
On Aggregating Teams of Learning Machines

Sanjay Jain
Department of Information Systems and Computer Science

National University of Singapore
Singapore 0511, Republic of Singapore

Email: sanjay@iss.nus.sg

Arun Sharma
School of Computer Science and Engineering

The University of New South Wales
Sydney, NSW 2053, Australia
Email: arun@cse.unsw.edu.au

March 11, 2007

Abstract

A team of learning machines is a multiset of learning machines. A team is said to be
successful just in case each member of some nonempty subset of the team is successful.
The ratio of the number of machines required to be successful to the size of the team
is referred to as the success ratio of the team. The present paper investigates for which
success ratios can a team be replaced by a single machine without any loss in learning
power. The answer depends on the concepts being learned and the criteria of success
employed. For a given criterion of success, the minimum cut-off ratio where a team can
be replaced by a single machine is referred to as the aggregation ratio of the criterion.

The main results in the present paper concern aggregation ratios for vacillatory iden-
tification of languages from texts. According to this criterion of success, a learning
machine is successful just in case it eventually vacillates between a finite set of grammars
instead of converging to a single grammar. For a positive integer n, a machine is said to
TxtFexn-identify a language L just in case the machine converges to up to n grammars
for L on any text for L. For such identification criteria, the aggregation ratio is derived
for the n = 2 case. It is shown that the collection of languages that can be TxtFex2-
identified by teams with success ratio greater than 5/6 are the same as those collections
of languages that can be TxtFex2-identified by a single machine. It is also established
that 5/6 is indeed the cut-off point by showing that there are collections of languages
that can be TxtFex2-identified by a team employing 6 machines, at least 5 of which
are required to be successful, but cannot be TxtFex2-identified by any single machine.
Additionally, aggregation ratios are also derived for finite identification of languages from
positive data and for numerous criteria involving language learning from both positive
and negative data.

1 Introduction

The present paper investigates the problem of aggregating a team of learning machines
into a single learning machine. In other words, we are interested in finding when a team
of learning machines can be replaced by a single machine without any loss in learning
power.

A team of learning machines is essentially a multiset of learning machines. A team is
said to successfully learn a concept just in case each member of some nonempty subset
of the team learns the concept. If the size of a team is n and if at least m machines
in the team are required to be successful for the team to be successful, then the ratio
m/n is referred to as the success ratio of the team. The present paper addresses the
problem, “For what success ratios can a team be replaced by a single machine without
any loss in learning power?” We are especially interested in finding the “minimum cut-
off” ratio such that teams with success ratios greater than this cut-off can be simulated
by a single machine. Such a cut-off, referred to as aggregation ratio, depends on the kind
of concepts being learned and the type of success criteria employed. For the problem
of learning recursive functions from graphs, the answer is known for the three popularly
investigated criteria of success, namely, Fin (finite identification), Ex (identification in
the limit) and Bc (behaviorally correct identification). For both Ex and Bc, Pitt and
Smith [23] showed the aggregation ratio to be 1/2. For finite function identification,
Fin, it was reported in Jain and Sharma [15] that the aggregation ratio is 2/3 (this
result can also be argued from a result of Freivalds [12] about probabilistic finite function
identification).

The present paper describes aggregation results about language identification from
positive data. The main results are in the context of vacillatory identification. To
facilitate discussion of these results, we informally present some preliminaries from theory
of language learning next.

Languages are sets of sentences and a sentence is a finite object; the set of all possible
sentences can be coded into N — the set of natural numbers. Hence, languages may be
construed as subsets of N . A grammar for a language is a set of rules that accepts (or
equivalently, generates) the language (see Hopcroft and Ullman [14]). Essentially, any
computer program may be viewed as a grammar. Languages for which a grammar exists
are called recursively enumerable.

A text for a language L is any infinite sequence that lists all and only the elements of
L; repetitions are permitted. A learning machine is an algorithmic device that outputs
grammars on finite initial sequences of texts. Two well studied criteria for a machine
to successfully learn a language are identification in the limit and behaviorally correct
identification. We next give an informal definition of these criteria.

A learning machine M is said to TxtEx identify a language L just in case M, fed
any text for L, converges to a correct grammar for L. This is essentially the seminal
notion of identification in the limit introduced by Gold [13] (see also Case and Lynes [7]
and Osherson and Weinstein [21]).

1

A learning machine M is said to TxtBc-identify L just in case M, fed any text for
L, outputs an infinite sequence of grammars such that after a finite number of incorrect
guesses, M outputs only grammars for L. This criterion was first studied by Case and
Lynes [7] and Osherson and Weinstein [21], and is also referred to as “extensional”
identification.

Osherson, Stob, and Weinstein [20] first observed that for TxtEx-identification, a
team can be aggregated if its success ratio is greater than 2/3. Hence, in matters of
aggregation, identification in the limit of languages from positive data turns out to be
similar to finite function identification. On the other hand, a result from Pitt [22] can
easily be used to show that for TxtBc-identification the aggregation ratio is 1/2. Thus,
TxtEx and TxtBc exhibit different behavior with respect to aggregation.

We now present two more criteria of successful language learning, namely, finite iden-
tification and vacillatory identification.

A machine M is said to TxtFin-identify a language L just in case M, fed any text
for L, outputs only one grammar and that grammar is for L.1

We show that for TxtFin-identification, the aggregation ratio is 2/3. Thus, TxtFin-
identification shows similar behavior as TxtEx-identification and finite function identi-
fication so far as aggregation is concerned.

We next consider vacillatory identification of languages from texts in which a machine
is required to converge to a finite set of grammars. This notion was studied by Osherson
and Weinstein [21] and by Case [5]. It should be noted that in the context of function
learning, vacillatory identification turns out to be the same as identification in the limit.
This was first shown by Barzdin and Podnieks [2] (see also Case and Smith [8]).

Let n be a positive integer. A learning machine M is said to TxtFexn-identify a
language L just in case M, fed any text for L, converges in the limit to a finite set, with
cardinality ≤ n, of grammars for L. In other words, for any text T for L, there exists a
set D of grammars of L, cardinality of D ≤ n, such that M, fed T , outputs, after a finite
number of incorrect guesses, only grammars from D.

If the upper bound n in TxtFexn-identification is not specified and the only require-
ment is that the machine converge to some finite set of grammars for the language, then
the criteria is referred to as TxtFex∗-identification.

We show that for TxtFex∗-identification, the aggregation ratio is 1/2. It is interesting
to note that in matters of aggregation TxtFex∗-identification behaves more like TxtBc-
identification than like TxtEx-identification. The problem of aggregation for TxtFexn,
however, turns out to be more difficult. We are able to answer this question for the
n = 2 case, by showing that for TxtFex2-identification, the aggregation ratio is 5/6.
We establish this by showing that the collections of languages that can be TxtFex2-
identified by teams with success ratios greater than 5/6 are exactly the same as those

1More formally, we allow the machine to output a symbol ⊥ (denoting ‘no conjecture yet’) on some
initial segment of the text and then it will be required to output a correct grammar for the remainder
of the text. This is only for technical convenience as it makes the learning machine total and simplifies
the proofs.

2

collections of languages that can be TxtFex2-identified by a single machine. Our proof
of this result involves a fairly complicated simulation argument. We also establish that
5/6 is indeed the cut-off point for TxtFex2 aggregation by employing a diagonalization
argument to show that there are collections of languages that can be TxtFex2-identified
by a team of 6 machines, at least 5 of which are required to be successful, but cannot be
TxtFex2-identified by any single machine.

The problem of aggregation becomes somewhat more manageable if we are prepared
to allow the aggregated machine to converge to extra number of grammars. In fact we
are able to show that aggregation can be achieved at success ratios just above 1/2 if the
aggregated machine is allowed to converge to extra number of grammars. For example,
for any positive integer i, all the collections of languages that can be TxtEx-identified
by teams of 2i + 1 machines, at least i + 1 of which are required to be successful, can
also be TxtFexi+1-identified by a single machine. More generally, using a fairly straight
simulation argument, it can be shown that all the collections of languages that can be
TxtFexj-identified by teams of 2i + 1 machines, at least i + 1 of which are required to
be successful, can also be TxtFex(i+1)·j-identified by a single machine.

In Section 3.7, we show that aggregation ratios for language identification from both
positive and negative data follow a pattern similar to function learning.

Before we undertake a formal treatment of issues discussed above, it is useful to
motivate the notion of team learning and aggregation. We present a scenario modeled
by team identification in the limit of languages from Jain and Sharma [16].

