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1 Introduction

Inductive inference in the scientific domain is seldom an individual enterprise. Many a scientific
breakthrough are result of the efforts of several scientists investigating a problem; scientific success is
achieved if any one or more of members of the scientific community are successful. This observation
about the practice of science can be partially incorporated in a model of computational learning
that employs a ‘team’ of algorithmic machines instead of a single algorithmic machine. The team
is said to be successful just in case one or more members in the team are successful.

Another variation on the notion of an algorithmic learning machine is obtained by considering
devices that in addition to being algorithmic are also capable of basing their actions on the outcomes
of random events. Such learning agents can be modeled using probabilistic Turing machines.

The present paper surveys the work on both team and probabilistic learning. The notion of
team learning in the context of identification in the limit of functions was first investigated by
Smith [36]. The study of probabilistic learning machines was initiated by Freivalds [15] and Pitt
[32]. Freivalds’ study is in the context of finite identification of functions and Pitt’s study is for
identification in the limit of functions.

Like most investigations in Learning Theory, the work on team and probabilistic learning can
be classified under two dimensions:

• Concepts being learned: computable functions and recursively enumerable languages.

• Criteria of Success: learning in the limit, learning with bounded number of mind changes
and finite learning, vacillatory learning, and behaviorally correct learning.

Most progress has been reported on team and probabilistic learning in the limit of computable
functions. Partial results have been reported on identification in the limit of r.e. languages by
teams and probabilistic machines and on finite identification of computable functions by teams
and probabilistic machines. Only preliminary results are known for other cases. Given this state of
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affairs, we begin with a extensive treatment of identification in the limit by teams and identification
in the limit by probabilistic machines of computable functions. After showing that these two notions
turn out to be equivalent, we turn our attention to language identification in the limit by both
teams and probabilistic machines. This is followed by a discussion of results about team finite
identification.1 Finally, we present pointers to other investigations about team and probabilistic
learners.

In what follows, Section 2 introduces the preliminaries, Section 3 describes team identification
of functions, Section 4 introduces probabilistic identification of functions, Section 5 is devoted to
both team and probabilistic identification of languages, Section 6 discusses results about finite
identification of functions by teams, and finally in Section 7 we present pointers to the literature
for additional results.

2 Preliminaries

In this section, we introduce our notation and describe the fundamental learning paradigms.

2.1 Notation

Any unexplained recursion theoretic notation is from [35]. The symbol N denotes the set of natural
numbers, {0, 1, 2, 3, . . .}. The symbol N+ denotes the set of positive natural numbers, {1, 2, 3, . . .}.
Unless otherwise specified, i, j, k, l, m, n, q, r, s, t, x, y, with or without decorations2, range over
N . Symbols ∅, ⊆, ⊂, ⊇, and ⊃ denote empty set, subset, proper subset, superset, and proper
superset, respectively. Symbols A and S, with or without decorations, range over sets. P, Q, and
X, with or without decorations, range over finite sets. D0,D1, . . ., denotes a canonical (recursive)
indexing of finite sets [35]. Cardinality of a set S is denoted by card(S). We say that card(A) ≤ ∗
to mean that card(A) is finite. Intuitively, the symbol, ∗, denotes ‘finite without any prespecified
bound.’ The letters a and b, with or without decorations, range over N ∪ {∗}. The maximum and
minimum of a set are denoted by max(·),min(·), respectively, where max(∅) = 0 and min(∅) =↑.
We also order pairs in the following manner. We say that a pair (i, j) is < (k, l) just in case
[(i < k) ∨ (i = k ∧ j < l)].

Letters f, g, h and G, with or without decorations, range over total functions with arguments
and values from N . Symbol R denotes the set of all total computable functions. C and S, with or
without decorations, range over subsets of R.

We let ψ, with or without decorations, range over partial functions. For a ∈ (N ∪ {∗}), ψ1 =a ψ2

means that card({x | ψ1(x) 6= ψ2(x)}) ≤ a.

A pair 〈i, j〉 stands for an arbitrary, computable, one-to-one encoding of all pairs of natural
numbers onto N [35]. π1(〈x, y〉) = x and π2(〈x, y〉) = y. Similarly, we can define 〈·, . . . , ·〉 for
encoding multiple tuples of natural numbers onto N .

By ϕ we denote a fixed acceptable programming system for the partial computable functions:

1This subject is addressed in detail by Daley and Kalyanasundaram elsewhere in this volume.
2Decorations are subscripts, superscripts and the like.
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N → N [34, 35, 27]. By ϕi we denote the partial computable function computed by program i in
the ϕ-system. The letter, p, in some contexts, with or without decorations, ranges over programs;
in other contexts p ranges over total functions with its range being construed as programs. By Φ
we denote an arbitrary fixed Blum complexity measure [2, 19] for the ϕ-system. By Wi we denote
domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted (or equivalently, generated) by
the ϕ-program i. Symbol E will denote the set of all r.e. languages. Symbol L, with or without
decorations, ranges over E . Symbol L, with or without decorations, ranges over subsets of E . We
denote by Wi,s the set {x ≤ s | Φi(x) < s}. L1 4L2 denotes (L1 −L2) ∪ (L2 − L1), the symmetric
difference of L1 and L2. For a ∈ (N ∪ {∗}), L1 =a L2 means that card(L1 4 L2) ≤ a.

[i . . j] denotes the set of real numbers ≥ i and ≤ j.

2.2 Learning Machines

We first describe function learning machines.

We assume, without loss of generality, that the graph of a function is fed to a machine in
canonical order. For f ∈ R and n ∈ N , we let f [n] denote the finite initial segment {(x, f(x)) |
x < n}. Clearly, f [0] denotes the empty segment. SEG denotes the set of all finite initial segments,
{f [n] | f ∈ R ∧ n ∈ N}.

Definition 1 [18] A function learning machine is an algorithmic device which computes a mapping
from SEG into N .

We now consider language learning machines. A sequence σ is a mapping from an initial segment
of N into (N∪{#}). The content of a sequence σ, denoted content(σ), is the set of natural numbers
in the range of σ. The length of σ, denoted by |σ|, is the number of elements in σ. For n ≤ |σ|,
the initial sequence of σ of length n is denoted by σ[n]. Intuitively, #’s represent pauses in the
presentation of data. We let σ, τ , and γ, with or without decorations, range over finite sequences.
SEQ denotes the set of all finite sequences. We let σ � x denote the concatenation of x at the end
of σ. Thus τ = σ � x may be defined as follows:

τ(z) =







σ(z), z < |σ|;
x, z = |σ|;
↑, otherwise.

A text T is a mapping from N into (N ∪{#}). The content of a text T , denoted by content(T ),
is the set of natural numbers in the range of T . A text T is for L iff content(T ) = L. T [n] denotes
the initial segment of T with length n.

Definition 2 A language learning machine is an algorithmic device which computes a mapping
from SEQ into N .

The set of all finite initial segments, SEG, can be coded onto N . Also, the set of all finite
sequences of natural numbers and #’s, SEQ, can be coded onto N . Thus, in both Definitions 1 and
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2, we can view these machines as taking natural numbers as input and emitting natural numbers
as output. Henceforth, we will refer to both function-learning machines and language-learning
machines as just learning machines, or simply as machines. We let M, with or without decorations,
range over learning machines.

It should be noted that for all the identification criteria surveyed in this paper, we are assuming,
without loss of generality, that the learning machines are total.

2.3 Function Identification in the Limit

The next definition describes identification in the limit of functions. We also consider the case in
which the final program is allowed to have anomalies.

Definition 3 [18, 1, 5] Let a ∈ N ∪ {∗}. M Exa-identifies f (read: f ∈ Ex(M)) ⇐⇒ (∃i | ϕi =a

f) (
∞
∀ n)[M(f [n]) = i]. We define the class Exa = {S ⊆ R | (∃M)[S ⊆ Exa(M)]}.

The relationship between the above criteria is summarized in the following theorem.

Theorem 1 [5, 1] Ex = Ex0 ⊂ Ex1 ⊂ Ex2 ⊂ · · · ⊂ Ex∗.

A variant on the above criterion, described next, was introduced by Case and Smith [5] and is
useful in the proof of some of the results in the present chapter.

Definition 4 [5] Let a ∈ N ∪ {∗}. M Oexa-identifies f (written: f ∈ Oexa(M)) just in case
there exists a nonempty finite set D such that the following hold:

1. (∃i ∈ D)[ϕi =a f ]);

2. (
∞
∀ n)[M(f [n]) ∈ D];

3. (∀i ∈ D)(
∞
∃ n)[M(f [n]) = i]].

We define the class Oexa = {S | (∃M)[S ⊆ Oexa(M)]}.

Thus, M Oexa identifies a function f just in case M, fed the graph of f , vacillates among a
nonempty finite set D of indexes such that there is at least one a-error index for f in the set D
and each index in D is conjectured infinitely often by M.

The following formulation of Oexa is equivalent to the above definition. We often employ the
following variant in our applications of Oexa.

Definition 5 [5] Let a ∈ N ∪ {∗}. M Oexa-identifies f (written: f ∈ Oexa(M)) just in case
there exists an i such that
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1. (∃j ∈ Di)[ϕj =a f ];

2. (
∞
∀ n)[M(f [n]) = i];

The following is true about Oexa criteria.

Theorem 2 [5]

1. For m ∈ N , Oexm = Exm.

2. Oex∗ − Ex∗ 6= ∅.

2.4 Language Identification in the Limit

We now introduce language identification in the limit.

Definition 6 [18, 4, 30] Let a ∈ N ∪ {∗}. M TxtExa-identifies L (read: L ∈ TxtEx(M)) ⇐⇒

(∀ texts T for L) (∃i | Wi =a L) (
∞
∀ n)[M(T [n]) = i]. We define the class TxtExa = {L ⊆ E |

(∃M)[L ⊆ TxtExa(M)]}.

The relationship between the above criteria are summarized in the following theorem.

Theorem 3 [4, 30] TxtEx = TxtEx0 ⊂ TxtEx1 ⊂ TxtEx2 ⊂ · · · ⊂ TxtEx∗.

3 Limiting Identification of Functions by Teams

Consider the following well known result from Learning Theory.

