTxtEx∗ 6= ∅, for r ≥ 1.

Theorem 17 For each r ≥ 3, Team3
3rTxtEx−Team

j
jrTxtEx 6= ∅, if j is not divisible by 3.

Proof. As a Corollary to Theorem 19 below we have Team3
5TxtEx − Team

j

b 5j
3 c

TxtEx 6= ∅.

Using Theorem 7 with i1 = 1, we get Team3
7TxtEx − Team

j

b 5j
3 c+d2j/3e

TxtEx 6= ∅, and then

Team3
9TxtEx − Team

j
3jTxtEx 6= ∅. Now again using Theorem 7 repeatedly with i1 = 0, we

get Team3
3rTxtEx − Team

j
jrTxtEx 6= ∅, for r ≥ 3.

A generalization of the above theorem shows that

Theorem 18 For all i, for each r ≥ i, Teami
i·rTxtEx − Team

j
j·rTxtEx 6= ∅, if j is not

divisible by i.

28

5.5 On the Difficulty of Obtaining General Results

Despite the useful tools of Section 5.2, general results are difficult to come by for success ratios
< 1/2 and for between success ratios 1/2 and 2/3. In this section, we present two results:
the first (Theorem 19) illustrates the kind of results that we can obtain (using the methods of
section 5.2), the second (Theorem 21) sheds light on why general results are difficult to obtain.

Corollary 14 below gives a hierarchy when more than half of the team members are required
to be successful.

Theorem 19 Suppose n < dm · 2r+1
r+1 e. Teamr+1

2r+1TxtEx − Teamm
n TxtEx∗ 6= ∅.

Proof. Clearly, Teamr+1
r+1TxtEx − Team

d mr
r+1 e

n−m TxtEx∗ 6= ∅ (since d mr
r+1e > n − m). The

theorem now follows by using Theorem 8 with i1 = 1.

Corollary 14 (∀r)[Teamr+2
2r+3TxtEx − Teamr+1

2r+1TxtEx∗ 6= ∅].

A generalization of a detailed proof of Theorem 19 can be used to show the following Theorem 20.
We omit the details.

Theorem 20 (∀p, r | p > r+1
2r+1)[Teamr+1

2r+1TxtEx − ProbpTxtEx 6= ∅].

Theorem 21 below shows that there exist i, j, k, l such that

Teami
jTxtEx = Teamk

l TxtEx for i
j 6= k

l , and both i
j and k

l are ≤ 2
3 .

Thus, we cannot hope to prove a general theorem which separates Teami
jTxtEx and Teamk

l TxtEx

whenever i
j 6= k

l .

Theorem 21 (∀i, j | i/j > 5/8)[Teami
jTxtEx ⊆ Team2

3TxtEx].

Corollary 15 (∀i, j | 5/8 < i/j ≤ 2/3)[Teami
jTxtEx = Team2

3TxtEx].

In [20, Lemma 4], the following lemma was established.

Lemma 4 Suppose r, w ∈ N are given such that r ≥ w > 2r/5. There exist recursive func-
tions G1 and G2 such that, (∀p1, p2, . . . , pr)(∀L)[card({i | 1 ≤ i ≤ r ∧ Wpi

= L}) ≥ w ⇒
WG1(p1,...,pr) = L ∨ WG2(p1,...,pr) = L].

The proof of the above lemma actually established the following stronger result.

Lemma 5 Suppose r, w ∈ N are given such that r ≥ w > 2r/5. There exist recursive func-
tions G1 and G2 such that, (∀p1, p2, . . . , pr)(∀L)[card({i | 1 ≤ i ≤ r ∧ Wpi

= L}) ≥ w ⇒
WG1(p1,...,pr) = L ∨ WG2(p1,...,pr) = L]. In addition, (∀x ∈ WG1(p1,...,pr)∪WG2(p1,...,pr))[card({i |
1 ≤ i ≤ r ∧ x ∈ Wpi

}) ≥ w].

The above lemma can be extended to obtain the following.

Lemma 6 Suppose r, w ∈ N are given such that r ≥ w > 2r/5. There exist recursive func-
tions G′

1 and G′
2 such that, (∀p1, p2, . . . , pr)(∀L)[card({i | 1 ≤ i ≤ r ∧ Wpi

= L}) ≥ w ⇒
WG′

1(p1,...,pr) = L ∨ WG′
2(p1,...,pr) = L]. Moreover if card({i | 1 ≤ i ≤ r ∧ Wpi

= L}) > 3r/5,
then WG′

1(p1,...,pr) = WG′
2(p1,...,pr) = L.