Consider a situation in which two countries, A and B, are at war with each other.
Country B uses a secret language to transmit movement orders to its troops. Country
A, with an intention to confuse the troops of country B, wishes to learn a grammar for
country B’s secret language so that it can transmit conflicting troop movement instruc-
tions in that secret language. To accomplish this task, country A employs a team of
language learners, each of which perform the following three tasks in a loop:

(a) receive and examine strings of country B’s secret language;

(b) guess a grammar for the language whose strings are being received;

(c) transmit conflicting messages based on the grammar guessed in step 2 (so that B’s
troops think that these messages are from B’s Generals).

If one or more of the learners in the team is actually, but possibly unknowingly,
successful in correctly learning a grammar for country B’s secret language, then country
A achieves its purpose of confusing the troops of country B. Of course, the notion of
team identification models only part of the above scenario, as issues related to learners
transmitting messages back are ignored. However, this scenario illustrates situations in
which it is not essential to know which members in the team are successful so far as some
are. Answering the question of aggregation ratio in this scenario could tell us under what
conditions employing a team and requiring a certain fraction of the team to be successful
may not yield any extra learning ability over employing a single machine.

3

We now proceed formally. Section 2 records the notation and describes preliminary
notions and definitions from inductive inference literature. Our results are presented in
Section 3.

2 Preliminaries

2.1 Notation

Any unexplained recursion theoretic notation is from Rogers [25]. The symbol N denotes
the set of natural numbers, {0, 1, 2, 3, . . .}. The symbol N+ denotes the set of positive
natural numbers, {1, 2, 3, . . .}. Unless otherwise specified, i, j, k, l, m, n, q, r, s, t, x, y,
with or without decorations2, range over N . Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote empty
set, subset, proper subset, superset, and proper superset, respectively. Symbols A and
S, with or without decorations, range over sets of natural numbers. D, P, Q, and X,
with or without decorations, range over finite sets. Cardinality of a set S is denoted by
card(S). We say that card(A) ≤ ∗ to mean that card(A) is finite. Intuitively, the symbol,
∗, denotes ‘finite without any prespecified bound.’ The letters a and b, with or without
decorations, range over N ∪ {∗}. The maximum and minimum of a set are denoted by
max(·), min(·), respectively, where max(∅) = 0 and min(∅) is undefined.

Letters f, g, h and G, with or without decorations, range over total functions with
arguments and values from N . Symbol R denotes the set of all total computable func-
tions. C and S, with or without decorations, range over subsets of R. A pair 〈i, j〉 stands
for an arbitrary, computable, one-to-one encoding of all pairs of natural numbers onto
N (see Rogers [25]). Similarly, we can define 〈·, . . . , ·〉 for encoding multiple tuples of
natural numbers onto N . By ϕ we denote a fixed acceptable programming system for
the partial computable functions: N → N (see Rogers [24, 25] and Machtey and Young
[19]). By ϕi we denote the partial computable function computed by program i in the
ϕ-system. The letter, p, in some contexts, with or without decorations, ranges over pro-
grams; in other contexts p ranges over total functions with its range being construed as
programs. By Φ we denote an arbitrary fixed Blum complexity measure (see Blum [3])
for the ϕ-system. By Wi we denote domain(ϕi). Wi is, then, the r.e. set/language (⊆ N)
accepted (or equivalently, generated) by the ϕ-program i. Symbol E will denote the set
of all r.e. languages. Symbol L, with or without decorations, ranges over E . Symbol
L, with or without decorations, ranges over subsets of E . We denote by Wi,s the set
{x ≤ s | Φi(x) < s}. A language L is said to be single valued total iff there exists an
f , such that L = {〈x, f(x)〉 | x ∈ N}. In this case L is also said to be representing (or

derived from) f . The quantifiers ‘
∞

∀’ and ‘
∞

∃’ mean ‘for all but finitely many’ and ‘there
exist infinitely many’, respectively.

2Decorations are subscripts, superscripts and the like.

4

2.2 Learning Machines

We first consider function learning machines.
We assume, without loss of generality, that the graph of a function is fed to a machine

in canonical order. For f ∈ R and n ∈ N , we let f [n] denote the finite initial segment
{(x, f(x)) | x < n}. Clearly, f [0] denotes the empty segment. SEG denotes the set of all
finite initial segments, {f [n] | f ∈ R ∧ n ∈ N}.

Definition 1 (Gold [13]) A function learning machine is an algorithmic device which
computes a mapping from SEG into N .

We now consider language learning machines. A sequence σ is a mapping from an
initial segment of N into (N ∪ {#}). The content of a sequence σ, denoted content(σ),
is the set of natural numbers in the range of σ. The length of σ, denoted by |σ|, is the
number of elements in σ. For n ≤ |σ|, the initial sequence of σ of length n is denoted
by σ[n]. Intuitively, #’s represent pauses in the presentation of data. We let σ, τ , and
γ, with or without decorations, range over finite sequences. SEQ denotes the set of all
finite sequences.

Definition 2 A language learning machine is an algorithmic device which computes a
mapping from SEQ into N .

The set of all finite initial segments, SEG, can be coded onto N . Also, the set of
all finite sequences of natural numbers and #’s, SEQ, can be coded onto N . Thus, in
both Definitions 1 and 2, we can view these machines as taking natural numbers as input
and emitting natural numbers as output. Henceforth, we will refer to both function-
learning machines and language-learning machines as just learning machines, or simply
as machines. We let M, with or without decorations, range over learning machines.

It should be noted that for all the identification criteria discussed in this paper, we
are assuming, without loss of generality, that the learning machines are total.

2.3 Criteria of Learning

2.3.1 Function Learning

Finite Function Identification

For finite function identification only, we assume our learning machines to compute a
mapping from SEG into N ∪ {⊥}. The output of machine M on evidential state σ will
be denoted by M(σ), where ‘M(σ) =⊥’ denotes that M does not issue any hypothesis
on σ.

Definition 3 M Fin-identifies f (written: f ∈ Fin(M)) ⇐⇒ (∃i | ϕi = f)
(∃n0)[(∀n ≥ n0)[M(f [n]) = i] ∧ (∀n < n0)[M(f [n]) =⊥]]. We define the class
Fin = {S ⊆ R | (∃M)[S ⊆ Fin(M)]}.

5

Function Identification in the Limit

Definition 4 (Gold [13]) M Ex-identifies f (written: f ∈ Ex(M)) ⇐⇒ (∃i | ϕi = f)

(
∞

∀ n)[M(f [n]) = i]. We define the class Ex = {S ⊆ R | (∃M)[S ⊆ Ex(M)]}.

Behaviorally Correct Function Identification

Definition 5 (Case and Smith [8]) M Bc-identifies f (written: f ∈ Bc(M)) ⇐⇒

(
∞

∀ n)[ϕM(f [n]) = f]. We define the class Bc = {S ⊆ R | (∃M)[S ⊆ Bc(M)]}.

The following proposition summarizes the relationship between the various function
learning criteria.

Proposition 6 (Case and Smith [8], Barzdin [1]) Fin ⊂ Ex ⊂ Bc.

2.3.2 Language Learning

A text T for a language L is a mapping from N into (N ∪ {#}) such that L is the set of
natural numbers in the range of T . The content of a text T , denoted content(T), is the
set of natural numbers in the range of T . T [n] denotes the finite initial sequence of T with

length n. We say that M on T converges (written: M(T)↓) iff (∃i)(
∞

∀ n)[M(T [n]) = i].
Otherwise M is said to diverge on T (written: M(T)↑). If M(T)↓ then we define M(T)

to be the unique i such that (
∞

∀ n)[M(T [n]) = i].

Finite Language Identification

Again as in the case of finite function identification, we assume our learning machines to
compute a mapping from SEQ into N ∪{⊥}. This assumption is for this definition only.

Definition 7 M TxtFin-identifies L (written: L ∈ TxtFin(M)) ⇐⇒ (∀ texts T for
L) (∃i | Wi = L) (∃n0)[(∀n ≥ n0)[M(T [n]) = i] ∧ (∀n < n0)[M(T [n]) =⊥]]. We define
the class TxtFin = {L ⊆ E | (∃M)[L ⊆ TxtFin(M)]}.

Language Identification in the Limit

Definition 8 (Gold [13]) M TxtEx-identifies L (written: L ∈ TxtEx(M)) ⇐⇒ (∀

texts T for L) (∃i | Wi = L) (
∞

∀ n)[M(T [n]) = i]. We define the class TxtEx = {L ⊆
E | (∃M)[L ⊆ TxtEx(M)]}.

Behaviorally Correct Language Identification

Definition 9 (Osherson and Weinstein [21], Case and Lynes [7]) M TxtBc-identifies L

(written: L ∈ TxtBc(M)) ⇐⇒ (∀ texts T for L) (
∞

∀ n)[WM(T [n]) = L]. We define the
class TxtBc = {L ⊆ E | (∃M)[L ⊆ TxtBc(M)]}.