Theorem 4 [1] Let

S1 = {f ∈ R | ϕf(0) = f} and

S2 = {f ∈ R | (
∞
∀ n)[f(n) = 0]}.

Then, S1 ∈ Ex, S2 ∈ Ex, but S1 ∪ S2 6∈ Ex.

The above result, popularly referred to as ‘non-union theorem,’ says that the class Ex is not
closed under union. In other words, there are collections of functions which are identifiable, but
the union of these collections is not identifiable. This result may be viewed as a fundamental
limitation on building a general purpose device for machine learning, and, to an extent, justifies
the use of heuristic methods in Artificial Intelligence. However, this result also suggests a more
general criterion of identification in which a team of scientists is employed and success of the team
is the success of any member in the team. We illustrate this idea next.
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Consider the collections of functions S1 and S2 in Theorem 4. Let M1 Ex-identify S1 and M2

Ex-identify S2. Now, if we employed a team of M1 and M2 to identify S1 ∪ S2 and weakened the
criterion of success to the requirement that success is achieved just in case any one member in the
team is successful, then the collection S1 ∪ S2 becomes identifiable by the team consisting of M1

and M2 under this new criterion of success. This idea can be extended to teams of n machines
out of which at least m (m ≤ n) are required to be successful. The formal definitions for team
function identification and team language identification are presented next. J. Case first suggested
the notion of team function identification based on the non-union theorem of the Blums, and it was
extensively investigated by C. Smith. The general case of m out of n teams is due to Osherson,
Stob, and Wienstein [28].

We now formally define team identification for functions.

A team of learning machines is a multiset of learning machines.

Definition 7 [36, 28] Let a ∈ N ∪ {∗} and let m,n ∈ N+.

(a) Let f ∈ R. A team of nmachines M1,M2, . . . ,Mn is said to Teamm
n Exa-identify f (written:

f ∈ Teamm
n Exa(M1,M2, . . . ,Mn)) just in case there exist m distinct numbers i1, i2, . . . , im,

1 ≤ i1 < i2 < · · · < im ≤ n, such that each of Mi1 ,Mi2 , . . . ,Mim Exa-identifies f .

(b) Teamm
n Exa is defined to be the class of sets S of computable functions such that some

team of n machines Teamm
n Exa-identifies each function in S.

For the criterion Teamm
n Exa-identification, we refer to the fraction m

n as the success ratio of
the criterion.

We now turn our attention to results. We first describe results about team function crite-
ria in which success of the team requires only one member in the team to be successful, namely,
Team1

nEx-identification. Section 4 describes identification by probabilistic machines. These results
illustrate an intimate relationship between Team1

nEx-identification and identification by proba-
bilistic machines. This relationship is then used to obtain results about the general team function
criteria, Teamm

n Ex-identification.

All the results to follow in the present section are due to Smith [36].

The following result says that there are collections of functions for which a correct program can
be synthesized by a team of n+ 1 machines, at least one of which is successful, but for which even
a finite variant program cannot be synthesized by a team of n machines with the requirement that
at least one of them be successful.

Theorem 5 [36] (∀n ≥ 1)[Team1
n+1Ex − Team1

nEx∗ 6= ∅].

Proof. For n ∈ N+, let Cn = {f ∈ R | (∃x ≤ n)[card(Wf(x)) <∞∧ ϕmax(Wf(x)) = f ]}.

It is easy to verify that Cn ∈ Team1
n+1Ex. Below, we show using a diagonalization argument

that C2 6∈ Team1
2Ex∗. The following argument can easily be generalized to show that Cn 6∈

Team1
nEx∗.
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Suppose by way of contradiction, there exist machines M0 and M1 such that C2 ⊆
Team1

2(M0,M1). Then, by the implicit use of the operator recursion theorem, there exists a
one to one, monotone increasing, recursive function p such that ϕp(·) (Wp(·)) can be described in
stages below.

We initialize ϕp(3)(0) = p(0), ϕp(3)(1) = p(1), and ϕp(3)(2) = p(2). Enumerate p(3) in to Wp(0).

Let avail = 3. Intuitively, avail denotes the least number such that, for all i > avail, p(i) has
not been used in the diagonalization before. Let xs denote the least x such that ϕp(3)(x) has not
been defined before stage s. Go to stage 0.

Begin {stage s}

1. Let avail = avail + 1.

Let cur = avail.

Enumerate p(cur) into Wp(1).

For x < xs, let ϕp(cur)(x) = ϕp(3)(x).

Let r = s mod 2.

2. Dovetail steps 3 and 4 until, if ever, step 3 succeeds. If and when step 3 succeeds go to step 5.

(∗ Intuitively, if step 3 succeeds in each stage, then ϕp(3) ∈ C2 and both M0 and M1 do not
Ex∗-identify ϕp(3). ∗)

3. Search for an extension σ ∈ SEQ of ϕp(3)[xs] such that ϕMr(σ)(|σ|)↓.

4. Let xs,s′ denote the least x such that ϕp(cur)(x) has not been defined before substage s′ of stage
s.

Go to substage 0.

Begin {substage s′}

4.1. Let avail = avail + 1.
4.2. Enumerate p(avail) into Wp(2).
4.3. For x < xs,s′ , let ϕp(avail)(x) = ϕp(cur)(x).
4.4. Dovetail steps 4.5 and 4.6 until, if ever, step 4.5 succeeds. If and when step 4.5 succeeds,

go to step 4.7.
4.5. Search for an extension τ ∈ SEQ of ϕp(cur)[xs,s′ ] such that ϕM1−r(τ)(|τ |)↓.
4.6. Let x = xs,s′ .

repeat

Let ϕp(avail)(x) = 0.
Let x = x+ 1.

forever

4.7. Let τ be as found in step 4.5.
For x < |τ |, let ϕp(cur)(x) = y such that (x, y) ∈ content(τ).
Let ϕp(cur)(|τ |) = ϕM1−r(τ)(|τ |) + 1.

4.8 Go to substage s′ + 1.

End {substage s′}

5. Let σ be as found in step 3.

5.1. For x < |σ|, let ϕp(3)(x) = y such that (x, y) ∈ content(σ).
5.2. Let ϕp(3)(|σ|) = ϕMr(σ)(|σ| + 1).

6. Go to stage s+ 1.

End {stage s}
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Now, consider the following cases.

Case 1: Each stage terminates.

Let f = ϕp(3). Clearly, f is computable and a member of C2 (since f(0) = p(0), and
Wp(0) = {p(3)}). Also, because of the success of step 3 and the diagonalization at step
5.2 in each even (odd) stage, M0 (M1) either diverges on f or the last program output
by M0 (M1) on f commits infinitely many convergent errors.

Case 2: Some stage s starts but does not terminate.

Let r and cur be as defined in step 1 of stage s. Since step 3 does not succeed,
Mr does not Ex∗-identify any extension of ϕp(3), and thus it does not Ex∗-identify any
extension of ϕp(cur).
Case 2.1: Each substage in stage s terminates.

Let f = ϕp(cur). Clearly, f is computable and a member of C2, since f(1) =
p(1) and max(Wp(1)) = p(cur). Also, by the success of step 4.5 and the
diagonalization at step 4.7 in each substage, M1−r either diverges on f , or
the last program output by M1−r on f commits infinitely many convergent
errors.

Case 2.2: Some substage s′ in stage s starts but does not terminate.

In this case let avail be as at step 4.2 in substage s′ of stage s. Let f = ϕp(avail).
Clearly, f is recursive and an extension of ϕp(cur). Also, f is a member of C2,
since f(2) = p(2) and max(Wp(2)) = p(avail). However, since step 4.5 does
not succeed, M1−r, does not Ex∗-identify any extension of ϕp(cur) and thus
does not Ex∗-identify f .

From the above cases it follows that C2 6∈ Team1
2(M0,M1).

The following corollary to the above theorem says that increasing the size of team renders larger
collections of functions identifiable.

Corollary 1 [36] Let a ∈ N ∪ {∗}. Then,
Exa = Team1

1Exa ⊂ Team1
2Exa ⊂ Team1

3Exa ⊂ · · ·.

Now, if m,n ∈ N+ such that m ≤ n, then we would like to know for which values of i, j ∈ N ,
Team1

mExi ⊆ Team1
nExj . From the above corollary, it is clear that the ⊆ relationship holds if

i ≤ j, but we wish to determine for a given n, by how much can the value of j be reduced so that
the ⊆ relationship still holds. In other words, we would like to know how anomalies in the final
program can be traded for extra team members. This is the subject of next result; we omit the
proof.

Theorem 6 [36] For all i, j ∈ N and m ∈ N+, Team1
mExi ⊆ Team1

nExj, where n = m(1 +
b i

j+1c).
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The next two results show that above Theorem 6 is optimal. For Theorems 7 and 8 below,
define Cr,l, for r, l ≥ 1, to be the collection of functions {f ∈ R | ϕf(0) =r·l f ∧ (∃i ≤ r)[card({x |
ϕf(0)(x) 6= f(x)}) = i · l]}.

Theorem 7 [36] For all k, Cr,l ∈ Team1
mExk·l, where m = 1 + b r

k+1c.

Theorem 8 [36] Cr,l 6∈ Team1
rExl−1.

Proof. The proof of the above theorem involves a complicated priority construction. Fix
r, l ≥ 1. Suppose by way of contradiction there exist machines M1,M2, . . . ,Mr such that
Cr,l ∈ Team1

rExl−1(M1,M1, . . . ,Mr). Then, by implicit use of Kleene’s recursion theorem, there
exists an e such that the (partial) function ϕe may be described as follows.

ϕe employs r moving anomaly markers, each marking l consecutive numbers, which we are
temporarily trying to keep out of the domain of ϕe. We name the r markers α0, . . . , αr−1. At any
time, we let the set variable Ai denote the set of numbers marked by αi at that time. Ai’s will be
pairwise disjoint at all times. As

i denotes the value of Ai at the beginning of stage s.

In the construction, we will assign tasks, numbered 0 to ∞, to the markers. Priority of a
task numbered t is t. Lower number means higher priority. The tasks may get “done” at some
stage. However, a higher priority task may undo a lower priority task which was completed earlier.
Priority of a marker, at any time, is the priority of the highest priority task assigned to it which
has not been done.