Proof. Let G1, G2 be as given by Lemma 5. By s-m-n, there exist recursive G′
1, G′

2 such that
the following holds.

WG′
1(p1,p2,...,pr) = WG1(p1,p2,...,pr) ∪ {x | card({s | 1 ≤ s ≤ r ∧ x ∈ Wps

}) > 3r/5}.
WG′

2(p1,p2,...,pr) = WG2(p1,p2,...,pr) ∪ {x | card({s | 1 ≤ s ≤ r ∧ x ∈ Wps
}) > 3r/5}.

Using Lemma 5, it is easy to see that G′
1, G

′
2 satisfy the properties claimed.

Now using the above lemma, we give a proof of Theorem 21.

29

Proof of Theorem 21. Suppose machines M1,M2, . . . ,Mj are given. We define M′
1,M

′
2,M

′
3

as follows. Let G′
1, G

′
2 be as given by Lemma 6, for r = j, w = i. Let conv be as defined in

the proof of Theorem 2. Let mσ
1 , mσ

2 , . . . , mσ
k be a permutation of 1, 2, . . . , k, such that, for

1 ≤ r < k, [(conv(Mmσ
r
, σ), mσ

r) < (conv(Mmσ
r+1

, σ), mσ
r+1)]. Note that, according to our

notation, the “<” in the previous expression refers to ordering on pairs.
Let M′

1(σ) = G′
1(Mmσ

1
(σ),Mmσ

2
(σ), . . . ,Mmσ

i
(σ)).

Let M′
2(σ) = G′

2(Mmσ
1
(σ),Mmσ

2
(σ), . . . ,Mmσ

i
(σ)).

Let M′
3(σ) = majority(Mmσ

1
(σ),Mmσ

2
(σ), . . . ,Mmσ

d(7j)/8e
(σ)).

Now suppose M1,M2, . . . ,Mj , Teami
jTxtEx-identify L and T is a text for L. Clearly, if

at least i of the j machines, M1,M2, . . . ,Mj , TxtEx-identify T , then at least 2i − j > 2j/5
of the first i converging machines in M1,M2, . . . ,Mj , TxtEx-identify T . Thus by Lemma 6 it
follows that at least one of M′

1,M
′
2 TxtEx-identifies T . Moreover, if at least 3i/5 of the first i

converging machines in M1,M2, . . . ,Mj , TxtEx-identify L, then both M′
1,M

′
2 TxtEx-identify

T . On the other hand if fewer than 3i/5 of the first i converging machines in M1,M2, . . . ,Mj ,
TxtEx-identify T , then at least 7j/8 of the machines in M1,M2, . . . ,Mj , converge on T , and
thus M′

3 TxtEx-identifies T . The theorem follows.

A generalization of the above method can be used to show that,

Theorem 22 (∀p > 5/8)[ProbpTxtEx ⊆ Team2
3TxtEx].

Theorem 23 (∀l1, l2, k1, k2 ≥ 1 | l2 ≥ 5l1/2 − 1, k2 < 3k1/2 + dk1(l1−1)
l1

e)[Teaml1
l2
TxtEx −

Teamk1

k2
TxtEx 6= ∅].

Proof. Since l1/(l2−l1+1) ≤ 2/3 and k1/(k2−dk1·(l1−1)
l1

e) > 2/3, we have, Teaml1
l2−l1+1TxtEx−

Teamk1

k2−d
k1·(l1−1)

l1
e
TxtEx 6= ∅. Now using Theorem 7 with i1 = 1, we get Teaml1

l2
TxtEx −

Teamk1

k2
TxtEx 6= ∅.

Iterating the above method we get,

Theorem 24 (∀w)(∀l1, l2, k1, k2 ≥ 1 | l2 ≥ 3l1
2 + w(l1 − 1) ∧ k2 < 3k1

2 + w ·

dk1(l1−1)
l1

e)[Teaml1
l2
TxtEx − Teamk1

k2
TxtEx 6= ∅].

Theorem 25 (∀l1, l2, k1, k2 ≥ 1 | l2 ≥ 5l1/2 − 1, k2 < k1 + 3
2 · dk1(l1−1)

l1
e)[Teaml1

l2
TxtEx −

Teamk1

k2
TxtEx∗ 6= ∅].

Proof. Since l1/(l2 − l1 + 1) ≤ 2/3 and dk1(l1 − 1)/l1e/(k2 − k1) > 2/3, we have,

Teaml1
l2−l1+1TxtEx − Team

d
k1·(l1−1)

l1
e

k2−k1
TxtEx∗ 6= ∅. Now using Theorem 8 with i1 = 1, we

get Teaml1
l2
TxtEx − Teamk1

k2
TxtEx 6= ∅.

