
Team Learning of Computable Languages

Sanjay Jain

School of Computing

National University of Singapore

Singapore 119260, Republic of Singapore

Email: sanjay@comp.nus.edu.sg

Arun Sharma

School of Computer Science and Engineering

The University of New South Wales

Sydney, NSW 2052, Australia

Email: arun@cse.unsw.edu.au

Abstract

A team of learning machines is a multiset of learning machines. A team is said to success-
fully learn a concept just in case each member of some nonempty subset, of predetermined
size, of the team learns the concept. Team learning of languages may be viewed as a suit-
able theoretical model for studying computational limits on the use of multiple heuristics
in learning from examples.

Team learning of recursively enumerable languages has been studied extensively. How-
ever, it may be argued that from a practical point of view all languages of interest are
computable. This paper gives theoretical results about team learnability of computable
(recursive) languages. These results are mainly about two issues: redundancy and aggrega-
tion. The issue of redundancy deals with the impact of increasing the size of a team and
increasing the number of machines required to be successful. The issue of aggregation deals
with conditions under which a team may be replaced by a single machine without any loss
in learning ability. The learning scenarios considered are:

(a) Identification in the limit of grammars for computable languages.

(b) Identification in the limit of decision procedures for computable languages.

(c) Identification in the limit of grammars for indexed families of computable languages.

(d) Identification in the limit of grammars for indexed families with a recursively enumer-
able class of grammars for the family as the hypothesis space.

Scenarios that can be modeled by team learning are also presented.

1 Introduction

Recently there has been considerable interest in multi-agent learning [37]—an emerging research
direction at the intersection of distributed AI and machine learning. The main focus of this
work has been empirical. The present paper argues that the “old” field of team learning with
more than two decades [36] of development in the computational learning theory community
provides an initial model for investigation of learning from examples by multiple heuristics.

To understand the idea of team learning, it is useful to consider an informal statement
of a result in inductive inference due to Blum and Blum [4], called the “nonunion theorem.”
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According to this result, there are classes of concepts, C1 and C2, such that each of them is
independently learnable, but their union C1 ∪ C2 is not learnable. In other words, there is a
learning heuristic capable of learning concepts from C1 and another learning heuristic capable
of learning concepts from C2, but there is no single heuristic that can learn any concept drawn
from either C1 or C2. The concept class C1 ∪ C2 may be viewed as one of those challenging
problem domains for which a single learning heuristic does not suffice. However, if one were
allowed to use a “team” of heuristics with the additional weakening of the criterion of successful
learning, then a learnability model can be developed under which the class C1 ∪C2 is learnable.
We illustrate this idea next.

Let H1 be a learning heuristic that learns C1 and let H2 be a learning heuristic that learns C2.
Now, if we employed a team of H1 and H2 to learn C1∪C2 and weakened the criterion of success
to the requirement that success is achieved just in case any one member in the team is successful,
then the class C1 ∪ C2 becomes learnable by the team of heuristics H1 and H2 under this new
criterion of success. However, a price has been paid as it is no longer possible to determine
which member of the team learns which concept in C1∪C2. If it were possible to determine such
information, then the team of heuristics H1 and H2 could be aggregated into a single heuristic,
thereby contradicting the nonunion theorem. At first glance, this lack of information about
which strategy in the team learns which concept may appear to be debilitating, we illustrate
scenarios in Section 5 where such lack of information is not a hindrance.

The study of team learning has concentrated on two kinds of questions: aggregation and
redundancy . The question of aggregation attempts to determine the conditions under which
employing a team of learning strategies yields no advantage over employing a single learning
heuristic. The question of redundancy attempts to find if introducing redundancy in the team
(e.g., doubling the number of heuristics in the team and also doubling the number of heuristics
required to be successful for the team to be successful) yields any extra learning ability. The
present paper surveys the work on team learning of recursively enumerable languages and
presents new results about team learning of computable1 languages from the standpoint of
aggregation and redundancy.

The present paper considers redundancy and aggregation results for team learning in the
context of following learning problems:

(1) Identification in the limit of grammars for computable languages.

(2) Identification in the limit of decision procedures for computable languages.

(3) Identification in the limit of grammars for indexed families of computable languages where
the hypothesis space is also an indexed family.

(4) Identification in the limit of grammars for indexed families with a recursively enumerable
class of grammars for the family as the hypothesis space.

Results related to Item (1) above show that team identification of grammars for computable
languages has similar behavior to team identification of recursively enumerable languages. How-
ever, results about Item (2) show that if attention is restricted to learning decision procedures
for computable languages, then the behavior is similar to team identification of functions. Re-
sults related to Item (3) show that a similar behavior to team function identification is also
displayed by team learning of indexed families of computable languages if the hypothesis space

1Computable languages, also referred to as recursive languages, are those languages for which there exists an
algorithmic decision procedure.
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is also an indexed family. However, results related to Item (4) show that if the hypothesis space
is an enumerable class of grammars, then team learning of indexed families of computable lan-
guages has a different behavior. Proofs of results related to Items (1), (2), and (3) are based
on earlier results, and are presented for the sake of completeness. For these results, we give a
sketch of how they can be derived by adapting known techniques from the literature. The main
contribution of this paper are results related to Item (4) which are proved in detail.

The paper is arranged as follows. In Section 2, we discuss the choice of languages over
functions as a more appropriate model for learning from examples. In Section 3, we introduce
the preliminary definitions about identification in the limit of languages by a single machine.
In Section 4, we motivate and describe identification of languages by teams of machines. In
the same section, we also provide a guide to the literature on team learning. In Section 5, we
describe two hypothetical scenarios that may be modeled using team learning. Section 6 surveys
previously known results about team learning of r.e. languages. In Section 7, we present results
about team learning of computable languages (Items (1) and (2) above) and in Section 8, we
present results about team learning of indexed families of computable languages (Items (3) and
(4) above). Finally, in an appendix, we give proofs.

2 Concepts: Functions and Languages

Algorithmic identification in the limit of two concept classes, computable functions and recur-
sively enumerable languages, have been investigated extensively in the computational learning
theory literature. Although the subject of this paper is learnability of languages, we first shed
some light on the distinction between function learning and language learning.

Let us consider the learning of a computable function f . A learning machine is fed the
graph of f , (0, f(0)), (1, f(1)), . . ., one ordered pair at a time, and the machine, from time to
time, conjectures a sequence of computer programs. The machine is said to learn f just in case
its conjectures converge to a program for f . Recently, learning of functions by teams of learning
machines has become a very active area of research and has been suggested as a theoretical
model for multi-agent learning from examples (for example, see [3, 2, 10, 12, 18, 24, 33, 35]).