We now proceed to give an informal description of ϕe. Let ϕe(0) = e. For i < r, let A0
i =

{l · i+1+x | x < l}. Let ϕs
e denote the part of ϕe defined before stage s. We let xs denote the least

element not in domain(ϕs
e) ∪

⋃

i<r A
s
i . It will be the case that domain(ϕs

e) ∪
⋃

i<r A
s
i is an initial

segment of N . Let τ s denote the sequence such that content(τ s) = ϕs
i ∪ {(x, 0) | x ∈

⋃

i<r A
s
i}. Let

σs
i denote the initial segment of τ s with length min(As

i ).

Initially assign task i to αi. Let nexttask denote, at any time, the least task number which has
not been assigned to any marker till that time. Thus, initially nexttask = r. Go to stage 0.

Begin {stage s}

1. We say that αi requires attention at this stage just in case

(∃τ ′ | σs
i ⊆ τ ′ ⊆ τ s)[Mi(σ

s
i ) 6= Mi(τ

′)] or
there exists an x ∈ As

i such that ΦMi(σs
i ) ≤ s.

2. if no αi requires attention, then let ϕe(xs) = 0 and go to stage s+ 1.

endif

3. (∗ Some αi requires attention. ∗)

Let αi be the highest priority marker which requires attention.

Let t be the priority of highest priority marker which requires attention.

4. “undo” all tasks with lower priority than t.

5. (∗ In steps 5 and 6 task t gets “done”. ∗)

Let y = xs.

9



for j = 0 to r − 1 do

if priority of αj is lower than that of αi,
then

For x ∈ As
j , let ϕe(x) = 0.

Let Aj = {y + x | x < l}.
Let y = y + l.
(∗ Note that in this step Aj changes. Thus, the marker αj moves. ∗)

endif

endfor

6. if there exists an x ∈ As
i such that ΦMi(σs

i ) ≤ s

then

Let x′ ∈ As
i be such that ΦMi(σs

i )(x
′) ≤ s.

Let ϕe(x
′) = ϕMi(σs

i )(x
′) + 1.

For x ∈ As
i − {x′}, let ϕe(x) = 0.

Let As
i = {y + x | x < l}.

Let y = y + l.

else

For x ∈ As
i , let ϕe(x) = 0.

Let Ai = {y + x | x < l}.
Let y = y + l.

endif

(∗ Note that in this step Ai changes. Thus, the marker αi “moves”. ∗)

Mark task t as “done”.

7. Assign task nexttask to marker αi.

Let nexttask = nexttask + 1.

8. Go to stage s+ 1.

End {stage s}

It is easy to see that every stage terminates.

Claim 1 Each task gets “done” or “undone” only finitely often.

Proof. A proof by induction suffices. Suppose all tasks numbered < t, get done or undone only
finitely often. Let s be a stage such that no task numbered < t, gets done or undone beyond stage
s. Then beyond stage s task t can never get undone, and thus it can get done at most once more
beyond stage s. 2

Claim 2 A marker can move due to step 5 at most finitely many times before it moves (afresh)
due to step 6.

Proof. A marker can move due to step 5 in some stage s, only if it has lower priority than some
marker which requires attention and gets done at stage s. It is now easy to prove this claim using
Claim 1. We leave the details to the reader. 2
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Claim 3 If a marker requires attention only finitely often, then

(a) the set of numbers assigned to it stabilizes in the limit, and

(b) only finitely many tasks are assigned to it.

Proof. A marker can move at stage s only if the highest priority task assigned to it, which is not
done at the beginning of stage s, gets done at stage s, or a higher priority task gets done at stage
s. Part (a) now follows using Claims 1 and 2.

Part (b) is immediate because a task can be assigned to a marker at stage s only if it requires
attention at stage s. 2

We say that a task is completed (at stage s), if it gets done at some stage s and never gets
undone thereafter.

Claim 4 If a marker requires attention infinitely often, then each task assigned to it gets completed,
and thus

(a) it moves infinitely often, and

(b) infinitely many tasks are assigned to it.

Proof. Let t be the least numbered task such that t never gets completed, and the marker to
which t is assigned gets attention infinitely often. Let s be a stage such that all tasks with priority
higher than t which ever get completed are completed before stage s and no marker, which requires
attention only finitely often, requires attention beyond stage s. Let s′ > s be such that the marker
to which t is assigned gets attention at stage s′. Then, task t gets done at stage s′ and never gets
undone after stage s′—a contradiction. 2

Let f be the zero extension of ϕe. Clearly, ϕe(x)↑ iff there exists an i < r such that limsA
s
i

exists and x ∈ limsA
s
i . Thus, f ∈ Cr,l.

Now for each machine Mi, i < r, we show that Mi does not Exl−1-identify f .

Let lastfin be such that (a) no marker, which requires attention only finitely often, requires
attention beyond stage lastfin, and (b) no marker which moves only finitely often, moves after
stage lastfin.

For each i < r, consider the following cases.

Case 1: αi requires attention finitely often.

In this case, Alastfin
i = limsA

s
i and Mi(f) = M(σlastfin

i ) and Alastfin
i ∩

domain(ϕM(f)) = ∅ (otherwise, αi would require attention beyond stage lastfin). Thus,

Mi does not Exl−1-identify f .

Case 2: αi requires attention infinitely often.

11



By Claim 4, infinitely many tasks are assigned to αi. Note that if a task assigned to αi

gets completed at stage s > lastfin, then σs
i ⊆ f and either Mi is forced to change its

mind on f after σs
i , or ϕMi(f) commits an error in As

i . Thus, either Mi changes mind
infinitely often on f , or M(f) commits infinitely many convergent errors.

Theorem 9 [36] Team1
mExa ⊆ Team1

nExb iff

(a) m ≤ n, and

(b) b = ∗ or n ≥ m · (1 + ba/(b+ 1)c).

Proof. If part follows from Theorem 6.

For the only if part, observe that by Theorem 5, n must be ≥ m. Suppose b 6= ∗. Now,
let l = b + 1, and r = m · (1 + ba/(b + 1)c) − 1. Let Cr,l be as defined just before Theorem 7.

Now, by Theorem 7, Cr,l ∈ Team1
mEx(b+1)·ba/(b+1)c ⊆ Team1

mExa. Also, by Theorem 8, Cr,l 6∈
Team1

rExb.

4 Limiting Identification of Functions by Probabilistic Machines

The present section considers machines whose actions may be determined by the outcome of random
events. These devices, referred to as probabilistic machines, behave very much like algorithmic
machines except that every now and then they have the ability to base their actions on the outcome
of a random event like a coin flip.

More precisely, let t be a positive integer greater that 1. Then, a probabilistic machine P may
be construed as a algorithmic machine that is equipped with a t-sided coin. The response of P to
an evidential situation σ not only depends upon σ but also on the outcomes of coin flips performed
by P till that point. It is useful to make the notion of sequence of outcomes of a t-ary coin precise.

Definition 8 Let t > 1.

(a) N t denotes the set {0, 1, 2, . . . , t− 1}.

(b) An oracle for a t-sided coin, also referred to as a t-ary oracle is an infinite sequence of
integers i1, i2, i3, . . . such that for each j, ij ∈ N t. (A typical variable for oracles is O).

Clearly, N∞
t , the infinite cartesian product of N t with itself, denotes the collection of all t-sided

coin oracles. Observe that a t-ary oracle is somewhat like a text for the finite language N t, and
notations for texts carry over to oracles; the next definition records these conventions.

Definition 9 Let t > 1.

(a) Let O be a t-ary oracle. Then, the nth member of O is denoted On. The initial finite
sequence of O of length n is denoted O[n].
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(b) The set {O[n] | O is a t-ary oracle and n ∈ N} is the collection of all finite t-ary sequences.
(A typical variable for finite t-ary sequences is ρ).

(c) Let ρ be a finite t-ary sequence. The length of ρ is denoted by |ρ|. For n < |ρ|, the nth

member of ρ is denoted by ρn, and the initial sequence of length n in ρ is denoted by ρ[n].

Let ρ be a finite t-ary sequence and P be a probabilistic machine equipped with a t-sided coin.
Let σ ∈ SEG. Then, Pρ(σ) denotes the output of P on σ such that the result of any coin flip
performed by P are ‘read’ from ρ, that is, the outcome of the first coin flip is ρ0, the outcome of the
second coin flip is ρ1, and so on and so forth. If P performs more coin flips than |ρ| in responding
to the evidential state σ, then Pρ(σ) is undefined.

Similarly, we can describe the behavior of P for a given t-ary oracle O. PO behaves like P

except whenever P flips its coin, PO reads the result of the coin flip from the oracle O, that is,
the result of the first coin flip is O0, the result of the second coin flip is O1, and so on and so
forth. Now, if the sequence of hypotheses issued by PO on the graph of a computable function f
corresponds to an Ex-identification of f , then PO is said to Ex-identify f .

Our first task is to define the probability of a probabilistic machine P Ex-identifying f . The
subject of identification by probabilistic machine was first investigated by R. Freivalds [16] and
L. Pitt [31, 32]. Our presentation closely follows that of Pitt. We first review some necessary
probability theory.

4.1 Background Probability Theory

Let the outcomes of an experiment be elements of some universal set Ω. A probability measure
may then be thought of as a function that assigns real values between 0 and 1 to outcomes of
an experiment. In practice it is useful to define a probability measure on subsets of Ω. However,
defining a probability measure on the power set of Ω poses technical difficulties, and hence it is
defined only on those collections of subsets of Ω that satisfy certain properties stated in the following
definition.

Definition 10 B ⊆ 2Ω is a Borel field just in case the following conditions hold:

(a) Ω ∈ B,

(b) A ∈ B ⇒ Ω − A ∈ B,

(c) B is closed under countable unions and intersections, i.e., if {Ai}i∈I is a finite or countable
collection of elements of B, then

⋃

i∈I Ai ∈ B and
⋂

i∈I Ai ∈ B.

Given any collection C of subsets of Ω, there is a unique smallest (with respect to containment)
Borel field containing C. The next definition introduces the notion of a probability measure on a
Borel field B on subsets of Ω.