Theorem 26 (∀k, l | k > 2l/5)[Teamk
l TxtEx ⊆ Team1

3TxtEx].

Proof of Theorem 26. By Corollary 8 we know that for any m and n, such that m > n/2,
Teamm

n TxtEx ⊆ Team1
2TxtEx. Suppose machines M1,M2, . . . ,Ml are given. For ∅ 6= S ⊆

{1, 2, . . . , l}, let M1
S , M2

S denote the two machines which Team1
2TxtEx-identify any language

which is Team
bcard(S)/2c+1
card(S) -identified by machines {Mi}i∈S .

We now define Ma,Mb, and Mc which Team1
3TxtEx-identify any language which is

Teamk
l TxtEx-identified by {Mi}1≤i≤l. Let conv be as defined in the proof of Theorem 2.

Suppose σ is given. Let Sσ ⊆ {1, 2, . . . , l} be the lexicographically least set of cardinality k
such that, for each i ∈ Sσ and each i′ ∈ {1, 2, . . . , l} − Sσ, conv(Mi, σ) ≤ conv(Mi′ , σ). Let the
members of Sσ be i1, i2, ..., ik. Let Ma(σ) = majority(Mi1(σ),Mi2(σ), . . . ,Mik

(σ)).

30

Let match(i, σ) = max({x ≤ |σ| | (content(σ[x]) ⊆ Wi,|σ|) ∧ (Wi,x ⊆ content(σ))}). Let
Xσ ⊆ Sσ be a (lexicographically least) set of cardinality dk/2e such that for each i ∈ Xσ and
each i′ ∈ Sσ − Xσ, match(Mi(σ), σ) ≤ match(Mi′(σ), σ).

Let Mb(σ) = M1
{1,2,...,l}−Xσ

(σ) and Mc(σ) = M2
{1,2,...,l}−Xσ

(σ).

Now, suppose {Mi}1≤i≤l Teamk
l TxtEx-identify content(T). Then, S = limn→∞ ST [n] con-

sists of a subset (of {1, 2, . . . , l}) of cardinality k such that, for each i in S, Mi converges on
T .

Now, if majority of machines in S, TxtEx-identify T then so does Ma. If majority of
machines in S do not TxtEx-identify T , then X = limn→∞ XT [n] exists and the elements of X
do not TxtEx-identify T ; this implies that at least k of {M1,M2, . . . ,Ml} − {Mi | i ∈ X} do.
Thus, at least one of Mb, Mc TxtEx-identifies T .

An extension of the above proof yields the following result.

Theorem 27 (∀k, l, i | k > 2l/5)[Teamk
l TxtExi ⊆ Team1

3TxtExi·d k
2 e].

We end this section by stating results that provide more evidence of the complexity of team
identification of languages. The first collection of results (Corollary 16 just below to Theorem 27
above together with Theorems 28 and 29 below) show that there exist identification classes A,
B, and C such that A ⊂ B, but both A, C and B, C are incomparable to each other.

Corollary 16 Team3
7TxtEx ⊆ Team1

3TxtEx.

Theorem 28 Team1
3TxtEx − Team3

7TxtEx 6= ∅.

Proof. Follows from team function hierarchy of Smith [32], (∀n ∈ N+)[Team1
nEx ⊂ Team1

n+1Ex],
and Pitt’s connection for functions [25], (∀p | 0 < p ≤ 1)(∀n)[1/(n + 1) < p ≤ 1/n ⇒
Team1

nEx = Prob
p
Ex].

Theorem 29 Team2
5TxtEx − Team1

3TxtEx 6= ∅.

Proof. By Theorem 10 Team2
4TxtEx − Team1

2TxtEx 6= ∅. The theorem now follows using
Theorem 7 with i1 = 1.

Theorem 30 Team3
7TxtEx − Team2

5TxtEx 6= ∅.

Proof. Team3
5TxtEx − Team2

3TxtEx 6= ∅ by Corollary 14. Theorem now follows using
Theorem 7 with i1 = 1. Our second collection of results (Theorem 31 and 32 below)

shows that sometimes allowing successful members in the team to make a finite, but unbounded,
number of mistakes compensates for weaker teams. More specifically, Theorem 31 below shows
that all such collections of languages that can be identified by teams of 8 machines requiring at
least 5 to be successful can be identified by some team of 3 machines requiring at least 2 to be
successful if successful members of this latter team are allowed to converge to grammars which
make a finite, but unbounded, number of mistakes. On the other hand, Theorem 32 shows that
there are collections of languages that can be identified by teams of 8 machines requiring at
least 5 to be successful, but which collections cannot be identified by any team of 3 machine
requiring at least 2 to be successful if the number of mistakes allowed in the final grammars of
the successful members of the latter team is bounded in advance.