The utility of function learning as a model for machine learning from examples, however,
is somewhat limited, as it is able to model only one aspect of learning from examples. Data
available to most learning systems are of two kinds: positive data and complete (both positive
and negative) data. In learning from positive data a learner is only guaranteed that it will
eventually see all the positive data, whereas in learning from complete data a learner will
eventually be presented with all the positive and all the negative data. It turns out that
function learning models only learning from complete data. The negative data is implicitly
available to a learning machine because the input to a function learning machine is the graph
of the function. To see this: if the ordered pair (2, 5) is encountered in the graph, then a
learning machine can safely assume that any pair of the form (2, x), x 6= 5, does not belong to
the function. The point is that a learner can eventually deduce all the negative data from the
incoming positive data.2

However, this problem does not arise in the case of identification in the limit of languages
(described in the next section), as both learning from positive data and complete data can be
modeled. Moreover, as might be expected, results and techniques in the study of team learning
of languages from complete data parallel results and techniques in the study of team learning

2Of course this discussion does not hold for identification of partial functions, but we are concerned here with
identification of total computable functions.

3



of functions. Since they allow the additional possibility of modeling learning from only positive
data, we have chosen languages as our vehicle for the investigation of multi-agent learning from
examples.

3 Language Learning by a single machine

Let N denote the set of natural numbers, {0, 1, 2, . . .}. As already noted our domain is the
collection of recursively enumerable languages over N . A grammar for a recursively enumerable
language L is a computer program that accepts L (or, equivalently, generates L [17]). For any
recursively enumerable language L, the elements of L constitute its positive data and the
elements of the complement, N −L, constitute its negative data. We next describe notions that
capture the presentation of positive data and presentation of both positive and negative data.

Definition 1 A text for the language L is an infinite sequence (repetitions allowed) consisting
of all and only the elements of L. T denotes a typical variable for texts.

So, a text for L represents an instance of positive data presentation for L. The next definition
introduces a notion that represents an instance of both positive and negative data presentation
for L.

Definition 2 An informant for L is an infinite sequence (with repetitions allowed) of ordered
pairs such that for each n ∈ N either (n, 1) or (n, 0) (but not both) appear in the sequence and
(n, 1) appears only if n ∈ L and (n, 0) appears only if n 6∈ L.

At any give time a learning machine has access to only a finite sequence of a text or an
informant. For this reason it useful to introduce some notation about finite sequences. We do
it for texts; a similar discussion holds for informants.

The initial sequence of text T of length n is denoted T [n]. The set of all finite initial
sequences of texts, {T [n] | T is a text and n ∈ N}, is denoted SEQ. We let σ and τ range over
SEQ. We let Λ denote the empty sequence. The sequence resulting from the concatenation of
two sequences σ followed by τ is denoted σ�τ . The content of a sequence σ, denoted content(σ),
is the set of natural numbers in the range of σ. The length of σ, denoted by |σ|, is the number
of elements in σ. For n ≤ |σ|, the initial segment of σ of length n is denoted by σ[n].

We now consider machines that learn from texts. Similar definitions can be made for
machines that learn from informants. A learning machine (for learning from texts) may be
thought of as an algorithmic device that computes a mapping from SEQ into N . The output of
the learning machine may be viewed as indices for computer programs in a suitable acceptable
programming system conjectured by the machine as hypotheses. We let M, with or without
decorations, denote a typical variable for learning machines. We say that a learning machine
M converges on a text T just in case there exists an i such that for all but finitely many n,
M(T [n]) = i. We now consider what it means for a learning machine to successfully learn
languages. The criterion of success considered in the present paper is Gold’s [16] identification
in the limit . We first introduce it for learning from positive data.

Definition 3 [16]
(a) M TxtEx-identifies an r.e. language L just in case M, fed any text for L, converges to

a grammar for L. In this case we say that L ∈ TxtEx(M).
(b) M TxtEx-identifies a class of languages, L, just in case M TxtEx-identifies each

language in L.
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(c) TxtEx denotes a collection of classes L of r.e. languages such that some machine TxtEx-
identifies L.

Thus TxtEx is a set theoretic summary of the capability of machines to TxtEx-identify
classes of r.e. languages. Intuitively, if L ∈ TxtEx, then there exists a machine that TxtEx-
identifies each language in L.

It is easy to see that any class consisting of just one language is identifiable because an
“oblivious” machine that ignores its input and keeps on emitting a grammar for the only
language in the class is successful on that language; however, such a machine is unsuccessful on
every other language. It is precisely for this reason, that we introduced Part (b) in the above
definition; machines that learn only one language are not very interesting.

As an example of a class in TxtEx, consider FIN, the class of finite languages. It is easy
to see that FIN belongs to TxtEx because a machine employing the heuristic of emitting a
grammar for all the elements it has seen at any given time will suffice.

We now define identification from both positive and negative data.

Definition 4 [16]
(a) M InfEx-identifies an r.e. language L just in case M, fed any informant for L, converges

to a grammar for L. In this case we say that L ∈ InfEx(M).
(b) M InfEx-identifies a class of languages, L, just in case M InfEx-identifies each language

in L.
(c) InfEx denotes a collection of all such classes L of r.e. languages such that some machine

InfEx-identifies L.

4 Learning by a team and related work

A team of learning machines is a multiset of learning machines.3 Before we formally define
learning by a team, it is worth considering the origins of team learning. Consider the following
theorem for TxtEx-identification.

Theorem 1 [4] There are classes of languages L1 and L2 such that
(a) L1 ∈ TxtEx,
(b) L2 ∈ TxtEx, but
(c) (L1 ∪ L2) 6∈ TxtEx.

The above result4, popularly referred to as the “non-union theorem,” says that TxtEx is not
closed under union. In other words, there are classes of languages that are identifiable, but the
union of these classes is not identifiable. This result may be viewed as a fundamental limitation
on building a general purpose device for machine learning, and, to an extent, justifies the use
of heuristic methods in Artificial Intelligence. However, this result also suggests a more general
criterion of identification in which a team of learning machines is employed and success of the
team is the success of any member in the team. We illustrate this idea next.

Consider the classes of languages L1 and L2 in Theorem 1. Let M1 TxtEx-identify L1

and M2 TxtEx-identify L2. Now, if we employed a team consisting of M1 and M2 to identify
L1 ∪ L2 and weakened the criterion of success to the requirement that success is achieved just

3We use multset because there may be several copies of the same machine in the team.
4Taking L1 = {N} and L2 = FIN yields a proof because of Gold’s [16] result that no class of languages that

contains all the finite languages and an infinite language can be identified in the limit from only positive data.
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in case any one member in the team is successful, then the class L1 ∪ L2 becomes identifiable
by the team consisting of M1 and M2 under this new criterion of success. This idea can be
extended to teams of n machines out of which at least m (m ≤ n) are required to be successful.
The formal definitions for team identification of languages are presented next.

We abuse the notation slightly and use the same notation for sets and multisets; it will be
clear from context which one is meant.

Definition 5 Let m,n ∈ N and 0 < m ≤ n.
(a) A team of n machines {M1,M2, . . . ,Mn} is said to Teamm

n TxtEx-identify a language
L just in case at least m members in the team TxtEx-identify L. In this case we write
L ∈ Teamm

n TxtEx({M1,M2, . . . ,Mn}).
(b) A team of n machines {M1,M2, . . . ,Mn} is said to Teamm

n TxtEx-identify a class of
languages, L, just in case the team Teamm

n TxtEx-identifies each language in L.
(c) Teamm

n TxtEx is defined to be the collection of classes L of r.e. languages such that
some team of n machines Teamm

n TxtEx-identifies L.