Definition 11 A probability measure pr on a Borel field B of subsets of Ω is a function pr : B →
[0 . . 1] such that
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(a) pr(Ω) = 1,

(b) (∀A)[A ∈ B ⇒ pr(A) ≥ 0],

(3) If {Ai} is a finite or countable collection of mutually disjoint elements of B, then pr(
⋃

iAi) =
∑

i pr(Ai).

Elements of B are called measurable sets. We note some properties of measurable sets.

If {Ai} is a countable collection of sets, then limk→∞ supAk =
⋂∞

k=0

⋃∞
i=k Ai and limk→∞ inf Ak

=
⋃∞

k=0

⋂∞
i=k Ai. If the limit supremum and limit infimum of a sequence of sets {Ai} are equal, then

this is the limit of the sequence. A sequence of sets {Ai} is monotone if either (∀k)[Ak ⊆ Ak+1]
or (∀k)[Ak+1 ⊆ Ak]. Every monotone sequence of sets has a limit, and every Borel field is closed
under lim inf and lim sup. If {Ai} is a sequence of measurable sets for which the limit is defined,
then pr(limk→∞Ak) = limk→∞ pr(Ak).

Definition 12 A probability space is a triple (Ω,B, pr) of a sample space Ω, a Borel field B on
subsets of Ω, and a probability measure pr on B.

Given a probability space (Ω,B,pr) and a set A ⊆ Ω, A can be shown to be measurable by
expressing A in terms of countable intersections, unions, and complements of known measurable
sets. Similarly, pr(A) can be computed by using properties of probability measures on the values
of these known measurable sets.

The aim of all this machinery is to eventually define a probability space on oracle sequences
which in turn is used to calculate the probability of a machine to Ex-identify a function. To this
end, we first introduce a probability measure on a single coin flip. For a t-sided coin, let (N t,Bt,prt)
be a probability space on the sample space N t, where Bt = {S | S ⊆ N t} and prt = card(S)/t.
Intuitively, this measure simply says that the probability of the outcome of flipping a t-sided coin
belonging to a set S ⊆ N t is card(S)/t. We use this measure next to describe a probability measure
on t-ary oracles.

Now, identification by a probabilistic machine may be viewed as an ongoing process in which
a machine receives data, flips coin, and issues hypotheses. During identification, each of these
activities may occur infinitely often. We would like to introduce a reasonable probability measure
on an infinite sequence of coin flips. As already mentioned, the act of recording the outcomes of
an infinite sequence of coin flips can be viewed as reading values off an infinite t-ary oracle. Thus,
the sample space of events for oracles of a t-sided coin is N∞

t —the set of all infinite sequences of
numbers less than t. Let B∞

t be the smallest Borel field of subsets of N∞
t containing all the sets

N j−1
t ×Aj ×N

∞
t , where for each j, Aj ∈ Bt. Then, let (N∞

t ,B
∞
t ,pr∞t ) be a probability space where

pr∞t is defined as follows:

Given a nonempty set of n integers, i1, i2, i3, . . . , in, such that 0 < i1 < i2 < i3 < · · · < in, let
Ai1,i2,i3,...,in denote the set N i1−1

t ×Ai1 ×N i2−i1−1
t ×Ai2 ×N i3−i2−1

t ×Ai3 × · · · ×Ain ×N∞
t , where

each Aij ∈ Bt. Then, pr∞t is defined on B∞
t such that pr∞t (Ai1,i2,...,in) =

∏n
j=1 prt(Aij ), for each

choice of n integers i1, i2, . . . , in.

Clearly, sets Ai1,i2,i3,...,in are measurable. Let us now look at some examples of measurable sets
of oracles.
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Consider a t-sided coin and j such that 0 ≤ j ≤ t − 1. Then the set {O | On = j} consists of
all such t-ary oracles that have j as their nth value. As an immediate consequence of the forgoing
discussion, {O | On = j} is measurable, and pr∞t ({O | On = j}) = 1/t.

As another example consider a finite t-ary sequence ρ of length k. Then, a t-ary oracle O extends
ρ just in case O[k] = ρ. Again, as an immediate consequence of the forgoing discussion, the set of
oracles {O | O extends ρ} is measurable, and pr∞t ({O | O extends ρ}) = 1/tk. This fact is used
below in showing that the set of oracles that correspond to a successful identification of a function
is measurable.

4.2 Probability of Function Identification

Let P be a probabilistic machine equipped with a t-sided coin and let f ∈ R. Then, the probability
of P Ex-identifying f is taken to be pr∞t ({O | POEx-identifies f}). However, to be able to compute
such a probability, it needs to be established that the set {O | POEx-identifies f} is measurable.
This is the subject of next lemma.

Lemma 1 [31, 32] Let P be a probabilistic machine and let f ∈ R. Then {O | PO Ex-identifies f}
is measurable.

Proof. Let plausible(P, f, j, %) be a boolean predicate, where P ranges over probabilistic machines
equipped with a t-ary oracle, f ranges over R, j ranges over N+, and % ranges over N∞

t ∪
⋃∞

k=j N
k
t

(i.e., % can be any t-ary sequence of length ≥ j). Then, plausible(P, f, j, %) ⇐⇒ P%(f [j]) =
P%(f [j − 1]) ∧ ϕP%(f [j]) = f ]. Then,

{O | POEx-identifies f}

= {O | (∃k)(∀j ≥ k)[plausible(P, f, j, O)]}

=
⋃∞

k=1{O | (∀j ≥ k)[plausible(P, f, j, O)]}

=
⋃∞

k=1

⋂∞
j=k{O | plausible(P, f, j, O)}

=
⋃∞

k=1

⋂∞
j=k

⋃

ρ∈Nj
t∧plausible(P,f,j,ρ)

{O | O extends ρ}.

But, it has already been shown that the set of oracles {O | O extends ρ} is measurable. Thus,
{O | POEx-identifies f} is measurable because it can be expressed as countable unions and inter-
sections of measurable sets.

The following definition is motivated by the above lemma.

Definition 13 [31, 32] Let f ∈ R and P be a probabilistic machine equipped with a t-sided coin
(t ≥ 2). Then, pr∞t (P Ex-identifies f) = pr∞t ({O | PO Ex-identifies f}).

The next lemma says that we do not sacrifice any learning power by restricting our attention
to the investigation of identification by probabilistic machines equipped with only a two-sided coin.
The proof of the lemma follows from a result in probability theory and we omit the details (the
reader is directed to Pitt [32]) for a proof).
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Lemma 2 [31, 32] Let t > 2. Let P be a probabilistic machine with a t-sided coin. Then,
there exists a probabilistic machines P′ with a two-sided coin such that for each f ∈ R,
pr∞2 (P′ Ex-identifies f) = pr∞t (P Ex-identifies f).

We now present identification by probabilistic machines as a paradigm. The above lemma frees
us from specifying the number of sides of the coin, thereby allowing us to talk about probability
function pr∞t without specifying t. For this reason, we will refer to pr∞t as simply pr in the sequel.
Also, we are at liberty to use whatever value of the number of sides of a coin that is convenient for
the presentation at hand.

Definition 14 [31, 32] Let p ∈ [0 . . 1].

(a) P ProbpEx-identifies f (written: f ∈ ProbpEx(P)) just in case pr(P Ex-identifies f) ≥ p.

(b) ProbpEx = {S ⊆ R | (∃P)[S ⊆ ProbpEx(P)]}.

An immediate result is the following theorem which links identification by probabilistic machines
and team identification. The result shows that any collection of functions which can be identified
by a team of n machines, at least one of which is required to be successful, can be identified by a
probabilistic machine with probability ≥ 1/n.

Theorem 10 [31, 32] (∀n ≥ 1)[Team1
nEx ⊆ Prob

1
n Ex].

Proof. Let S ∈ Team1
nEx. Then, there exists a team of n machines M1,M2, . . . ,Mn that

Team1
nEx-identifies each f ∈ S. Let P be a probabilistic machine equipped with an n-sided coin.

The behavior of P is described thus. P flips its coin once and obtains with probability 1/n a number
i ∈ Nn. P then simulates machine Mi+1. Clearly, for each f ∈ S, pr(P Ex-identifies f) ≥ 1/n.

Pitt [31, 32] also established the converse of the above result, (∀n ≥ 1)[Prob
1
n Ex ⊆ Team1

nEx],
thereby showing that probabilistic identification and team identification are successful on essentially
the same collections on functions. This result will be an immediate corollary of the main result of
this section (Theorem 11). In order to prove this main result, Pitt used a technique of calculating
probabilities on “infinite computation tress,” which we describe next. To facilitate the description,
it is expedient to place some “harmless” restrictions on our probabilistic machines. The next
definition describes these restrictions.

Definition 15 [31, 32] A probabilistic machine P is nice just in case P is equipped with a two-
sided coin and the performance of P on a function f follows the following sequence in an infinite
loop:

(a) receive an element of the graph of f ;

(b) issue a hypothesis;

(c) flip its coin.
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The following lemma allows us to restrict our attention to only nice probabilistic machines; its
proof is left to the reader.

Lemma 3 [31, 32] Let P be a probabilistic machine. Then there exists a nice P′ such that (∀f ∈
R)[pr(P Ex-identifies f) ≤ pr(P′ Ex-identifies f)].

4.3 Infinite Computation Trees

Let P be a nice probabilistic machine and f ∈ R. An infinite computation tree for P on f , denoted
TP,f , is simply a description of P’s behavior on all possible 2-ary oracles when P is fed the graph
of f in canonical order. TP,f is an infinite complete binary tree whose nodes represent the state
just after P has performed the following two actions:

(1) received an element of the graph (in canonical order) of f ;

(2) issued an hypothesis.

Since P is nice, the next action of P is a coin flip. The two edges emanating from a node
correspond to the two possible directions that the computation of P can take as determined by the
result of the coin flip.

The nodes of TP,f are numbered in breadth first search order starting with the root node which
is numbered ‘1’. Observe that the root node represents the state of P just after it has received
(0, f(0)) and issued its first hypothesis. At this stage, P, being nice, flips its coin and if the outcome
is ‘0’ the computation follows the left child and if the outcome is ‘1’ the computation follows the
right child. Thus, node 2 represents the state just after the following events have taken place in
sequence:

(1) P flips its coin for the first time;

(2) the outcome of the coin flip in (1) is ‘0’;

(3) P receives (1, f(1)); and

(4) P issues its second hypothesis.