Theorem 31 Team5
8TxtEx ⊆ Team2

3TxtEx∗.

Proof. We omit the proof. The idea is similar to that used in Theorem 21.

Theorem 32 (∀j ∈ N)[Team5
8TxtEx − Team2

3TxtExj 6= ∅].

31

We omit the proof of the above theorem. The idea is similar to that used in proving Theorem 12.
We finally note that many additional results can be shown to hold for team language iden-

tification. We do not present them here because they are of partial nature only.

5.6 Team and Probabilistic Identification of Languages from Infor-

mants

Finally, we consider identification from both positive and negative data. Identification from
texts is an abstraction of learning from positive data. Similarly, learning from both positive and
negative data can be abstracted as identification from informants. The notion of informants,
defined below, was first considered by Gold [15].

Definition 18 A text I is called an informant for a language L just in case content(I) =
{〈x, 1〉 | x ∈ L} ∪ {〈x, 0〉 | x 6∈ L}.

The next definition formalizes identification from informants.

Definition 19 (a) M InfEx-identifies L (written: L ∈ InfEx(M)) just in case M, fed any
informant for L converges to a grammar for L.

(b) InfEx = {L | (∃M)[L ⊆ InfEx(M)]}.

We can similarly define ProbpInfEx-identification and Teamm
n InfEx-identification. The

following result says that Pitt’s connection holds for language identification if the machines are
also presented with information about what is not in the language. This result strongly suggests
that the complications arising in the study of team TxtEx-identification may be due to the lack
of negative data.

Theorem 33 (∀p | 1/(n + 1) < p ≤ 1/n) [Team1
nInfEx = Prob

p
InfEx].

A close inspection of Pitt’s proof for function identification yields a proof for the above
theorem; we omit details.

6 Conclusions

The present paper studied the computational limits on team identification of r.e. languages from
positive data. It was shown that the notions of probabilistic language identification and team
function identification turn out to be different. In fact, it was established that for probabilities
of the form 1/k, probabilistic identification of languages is strictly more powerful than team
identification of languages where at least 1/k of the members in the team are required to be
successful.

We also presented two very general tools that allowed us to easily prove new diagonalization
results from known ones. Some results were also presented which shed light on the difficulty of
obtaining general results. An attempt was made to pinpoint the reason behind why probabilistic
identification is different from team identification for languages by showing that an analog of
Pitt’s connection holds for language identification if the learning agent is also presented with
negative information.

Finally we note that results from [24] could be used to show that for TxtBc-identification (see
[6] for definition), if i > j/2, then Teami

jTxtBc = TxtBc (also see [20]). Thus, team inference
with respect to TxtBc-identification behaves differently from team inference with respect to
TxtEx-identification. A study of probabilistic and team identification for TxtBc-identification
on the lines of the present paper is open. We also note that the structure of team language
identification is similar to the structure of finite identification (identification without any mind
changes) of functions by a team for success ratios ≥ 2/3 (see [17]). For other success ratios, the
structure of team language identification is different from finite identification of functions by a
team [9, 11, 10, 33, 17, 8, 7].

32

Acknowledgements

We would like to thank the referees for several helpful comments and suggestions. We also
thank John Case for suggesting the topic. We thank John Case, Mark Fulk, Lata Narayanan
Dan Osherson, and Rajeev Raman for providing several helpful discussions and encouragement.

During the early stages of this work, Sanjay Jain was affiliated with the Department of
Computer Science, University of Rochester and the Department of Computer and Information
Sciences, University of Delaware. He was supported in part by NSF grant CCR 832-0136 at the
University of Rochester

During the early stages of this work, Arun Sharma was affiliated with the Department
of Computer Science, SUNY at Buffalo, Department of Computer and Information Sciences,
University of Delaware, and the Department of Brain and Cognitive Sciences, MIT. He was
supported by NSF grant CCR 871-3846 at SUNY at Buffalo and University of Delaware, and
by a Siemens Corporation grant at MIT. At UNSW, this work has been supported by a grant
from the Australian Research Council.

References

[1] J. M. Barzdin. Two theorems on the limiting synthesis of functions. In Theory of Algorithms
and Programs, Latvian State University, Riga, 210:82–88, 1974. In Russian.

[2] P. Billingsley. Probability and Measure. Willey and sons, New York, 1995. 3rd edition.