We can similarly define Teamm
n InfEx for team learning from both positive and negative data.

We now give a brief guide to the literature on team learning.
The “nonunuon theorem” scenario first appears in the context of frequency identification,

and was studied by Podnieks [34].5 Team learning of functions was motivated by Case (cited
in [35]) based on the nonunion theorem of Blum and Blum [4], and studied extensively by
Smith [35]. The general case of team identification (m out of n) is due to Osherson, Stob, and
Weinstein [29]. The notion of probabilistic learning turns out to be closely related to team
learning and was first investigated by Freivalds [13]. Pitt [31] was the first to notice that team
learning in the limit of functions and probabilistic identification in the limit of functions turn
out to be equivalent (see also Pitt and Smith [33]). Jain and Sharma [19, 21, 23] investigated
team learning of recursively enumerable languages.

Recently, there has been a spurt of activity in the study of teams and probabilistic machines
for learning with bounded number of mind changes (see Wiehagen, Freivalds, and Kinber [38]
and Daley and Kalyanasundaram [8]). Considerable work has been done for a special case of
learning with bounded number of mind changes, namely finite identification (0 mind changes;
also referred to as one-shot learning in the literature). We direct the reader to Freivalds [14],
Jain, Sharma, and Velauthapillai [24], Daley, Pitt, Velauthapillai, and Will [12], Daley, Kalyana-
sundaram, and Velauthapillai [10]. The problem of teams for Popperian6 finite identification
of functions is addressed by Daley and Kalyanasundaram [9]. Allowing teams of finite learners
to make up to a finite number of errors in the hypothesis conjectured has been addressed by
Daley, Kalyanasundaram, and Velauthapillai [11]. Behaviorally correct function identification
by teams has been studied by Daley [7].

In the context of language identification, work has hardly begun on other criteria. We direct
the reader to Jain and Sharma [20, 22] for results on finite, vacillatory, and behaviorally correct
identification of languages by teams. Meyer [27] has investigated probabilistic identification of
indexed families of computable languages (see Meyer [28] for interaction between monotonicity
constraints and probabilistic identification of indexed families of computable languages).

5For Ex-identification of functions, frequency learning was shown to be equivalent to team learning by Pitt
[31]. Kinber and Zeugmann [25] extended this concept to reliable frequency identification, which in turn is
equivalent to one-sided error probabilistic inference.

6Popperian learners are such that they only conjecture indices of total computable functions; see [6].
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5 Settings for team learning

Finally, it is worth noting an aspect of team identification that cannot be overlooked, namely,
it is in general not possible to determine which members in the team are successful. If it were
possible to decide which members are successful then identification by teams would not yield
any extra learning ability over identification by single machines. This property seems to rob
team identification of any possible utility. However, we present below scenarios, first described
by us in [19], in which the knowledge of which machines are successful is of no consequence, all
that matters is some are.

First, consider a hypothetical situation in which an intelligent species, somewhere in outer
space, is attempting to contact other intelligent species (such as humans on earth) by trans-
mitting radio signals in some language (most likely alien to humans). Being a curious species
ourselves, we would like to establish a communication link with such a species that is trying
to reach out. For this purpose, we could employ a team of language learners each of which
perform the following three tasks in a loop:

(a) receive and examine strings of a language (eg., from a radio telescope);
(b) guess a grammar for the language whose strings are being received;
(c) transmit messages back to outer space based on the grammar guessed in Step (b).
If one or more of the learners in the team is actually, but, possibly unknowingly, successful in

learning a grammar for the alien language, a correct communication link would be established
between the two species.

Consider another scenario in which two countries, A and B, are at war with each other.
Country B uses a secret language to transmit movement orders to its troops. Country A, with
an intention to confuse the troops of country B, wants to learn a grammar for country B’s
secret language so that it can transmit conflicting troop movement instructions in that secret
language. To accomplish this task, country A employs a team of language learners, each of
which perform the following three tasks in a loop:

(a) receive and examine strings of country B’s secret language;
(b) guess a grammar for the language whose strings are being received;
(c) transmit conflicting messages based on the grammar guessed in Step (b) (so that B’s

troops think that these messages are from B’s Generals).
If one or more of the learners in the team is actually, but possibly unknowingly, successful

in correctly learning a grammar for country B’s secret language, then country A achieves its
purpose of confusing the troops of country B.

It should be noted that the notion of team learning models only part of the above scenario,
as we ignore in our mathematical model the aspect of learners transmitting messages back.
We also mathematically ignore possible detrimental effects of a learner guessing an incorrect
grammar and transmitting messages that could interfere with messages from a learner that
infers a correct grammar (for example, the string ‘baby milk powder factory’ in one language
could mean the string ‘ammunition storage’ in another!). In no way are these issues trivial; we
simply don’t have a formal handle on them at this stage.

6 Previous Results: Team learning of r.e. languages

We now survey some of the results about team learning of r.e. languages. The results that we
present here are about redundancy and aggregation. We direct the reader to [19, 21, 22, 23]
for additional results.
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First, it is easy to show the following proposition.

Proposition 1 Let k,m, n ∈ N such that 0 < m ≤ n and k ≥ 1.
(a) Teamm

n TxtEx ⊆ Teamm·k
n·k TxtEx.

(b) Teamm
n InfEx ⊆ Teamm·k

n·k InfEx.

The above proposition says that for both texts and informants, the classes of languages that
can be learned by a given team can also be learned if we multiply the size of the team and the
number of machines required to be successful by the same factor. In other words, introducing
redundancy does not hurt. The question is: Does it help? We consider team learning from
informants first, followed by team learning from texts.

6.1 Team learning from informants

For identification from both positive and negative data, introducing redundancy in the team
does not yield any extra learning ability.

Theorem 2 (Adapted from [33]) Let k,m, n ∈ N such that 0 < m ≤ n and k ≥ 1. Then
Teamm

n InfEx = Teamm·k
n·k InfEx.

The above result says that the classes of languages that can be identified by teams employing n
machines and requiring at least m to be successful are exactly the same as those classes which
can be identified by teams employing n ·k machines and requiring at least m ·k to be successful.

We next consider the question of aggregation, that is, under what conditions can a team be
replaced by a single machine without any loss in learning ability. Part (a) of the next result
says that if a majority of the members in the team are required to be successful, then employing
a team does not yield any extra learning ability. Part (b) of the result says that 1

2 is indeed
the cutoff. In the sequel, we refer to such cutoff points as aggregation ratios. ⊂ denotes proper
subset.

Theorem 3 (a) (∀m,n | m
n > 1

2)[Teamm
n InfEx = InfEx].

(b) InfEx ⊂ Team1
2InfEx.

A proof of the above result can be worked out using techniques from Pitt [32] and from Pitt
and Smith [33].