6

Vacillatory Language Identification

We now introduce the notion of a learning machine finitely converging on a text. Let
M be a learning machine and T be a text. M(T) finitely-converges (written: M(T)⇓)
⇐⇒ {M(σ) | σ ⊂ T} is finite, otherwise we say that M(T) finitely-diverges (written:

M(T)⇑). If M(T)⇓, then M(T) is defined = {i | (
∞

∃ σ ⊂ T)[M(σ) = i]}.

Definition 10 (Osherson and Weinstein [21], Case [5]) Let b ∈ N+ ∪ {∗}. M TxtFexb-
identifies L (written: L ∈ TxtFexb(M)) ⇐⇒ (∀ texts T for L)(∃P | card(P) ≤
b ∧ (∀i ∈ P)[Wi = L])[M(T)⇓ ∧ M(T) = P]. We define the class TxtFexb = {L ⊆ E |
(∃M)[L ⊆ TxtFexb(M)]}.

The following proposition summarizes the relationship between the various language
learning criteria.

Proposition 11 (Osherson and Weinstein [21], Case and Lynes [7], Case [5]) TxtFin ⊂
TxtEx = TxtFex1 ⊂ TxtFex2 ⊂ · · · ⊂ TxtFex∗ ⊂ TxtBc.

2.4 Team Learning

A team of learning machines is essentially a multiset of learning machines. Definition 12
introduces team learning of functions and Definition 13 introduces team learning of lan-
guages.

Definition 12 (Smith [26], Osherson, Stob, and Weinstein [20]) Let I ∈ {Fin,Ex,Bc}
and let m,n ∈ N+.

(a) A team of n machines, M1,M2, . . . ,Mn, is said to Teamm
n I-identify f (writ-

ten: f ∈ Teamm
n I(M1,M2, . . . ,Mn)) just in case there exist m distinct numbers

i1, i2, . . . , im, 1 ≤ i1 < i2 < · · · < im ≤ n, such that each of Mi1,Mi2 , . . . ,Mim

I-identifies f .

(b) Teamm
n I = {S ⊆ R | (∃M1,∃M2, . . . ,∃Mn)[S ⊆ Teamm

n I(M1,M2, . . . ,Mn)]}.

Definition 13 Let b ∈ N+ ∪ {∗}. Let I ∈ {TxtFin,TxtEx,TxtFexb,TxtBc}. Let
m,n ∈ N+.

(a) A team of n machines {M1,M2, . . . ,Mn} is said to Teamm
n I-identify L (writ-

ten: L ∈ Teamm
n I(M1,M2, . . . ,Mn)) just in case there exist m distinct numbers

i1, i2, . . . , im, 1 ≤ i1 < i2 < · · · < im ≤ n, such that each of Mi1,Mi2 , . . . ,Mim

I-identifies L.

(b) Teamm
n I = {L ⊆ E | (∃M1,∃M2, . . . ,∃Mn)[L ⊆ Teamm

n I(M1,M2, . . . ,Mn)]}.

7

For Teamm
n I-identification criteria, we refer to the fraction m/n as the success ratio

of the criteria.

Definition 14 A reduced fraction m/n is referred to as the aggregation ratio for the
success criteria I-identification just in case

(a) (∀i, j ∈ N+ | i/j > m/n)[Teami
jI = I], and

(b) I ⊂ Teamm
n I.

If the aggregation ratio for I-identification is m/n, then aggregation for I-identification
takes place at success ratios greater than m/n. Additionally, m/n is indeed the cut-off
point of aggregation for I-identification.

In the following, for i > j, we take Teami
jI = {∅}.

3 Results

3.1 Previously Known Results

Aggregation results are known for all the function learning criteria defined in the previous
section. For finite function identification, the aggregation ratio is 2/3. This is implied by
the following theorem, part (a) of which appeared in Jain and Sharma [15] and can also
easily be argued from a related result of Freivalds [12] about probabilistic finite identifi-
cation. Theorem 15(b) can be established via a diagonalization argument employing the
operator recursion theorem (Case [4]).

Theorem 15 (Velauthapillai [27], Jain and Sharma [15])

(a) (∀m,n ∈ N+ | m/n > 2/3)[Teamm
n Fin = Fin].

(b) Fin ⊂ Team2
3Fin.

Pitt and Smith [23] settled the question for function identification in the limit and
behaviorally correct function identification by showing the following Theorem 16 which
implies that for both these criteria the aggregation ratio is 1/2.

Theorem 16 (Pitt and Smith [23], Smith [26]) Let I ∈ {Ex,Bc}.

(a) (∀m,n ∈ N+ | m/n > 1/2)[Teamm
n I = I]

(b) I ⊂ Team1
2I.

For language learning, the result is known for TxtEx-identification and TxtBc-
identification. It was shown by Osherson, Stob, and Weinstein [20] that aggregation
ratio for TxtEx-identification is 2/3 (see also Jain and Sharma [16, 18, 17] for extension
of this result to anomalies in the final grammar).

8

Theorem 17 (Osherson, Stob, and Weinstein [20])

(a) (∀m,n ∈ N+ | m/n > 2/3)[Teamm
n TxtEx = TxtEx]

(b) TxtEx ⊂ Team2
3TxtEx.

The next theorem implies that the aggregation ratio for TxtBc is 1/2. Theorem 18(a)
follows from a result of Pitt [22], and part (b) of Theorem 18 can be proved by considering
a collection of single valued total languages derived from the corresponding function
learning result of Smith (Theorem 16(b)).

Theorem 18 (a) (∀m,n ∈ N+ | m/n > 1/2)[Teamm
n TxtBc = TxtBc]

(b) TxtBc ⊂ Team1
2TxtBc.

We now consider aggregation for TxtFin-identification and TxtFexb-identification,
b ∈ N+ ∪ {∗}.

3.2 Aggregation for Finite Identification of Languages

It turns out that aggregation for finite identification of languages is no different from
aggregation for limit identification of languages. Theorem 19 below shows that the ag-
gregation ratio for TxtFin-identification is 2/3. A proof of part (a) can be obtained on
the lines of the proof of Theorem 15(a). A proof of part (b) can be worked out by con-
sidering the collection of single valued total languages derived from the class of functions
considered in the proof of Theorem 15(b).

Theorem 19 (a) (∀m,n | m/n > 2/3)[Teamm
n TxtFin = TxtFin]

(b) TxtFin ⊂ Team2
3TxtFin.

3.3 Aggregation for Vacillatory Identification of Languages

In the present section, we consider the problem of aggregation for vacillatory identification
of languages. We first introduce some technical machinery that simplifies the description
of our proofs.

Definition 20 Let k ∈ N and T be a text.

(a) Let n ∈ N . Match(k, T [n]) = max({m ≤ n | content(T [m]) ⊆ Wk,n ∧ Wk,m ⊆
content(T [n])}).

(b) Match(k, T) = limn→∞ Match(k, T [n]) if the limit exists; Match(k, T) = ∞ other-
wise.

9

Intuitively, Match(k, T [n]), measures how much Wk and T [n] agree with each other.
Match is employed in the process of determining if a given grammar k is for the language
content(T). The following simple lemma summarizes the properties of Match; its proof
is straightforward.

Lemma 21 Let k ∈ N and T be a text.

(a) If Wk = content(T), then Match(k, T) = ∞.

(b) If Wk 6= content(T), then Match(k, T) < ∞.

The next definition introduces a function that keeps track of some finite number of
grammars output by a machine on the initial segment of a text.

Definition 22 Let b ∈ N+ ∪ {∗}. Let M be a machine and T be a text.

(a) Let n ∈ N . LastGramb(M, T [n]) = {M(T [m]) | card(M(T [m′]) | m ≤ m′ ≤ n) ≤
b}.

(b) LastGramb(M, T) = limn→∞ LastGramb(M, T [n]) (LastGramb(M, T) is undefined
if the limit does not exist).

Intuitively, for b ∈ N , LastGramb(M, T [n]) is the set of last b distinct grammars
output by M on initial segments of T [n]. LastGram∗(M, T [n]) is the set of all distinct
grammars output by M on initial segments of T [n].

The next definition introduces a function that keeps track of the point in the initial
segments of text where a machine undergoes a mind change with respect to TxtFexb-
identification.

Definition 23 Let b ∈ N+ ∪ {∗}, M be a machine and T be a text.

(a) Let n ∈ N . LastMindChangeb(M, T [n]) = max({m < n | LastGramb(M, T [m]) 6=
LastGramb(M, T [m + 1])}).

(b) LastMindChangeb(M, T) = limn→∞ LastMindChangeb(M, T [n]) if the limit exists;
LastMindChangeb(M, T) = ∞ otherwise.