[3] L. Blum and M. Blum. Toward a mathematical theory of inductive inference. Information
and Control, 28:125–155, 1975.

[4] M. Blum. A machine-independent theory of the complexity of recursive functions. Journal
of the ACM, 14:322–336, 1967.

[5] J. Case. Periodicity in generations of automata. Mathematical Systems Theory, 8:15–32,
1974.

[6] J. Case and C. Lynes. Machine inductive inference and language identification. In
M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International Colloquium
on Automata, Languages and Programming, pages 107–115. Springer-Verlag, 1982. Lecture
Notes in Computer Science 140.

[7] R. P. Daley, B. Kalyanasundaram, and M. Velauthapillai. Breaking the probability 1/2
barrier in fin-type learning. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, Pittsburgh, Pennsylvania, pages 203–217. A. C. M. Press, 1992.

[8] R. P. Daley, L. Pitt, M. Velauthapillai, and T. Will. Relations between probabilistic and
team one-shot learners. In L. Valiant and M. Warmuth, editors, Proceedings of the Work-
shop on Computational Learning Theory, pages 228–239. Morgan Kaufmann Publishers,
Inc., 1991.

[9] R. Freivalds. Functions computable in the limit by probabilistic machines. In Mathematical
Foundations of Computer Science, pages 77–87, 1974.

[10] R. Freivalds. Finite identification of general recursive functions by probabilistic strategies.
In Proceedings of the Conference on Fundamentals of Computation Theory, pages 138–145.
Akademie-Verlag, Berlin, 1979.

[11] R. Freivalds. On the principle capabilities of probabilistic algorithms in inductive inference.
Semiotika Inform, 12:137–140, 1979.

[12] M. Fulk. A Study of Inductive Inference Machines. PhD thesis, SUNY at Buffalo, 1985.

[13] M. Fulk. Prudence and other conditions on formal language learning. Information and
Computation, 85:1–11, 1990.

[14] Gill. Computational complexity of probabilistic turing machines. SIAM Journal of Com-
puting, 1977.

33

[15] E. M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

[16] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[17] S. Jain and A. Sharma. Finite learning by a team. In M. Fulk and J. Case, editors,
Proceedings of the Third Annual Workshop on Computational Learning Theory, Rochester,
New York, pages 163–177. Morgan Kaufmann Publishers, Inc., August 1990.

[18] S. Jain and A. Sharma. Language learning by a team. In M. S. Paterson, editor, Proceedings
of the 17th International Colloquium on Automata, Languages and Programming, pages
153–166. Springer-Verlag, July 1990. Lecture Notes in Computer Science, 443.

[19] S. Jain and A. Sharma. Probability is more powerful than team for language identification.
In Proceedings of the Sixth Annual Conference on Computational Learning Theory, Santa
Cruz, California, pages 192–198. ACM Press, July 1993.

[20] S. Jain and A. Sharma. On aggregating teams of learning machines. Theoretical Computer
Science A, 137(1):85–108, January 1995.

[21] D. Osherson, M. Stob, and S. Weinstein. Aggregating inductive expertise. Information and
Control, 70:69–95, 1986.

[22] D. Osherson and S. Weinstein. Criteria of language learning. Information and Control,
52:123–138, 1982.

[23] L. Pitt. A characterization of probabilistic inference. In Proceedings of the 25th Symposium
on the Foundations of Computer Science, 1984.

[24] L. Pitt. A characterization of probabilistic inference. PhD thesis, Yale University, 1984.

[25] L. Pitt. Probabilistic inductive inference. Journal of the ACM, 36:383–433, 1989.

[26] L. Pitt and C. Smith. Probability and plurality for aggregations of learning machines. In
Proceedings of the 14th International Colloquium on Automata, Languages and Program-
ming, 1987.

[27] L. Pitt and C. Smith. Probability and plurality for aggregations of learning machines.
Information and Computation, 77:77–92, 1988.

[28] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic Logic,
23:331–341, 1958.

[29] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967. Reprinted by MIT Press, Cambridge, Massachusetts in 1987.

[30] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New
York, 1967. Reprinted, MIT Press 1987.

[31] C. Smith. The power of parallelism for automatic program synthesis. In Proceedings of the
22nd Symposium on the Foundations of Computer Science, 1981.

[32] C. Smith. The power of pluralism for automatic program synthesis. Journal of the ACM,
29:1144–1165, 1982.

[33] M. Velauthapillai. Inductive inference with bounded number of mind changes. In Pro-
ceedings of the Second Annual Workshop on Computational Learning Theory, Santa Cruz,
California, pages 200–213. Morgan Kaufmann Publishers, Inc., August 1989.

34