The depth of a node in TP,f is denoted by depth(n), where depth(n) = blog2(n)c. Note that
the depth of the root node is 0. To summarize, a node n of depth d in TP,f corresponds to the
state of P reached if P has received d+ 1 data points, issued d+ 1 hypotheses, and the outcomes
of the sequence of d coin flips performed by P were exactly the sequence of 0’s and 1’s that lead to
the node n in the tree TP,f .

We now define two useful functions on nodes of the tree TP,f . First, for any node n, the parent of
n, denoted parent(n), is the immediate ancestor of node n in TP,f ; parent(1) is undefined. Second,
guess(n) denotes the hypothesis that P has just issued when it is in the state corresponding to node
n. A path P in TP,f is an infinite sequence of nodes P0, P1, P2, P3, . . ., such that P0 = 1 (the root
node) and for each i, Pi = parent(Pi+1). Observe that for each i, the ith node Pi in P occurs at
depth i of TP,f . Also observe that each path in TP,f corresponds to a unique 2-ary oracle and for
each 2-ary oracle there is a unique path in TP,f . This isomorphism between the set of coin oracles
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and the set of paths allows us to extend the function pr to sets of paths in TP,f as follows:

Let C denote a collection of paths in TP,f . Then pr(C) = pr({O | O corresponds to a path P ∈
C}). An especially useful collection of paths is introduced in the following definition.

Definition 16 For each node n in TP,f , P 〈n〉 = {P | P is a path in TP,f and P contains node n}.

It is easy to verify that pr(P 〈n〉) = 2−depth(n), since P 〈n〉 corresponds to {O | O extends ρ},
where ρ corresponds to the finite path segment starting from the root and leading to node n.
The measurable sets P 〈n〉 will be used in computing probabilities of more interesting collections
of paths. But, first we develop some more machinery about paths in TP,f . The next definition
describes what it means for paths in TP,f to converge.

Definition 17 Let P = P0, P1, P2, . . . be a path in TP,f .

(a) P converges to j just in case (
∞
∀ k)[guess(Pk) = j].

(b) P converges at node n just in case the following hold:

(i) P passes through node n (that is, Pdepth(n) = n);

(ii) (∀k ≥ depth(n))[guess(Pk) = guess(Pn)];
(iii) ¬(∃k < depth(n))(∀m ≥ k)[guess(Pm) = guess(Pn)].

Definition 18

C(A) = {P | P is a path in TP,f and there exists an a ∈ A such that P converges to a}.

C(A) is the collection of all such paths in TP,f that converge to some index in the set A. Let
goodf denote the collection of all ϕ-indices for f , i.e., goodf = {i | ϕi = f}. Then, C(goodf ) is the
collection of all such paths (oracles) which result in successful Ex-identification of f by P. Hence,
we write pr(P Ex-identifies f) = pr(C(goodf )).

One of the aims of developing this machinery is to be able to compute pr(C(A)). To this end,
the next definition introduces further refinements on the collection of paths C(A).

Definition 19 (a) Cj = {P | P is a path in TP,f and P converges at node j}.

(b) A path P = P0, P1, P2, . . . k-agrees with Cj just in case the following hold:

(i) Pdepth(j) = j;

(ii) (∀i | depth(j) ≤ i ≤ k)[guess(Pi) = guess(Pj)];

(iii) [j is the root] ∨[guess(Pdepth(j)−1) 6= guess(j)].

(c) Cj,k = {P | P is a path in TP,f ∧ P k-agrees with Cj}.
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Observe that Cj is the collection of paths that converge at node j (to guess(j)), and Cj,k is the
collection of paths that appear to converge to guess(j) up to level k in TP,f . Also, observe that Cj,k

provides a better estimate of Cj with increasing k, and Cj =
⋂∞

k=depth(j)
Cj,k. These and some

other properties of these collections of paths are summarized in the next lemma, a proof of which
is left to the reader.

Lemma 4 [31, 32] (a) (∀k ≥ depth(j))[Cj,k ⊇ Cj,k+1].

(b) (∀k ≥ depth(j))[pr(Cj,k) ≥ pr(Cj)].

(c) pr(Cj) = limk→∞ pr(Cj,k).

Now, observe that C(A) =
⋃

guess(j)∈ACj , where the Cj ’s are mutually disjoint because any
path converges at a single node and j1 6= j2 implies Cj1 ∩Cj2 = ∅. Thus, if we can show that Cj,k’s
are measurable, then so will be Cj and C(A). This is the subject of the next lemma. But, first a
technical definition.

Definition 20 Let j ∈ N and let k ≥ depth(j). Then, Nj,k = {n | depth(n) = k∧(∃P ∈ Cj,k)[Pk =
n]}.

Lemma 5 [31, 32] For each j, for each k ≥ depth(j), the following hold:

(a) Cj,k is measurable;

(b) pr(Cj,k) = card(Nj,k)/2
k;

(c) pr(Cj,k) can be computed by looking at only the first k levels of TP,f .

Proof. (a) Recall that P 〈x〉, the collection of paths in TP,f passing through node x, is measurable.
Cj,k is shown to be measurable by expressing it as union of mutually disjoint P 〈x〉’s.

Observe that for each y1, y2 ∈ Nj,k, y1 6= y2 ⇒ P 〈y1〉 ∩ P 〈y2〉 = ∅. This is because depth(y1) =
depth(y2) = k, and every path must pass through exactly one node at each level.

It is now claimed that Cj,k = ∪x∈Nj,k
P 〈x〉.

To see that Cj,k ⊆ ∪x∈Nj,k
P 〈x〉, let P ∈ Cj,k. Then P passes through some node y at level k,

and y ∈ Nj,k. Therefore, P ∈ P 〈y〉 and P 〈y〉 ⊆ ∪x∈Nj,k
P 〈x〉.

Similarly, to see that ∪x∈Nj,k
P 〈x〉 ⊆ Cj,k, let P ∈ ∪x∈Nj,k

P 〈x〉, and let y be the node at depth
k on P . Now, since the definition of Nj,k doesn’t depend on nodes deeper than level k, all paths
passing through y must be in Cj,k.

Thus, Cj,k is measurable.

(b) The proof of part (a) implies that pr(Cj,k) =
∑

x∈Nj,k
pr(P 〈x〉) =

∑

x∈Nj,k
2−depth(x) =

∑

x∈Nj,k
2−k = card(Nj,k)/2

k.
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(c) It is easy to see that Nj,k can be computed by observing only the first k levels of TP,f . Thus,
pr(Cj,k) can be computed from the first k levels of TP,f .

We now present a lemma that is crucial to the proof of the main result of this section.

Lemma 6 [31, 32] For all A ⊆ N and for all p ∈ [0 . . 1], if pr(C(A)) > p, then there exist nodes
{n1, n2, . . . , nk} such that for each i, 1 ≤ i ≤ k, guess(ni) ∈ A and pr(∪k

j=1Cnj ) > p.

Proof. Observe that for j1 and j2, j1 6= j2 ⇒ Cj1 ∩ Cj2 = ∅. Thus,

pr(C(A)) =
∑

j∈{m|guess(m)∈A}

pr(Cj) > p.

But, since a path can converge at at most one node, there is a finite collection of nodes
{n1, n2, . . . , nk} such that pr(∪k

j=1Cnj ) =
∑k

j=1 pr(Cnj) > p.

Theorem 11 [31, 32] (∀n ≥ 1)(∀p)[1/(n+ 1) < p ≤ 1 ⇒ ProbpEx ⊆ Team1
nEx].

Theorem 11 immediately follows from the following theorem and the fact that Oex = Ex (see
Theorem 2).

Theorem 12 [31, 32] Let p > 1/(n+ 1). Let S ∈ ProbpEx. Then, (∃M1,M2, . . . ,Mn) such that
(∀f ∈ S)(∃i | 1 ≤ i ≤ n)[MiOex-identifies f ].

Proof. Let P be a probabilistic machine such that S ⊆ ProbpEx(P). Using the description of
P, a team of n deterministic machines, M1,M2, . . . ,Mn, is described such that for each f ∈ S,
some member of the team Oex-identifies f . This is achieved by constructing the machines in such
a way that each machine guesses a different range of converging paths in TP,f and for each f , one
of the machines has the correct guess. This will also be the machine which Oex-identifies f . The
machines are described below.

Begin {Mi(f [k])}

1. Construct Tk, the first k levels of TP,f , by simulating P with input f [k] and all 2-ary sequences
of length k.

2. For each node j in Tk, compute pr(Cj,k).

3. Let ck be the least numbered node in Tk such that
∑ck

j=1 pr(Cj,k) > i/(n+ 1).

4. if ck found in Step 3,

then output q such that Dq = {guess(i) | 1 ≤ i ≤ ck}

else output 0

endif

End {Mi(f [k])}
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Now, f ∈ ProbpEx(P) implies that pr(C(goodf )) ≥ p. Recall that C(goodf ) is the collection
of paths that converge to a ϕ-index of f and C(N) is the collection of all converging paths in
TP,f . Hence, C(goodf ) ⊆ C(N) and pr(C(N)) ≥ pr(C(goodf )) > 1/(n + 1). Since 1/(n + 1) <
pr(C(N)) ≤ 1, there exists an m, 1 ≤ m ≤ n, such that m = max({i | i/(n+ 1) < pr(C(N))}).

It will be shown that the machine Mm Oex-identifies f . Let us focus on the behavior of Mm

on f [k]. Mm correctly assumes that the probability of converging paths in TP,f is greater that
m/(n+1) and attempts to find, in the limit, a finite collection of nodes where most paths converge.
To this end, Mm first finds the smallest number ck such that

∑ck
j=1 pr(Cj,k) > m/(n+ 1), and then

outputs the canonical index for the finite set {guess(x) | 1 ≤ x ≤ ck}.

Now, by Lemma 6, there exists a finite collection of nodes {n1, n2, . . . , nv} in TP,f such that
∑v

i=1 pr(Cni) > m/(n + 1). This implies that there exists a smallest numbered node s, such that
∑s

j=1 pr(Cj) > m/(n+ 1). (Choosing any s ≥ max({n1, n2, . . . , nv}) satisfies the inequality.)

Now the theorem follows from the following claim.

Claim 5 (a) (
∞
∀ k)[ck = s].