So, LastMindChangeb(M, T) computes the last point in the text T where machine M

undergoes a mind change with respect to TxtFexb-identification.
Finally we define:

Definition 24 Let S be a nonempty finite subset of N and T a text. Let n ∈ N .
BestGram(S, T [n]) = least i ∈ S such that Match(i, T [n]) is maximized.

So, BestGram(S, T [n]) finds the best candidate grammar for content(T) from the set of
grammars S based on the data available in T [n]. The following lemma, whose proof is
straightforward, is a useful observation about the function BestGram.

10

Lemma 25 Let S be a nonempty finite subset of N and T a text. If there exists an
i ∈ S such that Wi = content(T), then for all but finitely many n, BestGram(S, T [n]) is
a grammar for content(T).

We now present our results.

3.4 Aggregation for TxtFex∗

Our first result for team aggregation in the context of vacillatory identification is for
TxtFex∗-identification. Theorem 26 below says that the aggregation ratio for TxtFex∗-
identification is 1/2. It is interesting to observe that in matters of aggregation, TxtFex∗-
identification behaves more like TxtBc-identification than like TxtEx-identification.

Theorem 26 (a) (∀i, j ∈ N+ | i/j > 1/2)[Teami
jTxtFex∗ = TxtFex∗]

(b) TxtFex∗ ⊂ Team1
2TxtFex∗.

Proof. (a) Let i, j be as given in the hypothesis of the theorem. Suppose a team
of j machines, M1,M2, . . . ,Mj, is given. We describe a machine M such that
Teami

jTxtFex∗(M1,M2, . . . ,Mj) ⊆ TxtFex∗(M).
Let Sn be the lexicographically least subset of {1, 2, . . . , j} of cardinality i such that

max({LastMindChange∗(Mk, T [n]) | k ∈ Sn}) is minimized.
M(T [n]) is defined as follows.

M(T [n]) = BestGram(
⋃

j∈Sn
LastGram∗(Mj, T [n]), T [n]).

We claim that if L ∈ Teami
jTxtFex∗(M1,M2, . . . ,Mj), then L ∈ TxtFex∗(M).

To see this suppose T is a text for L. Suppose S is the lexicographically least subset
of {1, 2, . . . , j} of cardinality i such that max({LastMindChange∗(Mk, T) | k ∈ S}) is
minimized. Note that if k ∈ S, then Mk finitely converges on T . Clearly, limn→∞ Sn = S.
Also, since i > j/2, there exists k ∈ S, such that LastGram∗(Mk, T) contains a grammar
for L.

Thus, M(T) finitely converges and, for large enough n, M(T [n]) is a grammar for L.
(b) For team function learning, we know that Team1

2Ex−Ex 6= ∅ (Smith [26]). Also,
since Fex = Ex (Barzdin and Podnieks [2], Case and Smith [8]), we have Team1

2Fex −
Fex 6= ∅. Let S ∈ (Team1

2Fex − Fex). Now, it is easy to verify that the collection of
single valued total languages, representing functions in S, witnesses Team1

2TxtFex∗ −
TxtFex∗ 6= ∅. We omit the details.

3.5 Pseudo-Aggregation Results

The problem of finding aggregation ratios for TxtFexb-identification when b 6= ∗ turns
out to be far more difficult. The difficulty arises in requiring the aggregated machine to
also converge to up to b grammars. In the light of these difficulties, it is worth considering
cases where the bound on the number of converged grammars for the aggregated machine

11

is more than the bound allowed for the team. Such a relaxation on aggregation is referred
to as “pseudo-aggregation,” and representative results are presented next.

It can be shown that Team3
5TxtEx−TxtFex2 6= ∅, but Team3

5TxtEx ⊆ TxtFex3.
Hence, allowing more grammars in the limit can sometimes help achieve pseudo aggre-
gation. This result can be generalized to show the following.

Theorem 27 Let i ∈ N+.

(a) Teami+1
2i+1TxtEx − TxtFexi 6= ∅.

(b) Teami+1
2i+1TxtEx ⊆ TxtFexi+1.

The next result generalizes Theorem 27.

Theorem 28 Let i, j ∈ N+.

(a) Teami+1
2i+1TxtFexj − TxtFex(i+1)·j−1 6= ∅.

(b) Teami+1
2i+1TxtFexj ⊆ TxtFex(i+1)·j.

Proof. A proof similar to the one used to prove Theorem 26 (a) can be employed to
establish part (b). We give a proof of part (a). Consider the following collection of
languages:

L = {L ∈ E |

card({x | 〈0, x〉 ∈ L}) = (i + 1) ∗ j.

card({x | 〈0, x〉 ∈ L} ∧ Wx = L) ∈ {1, (i + 1) ∗ j}.

}

We first show that L ∈ Teami+1
2i+1TxtFexj. We describe machines, M1, . . . ,M2i+1

which Teami+1
2i+1TxtFexj-identify L. Suppose T is a text for L ∈ L. Let Sn = {x |

〈0, x〉 ∈ content(T [n])}. Let

wk
n =

{

x, if card(Sn) ≥ k, and x ∈ Sn and card({y ≤ x | y ∈ Sn}) = k;
0, otherwise.

So, wk
n is the k-th element in Sn, if any.

For 1 ≤ k ≤ i+1, let Mk(T [n]) = BestGram({wk′

n | (k−1)∗j < k′ ≤ k∗j}, T [n]). For
i+1 < k ≤ 2i+1, let Mk(T [n]) = BestGram({wk′

n | 0 < k′ ≤ (i+1)∗j}, T [n]). It is easy to
see that, if card({x | 〈0, x〉 ∈ L} ∧ Wx = L) = (i+1)∗ j, then each of M1,M2, . . . ,Mi+1

TxtFexj-identify L. On the other hand, if card({x | 〈0, x〉 ∈ L ∧ Wx = L}) = 1, then
at least one of M1,M2, . . . ,Mi+1 and each of Mi+2, . . . ,M2i+1 TxtEx-identify L. Thus,
L ∈ Teami+1

2i+1TxtFexj.
We now show that L 6∈ TxtFex(i+1)∗j−1. Suppose by way of contradiction that

machine M TxtFex(i+1)∗j−1-identifies L. We then show that there exists a language in

12

L that M fails to TxtFex(i+1)∗j−1-identify. The description of this witness proceeds in
stages and uses the multiple recursion theorem. We first give an informal idea of the
construction.

We describe languages accepted by (i + 1) ∗ j grammars, k1, k2, . . . , k(i+1)∗j . At each
Stage s, the construction makes use of initial sequence σs. By the use of (i + 1) ∗ j-
ary recursion theorem, we initialize σ0 to contain elements 〈0, k1〉, 〈0, k2〉, . . . , 〈0, k(i+1)∗j〉.
This step ensures that the languages accepted by these grammars will be members of L.
We then proceed in stages. At each Stage s, an attempt is made to find a sequence τ
extending σs such that M undergoes a mind change on τ with respect to TxtFex(i+1)∗j−1-
identification. If such an attempt is successful at every stage then each of the grammars
k1, k2, . . . , k(i+1)∗j will be for the same language and this language will be a member of
L. But, M will fail to converge to a set of up to (i + 1) ∗ j − 1 grammars on a text
for this language and hence M will not TxtFex(i+1)∗j−1-identify this language. If on the
other hand, an attempt to find a mind change is unsuccessful at some stage then the
construction makes sure that each of the grammars k1, k2, . . . , k(i+1)∗j are for pairwise
distinct languages in L. Not only are these languages pairwise distinct but they are also
infinitely different from each other. Now, since the machine M gets locked to a set of no
more than (i + 1) ∗ j − 1 grammars on some text for each of the (i + 1) ∗ j languages, the
machine M will fail to TxtFex(i+1)∗j−1-identify at least one of these languages. We now
proceed formally.

By the (i+1)∗j-ary recursion theorem (see Case [4]) there exist grammars k1, k2, . . . , k(i+1)∗j

such that the languages Wks
may be described as follows.

Let σ0 be a sequence such that content(σ0) = {〈0, kl〉 | 1 ≤ l ≤ (i + 1) ∗ j}. Go to
Stage 0.

Begin {Stage s}

Enumerate content(σs) in Wkl
, 1 ≤ l ≤ (i + 1) ∗ j.

Dovetail steps 1 and 2 below until step 1 succeeds. If and when step 1 succeeds, go
to step 3.

1. Search for a τ ⊇ σs such that content(τ) − content(σs) ⊆ {〈x, y〉 | 1 ≤ x} and

LastGram(i+1)∗j−1(M, τ) 6= LastGram(i+1)∗j−1(M, σs).

2. Let y = 0.

Go to Substage 0.