6.2 Team learning from texts

Surprisingly, introducing redundancy in the team does help sometimes in the context of learning
from only positive data. The following result says that there are classes of languages that can
be TxtEx-identified by teams employing 4 machines and requiring at least 2 to be successful,
but cannot be TxtEx-identified by any team employing 2 machines and requiring at least 1 to
be successful.

Theorem 4 ([23]) Team1
2TxtEx ⊂ Team2

4TxtEx.

Even more surprising is the next theorem which implies that the classes of languages that can be
TxtEx-identified by teams employing 6 machines and requiring at least 3 to be successful are
exactly the same as those classes that can be TxtEx-identified by teams employing 2 machines
and requiring at least 1 to be successful.

Theorem 5 ([23]) (∀j)[Team2j+1
4j+2TxtEx = Team1

2TxtEx].
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The complete picture is actually quite complicated. The status of teams with success ratio 1
2

is completely known, but only partial results are known for other team ratios ( 1
k , k > 2); we

direct the reader to [23].
The next result sheds light on when a team learning languages from texts can be aggregated

into a single machine without loss in learning ability. Part (a) of the result says that if more
than two-thirds of the members in the team are required to be successful, then employing a
team for learning languages from texts does not yield any extra learning ability. Part (b) of
the result says that 2

3 is indeed the cutoff. We refer the reader to [32, 31, 23] for proofs.

Theorem 6
(a) (∀m,n | m

n > 2
3)[Teamm

n TxtEx = TxtEx].
(b) TxtEx ⊂ Team2

3TxtEx.

7 Results: Team learning of computable languages

It may justifiably be argued that recursively enumerable languages are too general to usefully
model concepts of practical interest. For this reason, it is worth considering the effects of team
learning on restricted classes of languages. In this section, we present results about redundancy
and aggregation for computable languages. We denote the class of computable languages by
REC.

It turns out that even for computable languages, redundancy does help sometimes. (Nota-
tion: The power set of a set A is denoted 2A.)

Theorem 7 (Team1
2TxtEx ∩ 2REC) ⊂ (Team2

4TxtEx ∩ 2REC).

The proof of Theorem 4 in [23] is actually a proof of the above theorem (because the language
class constructed as the witness for Team2

4TxtEx being a strict super set of Team1
2TxtEx

consist only of computable languages). For similar reasons, the aggregation ratio for team
identification of computable languages turns out to be 2

3 , as recorded in the following theorem.

Theorem 8
(a) (∀m,n | m

n > 2
3) [(Teamm

n TxtEx ∩ 2REC) = (TxtEx ∩ 2REC)].
(b) (TxtEx ∩ 2REC) ⊂ (Team2

3TxtEx ∩ 2REC).

It may be argued that if we are restricting ourselves to learning of computable languages
then we should consider identifying decision procedures instead of grammars. The following
definition formalizes this notion. (Notation: A characteristic function of a language L is the
function which is 1 on elements of L and 0 on nonelements of L.)

Definition 6 [16]
(a) M TxtExCI-identifies a computable language L just in case M, fed any text for L,

converges to a program that computes the characteristic function of L. In this case we say that
L ∈ TxtExCI(M).

(b) M TxtExCI-identifies a class of languages, L, just in case M TxtExCI-identifies each
language in L.

(c) TxtExCI denotes the collection of classes L of computable languages such that some
machine TxtExCI-identifies L.
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It should be noted that the hypothesis space of the learner in the above definition is still
the set of all programs; it is only required that the final converged program compute the
characteristic function of the language being learned. Osherson and Weinstein [30] observed
the following fact which implies that there are classes of computable languages for which a
grammar can be identified from texts, but for which a decision procedure cannot be identified
from texts.

Theorem 9 [30] TxtExCI ⊂ (TxtEx ∩ 2REC).

We next consider team identification of decision procedures for computable languages from
texts. One can define Teamm

n TxtExCI in a manner similar to other team learning criteria.
Until now, we have seen that in the case of learning from only positive data (texts), redundancy
sometimes results in increased learning ability. Surprisingly, the following theorem shows that
redundancy does not pay off when the team is learning decision procedures.

Theorem 10 Let k,m, n ∈ N such that 0 < m ≤ n and k ≥ 1. Then
Teamm

n TxtExCI = Teamm·k
n·k TxtExCI.

The aggregation ratio for TxtExCI turns out to be 1
2 as shown by the following theorem.

Theorem 11 (a) (∀m,n | m
n > 1

2)[Teamm
n TxtExCI = TxtExCI].

(b) TxtExCI ⊂ Team1
2TxtExCI.

Note that Theorem 11(b) follows by taking L = {N} ∪ FIN. Proof of Theorem 10 and Theo-
rem 11(a) can be obtained by adapting techniques from Pitt [32] and Pitt and Smith [33]. We
illustrate such an adaptation in the Appendix for Theorem 10.

8 Results: Indexed families of computable languages

We next consider identification of indexed families of computable languages. A sequence of
nonempty languages L0, L1, . . . is an indexed family just in case there exists a computable
function f such that for each i ∈ N and for each x ∈ N ,

f(i, x) =

{

1 if x ∈ Li,
0 otherwise.

In other words, there is a uniform decision procedure for languages in the class. Angluin [1]
was the first researcher to restrict investigations to indexed families of computable languages;
she was motivated by the fact that most language families of practical interest are indexed
families (e.g., the class of pattern languages). [39] provides an excellant survey of research
done in the context of learnability of indexed families of languages. We denote by INDEX the
collection of all indexed families of computable languages. Again, we restrict ourselves to texts,
as informants do not yield any new insight.

Since we are considering indexed families, it makes sense to consider scenarios where the
hypothesis space available to the learning machine is a recursively enumerable class of grammars.
We first introduce some notation.

Let Σ be a fixed terminal alphabet. Lang(G) is the language generated/accepted by G.
G = G0, G1, G2, . . . is a hypothesis space just in case G is a recursively enumerable family

of grammars over Σ such that membership in Lang(Gi) is uniformly decidable for all i ∈ N
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and all strings s ∈ Σ∗. When a learning machine emits i, we interpret it to mean that it is
conjecturing the grammar Gi. We say that the class of languages {Lang(Gi) | i ∈ N} is defined
by the hypothesis space G. We also refer to the class {Lang(Gi) | i ∈ N} as range(G); it is
easy to see that range(G) is an indexed family.

Below we adapt Gold’s criterion of identification in the limit to the identification of indexed
families with respect to a given hypothesis.

Definition 7 Let L be an indexed family and let G be a hypothesis space.
(a) Let L ∈ L. A machine M TxtEx-identifies L with respect to G just in case M, fed any

text for L, converges to j and L = Lang(Gj).
(b) A machine M TxtEx-identifies L with respect to G just in case for each L ∈ L, M

TxtEx-identifies L with respect to G.

There are three kinds of identification of indexed families that have been studied in the
literature: (a) class comprising; (b) class preserving; and (c) exact [26, 39]. Since, the notion of
TxtEx-identification of indexed families is equivalent in all of the above three forms [26], we
will only consider the class comprising case in this paper.