(b) {guess(x) | 1 ≤ x ≤ s} contains a ϕ-index for f .

It is easy to see that the theorem follows from the above claim. Since Mm, fed f [k], outputs
the canonical index for the finite set {guess(x) | 1 ≤ x ≤ ck}, (a) implies that Mm converges to the
canonical index for {guess(x) | 1 ≤ x ≤ s}. And, according to (b) {guess(x) | 1 ≤ x ≤ ck} contains
a ϕ-index for f , thereby implying that Mm Oex-identifies f . We now prove the claim.

(a) Observe that the choice of s implies that for each k ≥ depth(s), nodes 1, 2, . . . , s will
be in the partial tree Tk constructed in Step 1 of Mm(f [k]). Moreover, Lemma 4 implies that
∑s

j=1 pr(Cj,k) ≥
∑s

j=1 pr(Cj) > m/(n+ 1). Hence, (
∞
∀ k)[ck ≤ s].

Again, Lemma 4 implies that, for all j, and, for all k ≥ depth(j), pr(Cj,k) ≥ pr(Cj,k+1). Thus,
for all but finitely many k, the sequence {ck} is a nondecreasing one, as ck is chosen as the smallest
value satisfying the inequality

∑ck
j=1 pr(Cj,k) > m/(n + 1). Now, since {ck} is a nondecreasing

sequence bounded above by s, it converges. If {ck} converges to s, we are done. Therefore, let
{ck} converge to s′ < s. Then, for all but finitely many k,

∑s′

j=1 pr(Cj,k) > m/(n+ 1). But, then
∑s′

j=1 pr(Cj) > m/(n + 1) because
∑s′

j=1 pr(Cj) is limk→∞
∑s′

j=1 pr(Cj,k). This is a contradiction
because s is the least integer such that

∑s
j=1 pr(Cj) > m/(n+ 1). Therefore, {ck} converges to s.

(b) Since goodf is the set of all ϕ-indexes for f , N−goodf is the collection of all such ϕ-indexes
that are not for f . Now, observe that since C(goodf ) and C(N − goodf ) are mutually disjoint,
pr(C(N)) = pr(C(goodf )) + pr(C(N − goodf )). We also know by the hypothesis of the theorem
and the choice of m that pr(C(N)) ≤ (m + 1)/(n + 1) and pr(C(goodf )) > 1/(n + 1). Thus,
pr(C(N − goodf )) < m/(n+ 1).

Let I denote the set {guess(x) | 1 ≤ x ≤ s}. Observe that pr(C(I)) ≥ m/(n + 1). Therefore,
at least one element in I must be a correct ϕ-index for f , because otherwise I ⊆ N − goodf ,
C(I) ⊆ C(N − goodf ), and pr(C(N − goodf )) ≥ m/(n+ 1) — a contradiction. Hence, I contains
a ϕ-index for f .
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This completes the proof of the theorem.

As an immediate corollary to Theorems 10 and 11, we have the following:

Corollary 2 [31, 32] (∀n ≥ 1)[Prob
1
n Ex = Team1

nEx].

The above corollary, together with Corollary 1 implies the following:

Corollary 3 [31, 32] (∀n ≥ 1)[Prob
1
n Ex ⊂ Prob

1
n+1 Ex].

Thus, the team hierarchy is contained in the probabilistic hierarchy. However, it turns out that
the probabilistic hierarchy is no finer than the team hierarchy. To see this, let 1/(n+1) < p ≤ 1/n.

Clearly, Prob
1
n Ex ⊆ ProbpEx. Now, by Theorem 11, ProbpEx ⊆ Team1

nEx. But, Corollary 2

implies that Team1
nEx = Prob

1
n Ex. Thus, Prob

1
n Ex = ProbpEx. We have essentially shown

the following corollary which says that the probabilistic hierarchy is exactly the same as the team
hierarchy.

Corollary 4 [31, 32] (∀n ≥ 1)(∀p)[1/(n+ 1) < p ≤ 1/n⇒ ProbpEx = Team1
nEx].

We would like to note that counterpart of Corollary 4 is also true when anomalies are allowed
in the final program; we direct the reader to Pitt [32] for details.

Corollary 4 can be used to characterize generalized team identification paradigms in which
more than one member of the team is required to be successful. In Section 3, results about
Team1

nEx-identification were presented; the rest of the present section is devoted to results about
Teamm

n Ex-identification.

We start by stating the following notion of interval.

Definition 21 Let p ∈ (0 . . 1]. Then IN(p) is defined to be 1/n, where n is such that 1/(n+ 1) <
p ≤ 1/n.

It is easy to verify that for p ∈ (0 . . 1], IN(p) = 1/b 1
pc. The next result is simply a restatement

of Corollary 4 using this notion of interval.

Corollary 5 [33] (∀p ∈ (0 . . 1])[ProbpEx = Team1
1

IN(p)

Ex].

The following result says that all such collections of functions that can be identified by a team
of n machines with the requirement that at least m out of n are correct can also be identified by a
single probabilistic machine with probability m

n .

Theorem 13 [33] (∀m,n ∈ N+ | m ≤ n)(∀p ∈ (0 . . 1])[Teamm
n Ex ⊆ Prob

m
n Ex].
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Proof. Let S ⊆ R. Let M1,M2, . . . ,Mn be (deterministic) machines witnessing S ∈ Teamm
n Ex.

Let P be a probabilistic machine equipped with an n-sided coin. The behavior of P can be described
thus: P, before receiving any input, flips its n-sided coin and obtains a number i ∈ Nn. P then
simulates the deterministic machine Mi+1. Clearly, for each f ∈ S, pr(P Ex-identifiesf) ≥ m/n.
Hence, S ∈ Prob

m
n Ex.

The next result completely characterizes Teamm
n Ex-identification in terms of probabilistic iden-

tification.

Theorem 14 [33] (∀m,n ∈ N+ | m ≤ n)[Teamm
n Ex = Team1

b n
m
cEx = ProbIN( m

n
)Ex].

Proof. We first show that Team1
b n

m
cEx = ProbIN( m

n
)Ex]. The definition of IN implies that for all

p ∈ (0 . . 1], IN(IN(p)) = IN(p). Now, by Corollary 5, we have ProbIN( m
n

)Ex = Team1
1

IN(IN( m
n ))

Ex

= Team1
1

IN( m
n )

Ex = Team1
1

1/b n
m c

Ex = Team1
b n

m
cEx.

We now show that Teamm
n Ex = Team1

b n
m
cEx. Since m ≤ n, Theorem 13 implies that

Teamm
n Ex ⊆ Prob

m
n Ex. Now, observe that 1/(b n

mc+ 1) < m
n ≤ 1/b n

mc. Thus, by Corollary 4, we

have Prob
m
n Ex = Team1

b n
m
cEx. Hence, Teamm

n Ex ⊆ Team1
b n

m
cEx. Now, we only need show that

Team1
b n

m
cEx ⊆ Teamm

n Ex. Now observe that for any c ∈ N+, Team1
kEx ⊆ Teamc

c·kEx. Thus,

Team1
b n

m
cEx ⊆ Teamm

m·b n
m
cEx. Now, since m · bn/mc ≤ n, we have Teamm

m·b n
m
cEx ⊆ Teamm

n Ex.

Therefore, Team1
b n

m
cEx ⊆ Teamm

n Ex.

5 Team and Probabilistic Identification of Languages

Consider the following result about language identification in the limit.

Theorem 15 [18] Let

L1 = {L ∈ E | card(L) <∞} and

L2 = {N}.

Then, L1 ∈ TxtEx, L2 ∈ TxtEx, but L1 ∪ L2 6∈ TxtEx.

Clearly, the above non-union theorem for TxtEx motivates the notion of teams for language
identification. We introduce team identification and probabilistic identification for languages next.

5.1 Team Identification of Languages

We define team identification of languages.
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Definition 22 Let m,n ∈ N+ and a ∈ N ∪ {∗}.

(a) Let L ∈ E . A team of n machines M1,M2, . . . ,Mn is said to Teamm
n TxtExa-identify

L (written: L ∈ Teamm
n TxtExa(M1,M2, . . . ,Mn)) just in case there exist m distinct numbers

i1, i2, . . . , im, 1 ≤ i1 < i2 < · · · < im ≤ n, such that each of Mi1 ,Mi2 , . . . ,Mim TxtExa-identifies
L.

(b) Teamm
n TxtExa is defined to be the class of sets L of recursively enumerable languages such

that some team of n machines Teamm
n TxtExa-identifies each language in L.

For the criterion Teamm
n TxtExa-identification, we refer to the fraction m

n as the success ratio
of the criterion.

5.1.1 Probabilistic Language Identification

Let P be a probabilistic machine equipped with a t-sided coin and let T be a text for some
language L ∈ E . Then, the probability of P TxtExa-identifying T is taken to be pr∞t ({O |
POTxtExa-identifies T}). The next lemma establishes that the set {O | POTxtExa-identifies T}
is measurable.

Lemma 7 [31] Let P be a probabilistic machine and let T be a text. Then {O |
PO TxtExa-identifies T} is measurable.

The following definition, motivated by the above lemma, introduces probability of identification
of a text.

Definition 23 [31] Let T be a text and P be a probabilistic machine equipped with a t-sided coin
(t ≥ 2). Then, pr∞t (P TxtExa-identifies T ) = pr∞t ({O | PO TxtExa-identifies T}).

As in the case of function identification, there is no loss of generality in assuming a two sided
coin.

Lemma 8 (Adopted from [31, 32]) Let t, t′ > 2. Let P be a probabilistic machine with a t-sided
coin. Then, there exists a probabilistic machine P′ with a t′-sided coin such that for each text T ,
pr∞t′ (P′ TxtExa-identifies T ) = pr∞t (P TxtExa-identifies T ).

The next definition describes language identification by probabilistic machines. As in the func-
tion case, the above lemma frees us from specifying the number of sides of the coin, thereby allowing
us to talk about probability function pr∞t without specifying t. For this reason, we will refer to
pr∞t as simply pr in the sequel.

Definition 24 [31] Let 0 ≤ p ≤ 1.

(a) P ProbpTxtExa-identifies L (written: L ∈ ProbpTxtExa(P)) just in case for each text
T for L pr(P TxtExa-identifies T ) ≥ p.