Begin {Substage s′}

Enumerate 〈l, y〉 in Wkl
, for 1 ≤ l ≤ (i + 1) ∗ j.

Let y = y + 1.
Go to Substage s′ + 1.

End {Substage s′}

3. Let σs+1 ⊇ τ be such that content(σs+1) = content(τ)∪
⋃

1≤l≤(i+1)∗j[Wkl
enumerated till now]

Go to Stage s + 1.

End {Stage s}

13

We now consider the following cases.
Case 1: All stages halt. In this case, let L = Wk1 = Wk2 = . . . = Wk(i+1)∗j

∈ L. Clearly,
T =

⋃

s σs is a text for L. However, M on T does not finitely converge to a set of
(i + 1) ∗ j − 1 grammars.
Case 2: Some Stage s starts but does not finish. In this case, let Ll = Wkl

, for 1 ≤ l ≤
(i + 1) ∗ j. Now, clearly Ll 6= Ll′ for l 6= l′, 1 ≤ l, l′ ≤ (i + 1) ∗ j. But on all texts, T ,
extending σs for each Ll, LastGram(i+1)∗j−1(M, T) = LastGram(i+1)∗j−1(M, σs). Since,
LastGram(i+1)∗j−1(M, σs) has at most (i + 1) ∗ j − 1 grammars, there exists a language
in {Ll | 1 ≤ l ≤ (i + 1) ∗ j}, which M does not TxtFex(i+1)∗j−1-identify.

3.6 Aggregation for TxtFex2

The results in the previous section do not say anything about aggregation in the context
of TxtFexb-identification, when b 6= ∗. The following result shows that aggregation ratio
for TxtFex2-identification is ≥ 2/3 and aggregation ratio for TxtFex3-identification is
≥ 3/4.

Theorem 29 Let i ∈ N+. Teami
i+1TxtFexi − TxtFexi 6= ∅.

Proof. We prove this result as a direct consequence of the following lemma.

Lemma 30 TxtFexi+1 ⊆ Teami
i+1TxtFexi.

Before we give a proof of the lemma, we show how the lemma implies the the-
orem. Suppose by way of contradiction the theorem is not true. Hence, we have
Teami

i+1TxtFexi ⊆ TxtFexi. This, together with the lemma, implies that TxtFexi+1

⊆ Teami
i+1TxtFexi ⊆ TxtFexi. But, this yields TxtFexi = TxtFexi+1 — a contra-

diction.
We now give a proof of the lemma. Suppose M is given. We describe

M1,M2, . . . ,Mi+1 such that TxtFexi+1(M) ⊆ Teami
i+1TxtFexi(M1, . . . ,Mi+1).

Suppose T is a text for L ∈ TxtFexi+1(M). Let Sn = LastGrami+1(M, T [n]). Let
the elements of Sn be w1

n < w2
n < . . . < wcard(Sn)

n . For card(Sn) < l ≤ i + 1, let
wl

n = l + max(Sn). For 1 ≤ k ≤ i + 1, let Mk(T [n]) = BestGram(Sn − {wk
n}, T [n]).

Now since M on T converges to a set of at most i+1 grammars, limn→∞ Sn converges
to LastGrami+1(M, T), and thus for each k, 1 ≤ k ≤ i + 1, limn→∞ wk

n converges to say
wk.

Since LastGrami+1(M, T) contains a grammar for L, and since each wk are distinct,
we have

(a) LastGrami+1(M, T) ⊆ {wk | 1 ≤ k ≤ i + 1},
(b) for each k, 1 ≤ k ≤ i + 1, card(LastGrami+1(M, T) − {wk}) ≤ i, and
(c) for at least i of k’s in {1, 2, . . . , i + 1}, (LastGrami+1(M, T) − {wk}) contains a

grammar for L.

14

It follows that at least i of M1, . . . ,Mi+1 TxtFexi-identify L. This proves the lemma
and the theorem.

Theorem 29 is not optimal. We consider the special case of i = 2. We are able to
show that TxtFex2 aggregation takes place for success ratios greater than 5/6 as implied
by Theorems 33 and 34 below. The proof of Theorem 33 requires the following crucial
technical lemma.

Lemma 31 Suppose r, w ∈ N are given such that r ≥ w > 2r/5. There exist recursive
functions G1 and G2 such that, (∀p1, p2, . . . , pr)(∀L)[card({i | 1 ≤ i ≤ r ∧ Wpi

= L}) ≥
w ⇒ WG1(p1,...,pr) = L ∨ WG2(p1,...,pr) = L].

Proof. We assume without loss of generality that w ≤ r/2 (otherwise the lemma can
be easily proved by considering the grammar which enumerates elements enumerated by
majority of p1, . . . , pr).

Suppose p1, . . . , pr are given (we assume, without loss of generality, that they are
pairwise distinct). Below, we give a procedure to enumerate two languages L1 and L2

(the procedure depends on p1, . . . , pr). We will then argue that

(∀L)[card({i | 1 ≤ i ≤ r ∧ Wpi
= L}) ≥ w ⇒ L = L1 ∨ L = L2]

It will be easy to see that grammars for L1 and L2 can be obtained effectively from
p1, . . . , pr. This will prove the lemma.

The idea of the proof is that, in successive stages, we try to construct two disjoint
groups of grammars (from p1, . . . , pr) of size w each. These groupings are done with
a view to group “similar” grammars together (i.e., grammars that seem to be for the
same language). The groupings eventually become correct. Some care is needed in the
construction to guard against initial misgrouping of the grammars. We guarantee this
with the help of a number of invariants that are satisfied by the construction at the end
of each stage. We now introduce a function that, in some sense, measures the similarity
between two grammars.

Definition 32 Let i, j ∈ N . Let n ∈ N . Similar(i, j, n) = max({n1 ≤ n | Wi,n1 ⊆
Wj,n ∧ Wj,n1 ⊆ Wi,n}).

So, Similar(i, j, n) denotes the point where it appears that the languages accepted by the
two grammars differ. Following properties of Similar can easily be verified.

(a) Wi = Wj ⇒ limn→∞ Similar(i, j, n) = ∞.

(b) Wi 6= Wj ⇒ limn→∞ Similar(i, j, n) < ∞.

(c) Let P be a finite subset of N . Let n ∈ N . If m = min({Similar(i, j, n) | i, j ∈ P})
then ∪k∈P [Wk,m] ⊆ ∩i∈P [Wi,n].

15

We now describe the data structure employed by the construction. The languages L1

and L2 are enumerated in stages. We let Ls
1 and Ls

2 denote L1 and L2 enumerated before
Stage s, respectively. Also, e1s, e2s will be a permutation of 1, 2 (this is used to make
a correct correspondence between the two groups of grammars and the two languages).
The two groups of grammars just before the execution of Stage s are denoted by P1s

and P2s. P1s and P2s will be disjoint subsets of {1, . . . , r} of size w each.
The variables used in the construction are initialized as follows. Let n0 = 0, m10 =

m20 = 0. Let e10 = 1 and e20 = 2. Let P10 = {1, . . . , w} and P20 = {w + 1, . . . , 2w}.
The following invariants are maintained by the construction.

Invariants (assuming that Stage s is executed)

H1. Ls
e1s

=
⋃

i∈P1s
[Wpi,m1s

] ⊆
⋂

i∈P1s
[Wpi,ns

].

H2. Ls
e2s

⊇
⋃

i∈P2s
[Wpi,m2s

].

H3.
⋃

i∈P2s
[Wpi,m2s

] ⊆
⋂

i∈P2s
[Wpi,ns

].

H4. Ls
e2s

−
⋃

i∈P2s
[Wpi,m2s

] ⊆ Ls
e1s

.

H5. (∀x ∈ Ls
e2s

)[card({j ∈ {1, 2, . . . , r} − P1s | x ∈ Wpj ,ns
}) ≥ w/2].

H6. m1s+1 > ns ≥ m1s ≥ m2s.

Begin {Stage s}

1. Search for n > ns such that there exist a set P ⊆ {1, . . . , r} of cardinality w such
that, for all i, j ∈ P , Similar(pi, pj , n) > ns.

2. If such an n is found, let ns+1 = n.

3. Let P1s+1 ⊆ {1, . . . , r} be
of cardinality w such that m1s+1 = min({Similar(pi, pj, ns+1) | i, j ∈ P1s+1})
is maximized.

4. if card(P1s+1 ∩ P1s) > card(P1s+1 ∩ P2s), then let e1s+1 = e1s and e2s+1 = e2s,

else let e1s+1 = e2s and e2s+1 = e1s.

endif

5. Let P2′s+1 ⊆ {1, . . . , r} − P1s+1 be of cardinality w such that m2′
s+1 =

min({Similar(pi, pj , ns+1) | i, j ∈ P2′s+1}) is maximized.