Definition 8 [TxtEx]Index denotes the collection of all indexed families L for which there is
a machine M and a hypothesis space G such that M TxtEx-identifies L with respect to G.

Similar to the above, we can define a hypothesis space of decision procedures and define
the collection [TxtExCI]Index. It turns out that for indexed families of computable languages,
learning grammars and decision procedures are equivalent.

Proposition 2 [TxtEx]Index = [TxtExCI]Index.

Hence we only consider grammar identification in our investigation of team learning for indexed
families. One can then define the collection

[Teamm
n TxtEx]Index

in a manner similar to other team identification criteria.
The following two theorems summarize that in the case of learning indexed families of

computable languages from texts, redundancy does not pay off and the aggregation ratio is 1
2 .

Hence, having a more structured hypothesis space makes a difference.

Theorem 12 Let k,m, n ∈ N such that 0 < m ≤ n and k ≥ 1.
Then [Teamm

n TxtEx]Index = [Teamm·k
n·k TxtEx]Index.

Theorem 13 (a) (∀m,n | m
n > 1

2)[[Teamm
n TxtEx]Index = [TxtEx]Index].

(b) [TxtEx]Index ⊂ [Team1
2TxtEx]Index.

Note that Theorem 13(b) follows by taking L = {N} ∪ FIN. A proof of Theorem 12 and
Theorem 13(a) can be worked out on the lines of proofs of Theorem 10 as discussed in the
Appendix.

Finally we consider team identification of indexed families where the learning machines
are allowed to conjecture any r.e. index, that is, the hypothesis space is not restricted to a
recursively enumerable family of grammars. This is an interesting question as it sheds light on
the choice of a hypothesis space that is far richer than the concept class being learned warrants.
In this case it turns out that redundancy pays off in some cases, and the aggregation ratio is
2
3 . The next two theorems summarize this result.
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Theorem 14 (Team1
2TxtEx ∩ INDEX) ⊂ (Team2

4TxtEx ∩ INDEX).

Theorem 15 (a) (∀m,n | m
n > 2

3) [(Teamm
n TxtEx ∩ INDEX) = (TxtEx ∩ INDEX)].

(b) (TxtEx ∩ INDEX) ⊂ (Team2
3TxtEx ∩ INDEX).

The Appendix contains a detailed proof of the above two theorems.
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Appendix

Proofs of Theorems 10 and 11 and of Theorems 12 and 13 can be derived by adapting proof
techniques from Pitt [32] and from Pitt and Smith [33]. We illustrate such an adaptation for
Theorem 10. Proofs of Theorem 14 and 15, however, require intricate diagonalization arguments
which are described in detail. We first introduce some mathematical notation.

Notation

We let ϕ denote an acceptable programming system. Since there are countably many programs
in the programming system ϕ, we refer to each program with its index (or, its number). We
let ϕi stand for the partial computable function computed by the program with index i in the
ϕ-system. We denote ϕi(x)↓ to mean that the program with index i in the ϕ-system on input
x is defined. We write ϕi(x)↓ = y, or simply ϕi(x) = y, to mean that the program with index
i in the ϕ-system, on input x, outputs y. We write ϕi(x)↑ to denote that the program with
index i in the ϕ-system on input x does not halt.

We let Φ denote an arbitrary fixed Blum complexity measure [5, 17] for the ϕ-system.
Wi denotes domain(ϕi). Wi is, then, the r.e. set/language (⊆ N) accepted (or equivalently,
generated) by the ϕ-program i. We refer to i as a grammar (acceptor) for L just in case L is
the domain of ϕi. We denote by Wi,s the set {x ≤ s | Φi(x) < s}.

A computable language has a computable decision procedure. We refer to i as a decision
procedure (or, the characteristic index) for a computable language L just in case ϕi(x) = 1 if
x ∈ L and ϕi(x) = 0 if x 6∈ L. Suppose i is not a decision procedure for L, then we consider
two kinds of errors that i can make in deciding if an element belongs to L. Suppose ϕi(x)↓ and
either ϕi(x) 6= 1 when x ∈ L or ϕi(x) 6= 0 when x 6∈ L, then we say that i makes an error of
commission at x. On the other hand if ϕi(x)↑, then we say that i makes an error of omission
at x. Finally, for a finite set S of programs, let unify(S) be a program defined as follows:

begin ϕunify(S)(x)

Search for i ∈ S such that ϕi(x)↓.

If and when such an i is found, let ϕunify(S)(x) = ϕi(x) for the first such i found.

end
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Intuitively, unify(S) just computes the union of functions computed by programs in S
(on inputs where more than one program in S converge but to different values, unify(S) can
arbitrarily choose one of the converging programs). It is easy to observe that if S contains at
least one decision procedure for L and programs that make only errors of omission in deciding
membership in L, then unify(S) is a decision procedure for L. This observation will be useful
in extracting (in the limit) a decision procedure for a computable language L from a set of
programs F , at least one of which is a decision procedure for L, and a text for L. This is the
subject of the next claim.

Claim 1 Given a finite set of programs, F , and a text T for L, such that at least one of the
programs in F is a decision procedure for L, one can find, in the limit, from F and T a decision
procedure for L.

Proof. Let F and a text T for L be given. Without loss of generality assume that range of
each program in F is a subset of {0, 1}. We show how to construct a decision procedure for L
in the limit.

Let S1 = {i ∈ F | (∃x ∈ L)[ϕi(x)↓ = 0]}.
So, programs in S1 are not decision procedures for L. S2 below tries to search for programs

which accept elements in the complement of L.
Let S2 = {i ∈ F −S1 | (∃j ∈ F −S1)(∃x)[ϕi(x)↓ 6= 0 ∧ ϕj(x)↓ = 0]}. Note that if i ∈ F −S1

as witnessed by x and j, then x 6∈ L (since otherwise j would be in S1).
It should be noted that both S1 and S2 can be constructed from F and T in the limit.
We now claim that unify(F − (S1 ∪S2)) is a decision procedure for L. To see this first note

that all programs in F which reject an element of L are in S1. Thus all elements in F −S1 either
accept each element of L or diverge on elements of L. Also, since there is a decision procedure
for L in F (there exists one such by the assumption), it follows that there is a decision procedure
for L in F − S1. Now for any element i in F − S1 such that for some x 6∈ L, ϕi(x)↓ = 1, we
have that i ∈ S2. This follows by the definition of S2 and the fact that there exists a decision
procedure for L in F − S1. Now it is straightforward to see that for each j ∈ F − (S1 ∪ S2), for
each x, either ϕj(x)↑ or ϕj(x) correctly determines the membership of x in L; that is, j is either
a decision procedure for L or only makes errors of omission. It follows that unify(F − (S1∪S2))
is a decision procedure for L.

We now sketch how the above claim can be used to establish Theorem 10. We will
first show that for arbitrary m and n, Teamm

n TxtExCI ⊆ Team1
bn/mcTxtExCI. From

this it follows that, Teamk·m
k·n TxtExCI ⊆ Team1

bn/mcTxtExCI. It is also easy to see that

Team1
bn/mcTxtExCI ⊆ Teamm

n TxtExCI. The theorem follows.
We now show that

Teamm
n TxtExCI ⊆ Team1

bn/mcTxtExCI.