(b) ProbpTxtExa = {L ⊆ E | (∃P)[L ⊆ ProbpTxtExa(P)]}.
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5.2 Results

In the context of functions, the reader can verify that as a simple consequence of the equivalence of
team and probabilistic identification if the success ratio of a team is greater that 1

2 , then the team
can be simulated by a single leraning machine without any loss in learning power. Such a cut-off
ratio is referred to as the aggregation ratio of the learning criterion. It is also clear that the only
success ratios of interest are of the form 1

k , k > 1. However, the story is completely different for
language identification in the limit. First, the aggregation ratio for language identification in the
limit turns out to be 2

3 . Second, the notion of team and probabilistic identification are different
for languages. In fact, probabilistic identification turns out to be strictly more powerful than team
identification. Finally, the results for languages are more difficult to obtain. In what follows, we
first present results (with proofs) for team identification of languages with success ratios ≥ 2

3 . This
is followed by presentation of results for success ratios of the form 1

k , k > 2.

5.2.1 Team Language Identification with Success Ratio ≥ 2
3

We first consider the problem of when can a team of learning machines be simulated by a single
learning machine.

As noted above, in the context of function identification, Osherson, Stob, and Weinstein [28]
and Pitt and Smith [33] have shown that the collections of functions that can be identified by teams
with success ratio greater than one-half (that is, a majority of members in the team are required
to be successful) are the same as those collections of functions that can be identified by a single
machine.

Theorem 16 [28, 33] (∀j, k | j
k >

1
2)(∀a)[Team

j
kExa = Exa].

Surprisingly, an analog of Theorem 16 for language identification holds for success ratio 2/3 as
opposed to success ratio 1/2 for function identification. Corollary 6 to Theorem 17 below says that
the collections of languages that can be identified by teams with success ratio greater than 2/3
(that is, more than two-thirds of the members in the team are required to be successful) are the
same as those collections of languages which can be identifies by a single machine.3 Corollary 7 is
a similar result about TxtEx∗-identification.

Theorem 17 (∀j, k | j
k >

2
3)(∀a)[Team

j
kTxtExa ⊆ TxtExd(j+1)/2e·a].

Corollary 6 (∀j, k | j
k >

2
3)[Team

j
kTxtEx = TxtEx].

Corollary 7 (∀j, k | j
k >

2
3)[Team

j
kTxtEx∗ = TxtEx∗].

To facilitate the proof of Theorem 17 and other simulation results, we define the following
technical notion:

3Corollary 6 also appears in Osherson, Stob, and Weinstein [28], and may also be shown using an argument from
Pitt [31] about probabilistic language learning.
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Let Am be a nonempty finite multiset of grammars. We define grammar majority(Am) as
follows:
Wmajority(Am) = {x | for majority of g ∈ Am, x ∈Wg}.

Clearly, majority(Am) can be defined using the s-m-n theorem [35]. Intuitively, majority(Am)
is a grammar for a language that consists of all such elements that are enumerated by a majority
of grammars in Am. Below, whenever we use a set as an argument to majority we assume the
argument to be a multiset.

Proof of Theorem 17. Let j, k, and a be as given in the hypothesis of the theorem. Let L be
Team

j
kTxtExa-identified by the team of machines {M1,M2, . . . ,Mk}. We define a machine M

that TxtExd(j+1)/2e·a-identifies L.

Let conv(M′, σ) = max({|τ | | τ ⊆ σ ∧ M′(τ) 6= M′(σ)}). Let mσ
1 ,m

σ
2 , . . . ,m

σ
k be a permutation

of 1, 2, . . . , k, such that, for 1 ≤ r < k, [(conv(Mmσ
r
, σ),mσ

r ) < (conv(Mmσ
r+1
, σ),mσ

r+1)].

Let M(σ) = majority({Mmσ
1
(σ),Mmσ

2
(σ), . . . ,Mmσ

j
(σ)}).

It is easy to verify that if {M1,M2, . . . ,Mk} Team
j
kTxtExa-identify L ∈ L, then M

TxtExd(j+1)/2e·a-identifies L.

The reader is directed to [22] for a better analysis of the errors in the above simulation.

Corollary 8 to Theorem 18 below says that the collections of languages that can be identified by
a team with success ratio 2/3 (that is, at least two-thirds of the members in the team are required
to be successful) are the same as those collections of languages that can be identified by a team of
three machines at least two of which are required to be successful. Corollary 9 is a similar result
about TxtEx∗-identification with success ratio exactly 2/3.

Theorem 18 (∀j > 0)(∀a)[Team
2j
3jTxtExa ⊆ Team2

3TxtEx(j+1)·a].

Corollary 8 (∀j > 0)[Team
2j
3jTxtEx = Team2

3TxtEx].

Corollary 9 (∀j > 0)[Team
2j
3jTxtEx∗ = Team2

3TxtEx∗].

Proof of Theorem 18. Let j and a be as given in the hypothesis of the theorem. Suppose
{M1, . . . ,M3j} Team

2j
3jTxtExk-identify L. We describe machines M′

1,M
′
2, and M′

3 such that

L ⊆ Team2
3TxtEx(j+1)·a({M′

1,M
′
2,M

′
3}).

Let conv be as defined in the proof of Theorem 17. Let mσ
1 ,m

σ
2 , . . . ,m

σ
3j be a permutation of

1, 2, . . . , 3j, such that, for 1 ≤ r < 3j, [(conv(Mmσ
r
, σ),mσ

r ) < (conv(Mmσ
r+1
, σ),mσ

r+1)].

M′
1(σ) = Mmσ

1
(σ).

M′
2(σ) = majority({Mmσ

2
(σ),Mmσ

3
(σ), . . . ,Mmσ

2j
(σ)}).

M′
3(σ) = majority({Mmσ

1
(σ),Mmσ

2
(σ), . . . ,Mmσ

2j+1
(σ)}).
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Now suppose T is a text for L ∈ L. Consider the following two cases.

Case 1: At least 2j + 1 of the machines in {M1,M2, . . . ,M3j} converge on T .

In this case clearly, M′
3 TxtEx(j+1)·a-identifies T . Moreover, M′

1 (M′
2) TxtEx(j+1)·a-

identifies T if M
lims→∞ m

T [s]
1

TxtExa-identifies T (does not TxtExa-identifies T ).

Case 2: Not case 1.

In this case clearly, M′
1 and M′

2 TxtEx(j+1)·a identify T .

Above proof can be modified to show the following result which says that probabilistic identi-
fication of languages with probability of success at least 2/3 is the same as team identification of
languages with success ratio 2/3.

Theorem 19 Prob2/3TxtEx = Team2
3TxtEx.

Theorem 20 below establishes that 2/3 is indeed the cut-off point at which team identification
of languages becomes more powerful than identification by a single machine.

Theorem 20 Team2
3TxtEx − TxtEx∗ 6= ∅.

Proof of Theorem 20.

Let L = {L | (∃ distinct x1, x2 ∈ {0, 1, 2})(for i = 1, 2)[{y | 〈xi, y〉 ∈ L} is non-empty and finite
and Wmax({y|〈xi,y〉∈L}) = L]}.

Clearly, L ∈ Team2
3TxtEx. Suppose by way of contradiction some machine M TxtEx∗-

identifies L. Without loss of generality, assume that M is order independent [1]. Then, by the
operator recursion theorem [3], there exists a 1-1 increasing, nowhere 0, recursive function p such
that Wp(i)’s can be described as follows.

Enumerate 〈0, p(0)〉 and 〈1, p(1)〉 in both Wp(0) and Wp(1). Let σ0 be such that content(σ0) =
{〈0, p(0)〉, 〈1, p(1)〉}. Let W s

i denote Wi enumerated before stage s. Go to stage 1.

Begin {stage s}

1. Enumerate W s
p(0)

⋃

W s
p(1) in Wp(0),Wp(1),Wp(2s), and Wp(2s+1).

Enumerate 〈2, p(2s)〉 in Wp(0),Wp(2s).

Enumerate 〈2, p(2s+ 1)〉 in Wp(1),Wp(2s+1).

Let τ0 be an extension of σs such that content(τ0) = Wp(0) enumerated till now.

Let τ1 be an extension of σs such that content(τ1) = Wp(1) enumerated till now.

2. Let x = 0. Dovetail steps 2a and 2b until, if ever, step 2b succeeds. If and when step 2b
succeeds, go to step 3.

2a. Go to substage 0.
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Begin {substage s′}
Enumerate 〈4, x〉 in Wp(0),Wp(2s).
Enumerate 〈5, x〉 in Wp(1),Wp(2s+1).
Let x = x+ 1.
Go to substage s′ + 1.

End {substage s′}
2b. Search for i ∈ {0, 1} and n ∈ N such that M(τi�〈4+i, 0〉�〈4+i, 1〉, . . . , 〈4+i, n〉) 6= M(σs).

3. If and when 2b succeeds, let i, n be as found in step 2b.

Let S =

Wp(0) enumerated till now
⋃

Wp(1) enumerated till now
⋃

{〈4 + i, 0〉, 〈4 + i, 1〉, . . . , 〈4 + i, n〉}.

4. Let σs+1 = an extension of τi � 〈4+ i, 0〉 � 〈4+ i, 1〉 � . . . � 〈4+ i, n〉 such that content(σs+1) = S.

Enumerate S in Wp(0).

Go to stage s+ 1.

End {stage s}

Consider the following cases:

Case 1: All stages terminate.

In this case, let L = Wp(0) = Wp(1) ∈ L. Let T =
⋃

s σs. Clearly, T is a text for L. But, M on
T makes infinitely many mind changes (since the only way in which infinitely many stages can be
completed is by the success of step 2b infinitely often). Thus, M does not TxtEx∗-identify L.

Case 2: Some stage s starts but does not terminate.

In this case, let L1 = Wp(0) = Wp(2s) ∈ L and L2 = Wp(1) = Wp(2s+1) ∈ L. Also, L1, L2 are
infinitely different from each other. Let Ti = τi �〈4+ i, 0〉� 〈4+ i, 1〉� . . .�〈4+ i, n〉, where i ∈ {0, 1}
and τi is as defined in stage s. Now, M converges to M(σs) for both T1 and T2. Since L1, L2 are
infinitely different from each other, WM(σs) is infinitely different from at least one of L1 and L2.
Hence, M does not TxtEx∗-identify at least one of L1 and L2.