6. if [P1s+1 ∩ P1s 6= ∅ ∧ P1s+1 ∩ P2s 6= ∅] ∨ [Ls
e2s+1

⊆
⋃

i∈P2′
s+1

[Wpi,m2′
s+1

]] then

let P2s+1 = P2′s+1 and m2s+1 = m2′s+1.

elseif e2s+1 = e2s then let P2s+1 = P2s, m2s+1 = m2s.

else let P2s+1 = P1s, m2s+1 = m1s.

endif

7. Enumerate
⋃

i∈P1s+1
[Wpi,m1s+1] in Le1s+1.

Enumerate
⋃

i∈P2s+1
[Wpi,m2s+1] in Le2s+1.

Go to stage s + 1.

End {Stage s}

16

We now prove that each of the invariants, H1, . . . , H6, are satisfied by the con-
struction. To begin with, it is easy to verify that H2, H3, H6 are satisfied. H2 follows
from the enumeration in Step 7 of the construction. H3 is an immediate consequence of
property (c) of Similar. And, H6 follows from the definitions of m1s, m2s, and ns.

We show that H1, H4, and H5 hold by induction. We assume that H1, . . ., H6 hold
for s = t. We now show that they also hold for s = t+1. In the sequel, we use Hi (s = u)
to denote invariant Hi, with s replaced by u. We consider two cases.
Case 1: P1t+1 ∩ P1t 6= ∅ and P1t+1 ∩ P2t 6= ∅.

We first show that
⋃

i∈P1t+1
[Wpi,m1t+1] ⊇ Lt

e1t
∪ Lt

e2t
. From H1 (s = t), we get

⋃

i∈P1t
[Wpi,m1t

] ⊆
⋂

i∈P1t
[Wpi,nt

]. Hence, for each k ∈ P1t, Lt
e1t

⊆ Wpk,nt
. Let k′ ∈

(P1t+1 ∩ P1t) (such a k′ exists since P1t+1 ∩ P1t 6= ∅). Clearly, Lt
e1t

⊆ Wpk′ ,nt
. But

H6 (s = t) implies that m1t+1 > nt; hence Lt
e1t

⊆ Wpk′ ,m1t+1 ⊆
⋃

i∈P1t+1
[Wpi,m1t+1].

Now, we show that Lt
e2t

⊆
⋃

i∈P1t+1
[Wpi,m1t+1]. By H4 (s = t), it is sufficient to prove

that
⋃

i∈P2t
[Wpi,m2t

] ⊆
⋃

i∈P1t+1
[Wpi,m1t+1]. H3 (s = t) implies that

⋃

i∈P2t
[Wpi,m2t

] ⊆
⋂

i∈P2t
[Wpi,nt

]. Hence, for each k ∈ P2t,
⋃

i∈P2t
[Wpi,m2t

] ⊆ Wpk,nt
. Let k′ ∈ P1t+1 ∩ P2t

(such a k′ exists since P1t+1 ∩ P2t 6= ∅). Clearly,
⋃

i∈P2t
[Wpi,m2t

] ⊆ Wpk′ ,nt
⊆ Wpk′ ,m1t+1

(since H6 (s = t) implies that m1t+1 > nt). Therefore, Lt
e2t

⊆
⋃

i∈P1t+1
[Wpi,m1t+1].

We now prove H1 (s = t+1). Step 7 in the construction ensures
⋃

i∈P1t+1
[Wpi,m1t+1] ⊆

Lt+1
e1t+1

(note that this is the only place where something is enumerated in Lt+1
e1t+1

in Stage
t). Now, since e1t+1 is either e1t or e2t, and

⋃

i∈P1t+1
[Wpi,m1t+1] ⊇ Lt

e1t
∪ Lt

e2t
, we have

⋃

i∈P1t+1
[Wpi,m1t+1] ⊇ Lt+1

e1t+1
. Thus, H1 (s = t + 1) holds.

To see that H4 (s = t + 1) holds, it is sufficient to observe that Lt+1
e2t+1

−
⋃

i∈P2t+1
[Wpi,m2t+1] ⊆ Lt

e1t
∪ Lt

e2t
⊆ Lt+1

e1t+1
(by argument in the proof of H1 (s = t + 1)).

To show H5 (s = t + 1), we first observe that the intersection of P1t+1 and Q is at
most w/2, where Q = P2t if e2t = e2t+1, Q = P1t otherwise. This observation together
with

⋃

i∈P1t+1
[Wpi,m1t+1] ⊇ Lt

e1t
∪ Lt

e2t
and H1 to H5 (s = t) imply that the number of

grammars in p1, p2, . . . , pr which enumerate any element in Lt
e2t+1

is at least 3w/2. Thus,
H5 (s = t + 1) immediately follows.
Case 2: P1t+1 ∩ P1s = ∅ or P1t+1 ∩ P2t = ∅.

In this case we show that H1 (s = t + 1) holds. There are two subcases:
Subcase a: e1t+1 = e1t.

Since e1t+1 = e1t, it is sufficient to show that Lt
e1t

⊆
⋃

i∈P1t+1
[Wpi,m1t+1] (since step 7

in the construction guarantees that
⋃

i∈P1t+1
[Wpi,m1t+1] ⊆ Lt+1

e1t+1
). Now, H1 (s = t)

implies that Lt
e1t

⊆
⋂

i∈P1t
[Wpi,nt

]. Hence, for each k ∈ P1t, Lt
e1t

⊆ Wpk,nt
. Also, since

e1t+1 = e1t, we have P1t+1 ∩ P1t 6= ∅. Let k′ ∈ P1t+1 ∩ P1t. Clearly, Lt
e1t

⊆ Wpk′ ,nt
⊆

Wpk′ ,m1t+1 ⊆
⋃

i∈P1t+1
[Wpi,m1t+1].

Subcase b: e1t+1 = e2t.
Again, step 7 in the construction guarantees that

⋃

i∈P1t+1
[Wpi,m1t+1] ⊆ Lt+1

e1t+1
. Now

suppose by way of contradiction, (∃x)[x ∈ Lt+1
e1t+1

−
⋃

i∈P1t+1
[Wpi,m1t+1]]. Clearly, x ∈ Lt

e2t
.

But, H5 (s = t) implies that (∀x ∈ Lt
e2t

)[card({j ∈ {1, 2, . . . , r} − P1t | x ∈ Wpj ,nt
}) ≥

w/2]. But since, P1t+1 ∩ P1t = ∅, there exists at least one i ∈ P1t+1 such that x ∈
Wpi,m1t+1 — a contradiction. Hence, Lt+1

e1t+1
=

⋃

i∈P1t+1
[Wpi,m1t+1].

17

We leave details of the proof of H4 and H5. It should be noted that they immediately
hold if the first if in Step 6 in the construction succeeds; otherwise they can be shown
to hold using H1 (s = t), H3 (s = t), H4 (s = t), and H5 (s = t).

We now show how the invariants imply the lemma.
Suppose there is exactly one language, L, which has at least w grammars in the set

{p1, . . . , pr}. In this case clearly, m1s is unbounded and by H1, at least one of L1 and L2

is the same as L (depending on whether e1s takes value 1 or 2 infinitely often).
Suppose there are two distinct languages L and L′ which have at least w grammars

in the set {p1, . . . , pr}. It is easy to see that both m1s and m2s are unbounded and, for
all but finitely many s, [P1s+1 ∩ P1s = ∅ ∨ P1s+1 ∩ P2s = ∅]. It now follows using H1,
H3, and H5 that both L1 and L2 belong to {L,L′} and are distinct.

Thus, (∀L)[card({i | 1 ≤ i ≤ r ∧ Wpi
= L}) ≥ w ⇒ L = L1 ∨ L = L2].

Theorem 33 (∀m,n | m/n > 5/6)[Teamm
n TxtFex2 = TxtFex2]

Proof. This proof uses Lemma 31 presented above which shows that there exist recur-
sive functions G1 and G2, such that for any set S of r grammars, (∀L | card({i ∈ S |
Wi = L}) > 2r/5)[WG1(S) = L ∨ WG2(S) = L].

Let m,n be as described in the hypothesis of the theorem. Suppose a team of n
machines, M1,M2, . . . ,Mn, are given. We describe a machine M that TxtFex2-identifies
any language which is Teamm

n TxtFex2-identified by the team consisting of machines
M1,M2, . . . ,Mn.