Suppose M1,M2, ....,Mn are given. Suppose further that T is a text for L and these machines
Teamm

n TxtExCI identify L. We observe the following:
(a) The number of machines converging to a program (perhaps an incorrect one) among

M1,M2, ....,Mn on text T lies in one of the intervals, [i · m, (i + 1) · m) where 1 ≤ i ≤ bn/mc
and

(b) if the number of converging machines lies in the interval [i ·m, (i + 1) ·m), then at least
one of the first i · m converging machines on T converges to a decision procedure for L. This
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is because at least m machines are guaranteed to converge to a correct decision procedure and
the cardinality of the interval (i · m, (i + 1) · m) is m − 1.

We now construct bn/mc machines as follows: machine M′
i where 1 ≤ i ≤ bn/mc, on text

T , searches for the first i ·m machines converging on T . Let Fi be the set of programs to which
these machines converge. M′

i then, assuming that Fi contains a decision procedure for L, using
the above claim tries to find a decision procedure for L.

Note that the assumption — Fi contains a decision procedure for L — is true for at least
one i, and thus at least one of the bn/mc machines succeeds in TxtExCI-identifying L.

The above technique can easily be adapted to yield proofs for Theorems 2, 3(a), 10, and
11(a). A modification of the technique can also be used to prove Proposition 2 and Theorems 12
and 13(a).

Our proof of Theorem 14 and 15 depend upon the following weakening of the notion of a
locking sequence [4].

Definition 9 (Fulk [15]) Let machine M and language L be given. σ is said to be a stabilizing
sequence for M on L just in case the following hold:

(a) content(σ) ⊆ L, and
(b) (∀τ | content(τ) ⊆ L) [M(σ) = M(σ � τ)].

So a stabilizing sequence is like a locking sequence except that M’s conjecture on it need not
be a grammar for the language. The following technical lemma due to Fulk facilitates the proof
of Theorems 14 and 15.

Lemma 1 (Fulk [15]) Given any machine M, one can effectively construct machine M′ such
that all the following conditions hold.

(a) TxtEx(M) ⊆ TxtEx(M′).

(b) If there exists a locking sequence for M′ on L, then M′ identifies L.

(c) If M′ identifies L, then all texts for L contain a locking sequence for M′ on L.

For the following, let α0, α1, . . . denote a recursive enumeration of all the finite initial sequences.

Proof of Theorem 15

We now prove Theorem 15, which is:
Theorem 15

(a) (∀m,n | m
n > 2

3) [(Teamm
n TxtEx ∩ INDEX) = (TxtEx ∩ INDEX)].

(b) (TxtEx ∩ INDEX) ⊂ (Team2
3TxtEx ∩ INDEX).

Proof of part (a) is straightforward as it is implied by Theorem 6 (a). We show part (b),
that is we show that (TxtEx ∩ INDEX) ⊂ (Team2

3TxtEx ∩ INDEX).
Let M0,M1, . . . denote a recursive enumeration of learning machines such that, for all

L ∈ TxtEx, there exists an i, such that Mi TxtEx-identifies L. (Note that there exists such
an enumeration [30]).

We assume, without loss of generality, that no machine converges on any text at the empty
sequence Λ. Let INIT = {{x | x ≤ n} | n ∈ N}. The idea of the proof is to define an
indexed family of computable languages in which the classes {N} and INIT are embedded.
Since {N} ∪ INIT is not TxtEx-identifiable, it will be so arranged that the resulting class is

14



not in TxtEx. However, the embedding is done in such a way that a team of three machines
can be designed, at least two of which are capable of identifying any language in the class.

For i, j, k ∈ N , define the following languages:
Ai = {〈0, i, x〉 | x ∈ N}.
Bi,j = {〈0, i, x〉 | x ≤ j}.
Ci,j,k = Bi,j ∪ {〈1, i, k〉}.
Let T i be a text for Ai such that content(T i[n + 1]) = Bi,n. Define predicate Prop(i, j, t) to

be true just in case (∀z ≤ t | T i[j] ⊆ αz ∧ content(αz) ⊆ Ai)[Mi(αz) = Mi(T
i[j])]. Intuitively,

Prop(i, j, t) is a bounded test for whether T i[j] looks like a stabilizing sequence for M on Ai

(t gives a bound on the extensions of T i[j] which are tested for mind change). Observe that
if Prop(i, j, t) is false, then so is Prop(i, j, t + 1). Also, observe that if T i[j] is a stabilizing
sequence for machine Mi on Ai then Prop(i, j, t) is true for all t ∈ N . For i, j, k ∈ N , we now
define language L〈i,j,k〉 as follows.

L〈i,j,k〉 =























Ai, if j = 0;
Ai, if j > 0 and (∃j′ < j)[Prop(i, j′, k)];
Bi,j , if j > 0 and (∀j′ < j)[¬Prop(i, j′, k)] and (∀t)[Prop(i, j, t)];
Ci,j,l, if j > 0 and (∀j′ < j)[¬Prop(i, j′, k)] and

l = min({t | ¬Prop(i, j, t)}) < ∞.

Let L = {L〈i,j,k〉 | i, j, k ∈ N}. Also, note that Bi,j ∈ L iff j = min({j′ | T i[j′] is a stabilizing
sequence for Mi on Ai}). Now the result follows from the following three claims.

Claim 2 L is an indexed family.

Proof. We give a program for a computable function that takes two arguments 〈i, j, k〉 and
x as input and outputs 1 if x ∈  L〈i,j,k〉, 0 if x 6∈  L〈i,j,k〉. In the algorithm below the phrase
“Output x ∈ A” means “Output 1” if x ∈ A; otherwise “Output 0”.
begin

if (∃m)[x = 〈0, i,m〉] or (∃n)[x = 〈1, i, n〉] then
(∗ x is of the correct form ∗)
if (∃n)[x = 〈1, i, n〉] then

if (j > 0) ∧ (∀j′ < j)[¬Prop(i, j′, k)] ∧
n = min({t | ¬Prop(i, j, t)}) then

Output 1
else

Output 0
endif

else (∗ x is of the form 〈0, i,m〉 ∗)
if j = 0 then

Output x ∈ Ai

else
if (∃j′ < j)[Prop(i, j′, k)] then

Output x ∈ Ai

else (∗ i.e., (∀j′ < j)[¬Prop(i, j′, k)] ∗)
Output x ∈ Bi,j

endif
endif
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endif
else (∗ x is not of the correct form ∗)

Output 0
endif

end
It is easy to verify that the above program is a uniform decision procedure for L. 2

Claim 3 L 6∈ TxtEx.

Proof. Suppose for contradiction Mi TxtEx-identifies L. Without loss of generality let Mi

satisfy the properties described in Fulk’s Lemma 1 above. Therefore, there exists a least j such
that T i[j] is a locking sequence for Mi on Ai. Let k be such that (∀j ′ < j)[¬Prop(i, j′, k)]. But,
then Li,j,k = Bi,j , and on any text for Bi,j extending T i[j], Mi does not TxtEx-identify Bi,j .
2

Claim 4 L ∈ Team2
3TxtEx.