From the above cases we have that M does not TxtEx∗-identify L.

5.2.2 Team Language Identification for Success Ratios 1
k

We first present results for success ratio 1
2 . In the context of functions, the following result imme-

diately follows from Theorem 14.

Theorem 21 [31, 33] (∀j > 0)[Team
j
2jEx = Team1

2Ex].

This result says that the collections of functions that can be identified by a team with success
ratio 1/2 are the same as those collections of functions that can be identified by a team employing
2 machines and requiring at least 1 to be successful. Consequently, Team1

2Ex = Team2
4Ex =

Team3
6Ex = · · ·, etc.
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Surprisingly, in the context of language identification, Theorem 22 below implies that there are
collections of languages that can be identified by a team employing 4 machines and requiring at
least 2 to be successful, but cannot be identified by any team employing 2 machines and requiring
at least 1 to be successful. As a consequence of this result, a direct analog of Pitt’s connection for
function inference does not lift to language learning. A proof of this result can be obtained by a
complicated adaptation of the proof of Theorem 20; we direct the reader to [21, 22] for the details.

Theorem 22 Team2
4TxtEx − Team1

2TxtEx∗ 6= ∅.

Even more surprising is Corollary 10 to Theorem 23 below which implies that the collections
of languages that can be identified by teams employing 6 machines and requiring at least 3 to be
successful are exactly the same as those collections of languages that can be identified by teams
employing 2 machines and requiring at least 1 to be successful!

Theorem 23 (∀j)(∀i)[Team
2j+1
4j+2TxtExi ⊆ Team1

2TxtExi·(j+1)].

Corollary 10 (∀j)[Team
2j+1
4j+2TxtEx = Team1

2TxtEx].

Proof of Theorem 23. Suppose M1,M2, . . . ,M4j+2 Team
2j+1
4j+2TxtExi-identify L. Let M′

1

and M′
2 be defined as follows.

Let conv be as defined in the proof of Theorem 17. Let mσ
1 ,m

σ
2 , . . . ,m

σ
4j+2 be a permutation of

1, 2, . . . , 4j + 2, such that, for 1 ≤ r < 4j + 2, [(conv(Mmσ
r
, σ),mσ

r ) < (conv(Mmσ
r+1
, σ),mσ

r+1)].

Let match(r, σ) = max({n ≤ |σ| | card((content(σ[n]) −Wr,|σ|) ∪ (Wr,n − content(σ))) ≤ i}).

Let Sσ ⊆ [1 . . 2j + 1] be the (lexicographically least) set of cardinality j such that, for 1 ≤
r, k ≤ 2j + 1, [r ∈ Sσ ∧ k 6∈ Sσ] ⇒ [match(Mmσ

r
(σ), σ) ≥ match(Mmσ

k
(σ), σ)].

M′
1(σ) = majority({Mmσ

1
(σ),Mmσ

2
(σ), . . . ,Mmσ

2j+1
(σ)}).

M′
2(σ) = majority({Mmσ

2j+2
(σ),Mmσ

2j+3
(σ), . . . ,Mmσ

3j+2
(σ)} ∪ {Mmσ

r
(σ) | r ∈ Sσ}).

It is easy to see that the team {M′
1,M

′
2} witness that L ∈ Team1

2TxtExi·(j+1).

The scenario for team success ratio 1/2 is completely settled by Theorems 24 below. A proof
of this result turns out to be very complicated and the reader is directed to [22] for the details.

Theorem 24 (∀n,m ∈ N+ | 2n does not divide m)[Team2n
4nTxtEx − Teamm

2mTxtEx 6= ∅].

The following corollary of the above theorem is evident.

Corollary 11 (∀m,n ∈ N+)[Teamm
2mTxtEx ⊆ Teamn

2nTxtEx ⇔ [m divides n
∨

m is odd]].
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Theorem 24 can also be used to show the following result which establishes that probabilistic
identification of languages with probability of success at least 1/2 is strictly more powerful than
team identification of languages with success ratio 1/2 (see [24]).

Theorem 25 Prob1/2TxtEx −
⋃

m Teamm
2mTxtEx 6= ∅.

A similar result can be shown for the ratio 1/k, k > 2 as noted in the following three results.
Again we direct the reader to [22] for the details

Theorem 26 (∀k ≥ 2)(∀ even j > 1)(∀i | j does not divide i)[Team
j
j·kTxtEx−Teami

i·kTxtEx 6=
∅].

Corollary 12 (∀a ∈ N)(∀k ≥ 2)(∀ even j > 1)(∀i | j does not divide i)
[Team

j
j·kTxtEx − Teami

i·kTxtExa 6= ∅].

Theorem 27 (∀k ≥ 2)[Prob1/kTxtEx −
⋃

j Team
j
j·kTxtEx 6= ∅].

6 Finite Identification of Functions by Teams

The results considered so far have been about identification in the limit criterion. A more practical
learning criterion than learning in the limit is finite identification in which a machine, fed the
graph of a recursive function f , outputs a program for f as its first conjecture and never abandons
this conjecture. Finite identification by a probabilistic machine was first studied by Freivalds [16].
A lot of research activity has taken place in the last few years on finite team identification of
functions. For example, Pitt’s equivalence between team and probabilistic machines for function
identification in the limit does not hold for finite function identification. In the present section, we
survey a few preliminary results and refer the reader to a more comprehensive survey by Daley and
Kalyanasundaram in the current volume.

We first formally introduce finite identification of functions.

6.1 Finite Function Identification

It is useful to extend the definition of a function learning machine as follows.

Definition 25 [18] A learning machine is an algorithmic device that computes a mapping from
SEG into N ∪ {⊥}. We further assume that for all σ ⊆ τ , if M(σ) 6=⊥, then M(τ) 6=⊥.

Intuitively, ⊥ is a nonnumeric element that a machine issues to say that it does not wish to
conjecture a hypothesis, that is, M(σ) =⊥ denotes that M on σ does not output a conjecture.

We now describe what it means for a learning machine to finite identify a function.
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Definition 26 A learning machine M is said to Fin-identify a function f just in case there exists
n0 such that the following hold:

1. for all n < n0, M(f [n]) =⊥;

2. ϕM(f [n0]) = f ; and

3. for all n ≥ n0, M(f [n]) = M(f [n0]).

If M Fin-identifies f , then we write f ∈ Fin(M).

Definition 27 Fin denotes the class of all sets S of recursive functions such that some learning
machine Fin-identifies each function in S.

6.2 Finite Function Identification by Teams

Based on the definitions in Smith [36], Pitt and Smith [33], and Freivalds, Smith, and Velauthapillai
[17], we have the following definition of finite identification of functions by teams.

Definition 28 Let m,n ∈ N+, m ≤ n. A team of machines M1,M2,M3, . . . ,Mn Teamm
n Fin-

identifies f (written: f ∈ Teamm
n Fin(M1,M2,M3, . . . ,Mn)) ⇔ card({l | 1 ≤ l ≤ n ∧ f ∈

Fin(Ml)}) ≥ m.

Teamm
n Fin = {S | (∃M1,M2, . . . ,Mn)[S ⊆ Teamm

n Fin(M1,M2, . . . ,Mn)}.

6.3 Results

The results presented in the sequel can be divided into two groups. We refer the reader to Daley
and Kalyanasundaram paper in the current volume for additional results. The first group of results
is about success ratios greater than 1

2 and the second group is about success ratio equal to 1
2 .

The following theorem shows that for success ratios greater than two-thirds, there is no advan-
tage in using a team over a single machine. This result, together with the next theorem, implies that
the aggregation ratio for finite function identification is 2

3 . This ratio is the same as the aggregation
ratio for language identification in the limit and in fact the following two results can be established
using techniques similar to those used to prove the corresponding language identification results.

Theorem 28 For all j, k ∈ N such that j > 2k/3, Team
j
kFin = Fin.

Theorem 29 Team2
3Fin − Fin 6= ∅.

The above result can be generalized to the following; we direct the reader to [26] for details of
the proof.
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Theorem 30 (∀n ∈ N)[Teamn+2
2n+3Fin− Teamn+1

2n+1Fin 6= ∅].

Daley, Pitt, Velauthapillai, and Will [13] used techniques from Freivalds [16] to prove the fol-
lowing result which shows that Theorem 30 is tight.

Theorem 31 [13] For all r, s such that n+2
2n+3 <

r
s ≤ n+1

2n+1 , Teamr
sFin = Teamn+1

2n+1Fin.

We refer the reader to [16, 13] for related results about probabilistic and team finite identification
of functions. We now turn our attention to the success ratio 1

2 . Velauthapillai [37] showed that the
Pitt’s equivalence between probabilistic and team identification in the limit does not hold for finite
identification of functions.

Theorem 32 [37] Team2
4Fin −Team1

2Fin 6= ∅.

We refer the reader to [37, 26] for a proof. The scenario at success ratio 1
2 is settled by the

following two results; the details can be found in [20, 26].

Theorem 33 Team
2j+1
4j+2Fin ⊆ Team1

2Fin.

Theorem 34 Team
2j
4jFin ⊆ Team2

4Fin.

Many additional results have been obtained for finite function identification by teams. We
direct the reader to Daley, Pitt, Velauthapillai, and Will [13], and Daley, Kalyanasundaram, and
Velauthapillai [10].

The problem of teams for Popperian finite identification of functions is addressed by Daley,
Kalyanasundaram, and Velauthapillai [11] and Daley and Kalyanasundaram [9].

Allowing teams of finite learners to make up to a finite number of errors in the hypothesis
conjectured has been addressed by Daley, Kalyanasundaram, and Velauthapillai [12].

7 Team and Probabilistic Identification for Other Criteria

The problem of teams and probabilistic machines for identification in the limit with bounded
number of mind changes has been addressed by Wiehagen, Freivalds, and Kinber [38] and Daley
and Kalyanasundaram [8].

Behaviorally correct function identification has been studied by Daley [6, 7, 14].

In the context of language identification, work has hardly begun on other criteria. We direct
the reader to [23, 25] for results on finite, vacillatory, and behaviorally correct identification of
languages by teams.
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