Suppose the team consisting of machines M1,M2, . . . ,Mn Teamm
n TxtFex2-identifies

L. Let T be any text for L. Without loss of generality, we assume that for 1 ≤ j1 < j2 ≤
n, LastGram2(Mj1, T) and LastGram2(Mj2, T) (if defined) are disjoint (this can easily
be ensured by padding). This assumption is only for the ease of presentation of the proof.
For l ∈ N , let Sl denote the lexicographically least subset of {1, . . . , n} of cardinality m
such that max({LastMindChange2(Mj, T [l]) | j ∈ Sl}) is minimized. Note that liml→∞ Sl

exists (since the team consisting of machines M1, . . . ,Mn Teamm
n TxtFex2-identifies L).

Let S = liml→∞ Sl.
For l ∈ N , let Xl =

⋃

j∈Sl
[LastGram2(Mj, T [l])]. Since, for each j ∈ S, Mj converges

on T to a set of at most 2 grammars, liml→∞ Xl exists — let this limit be X. Moreover,
card(X) ≤ 2m and at least m− (n−m) of the grammars in X are grammars for L (since
the team consisting of machines M1, . . . ,Mn Teamm

n TxtFex2-identifies L). Thus, at
least (2m−n)/2m (which is greater than 2/5) fraction of grammars in X are for L. This,
together with Lemma 31, implies that at least one of G1(X) and G2(X) is a grammar
for L.

Now we describe the behavior of our machine M. For n ∈ N , M(T [n]) =
BestGram({G1(Xn), G2(Xn)}, T [n]). It is easy to see from the analysis on X above
and the property of function BestGram (Lemma 25) that M TxtFex2-identifies L.

Theorem 34 Team5
6TxtFex2 − TxtFex2 6= ∅.

18

Proof. Consider the following class of languages.
L = {L | card({w ≤ 5 | (∃x ≤ 1)[card({〈2w, y〉 | y ∈ N} ∩ L) < ∞ ∧ card({〈2w +

1, y〉 | y ∈ N} ∩ L) < ∞ ∧ Wmax({y|{〈2w+x,y〉|y∈N}∩L}) = L]}) ≥ 5}.
We now show that L ∈ Team5

6TxtFex2. Consider a team of 6 machines
M0,M1, . . . ,M5 such that machine Mi, 0 ≤ i ≤ 5, behaves as follows on any text
T .

Begin {Mi(T [n])}

if {y | 〈2i, y〉 ∈ content(T [n])} 6= ∅

then

let m1 = max({y | 〈2i, y〉 ∈ content(T [n])})

else let m1 = 0.

endif

if {y | 〈2i + 1, y〉 ∈ content(T [n])} 6= ∅

then

let m2 = max({y | 〈2i + 1, y〉 ∈ content(T [n])})

else let m2 = 0.

endif

Output BestGram(m1,m2, T [n]).

End {Mi(T [n])}

It is easy to verify that the team consisting of machines, M0,M1, . . . ,M5,
Team5

6TxtFex2-identifies L.
We now show that L 6∈ TxtFex2. Suppose by way of contradiction that M TxtFex2-

identifies L. We then show that there exists a language in L that M fails to TxtFex2-
identify. The description of this witness proceeds in stages and uses the operator recursion
theorem (Case [4]). The construction is somewhat on the lines of the diagonalization
argument presented in our proof of Theorem 28 (a). We give an informal description of
the idea first.

At each Stage s, the construction makes use of initial sequence σs. By the use of the
operator recursion theorem, we initialize σ0 to “agree” with languages in L. We then
proceed in stages. At each Stage s, an attempt is made to find a sequence τ extending
σs such that M undergoes a mind change on τ with respect to TxtFex2-identification.
If such an attempt is successful at every stage then the construction yields a language in
L for which

⋃

s∈N σs is a text and on this text M does not converge to up to 2 grammars.
If on the other hand, an attempt to find a mind change is unsuccessful at some Stage
s then the machine M has essentially locked itself to a set of up to two grammars on
all suitable extensions of σs. The construction then describes a number of languages in
L which diagonalize against the grammars on which M has become locked. We now
proceed formally.

19

By the operator recursion theorem, there exists a 1-1, recursive, increasing function
p, such that the languages Wp(i) can be described as follows.

Enumerate 〈i, p(i)〉 in Wp(j), for i ≤ 9 and j ≤ 9. Let W s
p(·) denote Wp(·) enumerated

before stage s. Let Last2(σ) = LastGram2(M, σ). (For ease of construction we assume
without loss of generality that Last2(σ) is always of cardinality 2). Let σ0 be such that
content(σ0) = {〈i, p(i)〉 | i ≤ 9}. Go to stage 0.

Stage s

Dovetail steps 1 and 2 until, if ever, step 1 succeeds. If and when step 1 succeeds, go
to step 3.

1. Search for an extension τ of σs such that content(τ)−content(σs) ⊆ {〈x, y〉 | x > 9},
such that Last2(τ) 6= Last2(σs).

2. Let m1 = 1 + max({x | (∃y)[〈x, y〉 ∈ Wp(0) enumerated till now]}).

Let r1 = 3 + max({y | (∃x ≤ 11)[〈x, p(y)〉 ∈ Wp(0) enumerated till now]}).

2.1. Enumerate 〈10, p(r1)〉 in Wp(0).
Enumerate Wp(0) enumerated till now in Wp(i), i ≤ 9 and Wp(r1),Wp(r1+1),Wp(r1+2).
Enumerate 〈m1, 0〉 in Wp(0),Wp(2),Wp(4),Wp(6) and Wp(r1).
Search for a q ∈ Last2(σs), such that Wq enumerates 〈m1, 0〉.
If and when the search succeeds, go to step 2.2.

2.2. Enumerate 〈10, p(r1 + 1)〉 in Wp(i), i ≤ 9 and Wp(r1+1),Wp(r1+2).
Enumerate 〈m1 + 1, 0〉 in Wp(3),Wp(5),Wp(7),Wp(9),Wp(r1+1).
Search for q′ ∈ Last2(σs) − {q}, such that Wq′ enumerates 〈m1 + 1, 0〉.
If and when the search succeeds, go to step 2.3.

2.3. Enumerate 〈m1, 0〉 and 〈m1 + 1, 0〉 in Wp(0),Wp(2),Wp(7),Wp(9),Wp(r1+1).
Search for a q′′ ∈ Last2(σs), such that both 〈m1, 0〉 and 〈m1 + 1, 0〉 are enu-

merated in Wq′ .
If and when the search succeeds go to step 2.4.

2.4. Let x ∈ {m1,m1 +1} be such that all grammars in Last2(σs) enumerate 〈x, 0〉.
Let x′ be the only element in {m1,m1 + 1} − {x}.
Enumerate 〈10, p(r1 + 2)〉 in Wp(i), i ≤ 9 and Wp(r1+2).
Enumerate 〈x′, 0〉 in Wp(1), Wp(8) and Wp(r2+1).
Note that, if the search in step 1 does not succeed, then either Wp(4) and Wp(6)

or Wp(3) and Wp(5) are the same as Wp(1).

3. Let S = content(τ) ∪
⋃

i≤9[Wp(i) enumerated till now].

Enumerate S in Wp(i), i ≤ 9.

Let σs+1 be an extension of τ such that content(σs+1) = S.

Go to stage s + 1.

End stage s

Now consider the following cases.
Case 1: All stages halt.

20

In this case let L = Wp(0). It is easy to see that L ∈ L. However, M on
⋃

s σs, a text
for L, does not converge to at most 2 grammars.
Case 2: Stage s starts but does not halt.

If the search in step 2.1 does not succeed, then let L = Wp(0). If the search in step
2.1 succeeds, but the search in step 2.2 fails, then let L = Wp(3). If the search in step
2.1 and 2.2 succeed, but the search in step 2.3 fails, then let L = Wp(0). If the search in
step 2.1, 2.2 and 2.3 succeed, then let L = Wp(1). It is easy to see that in all these three
cases, L ∈ L and L 6∈ {Wq | q ∈ Last2(σs)}. Thus we have that L 6⊆ TxtFex2(M).

Thus we have that L 6∈ TxtFex2.

3.7 Aggregation for Language Identification from Informants

Results presented in the previous section were for language learning criteria in which
learning takes place from positive data only. In the present section, we record similar
results for learning criteria in which learning takes place from both positive and negative
data. It should be noted that the proof techniques for language learning from informants
and function learning from graphs are very similar. This is despite the fact that identifi-
cation of recursively enumerable languages from informants differs from identification of
recursive functions because a learning machine is required to converge to a total program
in identifying recursive functions whereas a machine identifying recursively enumerable
languages from informants converges to grammars (which are semi-decision procedures).

Identification from texts is an abstraction of learning from positive data. Similarly,
learning from both positive and negative data can be abstracted as identification from
informants. The notion of informants, defined below, was first considered by Gold [13].

Definition 35 A text I is called an informant for a language L just in case content(I) =
{〈x, 1〉 | x ∈ L} ∪ {〈x, 0〉 | x 6∈ L}.