Proof. Let g be a computable function such that Wg(i) = Ai. Let h be a computable function
such that

Wh(i) =

{

Ai, if (∀j)(∃t)[¬Prop(i, j, t)];
Bi,j , if j = min({j′ | (∀t)[Prop(i, j, t)]}).

Let f(i, j, k) be a grammar for Ci,j,k. We now define three machines M1,M2,M3 which
Team2

3TxtEx-identify L.

M1(σ) =















g(i), if ∅ ⊂ content(σ) ⊆ Ai;
f(i, j, k), if 〈1, i, k〉 ∈ content(σ) and j = max({x | 〈0, i, x〉 ∈ content(σ)}) and

content(σ) ⊆ Ci,j,k;
0, otherwise.

M2(σ) =















h(i), if ∅ ⊂ content(σ) ⊆ Ai;
f(i, j, k), if 〈1, i, k〉 ∈ content(σ) and j = max({x | 〈0, i, x〉 ∈ content(σ)}) and

content(σ) ⊆ Ci,j,k;
0, otherwise.

Let match(i, σ) = max({t | Wi,t ⊆ content(σ) ∧ content(σ[t]) ⊆ Wi,|σ|})

M3(σ) =

{

g(i), match(g(i), σ) > match(h(i), σ);
h(i), otherwise.

Let T be a text for L ∈ L. If L is of the form Ci,j,k for some i, j, k, then clearly, M1,M2

TxtEx-identify T . So suppose L ⊆ Ai, for some i. Note that g(i) is a grammar for Ai.
Moreover, in this case if for all j, (∃t)[¬Prop(i, j, t)], then h(i) is a grammar for Ai else h(i)
is a grammar for Bi,j , where j = min({j′ | (∀t)[Prop(i, j, t)]}). Also, L must be either Ai, or
Bi,j (where j = min({j′ | (∀t)[Prop(i, j, t)]})). It follows that at least one of g(i) and h(i) is
a grammar for L. Now, if Wg(i) = Wh(i) = Ai, then L = Ai and M1,M2, TxtEx-identify L;
otherwise M3 and one of M1,M2 TxtEx-identify L. 2

The above three claims imply the result.
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Proof of Theorem 14

We now prove Theorem 14, which is
Theorem 14 (Team1

2TxtEx ∩ INDEX) ⊂ (Team2
4TxtEx ∩ INDEX).

This proof may be viewed as a more involved version of the previous proof in the sense that
the language class is constructed for diagonalization against two machines instead of one. This
is achieved by constructing the language class in such a way that N and INIT are embedded
twice. Of course the embedding is done with enough clues for a suitable team of four machines
at least two of which are successful. The details are as follows.

Let M0,M1, . . . denote a recursive enumeration of inductive inference machines such that,
for all L ∈ TxtEx, there exists an i, such that Mi TxtEx-identifies L. (Note that there exists
such an enumeration [30]). We assume, without loss of generality, that no Mi converges on any
text at the empty sequence Λ. Consider the following languages:

Ai,j = {〈0, i, j, x〉 | x ∈ N}.
Bi,j,k = {〈0, i, j, x〉 | x < k} ∪ {〈0, i, j, k + 2x〉 | x ∈ N}.
Ci,j,k,l = {〈0, i, j, x〉 | x < k + 2 + l}.
Ei,j,k,l = {〈0, i, j, x〉 | x < k} ∪ {〈0, i, j, k + 2x〉 | x < l}.
Fi,j,k,l,w = Ci,j,k,l ∪ {〈1, i, j, w〉}.
Gi,j,k,l,w = Ei,j,k,l ∪ {〈1, i, j, w〉}.
Let T i,j be a text for Ai,j such that content(T i,j [n + 1]) = {〈0, i, j, x〉 | x ≤ n}.
Let T i,j,k be a text for Bi,j,k such that

content(T i,j,k[n]) =

{

{〈0, i, j, x〉 | x < n}, if n ≤ k;
{〈0, i, j, x〉 | x < k} ∪ {〈0, i, j, k + 2x〉 | x < n − k}, if n > k.

Let Prop(i, j, k, t) be true iff (∃m ∈ {i, j})(∀z ≤ t | T i,j [k] ⊆ αz ∧ content(αz) ⊆
Ai,j)[Mm(αz) = Mm(T i,j [k])].

Intuitively, Prop(i, j, k, t) is a bounded test for whether T i,j [k] looks like a stabilizing se-
quence for Mi or Mj on Ai,j (t gives a bound on the extensions of T i,j [k] which are tested for
mind change).

Note that if Prop(i, j, k, t) is false, then so is Prop(i, j, k, t+1). Also, if T i,j [k] is a stabilizing
sequence for one of Mi,Mj on Ai,j then Prop(i, j, k, t) is true for all t ∈ N .

Let Prop′(i, j, k, l, t) be true iff Prop(i, j, k, t) and (∀m ∈ {i, j})(∀z ≤ t | T i,j [k + l] ⊆
αz ∧ content(αz) ⊆ Ai,j)[Mm(αz) = Mm(T i,j [k + l])].

Note that if Prop′(i, j, k, l, t) is false, then so is Prop′(i, j, k, l, t + 1). Also, if T i,j [k] is a
stabilizing sequence for one of Mi,Mj on Ai,j and T i,j [k + l] is a stabilizing sequence for both
Mi,Mj on Ai,j then Prop′(i, j, k, l, t) is true for all t ∈ N .

Let Prop′′(i, j, k, l, t) be true iff Prop(i, j, k, t) and (∀m ∈ {i, j})(∀z ≤ t | T i,j,k[k + l] ⊆
αz ∧ content(αz) ⊆ Bi,j,k)[Mm(αz) = Mm(T i,j,k[k + l])].

Note that if Prop′′(i, j, k, l, t) is false, then so is Prop′′(i, j, k, l, t + 1). Also, if T i,j [k] is a
stabilizing sequence for one of Mi,Mj on Ai,j and if T i,j,k[k + l] is a stabilizing sequence for
both Mi,Mj on Bi,j,k then Prop′′(i, j, k, l, t) is true for all t ∈ N .

For each i, j, k, l, w ∈ N , define languages L1
〈i,j,k,l,w〉, L2

〈i,j,k,l,w〉, and L3
〈i,j,k,l,w〉 as follows.