The next definition formalizes identification in the limit from informants.

Definition 36 (a) M InfEx-identifies L (written: L ∈ InfEx(M)) ⇐⇒ (∀ infor-

mants I for L)(∃i | Wi = L)(
∞

∀ n)[M(I[n]) = i].

(b) InfEx = {L ⊆ E | (∃M)[L ⊆ InfEx(M)]}.

We leave it to the reader to similarly define InfFin, InfBc, and for each b ∈ N+ ∪ {∗},
InfFexb. Also, for m,n ∈ N+ and for each I ∈ {InfFin, InfEx, InfFexb, InfBc}, we
can define Teamm

n I-identification. We now present aggregation results for these new
criteria.

For finite identification from informants, the aggregation ratio is 2/3 as implied by the
following results. This is not unexpected given results about finite function identification
and finite language identification from texts.

Theorem 37 (a) (∀m,n ∈ N+ | m/n > 2/3) [Teamm
n InfFin = InfFin].

21

(b) InfFin ⊂ Team2
3InfFin.

Proof. Part (b) can be obtained as a corollary to the corresponding function learning
result. For part (a), suppose M1,M2, . . . ,Mn and an informant T are given. Let sT be
the least number if any such that there exists a set S ⊆ {1, . . . , n} of cardinality m, such
that, for each j ∈ S, Mj(T [sT]) 6=⊥. Then M(T [s]) =⊥ for s < sT , and, for s ≥ sT ,
M(T [s]) = i, where i is such that Wi = {x | card({j ∈ S | x ∈ WMj(T [sT])}) ≥ 2m−n}. It
is easy to verify that M InfFin-identifies any language that is Teamm

n InfFin-identified
by M1,M2, . . . ,Mn.

For identification in the limit, however, aggregation turns out to be different for
informants and texts. In fact language identification from informants behaves very much
like function learning, as aggregation ratio for InfEx is 1/2. Also, the aggregation ratio
for InfBc is 1/2. These observations are summarized in the following result.

Theorem 38 Let I ∈ {InfEx, InfBc}.

(a) (∀m,n | m/n > 1/2)[Teamm
n I = I].

(b) I ⊂ Team1
2I.

Proof. Part (b) can be proved using the language learning analog of the proof used to
show I ⊂ Team1

2I for I ∈ {Ex,Bc}. For part (a) suppose m > n/2. Teamm
n InfEx ⊆

InfEx can be obtained as a corollary to Theorem 39 below (since, for m > n/2,
Teamm

n InfEx ⊆ InfFexm; proof similar to proofs for Theorem 26(a) and Theorem 28(b)).
Essentially the proof of Teamm

n TxtBc ⊆ TxtBc can also be used to show that Teamm
n InfBc ⊆

InfBc.

Theorem 39 can be proved using techniques similar to that used by Case and Smith
[8] to show that Fex = Ex.

Theorem 39 (∀b ∈ N+ ∪ {∗})[InfFexb = InfEx].

Hence, Theorem 38 holds for vacillatory identification from informants, too.

4 Conclusion

Clearly, aggregation issues for for TxtFexb, where b 6= ∗ ∧ b > 2, are open. Only partial
results can be shown at this stage, as the combinatorial complexity of the simulation
arguments become difficult to handle. We summarize the state of art about aggregation
ratios in the following table; the symbol ‘?’ denotes open questions.

22

Type of Finite Limit Vacillatory Behaviorally
Identification 2 3 · · · ∗ Correct

Function (Graph) 2
3

1
2

1
2

1
2

1
2

1
2

1
2

Language (Text) 2
3

2
3

5
6

? ? 1
2

1
2

Language (Informant) 2
3

1
2

1
2

1
2

1
2

1
2

1
2

5 Acknowledgement

A preliminary version of this paper was presented at the Fourth International Workshop
on Algorithmic Learning Theory (ALT-93, Tokyo, November 1993). We wish to thank
Frank Stephan, the reviewers of ALT-93, and the reviewers of this journal for several
helpful comments.

References

[1] J. M. Barzdin. Two theorems on the limiting synthesis of functions. In Theory
of Algorithms and Programs, Latvian State University, Riga, 210:82–88, 1974. In
Russian.

[2] J. M. Barzdin and K. Podnieks. The theory of inductive inference. In Mathematical
Foundations of Computer Science, High Tatras, Czechoslovakia, pages 9–15, 1973.

[3] M. Blum. A machine independent theory of the complexity of recursive functions.
Journal of the ACM, 14:322–336, 1967.

[4] J. Case. Periodicity in generations of automata. Mathematical Systems Theory,
8:15–32, 1974.

[5] J. Case. The power of vacillation. In D. Haussler and L. Pitt, editors, Proceed-
ings of the Workshop on Computational Learning Theory, pages 133–142. Morgan
Kaufmann Publishers, Inc., 1988. Expanded in [6].

[6] J. Case. The power of vacillation in language learning. Technical Report 93-08,
University of Delaware, 1992. Expands on [5]; journal article under review.

[7] J. Case and C. Lynes. Machine inductive inference and language identification.
In M. Nielsen and E. M. Schmidt, editors, Proceedings of the 9th International

23

Colloquium on Automata, Languages and Programming, pages 107–115. Springer-
Verlag, Berlin, 1982. Lecture Notes in Computer Science 140.

[8] J. Case and C. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science, 25:193–220, 1983.

[9] R. P. Daley. Inductive inference hierarchies: Probabilistic vs pluralistic. In Mathe-
matical Methods of Specification and Synthesis of Software Systems, Wendisch-Rietz,
GDR, pages 73–82, April 1985. Lecture Notes in Computer Science 215.

[10] R. P. Daley, B. Kalyanasundaram, and M. Velauthapillai. Breaking the probability
1/2 barrier in fin-type learning. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, Pittsburgh, Pennsylvania, pages 203–217. A. C. M.
Press, 1992.

[11] R. P. Daley, L. Pitt, M. Velauthapillai, and T. Will. Relations between probabilistic
and team one-shot learners. In L. Valiant and M. Warmuth, editors, Proceedings
of the Workshop on Computational Learning Theory, pages 228–239. Morgan Kauf-
mann Publishers, Inc., 1991.

[12] R. Freivalds. Functions computable in the limit by probabilistic machines. In Math-
ematical Foundations of Computer Science, pages 77–87, 1974.

[13] E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

[14] J. Hopcroft and J. Ullman. Introduction to Automata Theory Languages and Com-
putation. Addison-Wesley Publishing Company, 1979.

[15] S. Jain and A. Sharma. Finite learning by a team. In M. Fulk and J. Case, edi-
tors, Proceedings of the Third Annual Workshop on Computational Learning Theory,
Rochester, New York, pages 163–177. Morgan Kaufmann Publishers, Inc., August
1990.

[16] S. Jain and A. Sharma. Language learning by a team. In M. S. Paterson, editor,
Proceedings of the 17th International Colloquium on Automata, Languages and Pro-
gramming, pages 153–166. Springer-Verlag, July 1990. Lecture Notes in Computer
Science, 443.

[17] S. Jain and A. Sharma. Computational limits on team identification of languages.
Technical Report 9301, School of Computer Science and Engineering; University of
New South Wales, 1993.

[18] S. Jain and A. Sharma. Probability is more powerful than team for language identi-
fication. In Proceedings of the Sixth Annual Conference on Computational Learning
Theory, Santa Cruz, California, pages 192–198. ACM Press, July 1993.

24

[19] M. Machtey and P. Young. An Introduction to the General Theory of Algorithms.
North Holland, New York, 1978.

[20] D. Osherson, M. Stob, and S. Weinstein. Aggregating inductive expertise. Informa-
tion and Control, 70:69–95, 1986.

[21] D. Osherson and S. Weinstein. Criteria of language learning. Information and
Control, 52:123–138, 1982.

[22] L. Pitt. A characterization of probabilistic inference. PhD thesis, Yale University,
1984.

[23] L. Pitt and C. Smith. Probability and plurality for aggregations of learning machines.
Information and Computation, 77:77–92, 1988.

[24] H. Rogers. Gödel numberings of partial recursive functions. Journal of Symbolic
Logic, 23:331–341, 1958.

[25] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw
Hill, New York, 1967. Reprinted, MIT Press 1987.

[26] C. Smith. The power of pluralism for automatic program synthesis. Journal of the
ACM, 29:1144–1165, 1982.

[27] M. Velauthapillai. Inductive inference with bounded number of mind changes. In
Proceedings of the Second Annual Workshop on Computational Learning Theory,
Santa Cruz, California, pages 200–213. Morgan Kaufmann Publishers, Inc., August
1989.

25