L1
〈i,j,k,l,w〉 =























Ai,j , if k = 0;
Ai,j , if k > 0 and (∃k′ < k)[Prop(i, j, k, w)];
Bi,j,k, if k > 0 and (∀k′ < k)[¬Prop(i, j, k′, w)] and (∀t)[Prop(i, j, k, t)];
Gi,j,k,l,s, if k > 0 and (∀k′ < k)[¬Prop(i, j, k′, w)] and

s = min({t | ¬Prop(i, j, k, t)}) < ∞.
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L2
〈i,j,k,l,w〉 =



























Ai,j , if [(∃k′ < k)[Prop(i, j, k′, w)] OR (∃l′ < l)[Prop′(i, j, k, l′, w)]];
Ci,j,k,l, if (∀k′ < k)[¬Prop(i, j, k′, w)] and (∀l′ < l)[¬Prop′(i, j, k, l′, w)] and

(∀t)[Prop(i, j, k, t)] and (∀t)[Prop′(i, j, k, l, t)];
Fi,j,k,l,s, if (∀k′ < k)[¬Prop(i, j, k′, w)] and (∀l′ < l)[¬Prop′(i, j, k, l′, w)] and

s = min({t | ¬Prop(i, j, k, t) ∨ ¬Prop′(i, j, k, l, t)}).

L3
〈i,j,k,l,w〉 =



























Ai,j , if [(∃k′ < k)[Prop(i, j, k′, w)] OR (∃l′ < l)[Prop′′(i, j, k, l′, w)]];
Ei,j,k,l, if (∀k′ < k)[¬Prop(i, j, k′, w)] and (∀l′ < l)[¬Prop′′(i, j, k, l′, w)] and

(∀t)[Prop(i, j, k, t)] and (∀t)[Prop′′(i, j, k, l, t)];
Gi,j,k,l,s, if (∀k′ < k)[¬Prop(i, j, k′, w)] and (∀l′ < l)[¬Prop′′(i, j, k, l′, w)] and

s = min({t | ¬Prop(i, j, k, t) ∨ ¬Prop′′(i, j, k, l, t)}).

It is easy to verify that L = {Lm
〈i,j,k,l,w〉 | i, j, k, l, w ∈ N, ∧ m ∈ {1, 2, 3}} is an indexed

family. We claim that L witnesses the theorem.
Suppose for contradiction that machines Mi, Mj Team1

2TxtEx-identify L. Without loss of
generality, assume that Mi,Mj satisfy Lemma 1. Then, there exists a least k such that T i,j [k] is
a stabilizing sequence for one of Mi, Mj on Ai,j . Without loss of generality, let us assume that
it is Mi. Thus, Bi,j,k ∈ L (L1

i,j,k,l,w for large enough w will be Bi,j,k). Now suppose WMi(T i,j [k])

enumerates 〈0, i, j, k + 1〉 (a similar argument can be given for the case where WMi(T i,j [k]) does
not enumerate 〈0, i, j, k + 1〉). Thus, Mi cannot identify Bi,j,k or any of Ei,j,k,l. Thus, there
must exists a least l such that T i,j,k[k + l] is a stabilizing sequence for Mj on Bi,j,k. Thus,
Ei,j,k,l ∈ L (L3

i,j,k,l,w for large enough w is Ei,j,k,l). However, Mj can TxtEx-identify at most

one of Bi,j,k, and Ei,j,k,l. It follows that Mi,Mj do not Team1
2TxtEx-identify L.

We now show that L ∈ Team2
4TxtEx. Let g be recursive function such that for all i, j,

Wg(i,j) = Ai,j . Let recursive functions h, f1, f2 be as defined below:

Wh(i,j) =

{

Ai,j , if (∀k)(∃w)[¬Prop(i, j, k, w)];
Bi,j,k, if k = min({k′ | (∀w)[Prop(i, j, k′, w)]}) < ∞.

Wf1(i,j,k) =

{

Ai,j , if (∀l)(∃w)[¬Prop′(i, j, k, l, w)];
Ci,j,k,l, if l = min({l′ | (∀w)[Prop′(i, j, k, l′, w)]}).

Wf2(i,j,k) =

{

Bi,j,k, if (∀l)(∃w)[¬Prop′′(i, j, k, l, w)];
Ei,j,k,l, if l = min({l′ | (∀w)[Prop′′(i, j, k, l′, w)]}).

Define M1,M2,M3,M4 as follows.
Let F be a recursive function such that WF (D) = D, for all finite sets D.

M1(σ) =

{

g(i, j), if content(σ) ⊆ Ai,j ;
F (content(σ)), if ¬(∃i, j)[content(σ) ⊆ Ai,j ].

M2(σ) =

{

h(i, j), if content(σ) ⊆ Ai,j ;
F (content(σ)), if ¬(∃i, j)[content(σ) ⊆ Ai,j ].

Note that if the input text is for a language L ∈ L, which is not a subset of any Ai,j ,
then M1,M2 identify T . Further note that if, for all k, (∃w)[¬Prop(i, j, k, w)], then Wg(i,j) =
Wh(i,j) = Ai,j , and Ai,j is the only subset of Ai,j , which is in the class L. Thus, for the definition
of M3,M4 below we assume that the input language is contained in some Ai,j , and for this
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value of i, j, there exists a minimum k such that (∀w)[Prop(i, j, k, w)]. We let ki,j denote such
a k. We assume that the function match is as defined in the proof of Theorem 15.

M3(σ) =







f1(i, j, ki,j), if content(σ) ⊆ Ai,j , and
match(g(i, j), σ) > match(h(i, j), σ);

f2(i, j, ki,j), otherwise.

M4(σ) =



























































































g(i, j), if content(σ) ⊆ Ai,j and match(g(i, j), σ) ≥
max({match(g(i, j), σ), match(h(i, j), σ),
match(f1(i, j, ki,j), σ), match(f2(i, j, ki,j), σ)});

h(i, j), if content(σ) ⊆ Ai,j and match(h(i, j), σ) ≥
max({match(g(i, j), σ), match(h(i, j), σ),
match(f1(i, j, ki,j), σ), match(f2(i, j, ki,j), σ)});

f1(i, j, ki,j), if content(σ) ⊆ Ai,j and match(f1(i, j, ki,j), σ) ≥
max({match(g(i, j), σ), match(h(i, j), σ),
match(f1(i, j, ki,j), σ), match(f2(i, j, ki,j), σ)});

f2(i, j, ki,j), if content(σ) ⊆ Ai,j and match(f2(i, j, ki,j), σ) ≥
max({match(g(i, j), σ), match(h(i, j), σ),
match(f1(i, j, ki,j), σ), match(f2(i, j, ki,j), σ)}).

Now for any L in L such that L ⊆ Ai,j , and Wg(i,j) 6= Wh(i,j), it is easy to verify that,
at least one and at most two of g(i, j), h(i, j), f1(i, j, ki,j), f2(i, j, ki,j) is a grammar for L.
Furthermore, if two of the above are grammars for L, then they must either be g(i, j), and
f1(i, j, ki,j) or h(i, j) and f2(i, j, ki,j). Further, if g(i, j), f1(i, j, ki,j) are grammars for L, then
match(T [n], g(i, j)) > match(T [n], h(i, j)) for any text T for L and large enough n. Similarly,
if h(i, j), f2(i, j, ki,j) are grammars for L, then match(T [n], g(i, j)) < match(T [n], h(i, j)) for
any text T for L and large enough n. It then follows from the above that at least two of
M1,M2,M3,M4 TxtEx-identify L. The theorem follows.
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